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Abstract 11 
SPMweb is the online webserver of the Shortest Path Map (SPM) tool for identifying the key conformationally-12 
relevant positions of a given enzyme structure and dynamics. The server is built on top of the DynaComm.py 13 
code and enables the calculation and visualization of the SPM pathways. SPMweb is easy-to-use as it only 14 
requires three input files: the three-dimensional structure of the protein of interest, and the two matrices 15 
(distance and correlation) previously computed from a Molecular Dynamics simulation. We provide in this 16 
publication information on how to generate the files for SPM construction even for non-expert users and discuss 17 
the most relevant parameters that can be modified. The tool is extremely fast (it takes less than one minute per 18 
job), thus allowing the rapid identification of distal positions connected to the active site pocket of the enzyme. 19 
SPM applications expand from computational enzyme design, especially if combined with other tools to identify 20 
the preferred substitution at the identified position, but also to rationalizing allosteric regulation, and even 21 
cryptic pocket identification for drug discovery. The simple user interface and setup make the SPM tool 22 
accessible to the whole scientific community. SPMweb is freely available for academia at http://spmosuna.com/. 23 

 24 
Introduction 25 
Enzyme design aims to create novel biocatalysts with enhanced properties through the modification of their 26 
natural amino acid sequences or via generation of novel sequences and folds. The fascination with enzyme 27 
design and engineering is motivated by the advantageous features exhibited by these catalysts, including their 28 
capacity to function effectively under gentle biological conditions, achieving remarkable efficiency, selectivity, 29 
and specificity. Enzyme design is also an intellectual challenge, as it is a stringent examination of what we 30 
understand of enzyme stability, folding, evolution and catalysis.  31 
 32 
Designing enzymes taking as starting point a natural or computationally reconstructed/generated scaffold 33 
involves selecting specific residues for mutagenesis, generating new variants, and employing screening protocols 34 
to assess improvements in targeted properties.(Bell et al., 2021) Two main approaches exist: rational 35 
design(Damborsky and Brezovsky, 2014, Maria-Solano et al., 2018, Romero-Rivera et al., 2017) considering de 36 
novo and natural scaffolds, and Directed Evolution (DE),(Arnold, 2015, Currin et al., 2015) which can be 37 
successfully combined to achieve higher levels of performance. Rational design focuses on predetermined 38 
hotspot positions, identified through multiple sequence alignments, structural analysis of active site pockets, 39 
potential substrate-binding tunnels, and comprehensive computational modeling (using techniques like 40 
Quantum Mechanics, Quantum Mechanics/Molecular Mechanics, Molecular Dynamics, and MonteCarlo 41 
simulations).(Romero-Rivera, Garcia-Borràs and Osuna, 2017, Sequeiros-Borja et al., 2020) Rational design 42 
efforts often focus on the active site pocket or in the bottleneck regions of the computed substrate binding 43 
tunnels and gates. The user-friendly tools such as CAVER,(Stourac et al., 2019) AQUA-DUCT,(Stourac, Vavra, 44 
Kokkonen, Filipovic, Pinto, Brezovsky, Damborsky and Bednar, 2019) and HotSpot Wizard,(Sumbalova et al., 45 
2018) among others can be used.(Sequeiros-Borja, Surpeta and Brezovsky, 2020) In contrast, DE,(Bornscheuer 46 
et al., 2012, Francis and Hansche, 1972, Lutz and Bornscheuer, 2008, Packer and Liu, 2015) honored with the 47 



2018 Nobel Prize in Chemistry, initially relied on iterative cycles of random mutagenesis. Recent advancements 1 
integrate bioinformatic tools, (Jiang et al., 2008, Kourist et al., 2010, Kuipers et al., 2010, Kuipers et al., 2009, 2 
Rothlisberger et al., 2008, Siegel et al., 2010) sequence analysis,(Addington et al., 2013, Pavelka et al., 2009) 3 
smarter libraries, protein engineering techniques,(Bornscheuer, Huisman, Kazlauskas, Lutz, Moore and Robins, 4 
2012, Kazlauskas and Bornscheuer, 2009, Turner, 2009) gene synthesis,(Currin et al., 2014) and high-throughput 5 
screening techniques.(Xiao et al., 2015) Machine-learning sequence-function models can be used to guide 6 
DE.(Mazurenko et al., 2020, Yang et al., 2019) As mentioned above, the powerful DE strategy can be applied to 7 
boost the low activities of computational enzyme designs(Jaeckel et al., 2008, Renata et al., 2015, Romero and 8 
Arnold, 2009)  and enhance promiscuous enzymatic side-activities.(Campbell et al., 2016, Leveson-Gower et al., 9 
2019) Multiple laboratory-engineered enzymes have been reported in the literature, including enzymes for the 10 
production of drugs, biotherapeutics, potential bulk products, and fragrances.(Buller et al., 2023)  11 
 12 
A notable strength of DE lies in its capability to introduce mutations throughout the entire protein sequence. 13 
This contrasts with rational design approaches that are often restricted to alterations in the active site pocket 14 
or available tunnels and gates for promoting substrate binding/product release and altering the water 15 
content.(Gora et al., 2013, Sequeiros-Borja, Surpeta and Brezovsky, 2020) As observed in numerous DE studies, 16 
the remarkable fold increases in catalytic activity achieved are accomplished thanks to mutations positioned far 17 
from the active site, which are computationally very challenging to predict.(Currin, Swainston, Day and Kell, 18 
2015, Jiménez-Osés et al., 2014, Obexer et al., 2017, Osuna, 2021) This trend extends to diverse enzymes such 19 
as cytochrome P450, Diels-Alderase, phosphotriesterase, sitagliptinase, among many additional ones.(Osuna, 20 
2021) Often laboratory-evolved enzymes present mutations introduced at an average distance of around 15 Å 21 
from the active site.(Currin, Swainston, Day and Kell, 2015) Intriguingly, there is no direct correlation between 22 
the impact of introduced mutations on enzyme turnover (kcat) and their proximity to the active site, in contrast 23 
to the more deterministic role of active site mutations in specificity.(Currin, Swainston, Day and Kell, 2015) The 24 
coupling of distal residues affecting the enzyme catalytic activity suggests a substantial influence of long-range 25 
allostery, i.e., regulation of catalytic activity by effector and/or protein binding, in many proteins.(Gunasekaran 26 
et al., 2004) Extensive MD simulations have successfully rationalized how distal mutations influence the multiple 27 
conformations enzymes can adopt thus impacting its catalytic activity.(Jiménez-Osés, Osuna, Gao, Sawaya, 28 
Gilson, Collier, Huisman, Yeates, Tang and Houk, 2014, Romero-Rivera et al., 2017)  Distal mutations often alter 29 
non-covalent interaction networks, which might favor some additional conformational states of the enzyme that 30 
are more optimal for the promiscuous activity to be enhanced and/or modify the flexibility of crucial structural 31 
elements such as loops and lids gating the active site pocket.(Campbell, Kaltenbach, Correy, Carr, Porebski, 32 
Livingstone, Afriat-Jurnou, Buckle, Weik, Hollfelder, Tokuriki and Jackson, 2016, Curado-Carballada et al., 2019, 33 
Petrović et al., 2018)  While computational modeling can satisfactorily explain these changes in activity induced 34 
by distal alterations, the challenge remains in predicting which distal mutations can impact and regulate 35 
enzymatic activity.(Campitelli et al., 2020, Jiménez-Osés, Osuna, Gao, Sawaya, Gilson, Collier, Huisman, Yeates, 36 
Tang and Houk, 2014, Romero-Rivera, Garcia-Borràs and Osuna, 2017) Given the insights from DE that distal 37 
mutations are essential for enhancing enzyme catalytic activity, the development of computational tools capable 38 
of predicting remote mutations holds great promise, potentially advancing our underdeveloped ability to 39 
computationally design efficient Nature-like enzymes.(Osuna, 2021) 40 
 41 
 42 
The effect exerted by distal mutations in enzyme design reminds the allosteric regulation effect produced by 43 
effector binding in allosteric systems or within the active sites of heterocomplexes that present synchronised 44 
transportation of substrates. Distal mutations can induce a shift in the conformational landscape, thus favouring 45 
the catalytically competent arrangement of the catalytic residues for catalysis. Given the striking similarity 46 
between these two scenarios (enzyme design and allosteric regulation), we explored the potential development 47 
and application of correlation-based tools in enzyme design.(Maria-Solano, Serrano-Hervás, Romero-Rivera, 48 
Iglesias-Fernández and Osuna, 2018, Romero-Rivera, Garcia-Borràs and Osuna, 2017) We developed the 49 



Shortest Path Map (SPM, DynaComm.py) tool by constructing a first complex graph based on mean distances 1 
and correlation values between the residues that compose the enzyme computed during MD simulations, similar 2 
to the protocol by Sethi et al.(Sethi et al., 2009) for studying allosteric systems (see Figure 1).(Romero-Rivera, 3 
Garcia-Borràs and Osuna, 2017) In contrast to prior allosteric studies concentrating on identifying communities 4 
in the graph, (Sethi, Eargle, Black and Luthey-Schulten, 2009) our SPM approach involves computing shortest 5 
path lengths using the Dijkstra algorithm implemented in the igraph module.(Csárdi and Nepusz, 2006) 6 
Consequently, it identifies those pairs of residues that are more correlated and have a higher impact into the 7 
enzyme conformational dynamics. Unlike community analysis that highlights important regions of the enzyme, 8 
SPM directly identifies the most crucial residues rather than regions. This feature is particularly appealing for 9 
enzyme design, enabling the direct construction of small libraries of hotspot positions. 10 
 11 
SPM narrows down the sequence space to a subset of conformationally relevant positions, with a notable 12 
capability to pinpoint challenging distal positions that enhance activity.(Osuna, 2021) The successful application 13 
of SPM in identifying DE mutations in retro-aldolase, monoamine oxidase, and tryptophan synthase enzymes 14 
suggests its potential utility in the rational design of enzyme variants.(Osuna, 2021) The Mulholland lab utilized 15 
our SPM tool to assess changes in dynamical networks during the transition-state ensemble along DE of a 16 
computationally designed Kemp eliminase. (Bunzel et al., 2021) Additionally, we have used SPM to investigate 17 
allosteric communication within monomers, and in allosteric systems.(Calvó-Tusell et al., 2022, Castelli et al., 18 
2024, Curado-Carballada, Feixas, Iglesias-Fernández and Osuna, 2019) More recently, we have also used SPM 19 
for rational enzyme design in combination with other tools to further reduce the number of identified positions 20 
and select the specific amino acid at each site, as described in the following examples. We combined SPM with 21 
ancestral sequence reconstruction for developing new stand-alone tryptophan synthase B (TrpB) 22 
variants.(Maria-Solano et al., 2021) Focusing on including the ancestral amino acid in the non-conserved SPM 23 
positions, our approach increased the stand-alone activity of the new SPM6-TrpB variant by 7-fold (in terms of 24 
kcat).(Maria-Solano, Kinateder, Iglesias-Fernández, Sterner and Osuna, 2021) It is worth noting that, while testing 25 
only a single variant, the fold increase in kcat was comparable to the 9-fold obtained through DE, which required 26 
generating and screening over 3000 variants. In a recent pre-print paper, we showcased the efficacy of our SPM 27 
methodology in designing efficient Nature-like enzymes. Specifically, we achieved a more than 1300-fold 28 
increase in the esterase catalytic efficiency of a hydroxynitrile lyase (HNL), surpassing the esterase activity of the 29 
reference enzyme.(Casadevall et al., 2023) Altogether, these studies provide compelling evidence for the 30 
potential of our SPM methodology in computational enzyme design. 31 
 32 
In this study, we develop and describe the webserver version of the SPM tool for its application in enzyme design 33 
for academic use. First, we discuss the user-friendly webserver generated, the input files needed and the 34 
overview of the settings that the user can alter to generate different SPM maps. Second, we show with the 35 
tryptophan synthase example how information of inter and intramolecular SPM communications networks can 36 
be withdrawn. With this tool, we hope the academic community can benefit from the application of the SPM in 37 
the study of biomolecular systems and aim to expand the current area of application of the SPM methodology.  38 
 39 
Results 40 
 41 
WORKFLOW 42 
The basic workflow for SPM construction is shown in Figure 1. As described in the introduction, the enzyme 43 
structure and dynamics is simplified using a weighted graph (step 1), which is then further processed to identify 44 
the shortest paths to generate the final SPM graph (step 2). SPM can then be plotted back into the 3D-45 
dimensional structure to visualize how the active site pocket is connected to more remote sites.    46 
 47 
 48 



Figure 1. Workflow and equations for Shortest Path Map (SPM) construction for computational enzyme 1 
design. The enzyme is simplified as a weighted graph as done for studying allostery,(Sethi, Eargle, Black and 2 
Luthey-Schulten, 2009) however, this complex graph is simplified to identify the shortest paths (pairs of residues) 3 
that have a higher contribution to the conformational dynamics. SPM can be drawn back on the 3D structure to 4 
directly assess how the active site pocket is connected to active site and distal sites. The key equations (1 and 2) 5 
for converting a protein into a graph are also displayed. Each node in the first complex graph represents a 6 
residue. The edges linking each pair of nodes (residues) are assigned weights in accordance with equation 1 and 7 
2, where 𝐶𝐶𝑖𝑖,𝑗𝑗 is the computed correlation value, ∆𝑟𝑟𝑖𝑖  and ∆𝑟𝑟𝑗𝑗  are the displacement of the Cα of the i, j residue 8 
observed in the MD trajectory with respect to a reference structure.  9 
 10 
 11 
Generation of the first weighted graph  12 
Initial attempts to apply graph theory to investigate allosteric regulation primarily focused on the static X-ray 13 
structure of the enzyme.(Guo and Zhou, 2016)  In the constructed graph, two sets of nodes (residues) were 14 
linked by an edge if the distance between their representative atoms fell below a specific threshold. The 15 
significant advancement in graph construction came from Sethi et al.,(Sethi, Eargle, Black and Luthey-Schulten, 16 
2009) who employed short MD simulations (lasting a few nanoseconds) to determine the connected nodes and 17 
their respective edge weights. An edge was established between a pair of residues (nodes) if the representative 18 
atoms of each residue remained below a defined distance threshold (see Figure 1) for a specified fraction of the 19 
MD simulation time. The edge connecting residues (i,j) was weighted based on their correlation values (Ci,j, as 20 
outlined in equations 1 and 2, Figure 1). Residues undergoing highly correlated conformational changes during 21 
the MD simulation (i.e., Ci,j →1) were linked by a relatively short edge (li,j → 0). Conversely, a pair of residues 22 
with non-correlated movements (Ci,j →0) were connected by relatively long edges (li,j →∞). 23 

In this protocol, the enzyme conformational dynamics is summarized through this first weighted graph (shown 24 
in Figure 1). Further subdivision of the graph into communities, utilizing the Girvan-Newman algorithm,(Girvan 25 
and Newman, 2002) results in the identification of what is called the optimal community network used in the 26 
study of allosterically-regulated enzymes.(Rivalta et al., 2012, Schupfner et al., 2020) However, for 27 
computational enzyme design it is more preferred to identify a subset of positions rather than regions or 28 
communities.   29 
 30 
Generation of the SPM 31 
For SPM generation instead of pinpointing communities within the initial graph, we use the Dijkstra algorithm, 32 
implemented in the igraph module,(Csárdi and Nepusz, 2006) to calculate the shortest path lengths. The 33 
algorithm considers all nodes of the graph and determines the shortest path from the first to the last protein 34 
residue. Consequently, the method identifies the edges in the graph that are shorter, thus indicating higher 35 
correlation and more frequently used in going through all protein residues. All edges are then normalized, and 36 
only those with the most significant contribution (a visualization/ significance threshold is applied, see Figure 2) 37 
are represented in the SPM. Drawing the SPM directly onto the 3D structure of the protein, rather than its 2D 38 
graph representation (see Figure 1), is more advantageous as one can directly see how the network expands 39 
through the 3D structure. The primary benefit of SPM over community analysis lies in directly identifying the 40 
most critical residues (as opposed to regions), making it more appealing for enzyme design, as small libraries of 41 
hotspot positions can be constructed directly. SPM enables the prediction of distal active site mutations that 42 
lead to enhanced enzymatic activity for the first time in a computational protocol.(Romero-Rivera, Garcia-Borràs 43 
and Osuna, 2017) 44 
 45 
 46 
DESCRIPTION OF THE WEBSERVER 47 
 48 
Input files 49 



There are three mandatory files for SPM construction: the tertiary structure of the enzyme/protein in pdb format 1 
for visualizing the results, and the distance and correlation matrices obtained often through MD simulations (but 2 
not necessarily restricted to). Our recommendation is to generate the distance and correlation matrices using 3 
at least three replicates of MD simulations of 200-500 ns of simulation length in explicit solvent and considering 4 
either Cα or Cβ positions. The calculation of the distance and correlation matrices can be done considering the 5 
whole MD trajectory, the last 100-200 nanoseconds of the MD simulations or using distinct sets of conformations 6 
in case of proteins undergoing large conformational changes. We, however, recommend using either the whole 7 
MD trajectory or the last 100-200 ns of the MD runs.(Duran et al., 2024)   8 
 9 
The distance and correlation matrix can be computed with different MD analysis software, but we provide as 10 
example the input file used for cpptraj included in AMBER tools: 11 
 12 
Input files for cpptraj module for computing the correlation and proximity matrices: 13 
 14 
# We recommend taking as reference the most populated cluster from the MD trajectory. This is especially 15 
relevant for proteins undergoing large conformational changes. 16 
cpptraj <parm file>  17 
reference structure.pdb 18 
trajin MD_trajectory.nc  1 last 1 19 
rms reference @CA 20 
matrix dist @CA out dist_mat.dat 21 
matrix correl @CA out corr_mat.dat 22 
exit 23 
 24 
The three mandatory files (structure.pdb, dist_mat.dat, corr_mat.dat) can then be uploaded in the 25 
corresponding boxes included in the main page of the webserver (see Figure 2). It should be also mentioned that 26 
the webserver also accepts the distance and correlation matrices as numpy binary files (.npy).  27 
 28 
 29 
 30 
Figure 2. SPM main page of the webserver. The user needs to upload in the corresponding boxes the three 31 
mandatory files that are needed for SPM construction: the enzyme 3D structure, and the two matrices: distance 32 
and correlation previously computed from the MD simulations. Two important parameters can be modified for 33 
SPM construction: the distance threshold (bottom right panel), and the significance threshold (bottom left 34 
panel). The webserver link is: https://spmosuna.com. 35 
 36 
 37 
 38 
SPM parameters 39 
As discussed in the previous section, two thresholds need to be defined for SPM construction. The first one is 40 
related to the mean distance value between the user defined atoms along the MD simulation (often distances 41 
between either Cα or Cβ). While we recommend the use of a distance threshold of 6 Å, in some cases, it might 42 
be useful to play with the distance matrix threshold. Increasing this value to higher numbers will of course 43 
consider a higher portion of the protein residues for each targeted site, and thus the computed SPM graph will 44 
contain a larger number of positions. In the opposite direction, rather small values for the distance matrix will 45 
only consider nearby residues thus being very local and restricted (see the distance threshold tests in the case 46 
example below). 47 
The other important threshold is related to the number of positions represented in the final SPM graph. This 48 
visualization/significance threshold will restrict the number of edges and nodes displayed. We recommend a 49 



threshold of 0.3, as it will reduce the number of positions and will only display the ones playing a higher role in 1 
the conformational dynamics. In any case, we believe it might be also useful to play with the visualization/ 2 
significance threshold as well to visualize a higher proportion of the identified edges and evaluate how the 3 
disconnected parts of the graph are actually connected. Therefore, this has been added as an extra parameter 4 
in the SPM webserver. In Figure 2, the two boxes related to distance and significance threshold are also 5 
displayed.   6 
 7 
Output files 8 
 9 
SPM visualization 10 
After uploading the three requested input files, the SPM is built and visualized in the main screen panel (see 11 
Figure 3). SPM can be shown in the 3D structure of the uploaded protein structure, where the important residues 12 
are marked with spheres and labelled according to its ranked ID, and edges connecting the pairs of residues are 13 
highlighted in black. Those pairs of residues that have a higher contribution to the conformational dynamics 14 
present bigger spheres and thicker edges. However, the sizes of spheres and widths of edges are mostly 15 
qualitative. By default, a distance threshold of 6 Å and a visualization/significance threshold of 0.3 is used. 16 
However, as mentioned before, these two parameters can be modified using the threshold panels. The SPM is 17 
also displayed in 2D in an additional panel below the 3D representation, in which the residue labels and 18 
connections can be more easily seen.  19 
 20 
PyMoL script for SPM visualization 21 
Another interesting feature of the SPM webserver is that it generates a PyMoL script that can be executed in 22 
PyMoL software after loading the 3D structure of the enzyme. The visualization in PyMoL is rather simple, the 23 
user needs to first load the reference structure (load reference.pdb), and then in the command line execute the 24 
SPM pymol script defining the correct path where it is located (@$PATH/ pymol_shortest_path_reference). In 25 
pymol, the user can tune all parameters and also include some transparency into the cartoon of the protein 26 
structure to visualize better the SPM graph (for instance by typing the command in the command line: set 27 
cartoon_transparency, 0.6).  28 
 29 
 30 
Figure 3. SPMweb main page displaying the output after running the SPM calculation. SPM is visualized on top 31 
of the 3D structure of the protein as shown in the left panel. The 2D representation of the SPM graph is also 32 
shown (right panel). The results can be visualized as full screen by clicking the “Toggle Fullscreen” button, and 33 
the labels of the atoms can also be added/removed by clicking the “Toggle Labels (It can take several seconds to 34 
process)” button.   35 
   36 
CASE EXAMPLES 37 
SPMweb can be used to address different relevant enzymatic properties. We provide some examples of how the 38 
SPM tool can be employed: (1) to identify the conformationally relevant distal positions connected to the 39 
enzyme active site for the generation of some mutational libraries, and (2) to rationalize the existing allosteric 40 
communication between the enzyme subunits in a dimeric structure.   41 
 42 
Case example 1. Identification of the key conformationally relevant positions either at the active site or at distal 43 
sites connected to the catalytic pocket. 44 
 45 
SPM can be applied for identifying mutational spots not restricted to the active site and neither to the tunnel 46 
regions targeted by DE. Along the years, we have shown how SPM allows, for the first time, the prediction of 47 
which distal active site positions might lead to enhanced enzymatic activity after mutation.(Romero-Rivera, 48 
Garcia-Borràs and Osuna, 2017) This has been tested in different unrelated enzyme families showcasing the 49 



potential of SPM for the rational design of enzyme variants.(Osuna, 2021) In this case example, we applied the 1 
SPM in the case of tryptophan synthase B (TrpB) subunit, as we first realized that SPM was capturing some of 2 
the DE positions(Maria-Solano et al., 2019) and subsequently applied it for designing a stand-alone TrpB.(Maria-3 
Solano, Kinateder, Iglesias-Fernández, Sterner and Osuna, 2021) As shown in Figure 4, the computed SPM in the 4 
webserver shows how the graph connects the active site pocket that holds the catalytic lysine and the PLP 5 
cofactor with remote sites that interestingly contain many of the DE mutations. For constructing this main SPM, 6 
the default parameters for the distance and visualization/significance thresholds have been used (panel A in 7 
Figure 4). However, as shown in panel B in Figure 4 by changing the two threshold parameters the obtained SPM 8 
maps differ quite substantially. Despite PfTrpB0B2 being dimeric in solution in the absence of its binding TrpA 9 
partner, we computed the distance and correlation matrices considering only one of the monomeric units. This 10 
computed SPM therefore identifies the intramolecular conformationally relevant positions with the monomeric 11 
structure connected to the active site pocket.  12 
 13 
 14 
Figure 4. Case example of computed SPM for investigating the distal sites connected to the active site pocket 15 
of the enzyme tryptophan synthase B (PfTrpB0B2) considering only the monomeric structure. A. Visualization 16 
of the SPM using the default thresholds for significance and distance. B. Top panel: visualization of the effect of 17 
altering the SPM significance threshold using 0.1 (left) and 0.5 (right). Bottom panel: visualization of the effect 18 
of altering the distance threshold and using a value of 5 Å (left) and 8 Å (right). The active site of the enzyme 19 
that holds the PLP-cofactor and the catalytic residues is highlighted with a blue discontinuous cycle.  20 
 21 
 22 
Case example 2. Rationalization of the allosteric pathway existing between monomers in a dimeric enzyme 23 
structure. 24 
 25 
Another interesting feature to analyze in those enzymatic systems that are not monomeric in solution is the 26 
existing communication pathway within subunits. This is particularly relevant for allosterically regulated 27 
enzymes such as tryptophan synthase, but also in enzymes that require a higher order oligomeric structure for 28 
function like monoamine oxidase (MAO-N).(Curado-Carballada, Feixas, Iglesias-Fernández and Osuna, 2019, 29 
Osuna, 2021) We have again used the example of TrpB that adopts a dimeric structure to analyze the 30 
communication existing between the two subunits. In this case, the whole dimeric structure has been used for 31 
SPM construction: the distance and correlation matrices are computed considering the complete dimeric 32 
structure. As shown in Figure 5, the computed SPM pathway using the default parameters now expands from 33 
one subunit to the other and does not necessarily connect the respective active site pockets of both TrpB 34 
monomers. This analysis can be used to identify residues crucial for the intersubunit (allosteric) communication 35 
and can also be relevant for explaining cooperative effects.  36 
   37 
 38 
 39 
Figure 5. Case example of computed SPM for studying the allosteric communication existing between 40 
monomers in a dimeric tryptophan synthase B (PfTrpB0B2) structure. A. Visualization of the SPM using the 41 
default thresholds for significance and distance. B. Top panel: visualization of the effect of altering the SPM 42 
significance threshold using 0.1 (left) and 0.5 (right). Bottom panel: visualization of the effect of altering the 43 
distance threshold and using a value of 5 Å (left) and 8 Å (right). The active site of the enzyme that holds the 44 
PLP-cofactor and the catalytic residues is highlighted with a blue discontinuous cycle.  45 
 46 
 47 
 48 
Conclusions 49 



SPMweb is a new webserver for identifying a subset of conformationally relevant positions located throughout 1 
the protein structure. This unique tool can be used for rationally identifying distal sites whose conformational 2 
dynamics is connected to the enzyme active site pocket. Although the tool was initially developed for 3 
computational enzyme design as discussed in the whole paper, the potential applications of this novel 4 
methodology are broad. SPM can be directly used for rationalizing the allosteric communication between 5 
enzyme subunits as shown in the case example discussed above. However, it could also be potentially applied 6 
for instance for identifying cryptic pockets for designing allosteric inhibitors in drug discovery. We hope that by 7 
releasing this webserver to the scientific community, the number of applications and successful cases in which 8 
SPM can be applied is expanded.     9 
 10 
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