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A B S T R A C T

Computational approaches offer a valuable tool to aid with the early diagnosis of melanoma by increasing
both the speed and accuracy of doctors’ decisions. The latest and best-performing approaches often rely
on large ensemble models, with the number of trained parameters exceeding 600 million. However, this
large parameter count presents considerable challenges in terms of computational demands and practical
application. Addressing this gap, our work introduces a suite of attention-based convolutional neural network
(CNN) architectures tailored to the nuanced classification of melanoma. These innovative models, founded on
the EfficientNet-B3 backbone, are characterized by their significantly reduced size. This study highlights the
feasibility of deploying powerful, yet compact, diagnostic models in practical settings, such as smartphone-
based dermoscopy, and in doing so revolutionizing point-of-care diagnostics and extending the reach of
advanced medical technologies to remote and under-resourced areas. It presents a comparative analysis of
these novel models with the top three prize winners of the International Skin Imaging Collaboration (ISIC)
2020 challenge using two independent test sets. The results for our architectures outperformed the second and
third-placed winners and achieved comparable results to the first-placed winner. These models demonstrated a
delicate balance between efficiency and accuracy, holding their ground against larger models in performance
metrics while operating on up to 98% less number of parameters and showcasing their potential for real-time
application in resource-limited environments.
1. Introduction

Melanoma, the most dangerous type of skin cancer, arises from
the uncontrolled growth of melanocytes. Early detection and precise
classification are crucial for improving patient outcomes and reduc-
ing mortality rates [1]. In recent years, computer vision and deep
learning techniques have dramatically improved the localization and
classification of skin lesions using different image modalities [2].

However, the field of automated skin cancer detection faces several
limitations. One of the most significant of these is that the more
effective models are often ensembles of large and complex architectures
that include transformers with hundreds of millions of parameters.
What is more, there has been a consistent trend for these models to
become increasingly larger in size over time. While such ensemble
models demonstrate high performance, their practical application in the
real world becomes challenging due to the significant computational
resources required to deploy them [2,3]. Since resource and time
efficiency considerations are crucial in a scenario where dermatolo-
gists attach a dermoscope to their smartphone, there is a clear need
to balance model complexity and equipment requirements to ensure
practicality in clinical or real-world applications of melanoma detection
systems.

∗ Corresponding author.
E-mail address: sana.nazari@udg.edu (S. Nazari).

A further challenge lies in developing robust algorithms that can
distinguish melanoma from other lesions. Some benign ordinary moles
such as dysplastic nevus and melanoma share significant similarities in
appearance, making it difficult to distinguish between them, even for
trained dermatologists. Melanoma is also relatively rare compared to
benign moles. Consequently, datasets containing melanoma instances
are limited, resulting in an imbalance between nevus and melanoma
cases within these datasets.

This lack of sufficient data is not exclusive to melanoma, however;
many publicly available datasets exhibit a scarcity of images for other
skin cancers, including basal cell carcinoma (BCC) and squamous cell
carcinoma (SCC). Additionally, the number of samples representing
pre-cancerous lesions like actinic keratosis (AK) is also limited in these
datasets [4]. Such an insufficiency of data poses yet another challenge
for machine learning models, as they may not be exposed to enough
examples of lesions to effectively learn and generalize, potentially
impacting their performance and ability to accurately discriminate
between benign and malignant samples.

Furthermore, although vision transformers have brought about a
revolution in the machine-learning field, their widespread applicability
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to skin lesion datasets in classification tasks is hindered by the fact that
hese models typically require a large amount of data [5], meaning
hey suffer from the same scarcity issue already mentioned above. For
his reason, there is a need to develop attention-based architectures
pecifically tailored to the task of skin lesion analysis. This involves
esigning models that can effectively leverage attention mechanisms
hile accommodating the aforementioned challenges posed by limited
ata availability.

In this work, we address the three challenges outlined above and
evise a pipeline to overcome these issues. We start by outlining the
re-processing stage and the selection of a loss function capable of
itigating concerns regarding class imbalance. We then present four
ovel deep CNN-based architectures that incorporate attention mech-
nisms and are capable of performing multi-class classification of skin
esions. These models have been designed to strike a balance between
odel complexity and accuracy in performance. The robustness of our
odel is then demonstrated through the use of diverse evaluation
etrics suitable for assessing the performance of models trained on

mbalanced datasets with a particular focus on the medical relevance
f the problem. Finally, we present a comparative assessment of our
odels and the top three winning models from the International Skin

maging Collaboration (ISIC) 2020 challenge [6]. Below is a summary
f the main contributions of our work:

• A comparative evaluation of loss functions, specifically designed
to address data imbalance.

• The proposal of four novel light-weight attention-based models
for detecting melanoma.

• A demonstration of real-world performance assessment of the
designed models through testing on two independent test sets.

• Detailed comparison of our novel models with existing top-
performing models.

The remaining sections of the article are organized as follows. Sec-
tion 2 provides an overview of the related literature. The Methodology
Section 3 starts with a comprehensive explanation of the pre-processing

ethods implemented in this study, followed by details of the inte-
rated attention modules. Section 3.3 describes the architecture of our

proposed models, and Section 3.4 provides details of the selected loss
functions. In the Experimental results Section 4, we first provide details
f our datasets 4.1, training strategy and hyper-parameter tuning 4.2,

and then the results of our experiments 4.3. This is followed by a
comparative discussion of our findings in Section 5. Finally, Section 6
briefly reviews our methods and results, offering additional insights and
discussing future work.

2. Related work

An extensive search was performed of the Web of Science to identify
tudies that trained classifiers for melanoma diagnosis, using datasets
hat incorporated both ISIC 2019 and ISIC 2020. Many of the reviewed
tudies focused on training binary classifiers. In most cases, the evalua-
ion of these works was done using a test set derived from the original
ombined dataset [7–12]. Some studies also used smaller, more bal-

anced subsets extracted from the ISIC 2019 and 2020 datasets [7,12].
A summary of the reviewed studies is presented in Table 1.

Some articles used well-established deep CNN architectures, such
as EfficientNet-B6, MobileNet or InceptionV3 [7,8,11,12], with pre-
trained weights sourced from ImageNet. Others introduced innovative
methodologies and pipelines for melanoma diagnosis. Saeed et al. [10]
sed a VGG16 to extract features from images and then a Support
ector Machine (SVM) to classify the extracted features, while Dong
t al. [9] proposed a new classifier based on an EfficientNet-B5 back-
one. Additionally, the winning model of the ISIC 2020 challenge
as improved in a later study and tested on an independent test set
rovided by the same authors [13]. This model comprised an ensemble
2 
of 18 pre-trained deep CNN models trained on different image sizes and
incorporating patient metadata.

We also searched for works specifically exploring the application
of attention mechanisms to CNN models in automated melanoma di-
gnosis. To improve the ability of CNNs to learn features for image

classification tasks, several attention-based techniques have been devel-
oped. Wang et al. [14] introduced a Residual Attention Network (RAN),
where attention weights were learned by trainable convolutional lay-
ers. Another influential work in image classification is the Squeeze-
and-Excitation Network (SENet) proposed by Hu et al. [15], which
ses channel-wise multiplication between the attention weights. Woo

et al. [16] presented the Convolutional Block Attention Module (CBAM)
to use channel-wise and spatial-wise attention to boost the representa-
tion learned by the network.

To avoid overfitting on small training datasets to classify skin
esions, Zhang et al. [17] proposed an attention-based method called

ARL-CNN, which uses attention weights during network training. He
t al. [18] designed a mixed attention mechanism, DeMAL-CNN, which
onsiders both spatial and channel-wise attention information to clas-
ify skin lesions. Additionally, Zenghui et al. [19] introduced an auxil-

iary learning approach that incorporates a dual attention mechanism,
auxiliary learning with loss functions at different stages of the model
and a data oversampling approach. In recent studies, class-wise atten-
tion was introduced by Naveed et al. [20], who integrated it into a
DenseNet-121 model, achieving an AUC of 0.99 on the HAM10000
ataset [21]. This performance surpassed that of existing related works.

Similarly, Tan et al. [22] incorporated a global–local attention module
into a ResNet-50 model to address class imbalance, resulting in an F1-
score of 0.874 on the ISIC 2018 dataset. Their module was compared
to other attention modules, such as SENet and CBAM, and demon-
strated superior effectiveness. Lastly, in their study Omeroglu et al. [23]
applied soft attention to the Xception architecture.

A significant proportion of the models examined in the reviewed
articles were either quite large in terms of number of parameters or
ailed to assess the real-world performance of their models on an
ndependent set of data. The size and complexity of a model can
ave critical implications for their practical deployment. Large mod-

els with an excessive number of parameters may require substantial
computational resources, making them less feasible for deployment in
resource-constrained environments. Moreover, the absence of indepen-
dent testing poses a potential risk to generalization of the models,

hile models trained and evaluated solely on the same dataset may
nintentionally capture dataset-specific patterns rather than learning
nderlying features.

3. Methodology

In this section, we provide a detailed explanation of our method-
ology, starting with details of our pre-processing approaches. We then
explore the attention blocks and attention mechanisms within CNNs.
The aim of this exploration is to clarify the role of attention in en-
hancing the discriminative capabilities of our models. Next, we analyze
several loss functions to understand the differences that influence their
performance on datasets with unbalanced class distributions. And fi-
nally, we discuss our proposed classifier models and architectures in
detail, explaining the design complexities and the rationale behind the
choices made in shaping these models.

3.1. Pre-processing

Pre-processing is a crucial step in developing a deep model since it
has a significant impact on the information that the model learns during
training. This process is especially important in the context of skin
esion diagnosis because most classes have very little data available.

Additionally, the presence of artifacts in some of the images further

highlights the importance of careful pre-processing. The strategies used



S. Nazari and R. Garcia Computers in Biology and Medicine 185 (2025) 109492 
Table 1
Details of similar classification studies combining ISIC 2019 and ISIC 2020 datasets. # Samples: number of samples; Test Split: the percentage
of data split for testing; #Parameters: number of parameters; Ind. Test: whether an independent set of images was used to evaluate the models;
ROC-AUC: area under the ROC curve for the test set.
Study #Samples Test Split Model #Parameters Ind. Test ROC-AUC

Balaha and Hassan [7] 11,449 15% MobileNet 4M No 0.99
Bandy et al. [8] 58,457 9% EfficientNet-B6 43M No 0.99
Dong et al. [9] 58,457 20% Custom CNN 30M No 0.97
Saeed et al. [10] 58,457 20% VGG16-SVM 144M No 0.92
Jaisakthi et al. [11] 58,457 Not reported EfficientNet-B6 43M No 0.96
Mijwil [12] 24,000 20% Inception-V3 25M No 0.87
Marchetti et al. [13] 58,457 – EfficientNetB4-7-SeresNext101-ResNest101 644M Yes 0.86
Fig. 1. Sample results of artifact cropping. The top row displays the original images
with artifacts present and the bottom row displays the images after cropping.

in this phase not only shape the input data but also play a critical role
in improving the ability of the model to identify meaningful patterns
in limited and potentially noisy datasets.

After examining the training and validation datasets (ISIC 2019 and
2020), we noticed that they contained artifacts that could potentially
bias the model, such as band-aids, dermoscopic rulers, dermoscopic
dark rings and ink markings (see Fig. 1). Previous studies have shown
that these artifacts can cause confusion and distract the model, leading
to inaccurate analysis [24]. Moreover, Pewton and Yap [25] investi-
gated the impact of the dark corner artifact (DCA) on the decision-
making of convolutional neural networks (CNNs) and developed a
dynamic approach to automatically detect and eliminate this artifact
from images. This method involves a masking approach to identify the
DCA. Following the identification of the DCA, the approach proceeds to
either crop or inpaint the affected area, considering both the size and
intensity of the artifact. Finally, a GAN-based super-resolution method
is employed to augment the quality of the modified image.

In our work, the ruler, band-aid, and marker artifacts were ad-
dressed by cropping the affected samples, which at times proved chal-
lenging due to their proximity to the lesions. The goal was to minimize
the impact of these artifacts on the model’s perception and focus on the
essential features of the skin lesions. Fig. 1 provides visual examples
of the outcomes of this targeted cropping approach. In addition, the
DCA removal method was implemented on our dataset to address
the dermoscopy dark ring artifacts, resulting in the modification of a
total of 10,513 samples. Fig. 2 depicts examples of the final outcomes
achieved through the DCA removal method.

Following this, we applied a diverse set of data augmentation meth-
ods to enhance the training and validation dataset for melanoma clas-
sification. These techniques included random transformations such as
transposition, vertical and horizontal flips, and adjustments to bright-
ness and contrast. Additionally, our augmentation process incorporated
various types of blurring (directional motion blur, median blur and
Gaussian blur), random noise application (Gaussian noise) and distor-
tion methods (optical distortion, grid distortion and elastic transfor-
mation). Furthermore, contrast-limited adaptive histogram equalization
(CLAHE), hue, saturation and value adjustments, shift-scale rotation
and cutout operations were also implemented. Finally, all images were
resized to 384 × 384 pixels [26,27].
3 
Fig. 2. Sample outcomes of dark corner artifact (DCA) removal. The first row shows
the original images, while the second row depicts the corresponding modified samples.

In the final phase, we tested all models with and without test-time
augmentation (TTA). TTA involves applying 20 distinct transformations
to each image in the test set and then averaging the predictions from all
20 transformed instances to obtain the final prediction for each image.
To ensure consistency across our analysis, when applied, the same TTA
methodology was used in all models, including experiments conducted
with the winning ISIC models.

3.2. Attention modules

The role of attention in human perception is well-established, a key
feature of it being the human visual system’s tendency to avoid process-
ing an entire scene simultaneously. Instead, humans employ a sequen-
tial approach, capturing partial glimpses and selectively focusing on
salient parts to enhance their understanding of visual structures [28].
Vision transformers have become a powerful tool in computer vision,
using attention mechanisms to selectively focus on important parts of
an image. This ability to capture long-range relationships and global
contexts makes transformers particularly well-suited for tasks such as
image classification [29].

Although transformers are powerful tools, they can be problem-
atic when used on imbalanced datasets with few data due to their
self-attention mechanism-based architecture, which requires a large
amount of diverse data for them to learn and generalize patterns. When
faced with imbalanced datasets and small samples for some classes,
transformers may have trouble identifying meaningful representations,
which can result in biased attention and possibly overfitting to the
majority class. CNNs, on the other hand, are exceptionally efficient at
learning spatial relationships and hierarchical features within images,
which makes them more appropriate for tasks where there is a limited
amount of data and a class imbalance [30,31]. Moreover, their built-in
inductive biases help CNNs learn with fewer data.

In CNN, the neurons of the first layer are dedicated to capturing
features within a defined area of the image, known as the receptive
field of each neuron. If the filters employed have a size of 3 × 3,
this area coincides with the filter dimensions. If in subsequent CNN
layers each neuron undergoes convolution with the same 3 × 3 area
from the preceding layer, then they contribute to an enlarged receptive
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Fig. 3. The architecture of an attention-based CNN.
field in the input image. As the network deepens, individual neurons
correspond to progressively larger receptive fields. The array of neurons
along the third dimension forms a learned feature vector representing
the receptive field within the image. Varied receptive fields represent
distinct regions in the image, enabling the application of attention at
this level through a weighted combination of the feature vectors. By
training the model to learn the relative importance of these corre-
sponding feature vectors, the network learns to pay attention to more
important regions within the image [32].

In our proposed architectures, we incorporate attention blocks to
enhance feature extraction in convolutional neural networks. The pro-
cess involves passing the features, initially extracted by the CNN,
through an attention mechanism. Within this attention block, a weight
vector is computed based on the inherent characteristics of the features.
Subsequently, these weights are applied to the original feature vector,
creating a weighted feature representation. The resulting weighted
feature vector serves as the output of the attention block. The overall
pipeline of the proposed attention-based architecture is depicted in
Fig. 3. More details of our proposed architectures are provided in
Section 3.3. All the attention modules we implemented are lightweight
and have very few extra parameters and calculations. A detailed expla-
nation of each attention block we employed in our models is provided
below:

3.2.1. Spatial attention
This block generates a spatial attention map, leveraging inter-spatial

relationships within features. To compute spatial attention, average-
pooling and max-pooling operations are applied along the channel axis,
and their results are concatenated to form an efficient feature descrip-
tor. The concatenated descriptor undergoes a convolution operation,
yielding a spatial attention map denoted as 𝑀𝑠(𝐹 ) ∈ R𝐻×𝑊 , indicating
where to emphasize or suppress attention [16,33]. The spatial attention
is computed as shown in Eq. (1):

𝑀𝑠(𝐹 ) = 𝜎
(

𝑓𝑘×𝑘
([

AvgPool(𝐹 );MaxPool(𝐹 )
]))

(1)

where 𝜎 is the sigmoid function and 𝑓𝑘×𝑘 represents a convolution
operation with a filter size of 𝑘 × 𝑘 (we chose k=7).

3.2.2. Convolutional block attention
The channel attention mechanism applies max-pooling and average-

pooling across the spatial scope of the feature map. Then it passes
the features through a multi-layer perceptron (MLP) to produce a
corresponding channel attention map [16,32]. Finally, the derived
features are combined, enabling the calibration of feature sensitivity
in the channel dimension. The channel-wise attention mechanism is
calculated as presented in Eq. (2), where 𝜎 is the sigmoid function:

𝑀𝑐 (𝐹 ) = 𝜎 (𝑀 𝐿𝑃 (AvgPool(𝐹 )) +𝑀 𝐿𝑃 (MaxPool(𝐹 ))) (2)

The Convolutional Block Attention Module (CBAM) integrates spa-
tial attention with channel attention [16], facilitating the model’s
enhanced focus on informative features. This attention mechanism
incorporates both spatial and channel attention in a sequential man-
ner, first employing channel attention and then spatial attention. By
leveraging this dual-attention strategy, CBAM enables the model to
selectively emphasize relevant channels and spatial regions. CBAM
involves the sequential computation of a 1D channel attention map and
4 
Fig. 4. Architecture of the Spatial-Shift MLPv2 attention block. 𝐹𝑐 denotes the feature
map with 𝐶 channels and 𝐹 ′

𝑐 denotes the modified feature map with the same channels.

a 2D spatial attention map, denoted as 𝑀𝑐 ∈ R𝐶×1×1 and 𝑀𝑠 ∈ R1×𝐻×𝑊

respectively, based on an intermediate feature map 𝐹 ∈ R𝐶×𝐻×𝑊 . The
attention process of CBAM is shown in Eq. (3), where ⊙ represents
element-wise multiplication:
𝐹 ′ = 𝑀𝑐 (𝐹 )⊙ 𝐹 ,
𝐹 ′′ = 𝑀𝑠(𝐹 ′)⊙ 𝐹 ′ (3)

In this procedure, the initial feature map 𝐹 undergoes sequential
processing. First, it is fed into the channel attention module 𝑀𝑐 , and
the resulting output is element-wise multiplied with the original 𝐹 ,
generating 𝐹 ′. Subsequently, 𝐹 ′ is input to the spatial attention module,
Ms. The output of this step is then multiplied element-wise by 𝐹 ′. This
outcome denoted as 𝐹 ′′, represents the output of the entire attention
block.

3.2.3. S2-MLPv2 attention
The spatial-shift (S2) MLP backbone consists of a patch-wise fully

connected layer, spatial-shift MLP blocks and a fully connected layer
[34]. S2-MLP can be enhanced by expanding the feature map using an
MLP layer and then dividing the expanded feature map into three splits.
Each split is then independently shifted, and the split feature maps are
finally merged through split attention. This attention strategy is known
as the spatial-shift MLPv2 (S2-MLPv2) [35], and the overall structure
of its attention block is depicted in Fig. 4.

3.2.4. Spatial group-wise enhance attention
The Spatial Group-wise Enhance (SGE) module is designed to high-

light multiple active areas with different high-order semantics. SGE can
adjust the importance of each sub-feature by generating an attention
factor for each spatial location in each semantic group. This enables
each individual group to autonomously enhance its learned expression
and suppress possible noise [36].

3.3. Proposed attention-based models

Our experimental framework is based on the EfficientNet archi-
tecture, which has demonstrated efficacy in the field of skin cancer
diagnosis [3]. We selected the EfficientNet-B3 [37] model due to its
optimal balance between model complexity and parameter efficiency,
which enables it to capture and represent the significant features of our
data. This is a crucial aspect, because large models require substantial
computational resources, while very small models may struggle to
capture essential features of dermoscopic images.
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The fundamental component of EfficientNet models is the inverted
residual block with squeeze-and-excitation (MBConv), which is com-
posed of a depth-wise convolution, an additional 1 × 1 convolution
and a squeeze-and-excitation module that uses global average pooling
(GA) and two fully-connected layers to adaptively re-calibrate the
channel-wise feature responses. Skip connections and the Swish (SiLU)
activation function are also used by the inverted residual block to im-
prove network performance [37]. As Fig. 5 illustrates, EfficientNet-B3
is composed of seven major blocks, each containing multiple MBConv
blocks. In total, EfficientNet-B3 contains 26 MBConv blocks. These
blocks are distinguished by the filter size used in the convolutional
layers within the block, which can range from 1 × 1, 3 × 3 to 5 × 5,
and whether the block includes an inverted residual connection. The
network has approximately 12 million parameters and 2 billion floating
point operations (FLOPs).

Throughout our experiments, we explored the integration of atten-
tion mechanisms within the architecture of EfficientNet- B3. Applying
attention mechanisms after each major block, we experimented with
both single and multiple applications of attention. Furthermore, we
conducted tests by combining various attention blocks at different
levels within the model’s architecture. This comprehensive exploration
allowed us to assess the impact of attention mechanisms on feature ex-
traction and representation, providing insights into their effectiveness
at different stages of the EfficientNet-B3 model.

Our study revealed that in most cases, the model’s performance
significantly degraded when attention was applied after the initial block
(block 0). This decline in efficacy could be attributed to the model’s
early developmental stages at this juncture. Applying attention during
this early phase appeared to lead the model astray, to discard crucial
information and misdirect its focus towards less pertinent aspects of the
image. This finding highlights the sensitivity of attention mechanisms
to the model’s progression and underscores the need for judicious place-
ment to avoid detrimental effects on performance. This observation is
similar to the results presented in the work of Alhichri et al. [32], which
was conducted on EfficientNet-B3 using different attention mechanisms
and image modality. Ultimately, we opted for four attention-based
models that exhibited superior performance in our evaluations.

Our initial novel attention-based model (Spatial-B3) was
constructed by integrating spatial attention blocks into the EfficientNet-
B3 base architecture. These attention blocks were strategically intro-
duced after each major block, except for block 0. This design choice was
made to leverage the potential of spatial attention in highlighting im-
portant regions within the feature maps generated by the major blocks.
The architecture of this model is illustrated in Fig. 6. Similarly, the
second model (SGE-B3) proposed in our study entails the incorporation
of SGE attention blocks placed after the execution of blocks 1 through
6, as visually depicted in Fig. 7.

To formulate the third model (S2-CBAM-B3), we implemented
CBAM blocks after each major block, including block 0. Additionally,
following the execution of block 5, just before introducing a CBAM
block, we incorporated an S2-MLPv2 attention block (see Fig. 8). This
specific configuration seeks to take advantage of the well-positioned
CBAM and S2-MLP attention mechanisms to enhance the model’s ability
to capture spatial and channel features and optimize its attention focus
across different processing stages.

In our last model (S2-MLP-B3) iteration, we opted for a simplified
approach by integrating a singular block of S2-MLPv2 attention imme-
diately after block 5. The architecture for this model is represented in
Fig. 9.

3.4. Loss function

One of the greatest obstacles in the field of medical imaging, partic-
ularly in the context of diagnosing skin cancer, is data scarcity. This is
particularly problematic for rare skin lesions, for which there are very
few samples available. The problem with data scarcity for these rare
5 
Fig. 5. The architecture of the EfficientNet-B3 model. BN: batch normalization layer;
SiLU: swish activation function; GA: global average pooling layer; FC: fully-connected
layer.

skin conditions is that conventional models tend to overfit the majority
class. In our case, the dataset is also highly imbalanced (see Section 4.1
for the details). Using a suitable loss function is crucial to overcome this
challenge and keep the model from excessively favoring the majority
class.

A popular classification loss function, the Categorical Cross-Entropy
(CE) loss, suffers from a certain limitation when it comes to imbal-
anced classification: it prioritizes the majority class during training. To
overcome this problem, other loss functions, like weighted CE, Focal
loss [38] or Label Distribution Aware Marginal loss (LDAM) [39] are
preferable. These variations assign different weights to classes based
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Fig. 6. Spatial-B3: Attention-based model using spatial attention blocks.

Fig. 7. SGE-B3: Attention-based model using Spatial Group-wise Enhance (SGE) blocks.
6 
Fig. 8. S2-CBAM-B3: Attention-based model combining S2-MLP with Convolutional
Block Attention Module (CBAM) blocks.

Fig. 9. S2-MLP-B3: Attention-based model using Spatial-shift (S2) MLP blocks.
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on their prevalence, which helps lessen the effects of imbalances and
romotes more efficient learning across all classes.

Focal loss prioritizes hard (difficult to classify) samples, which
are frequently found in minority classes, while LDAM assigns weights
ased on the class distribution of the dataset. To take advantage of
oth features, Sadi et al. [40] proposed the Large Margin-aware Focal

(LMF) loss. This loss function is a linear combination of Focal loss and
DAM, where the weights are determined by the hyperparameters 𝛼
nd 𝛽. Following various experiments, we chose 𝛼 and 𝛽 both equal
o 0.2. Consequently, the LMF loss function employed in our study is
ormulated as follows:

𝐿LMF = 0.2 × (𝐿LDAM + 𝐿Focal) (4)

In this work, we conducted experiments with three different loss
functions: weighted cross entropy, Focal loss (gamma = 2), and LMF
loss, with the aim of determining the most effective loss function for
ur dataset. The outcomes, detailed analysis, and findings of these
xperiments are presented in Section 4.

4. Experimental results

The aim of this section is to provide a thorough explanation of the
xperiments carried out in our study. First, we detail the specifics of our
raining and testing datasets, before going on to describe the training
ettings. Lastly, we present the results of these experiments in detail.

4.1. Datasets

The International Skin Imaging Collaboration (ISIC) was a project
hat aimed to improve the detection and prevention of melanoma
sing digital skin imaging [41]. ISIC has organized multiple machine

learning challenges to encourage the development of models that could
accurately classify melanoma from images.

The ISIC 2019 dataset included 25,331 dermoscopic images of
skin lesions and categorized them into the following nine diagnostic
classes [42]: melanoma (MEL); melanocytic nevus (NV); basal cell
carcinoma (BCC); actinic keratosis (AK); benign keratosis (BKL); der-
matofibroma (DF); vascular lesion (VASC); squamous cell carcinoma
(SCC); and none of the above. The dataset was used for the ISIC
2019 Challenge, which involved classifying skin lesions with or without
metadata. This dataset included all the datasets from the previous ISIC
challenges [21,43,44].

The ISIC 2020 dataset was composed of 33,126 images of different
resolutions for training and 10,982 for the test set [45]. The training set
comprised MEL, BKL, NV and unknown (UNK) benign samples. A total
of 2,056 patients were included in this dataset from various locations
around the world. In the SIIM-ISIC Melanoma Classification Challenge,
competitors were asked to build models to identify melanoma using the
dataset and the metadata.

To develop our model, we used the training datasets sourced from
oth ISIC 2020 and ISIC 2019, combining them to construct our
raining and validation sets. Our curated dataset ultimately comprised
8,457 images from ISIC 2019 and ISIC 2020, as summarized in

Table 2.
From Fig. 10 it is evident that our dataset exhibited a significant

mbalance, with a higher percentage of data representing nevus and
nknown samples than other classes. To address this imbalance and
romote robust evaluation while minimizing bias, we implemented a
-fold cross-validation strategy by dividing the data into five folds, thus
nsuring an equal distribution of each class across all folds. During
ach training, we used one fold as the validation set and the rest as
he training set.

To assess the real-world performance of our model, we conducted
esting on two distinct datasets. This was done to ensure that the model
ould effectively handle unique scenarios that it had not encountered in
7 
Table 2
Our training and validation dataset details. NV: nevus;
MEL: melanoma; BCC: basal cell carcinoma; BKL:
benign keratosis; AK: actinic keratosis; SCC: squamous
cell carcinoma; DF: dermatofibroma.
Class Label Samples

UNK 27,125
NV 18,069
MEL 5106
BCC 3323
BKL 2847
AK 867
SCC 628
VASC 253
DF 239

Total 58457

Table 3
PROVe-AI dataset details, used as the first test set.
Class Label Samples

NV 340
BKL 110
MEL 95
AK 19
SCC 13
DF 11
BCC 9
VASC 1
Other 5

Total 603

Table 4
HIBA dataset details, used as the second test set.
Class Label Samples

NV 602
BKL 88
MEL 253
AK 63
SCC 158
DF 61
BCC 340
VASC 51

Total 1616

previous learning phases. The first dataset employed for testing was the
PROVe-AI set, recently sourced from the ISIC archive [13]. As Table 3
shows, this dataset comprised 603 dermoscopic image samples, with
95 instances identified as melanomas. We compared the labels of the
atasets to our predefined classes, categorizing five images with labels
hat did not match ours as ‘other’. The dataset included 603 images
ssigned across nine classes. The second test set was collected from 623
atients at Hospital Italiano de Buenos Aires (HIBA). As presented in

Table 4, this dataset consisted of 1,616 images (1,270 dermoscopy and
346 clinical images) including 253 melanomas [46].

4.2. Experimental setup

During our experiments, we maintained a consistent experimental
set-up to ensure reproducibility and comparability across different
model evaluations. After careful hyper-parameter tuning, the AdamW
optimizer was employed as the optimization algorithm, with an initial
earning rate set to 3 × 10−5. To enhance training dynamics, we used

a combination of the Cosine Annealing Warm Restarts and Gradual
Warm-up Scheduler techniques.

For image processing, a uniform image size of 384 pixels was
adopted across all experiments, including testing. The weight decay
parameter was set to 10−5 to regulate model training and prevent
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Fig. 10. Pie-chart illustrating train and validation dataset class distribution. From the chart, it is evident that the dataset is highly imbalanced.
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overfitting. A batch size of 64 was chosen to balance computational
efficiency and model convergence.

For each model, we imported EfficientNet-B3 architecture with pre-
trained weights trained on the ImageNet database from the Geffnet [47]
ibrary. This model possesses a total of 10.7 million parameters. Our
inal models were multi-class classifiers with nine output channels
predicted labels). However, the multi-class labels were only used to
rovide label granularity and enhance diagnosis capabilities of the
odels [48]. For calculation of performance metrics and reporting,

we only used the predicted probabilities for the melanoma class. Each
xperiment was trained for 35 epochs, allowing the models to un-
ergo comprehensive training cycles. During training and validation
terations, the best model based on the evaluation metrics for the
alidation set was used to calculate the final results. Each prediction
n the validation and test phase was performed ten times and the final
robability was averaged. This standardized setup ensured a fair and
ystematic exploration of the chosen models and loss functions. The aim
f maintaining a consistent configuration was to facilitate a meaningful
omparison of results and draw reliable conclusions from the conducted
xperiments. The experiments were carried out on an NVIDIA MIG GPU
nstance with 40GB of memory capacity and an average runtime of 24
ours for each model.

4.3. Results

In this section, we present a thorough analysis of the results of
ur experiments. In an ideal scenario, accuracy serves as a reliable
etric for assessing model performance, since it directly measures the

ratio of correctly predicted instances to the total instances in a dataset.
owever, when dealing with imbalanced datasets, accuracy provides
 misleading view of the model’s effectiveness. The F1-score would be
 preferred metric to assess model performance when the distribution

of classes is highly skewed. However, one drawback of the F1-score
is its reliance on the default threshold of 0.5 for precision and recall
assessment. In cancer detection tasks such as melanoma detection,
the consequences of missing positive cases (false negatives, henceforth
FNs) are often more severe than misclassifying negative cases (false
positives, henceforth FPs). Therefore, a higher emphasis should be
placed on minimizing FNs, even if this leads to an increase in FPs.

The Receiver Operating Characteristic (ROC) curve and associated
Area Under the Curve (ROC-AUC) are widely used in melanoma de-
tection and various medical diagnostic applications. The threshold
8 
Table 5
Results of EfficientNet-B3 model trained using different loss functions, evaluated on the
alidation set and averaged for 5-fold in the melanoma classification task. LMF: Large
argin-aware Focal loss; WCE: weighted categorical cross-entropy loss.
Loss Function Mean ROC-AUC Mean PR-AUC

LMF 0.96 ± 0.006 0.85 ± 0.009
WCE 0.95 ± 0.009 0.82 ± 0.011
Focal 0.94 ± 0.008 0.79 ± 0.021

independence of ROC-AUC proves vital in medical scenarios where
the optimal decision threshold may vary based on the doctor’s desired
alance between sensitivity and specificity. On the other hand, when

evaluating imbalanced medical datasets, a study conducted by Devries
et al. [49] found that ROC-AUC tends to provide overly optimistic
esults. In contrast, PR-AUC demonstrates resilience to class imbalance
nd is considered a valuable alternative metric to ROC-AUC in such
cenarios [50–52]. We chose to use both metrics in our evaluation to

provide an in-depth understanding of the models’ performance.
In addition to the above, when developing deep models for cancer

etection, it is vital to use assessment metrics that consider the clinical
erspective. Physicians often prioritize sensitivity and specificity, as
hese methods provide a balanced assessment of the model’s ability
o correctly identify true positives (TP) and exclude true negative
TN) cases, which are crucial in making reliable clinical decisions.
n addition, high sensitivity is essential to cancer diagnosis because
t ensures accurate patient identification with cancer, which lowers
he rate of FNs. For this reason, we also calculated sensitivity and
pecificity metrics with a fixed threshold of 95% for sensitivity when
valuating the model. In the rest of this section, we examine the results
n detail and explain the implications of our research findings.

Firstly, we trained three EfficientNet-B3 multi-class classifiers (start-
ing from pre-trained ImageNet weights) using the three loss functions
escribed in Section 3.4. We then analyzed how these loss functions

influenced the performance and outcomes of our experiments during
validation. As summarized in Table 5, LMF loss consistently enhanced
the ROC-AUC and PR-AUC of the melanoma class during the validation
phase. We, therefore, selected this loss function as the default choice.

Subsequently, we proceeded to train and validate four attention-
based models, as outlined in Section 3.3, using LMF as our chosen loss
function. The trained models were subsequently subjected to testing on
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Fig. 11. Comparison of our attention-based models with the top three prize winners of the ISIC 2020 Melanoma Detection Challenge. Top row: results on the PROVe-AI test set.
Bottom row: results on the HIBA test set.
a distinct dataset. To demonstrate the capabilities of our models, we
conducted a thorough comparison of our results with existing models,
benchmarking our work against the top three performers (on the pri-
vate leaderboard) in the ISIC 2020 melanoma classification challenge.
To ensure a fair and precise evaluation, we used the code that had been
publicly shared by the respective researchers [13,53,54]. Furthermore,
we employed the original model weights they had made available and
assessed the performance of their models on our test set using test time
augmentation. To better demonstrate the performance of our attention-
based models, we also trained a baseline EfficientNet-B3 model using
the original hyper-parameters [37] and evaluated its performance. Our
analysis included ROC-AUC, PR-AUC, sensitivity, and specificity. The
ROC curve and the precision–recall curves of all models are depicted
in Fig. 11.

The first-placed prize winner [13] employed an ensemble strategy
incorporating 18 models, ranging from EfficientNets-B4 to B7, Squeeze-
and-Excitation ResNext101 [15] and ResNeSt101 [55]. The cumulative
number of parameters for this ensemble amounted to 644 million. The
second-placed prize winner [53] adopted a similar ensemble approach,
using three models – an EfficientNet-B7 and two EfficientNet-B6 – with
a total of 152 million parameters. Finally, the third-placed winner [54]
opted for an ensemble of eight models, all based on EfficientNet-B6, giv-
ing rise to 344 million parameters. Notably, each winner trained diverse
models with varied image sizes, implementing a 5-fold cross-validation
methodology.

To maintain consistency across experiments during the testing
phase, we averaged the predicted probabilities from all five folds to
generate a single final set of predictions, following the method used by
the ISIC winners. The outcomes of this comparative evaluation using
the first test set (PROVe-AI) with TTA are outlined in Table 6. Our best-
performing model (S2-CBAM-B3) achieved an ROC-AUC of 0.83 and a
9 
PR-AUC of 0.56 in detecting melanoma. All of our proposed models
achieved a significant improvement in ROC-AUC (from 0.79 to 0.83, all
𝑝 < 0.001) and PR-AUC (from 0.45 to 0.56) compared to the second and
third-placed prize winners of the ISIC challenge, while using 92%–96%
fewer parameters. Even though our models did not outperform the first-
placed winner, they did achieve comparable results, with an average
ROC-AUC of 0.82 and PR-AUC of 0.55 using 98% fewer parameters.

In addition, we computed the sensitivity and specificity for all the
models using a predetermined threshold of 95% for sensitivity. All of
our models attained a sensitivity of 0.96 (95% CI: 0.94–0.97) at the
given threshold and outperformed the second and third-placed prize
winners with an average specificity of 0.31 (95% CI: 0.10–0.53). Fur-
thermore, our best model (S2-CBAM-B3) achieved a specificity of 0.36
(95% CI: 0.13–0.60). During our experiments, we observed that speci-
ficity was considerably low for all models. To better understand the
relationship between low specificity and fixed sensitivity thresholds, we
tested various thresholds and compared the resulting specificity (results
presented in Table 7). This experiment showed how higher sensitivity
values lead to lower specificity rates across all models. Additionally,
at lower sensitivity thresholds, our models achieved higher specificity
compared to the first-place winner.

To further assess the generalizability of our models, we validated
their performance on a second dataset without TTA. The diversity of
imaging techniques and skin lesions in the HIBA dataset provides an
ideal basis for assessing the models across a range of clinical scenar-
ios, thereby strengthening their applicability to real-world settings. As
shown in Table 8, our models outperformed the second- and third-
place winners on the second test set as well (all 𝑝 < 0.001). Our
top-performing model (SGE-B3) achieved a ROC-AUC of 0.91 (95% CI:
0.89–0.93) and a PR-AUC of 0.73 (95% CI: 0.68–0.78), demonstrating
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Table 6
Comparing the performance of our proposed models with the top three prize winners of the ISIC 2020 Melanoma Detection Challenge on the
PROVe-AI test set. Sensitivity and specificity were calculated with a fixed threshold of 95% for sensitivity. Data in parenthesis correspond to
95% confidence interval.
Model #Parameters Image Size ROC-AUC PR-AUC Sensitivity Specificity

First place [13] 644M 384–896 0.84 (0.80–0.89) 0.60 (0.49–0.71) 0.96 (0.94–0.98) 0.37 (0.20–0.56)
S2-CBAM-B3 (ours) 11M 384 0.83 (0.79–0.88) 0.56 (0.46–0.67) 0.96 (0.94–0.98) 0.36 (0.13–0.60)
SGE-B3 (ours) 10.7M 384 0.82 (0.78–0.87) 0.55 (0.45–0.65) 0.96 (0.94–0.98) 0.31 (0.02–0.59)
Spatial-B3 (ours) 11.7M 384 0.82 (0.78–0.87) 0.55 (0.45–0.65) 0.96 (0.94–0.98) 0.31 (0.10–0.55)
S2-MLP-B3 (ours) 11M 384 0.82 (0.77–0.87) 0.55 (0.44–0.66) 0.96 (0.94–0.98) 0.27 (0.12–0.43)
Baseline (EfficientNet-B3) 10.7M 300 0.74 (0.68–0.80) 0.41 (0.32–0.53) 0.96 (0.94–0.98) 0.19 (0.06–0.31)
Second place [53] 152M 512–640 0.79 (0.73–0.84) 0.45 (0.35–0.57) 0.96 (0.94–0.98) 0.24 (0.02–0.46)
Third place [54] 344M 256–768 0.70 (0.64–0.76) 0.35 (0.26–0.45) 0.96 (0.94–0.98) 0.19 (0.01–0.44)
Table 7
Specificity results for different models across various pre-defined sensitivity thresholds, evaluated on the PROVe-AI test set.
Model 95% 94% 93% 92% 91% 90% 89% 88% 87% 86% 85%

First Place [13] 0.37 0.41 0.44 0.47 0.49 0.50 0.53 0.55 0.56 0.58 0.60
S2-CBAM-B3 (ours) 0.36 0.40 0.44 0.46 0.49 0.51 0.53 0.55 0.58 0.60 0.61
SGE-B3 (ours) 0.31 0.36 0.42 0.47 0.50 0.53 0.57 0.58 0.60 0.61 0.62
Spatial-B3 (ours) 0.31 0.35 0.39 0.43 0.46 0.48 0.51 0.54 0.56 0.57 0.60
S2-MLP-B3 (ours) 0.27 0.29 0.32 0.35 0.37 0.40 0.44 0.46 0.51 0.53 0.56
Baseline (EfficientNet-B3) 0.19 0.22 0.24 0.27 0.30 0.32 0.35 0.37 0.39 0.41 0.43
Second place [53] 0.24 0.28 0.33 0.37 0.41 0.43 0.47 0.49 0.52 0.54 0.56
Third place [54] 0.19 0.23 0.28 0.31 0.33 0.35 0.38 0.39 0.41 0.43 0.44
Table 8
Comparing the performance of our proposed models with the top three prize winners of the ISIC 2020 Melanoma Detection Challenge on the
HIBA test set. Sensitivity and specificity were calculated with a fixed threshold of 95% for sensitivity. Data in parenthesis correspond to 95%
confidence interval.
Model ROC-AUC PR-AUC Sensitivity Specificity

First place [13] 0.92 (0.91–0.94) 0.76 (0.71–0.80) 0.95 (0.95–0.96) 0.62 (0.53–0.72)
SGE-B3 (ours) 0.91 (0.89–0.93) 0.73 (0.68–0.78) 0.95 (0.95–0.96) 0.57 (0.48–0.66)
S2-CBAM-B3 (ours) 0.89 (0.87–0.92) 0.72 (0.67–0.77) 0.95 (0.95–0.96) 0.48 (0.34–0.63)
Spatial-B3 (ours) 0.89 (0.87–0.91) 0.70 (0.64–0.75) 0.95 (0.95–0.96) 0.51 (0.41–0.61)
S2-MLP-B3 (ours) 0.89 (0.97–0.92) 0.72 (0.66–0.76) 0.95 (0.95–0.96) 0.52 (0.43–0.61)
Baseline (EfficientNet-B3) 0.54 (0.77–0.84) 0.25 (0.55–0.67) 0.95 (0.95–0.96) 0.17 (0.02–0.26)
Second place [53] 0.89 (0.87–0.91) 0.71 (0.66–0.77) 0.95 (0.95–0.96) 0.46 (0.36–0.56)
Third place [54] 0.54 (0.50–0.58) 0.21 (0.18–0.26) 0.95 (0.95–0.96) 0.02 (0.16–0.42)
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Table 9
Comparison of average prediction time for one batch of 64 images and model sizes
or our models versus the top three ISIC 2020 prize winners. This result is compiled
cross 5 folds. s: seconds, GB: gigabytes.
Model Time (s) Model Size (GB)

SGE-B3 (ours) 0.33 ± 0.001 0.20
S2-CBAM-B3 (ours) 0.33 ± 0.061 0.21
Spatial-B3 (ours) 0.34 ± 0.015 0.20
S2-MLP-B3 (ours) 0.35 ± 0.035 0.21
Baseline (EfficientNet-B3) 0.33 ± 0.002 0.20
Second place [53] 64.60 ± 1.07 2.75
Third place [54] 161.0 ± 2.10 4.69
First place [13] 183.80 ± 3.21 11.60

strong performance, though still modestly below that of the first-
place winner. This consistent trend in results further underscores the
robustness of our models.

On the other hand, it should be noted that the small number of
parameters enabled our models to achieve significantly faster execution
time. As Table 9 illustrates, our models demonstrated a significant effi-
ciency advantage, running 20 times faster than the model that won the
ISIC 2020 Challenge and therefore offering a more practical solution for
real-time diagnostic application in clinical settings. The enhanced effi-
ciency and compactness of our models also render them ideally suited
for integration into smartphone-based dermoscopy systems, bridging
the gap between advanced diagnosis and mobile healthcare solutions.

Furthermore, we used GradCAM [56] to provide a closer look at
ow the models pay attention to specific parts of input images. This
acilitated the creation of visualizations highlighting the areas of focus
or the model. Through these illustrations, it became evident that
 t

10 
our attention-based models exhibit a superior capability in accurately
detecting lesion areas with greater confidence when contrasted with the
performance of the baseline models (see Fig. 12).

5. Discussion

This study aimed to address three significant challenges in the
utomated detection of skin lesions: (a) addressing data imbalance;

(b) enhancing model robustness; and (c) managing model parameters
and computational costs. To overcome data imbalance, we tested three
different loss functions designed to deal with this type of dataset,
with LMF loss demonstrating superior performance compared to the
lternatives. However, our results revealed a persistent bias towards

the majority class, despite the improvement in overall model perfor-
mance attributed to LMF loss. This highlights the ongoing need for
additional publicly available data in the field to further enhance model
generalization.

To guarantee the robustness of our model, we created a multi-class
lassifier that can distinguish melanoma from other types of cancer and
re-cancerous lesions. Instead of evaluating our models on a subset of
he same dataset, we used two entirely different datasets as our test sets
o independently assess their real-world performance. Additionally, we

employed relevant metrics to conduct a comprehensive and detailed
valuation of our models, further ensuring a thorough assessment of

their performance.
To overcome the third challenge, we introduced four attention-

based models by integrating attention blocks at various levels within
he EfficientNet-B3 architecture. This innovative approach enabled us
o create small yet effective models for practical melanoma diagnosis,
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Fig. 12. GradCAM visualizations of our models with predicted labels and prediction confidence. (a, b, c, d, e): melanoma image samples; (f, g, h, i, j): baseline EfficientNet-B3;
(k, l, m, n, o): attention-based model. These visualizations revealed that our attention-based models excel over the baseline model in precisely identifying areas of lesions with
greater confidence.
outperforming the second and third-placed prize winners of the ISIC
Challenge. Furthermore, our top-performing model demonstrated com-
parable performance in all metrics to the first-placed winner of the
ISIC Challenge. Our compact and robust models can provide invaluable
assistance to doctors by enabling early and rapid melanoma detection.
In addition, their adaptability allows seamless integration with widely
available devices, such as smartphones. This not only can help reduce
11 
patient waiting time and mortality rates but also improve accuracy and
efficiency for healthcare professionals, especially general practitioners.

As discussed earlier in this study, sensitivity is a crucial metric in
cancer detection. However, a well-known limitation is that increasing
sensitivity leads to a decrease in specificity. In our case, all models
(ours and third parties) obtained a very low specificity. This may be
due to several factors, including using totally independent test sets,
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the diversity of skin lesions and tumors within the unknown class, the
limited data available for benign classes (e.g. DF and VASC), and the
restrictive sensitivity threshold set at 95%. In many papers in the litera-
ure, we observed that results with very high sensitivity and specificity
ften occur when there is a correlation between the training and test
ets. Specifically, when the training and test sets are subsets of the
ame dataset, the sensitivity and specificity can be unusually high [57].

However, when the test set is completely independent, a trade-off
between sensitivity and specificity typically arises and clinicians often
prefer higher sensitivity at the expense of lower specificity.

6. Conclusion

Artificial intelligence and deep learning models have proved to be
uccessful in detecting and diagnosing skin lesions, offering valuable
ssistance to general practitioners and dermatologists by enhancing

their diagnostic capabilities. Despite their effectiveness, many top-
performing models in the field tend to be large and computationally
expensive, posing challenges for practical real-world applications, such
as deployment on mobile devices for smartphone-based dermoscopy.
Moreover, the robustness of these models is rarely tested on inde-
pendent datasets, complicating the selection of appropriate models for
future use in a real environment.

In this work, we proposed four lightweight attention-based models
ased on the EfficientNet-B3 backbone, designed for the precise diagno-
is and classification of skin lesions. Our models demonstrated notable
erformance in the melanoma detection task, exhibiting significant
mprovements in ROC-AUC and PR-AUC compared to the second and
hird-placed prize winners of the ISIC challenge, while using 92%–
6% fewer parameters. Although our models did not improve upon
he first-placed prize winner, they did achieve comparable results on
oth test sets while using 98% fewer parameters. On the PROVe-AI test
et, our best model (S2-CBAM-B3) achieved a ROC-AUC of 0.83, a PR-

AUC of 0.56, a sensitivity of 0.96 (95% CI: 0.94–0.97) and a specificity
of 0.36 (95% CI: 0.13–0.60) at a predetermined threshold of 95% for
ensitivity. On the HIBA dataset, our best model (SGE-B3) achieved a
OC-AUC of 0.91, a PR-AUC of 0.73, a sensitivity of 0.95 (95% CI:
.95–0.96) and a specificity of 0.57 (95% CI: 0.48–0.66), demonstrating
ts capability to detect true positive cases.

The core objective of our research was to highlight that smaller,
ell-tuned models with enhanced architecture can achieve competitive

results without resorting to large ensembles of complex models. We
believe the attention mechanisms explored in this paper have the
potential to be applied to more sophisticated models in the future,
leading to highly accurate performance and potentially replacing the
need for large ensembles altogether.

During our research, we observed a significant data imbalance in
ublicly available datasets. Despite employing approaches to mitigate

this, such as using a specific loss function, our models still tended
o overfit to the majority class. Hence, there is a crucial need to
cquire more data for the underrepresented classes to facilitate model
mprovement in the future. One potential approach could be to create
ynthetic malignant images using Generative Adversarial Networks
GANs). Moreover, certain classes in the ISIC datasets contain a wide
ariety of lesions, with different shapes and colors. This intra-class
iversity can pose challenges and create potential confusion for deep
odels. It would therefore be interesting and valuable to conduct fur-

her investigations that explore skin lesion classification at a sub-class
evel to address this complexity. Furthermore, even after applying pre-
rocessing techniques, some images still contain artifacts that we could
ot remove without compromising important features. These artifacts
ntroduce bias into the model, underscoring the need for methods that
an effectively address them. Finally, while setting a predefined high
ensitivity threshold ensures high accuracy in detecting true positives,
eal-world applications of these models require greater specificity. This
ould help reduce false positives and minimize unnecessary medical

rocedures.
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