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Abstract: For a complex parameter c outside the unit disk and an integer n ≥ 2, we examine the
n-ary collinear fractal E(c, n), defined as the attractor of the iterated function system { fk : C −→ C}n

k=1,
where fk(z) := 1 + n − 2k + c−1z. We investigate some topological features of the connectedness
locus Mn defined as the set of those c for which E(c, n) is connected. In particular, we provide a
detailed answer to an open question posed by Calegari, Koch, and Walker in 2017. We also extend
and refine the technique of the “covering property” by Solomyak and Xu to any n ≥ 2. We use it
to show that a nontrivial portion of Mn is regular closed. When n ≥ 21, we enhance this result by
showing that in fact, the whole Mn \R lies within the closure of its interior, thus proving that the
generalized Bandt’s conjecture is true.

Keywords: collinear fractals; Bandt’s conjecture; connectedness locus; iterated function systems;
Mandelbrot set; roots of integer polynomials
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1. Introduction

Polynomials with integer coefficients are fundamental objects in mathematics, serving
as building blocks in various areas such as algebra, number theory, and geometry. The
roots of these polynomials often exhibit fascinating and intricate patterns in the complex
plane. In this paper, we uncover a deep connection between these roots and a class of
self-similar sets that we call collinear fractals. These fractals are generated by repeatedly
applying simple mathematical transformations involving a complex parameter c and an
integer n. Exotic elements of the family include some self-affine tiles with a collinear digit
set independently studied in [1]. Remarkably, the set Mn of parameters c for which the
corresponding fractal is connected can be identified with the set of roots of polynomials
with integer coefficients restricted from −n + 1 to n − 1. By exploring this bridge between
algebra and geometry, we provide new insights into long-standing mathematical questions,
demonstrating how the algebraic properties of polynomials shape the geometric structure
of fractals and give rise to complex and beautiful sets.

The concept of visualizing roots of polynomials is not new, and numerous mathemati-
cal explorations have arisen from this idea, particularly in blogs and online mathematical
discussions [2,3]. Research on the so-called Littlewood polynomials, whose coefficients
are ±1, produced some of the earliest Mn-like imagery; see, for instance, the work of
Peter and Jonathan Borwein [4,5]. Similarly, polynomials with coefficients restricted to
{0, 1}, known as Newman polynomials, were thoroughly investigated in the seminal work
of Odlyzko and Poonen [6]. Other studies related to roots of polynomials include the
Thurston’s Master Teapot [7–9], Algebraic Number Starscapes [10,11], and the eigenvalues of
Bohemian Matrices [12].

For any integer n ≥ 2, let An be the set

An := {n + 1 − 2k}n
k=1 = {−n + 1,−n + 3, . . . , n − 3, n − 1}.
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Let D := {z ∈ C :|z|≤ 1} denote the closed unit disk. For any parameter c ∈ C \D,
consider the iterated function system (IFS) { ft : C −→ C}t∈An

, where ft(z) := t + c−1z. The
attractor E(c, n) of this IFS is the unique nonempty compact set satisfying

E(c, n) =
⋃

t∈An

(
t +

E(c, n)
c

)
. (1)

These sets E(c, n), which we refer to as collinear fractals, are fundamental examples of
self-similar sets in the plane, and understanding their topological and fractal properties is
of significant interest. For a geometric description of E(c, n), label the n first-level pieces of
E(c, n) as

Et(c, n) = ft(E(c, n)) = t + c−1E(c, n), where t ∈ An.

For odd n values, the central piece is E0(c, n) = c−1E(c, n), which is a copy of E(c, n)
centered at 0, scaled down by |1/c| and rotated by arg(1/c). The neighboring pieces of
E0(c, n) are E−2(c, n) and E2(c, n). For even n values, 0 /∈ An and the central pieces are
E−1(c, n) and E1(c, n), with centers at −1 and 1, respectively. Each piece Et(c, n) is just a
translated copy of c−1E(c, n), and with the exception of E0(c, n) when n is odd, each piece
Et(c, n) comes with an identical pair E−t(c, n) symmetrically centered on the opposite side
of the real line. See Figures 1 and 2.

−2 0 2

Figure 1. Example of a collinear fractal E(c, 4) for a specific parameter c =
(

3 + i
√

11
)

/2, illustrating
the intersection of neighboring pieces centered at A4 = {−3,−1, 1, 3}. By symmetry, the three main
components of C \ E(c, 4) are centered at A3 = {−2, 0, 2}.

−4 −2 0 2 4

Figure 2. Plane-filling collinear fractal E(c, 5) with c = 1 + 2i. The first-level pieces are centered at
A5 = {−4,−2, 0, 2, 4}.
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A natural question is whether the attractor E(c, n) is connected or completely discon-
nected. For IFS consisting of two maps (n = 2), there is a well-known dichotomy: the
attractor is connected if and only if the images of the attractor under the two maps overlap,
i.e., the two pieces

(
−1 + c−1E(c, 2)

)
and

(
1 + c−1E(c, 2)

)
intersect.

For a general IFS with n > 2 contractions, this dichotomy does not hold in general:
see, for instance, some examples of homogeneous self-similar sets in [13]. However, for
the collinear fractals E(c, n) considered here, we have a similar criterion: we will show
(Proposition 1) that E(c, n) is connected if and only if neighboring pieces on the right-hand
side of (1) intersect.

The connectedness locus Mn is defined as the set of parameters c for which E(c, n)
is connected:

Mn := {c ∈ C \D : E(c, n) is connected}.

In the last decades, considerable efforts have been dedicated to understanding the
topological properties of the set M2. It is worth noticing that traditionally, the open
unit disk has been the preferred parameter space for studying M2. However, using its
geometric inversion c 7→ 1/c is advantageous to clarify the boundary of Mn and simplify
the geometric arguments.

In 2008, Bandt and Hung [14] introduced a family of self-similar sets known as n-gon
fractals for n ∈ N with n ≥ 2 and parameterized by λ ∈ int(D) \ {0}, which reduce to
our collinear fractals E(1/λ, 2) when n = 2. The authors proved that the corresponding
connectedness loci Mn are regular-closed for all n ̸= 4:

clos(int(Mn)) = Mn for n ≥ 3 with n ̸= 4.

The regular-closedness of M4 was proved in 2020 by Himeki and Ishii [15] by extend-
ing some techniques from [16]. The extreme points of the n-gon fractals were characterized
by Calegari and Walker in [17]. Bousch [18] proved that Mn is connected for any n ≥ 3.
The same author [19] also showed that M2 is connected and locally connected. Finally,
Nakajima [20] extended the work of Bousch proving the local connectedness of Mn for any
n ≥ 3. Therefore, the problems concerning the regular-closedness, connectedness, and local
connectedness of Mn have been fully solved.

Going back to our sets Mn, it turns out that Nakajima’s general framework for
studying the connectivity of the set of zeros of power series can be directly applied to
our families of collinear fractals, which results in the sets Mn being connected and locally
connected for any n ≥ 2 (Theorem 1 in Section 2).

This paper focuses on understanding the connectedness loci Mn for any n ≥ 2. The
case n = 2, sometimes referred to as the “Mandelbrot set for a pair of linear maps”, has
been extensively studied [16,19,21–32], but less is known for n > 2. Bandt [23] conjectured
that M2 \ R is contained in the closure of its interior; that is, the nonreal part of M2 is
regular-closed. Solomyak and Xu [24] made significant progress toward this conjecture
by showing that a nontrivial portion X2 of M2 near the imaginary axis is the closure of
its interior,

M2 ∩ X2 ⊂ clos(int(M2)).

For a set S ⊂ C, its set of differences will be denoted as

S ⊖ S := {p − q : p, q ∈ S}.

In 2017, Calegari, Koch, and Walker [16] proved Bandt’s conjecture by introducing
the technique of traps to certify interior points of M2. The authors also wondered about
the properties of E(c, 2k + 1) for k ≥ 0 and its set of differences, which turns out to be
E(c, 2k+1 + 1), leaving the further investigation of Mn for n = 2k + 1 as an open problem.
In this paper, we address this not only for n = 2k + 1 but also for any n ≥ 2. We extend
Solomyak and Xu’s covering property lemma to all n ≥ 2. Specifically, we improve and
adapt the techniques used in [24] to the general setting. As a result, we obtain that for
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n ≥ 21, the covering property lemma suffices to prove the generalized Bandt’s conjecture,
namely, that Mn \R is contained in the closure of its interior.

2. Preliminaries

In this section, we introduce some basic definitions and establish some properties of
collinear fractals E(c, n) and their connectedness locus Mn.

Proposition 1. For any integer n ≥ 2, E(c, n) is connected if and only if

E(c, n)
c

∩
(

2 +
E(c, n)

c

)
̸= ∅.

Proof. It is immediate that the condition (E(c, n)/c) ∩ (2 + E(c, n)/c) ̸= ∅ is equivalent
to the property that, for any pair {t, t + 2} ⊂ An,

(
t +

E(c, n)
c

)
∩
(

t + 2 +
E(c, n)

c

)
̸= ∅. (2)

In other words, that any two neighboring pieces have a nonempty intersection.
Consider the connectivity graph G, which is a combinatorial graph whose vertices are

the n elements of An and there is an edge connecting a pair of vertices {i, j} if and only if
the corresponding first-level pieces i + E(c, n)/c and j + E(c, n)/c intersect. Now, observe
that either G contains all the edges {i, i + 2} for i = −n + 1,−n + 3, . . . , n − 3 if (2) holds,
or G is a collection of n singletons (with no edges) otherwise. So, the proposition follows
from the well-known fact that a self-similar set is connected if and only if the corresponding
connectivity graph is connected [33,34]. □

An explicit representation of E(c, n) is well known [13] and is given by

E(c, n) =

{
∞

∑
k=0

akc−k : ak ∈ An

}
. (3)

From (3) and the fact that An ⊖ An = A2n−1, it easily follows that the set of differences
of E(c, n) is

E(c, n)⊖ E(c, n) = E(c, 2n − 1). (4)

Define now the set

Dn :=
1
2

A2n−1 = {1 − n, 2 − n, . . . ,−1, 0, 1, . . . , n − 2, n − 1}. (5)

Using these definitions, we can characterize the connectedness locus Mn as follows.

Proposition 2. For any integer n ≥ 2,

Mn =

{
c ∈ C \D : ∃ a1, a2, . . . ∈ Dn such that 1 +

∞

∑
k=1

akc−k = 0

}
.

Proof. From Proposition 1 and the characterization (3) of E(c, n), it follows that E(c, n) is
connected if and only if

0 ∈ 2 +
(

E(c, n)
c

⊖ E(c, n)
c

)
= 2 +

E(c, 2n − 1)
c

,
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where in the last equality we have used (4). This equality, again using (3), implies that there
exist bk ∈ A2n−1 and ak = bk/2 ∈ Dn such that

0 = 2 +
∞

∑
k=1

bkc−k = 2

(
1 +

∞

∑
k=1

akc−k

)
.

□
The subsequent result is a direct consequence of Proposition 2 and the straightforward

observation that Dn ⊂ Dn+1. See Figure 3.

∂M∗
21

i
√
21

...

i
√
8

i
√
7

i
√
6

i
√
5

i
√
4

i
√
3

i
√
2

i

0 1
2

3
2

5
2

7
2

9
2

1 2 3 4 5 1 +
√
20

D

Figure 3. Superimposed arrangement of M2, M3, . . ., M21 constrained within the upper-right
section of the complex plane. From Proposition 3, we know that the connectedness loci are nested.
The illustration suggests the existence of infinitely many holes, and that for n ≥ 4, the intersection
∂Mn ∩ ∂Mn+1 \R is nonempty.

Proposition 3. Mn ⊂ Mn+1 for any integer n ≥ 2.

In order to estimate a bounding region for Mn, we will use a deep connection between
Mn and the set of zeros of a larger class of power series investigated earlier by Beaucoup
et al. [35]. Let In := [1 − n, n − 1] ⊂ R be the convex hull of Dn. We define the convexity set
as

M∗
n :=

{
c ∈ C \D : ∃ a1, a2, . . . ∈ In such that 1 +

∞

∑
k=1

akc−k = 0

}
. (6)

In Figure 4, we have represented the convexity sets M∗
n for 2 ≤ n ≤ 21.

In what follows, the closed disk of radius r centered at z0 will be denoted by B(r, z0).
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∂M∗
21

i
√
n

...

i
√
8

i
√
7

i
√
6

i
√
5

i
√
4

i
√
3

i
√
2

i

0 1 2 1 +
√
6

◦
. . . 1 +

√
n− 1

D

Figure 4. Convexity sets M∗
2 , M∗

3 , . . ., M∗
21 constrained within the upper-right section of the complex

plane. From Proposition 4, we know that M∗
n \R ⊂ B

(
1 +

√
n − 1, 0

)
.

Proposition 4. For any integer n ≥ 2,

Mn ⊂ M∗
n ⊂ B

(
1 +

√
n − 1, 0

)
∪ [−n, n].

Proof. The inclusion Mn ⊂ M∗
n comes directly from the definition (6), the fact that

Dn ⊂ In and Proposition 2.
Let us now see that M∗

n ∩R ⊂ [−n, n]. In [35], the authors study the set Zg of all zeros
with an absolute value smaller than 1 of the power series of the form

1 +
∞

∑
k=0

akzk, where ak ∈ [−g, g]

for a positive real number g. Note that by definition (6), M∗
n is nothing more than the

inversion of the set Zg when g = n − 1. Let rg(ϕ) be the infimum of the moduli of all
numbers in Zg with a fixed argument ϕ. Theorem A of [35] states that rg(ϕ) ≥ 1/(g + 1),
with the equality achieved when ϕ = 0. By inversion and taking g = n − 1, this proves that
M∗

n ∩R ⊂ [−n, n].
On the other hand, Theorem B of [35] states that rg(ϕ) > 1/

(√
g + 1

)
for all ϕ ∈ (0, π).

Taking inverses and setting g = n − 1, this implies that M∗
n \R ⊂ B

(
1 +

√
n − 1, 0

)
. □

Additional bounds for Mn are provided by the following result, which corresponds
to Lemma 2.5 of [13].

Proposition 5. For any integer n ≥ 2,

(i) {c ∈ C : 1 <|c|<√
n} ⊂Mn;

(ii) (−n,−1) ∪ (1, n) ⊂ Mn ∩R.
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By Propositions 4 and 5(i), the boundary of Mn lies essentially in the closed annulus{
c ∈ C :

√
n ≤ |c| ≤ 1 +

√
n − 1

}
. In fact, the contention is not strict due to the antennae

given by Proposition 5(ii). This peculiar feature of the sets Mn restricted to the real axis
has been previously described for n = 2 in [16,21,23,27]. See Figure 5 for a representation
of the connectedness locus M8 with the interval

(
1 +

√
7, 8
]

removed from the positive
real antenna.

Finally, as mentioned in Section 1, Nakajima’s study of the set of zeros of power
series [20] can be applied to our families of collinear fractals. Specifically, in view of
Proposition 5(ii) and taking into account that 1 ∈ Dn, we can use Theorem B of [20] with
L = 1/

√
n to obtain the following result.

−8 −1−
√
7 0

i
√
8

D

Figure 5. The connectedness locus M8. From Proposition 4, we know that M8 \R is contained in a
disk of radius 1 +

√
7.

Theorem 1. Mn is connected and locally connected for any integer n ≥ 2.

3. Statement of the Main Result

To state the main result of this paper, we need to define a particular region Xn ⊂ C as
follows. Inspired by the methods in [24], we define the set Xn as

Xn :=
{

c = reiθ ∈ C \R : 1 < r ≤
√

2n − sin2 θ − |cos θ|
}

=
{

c ∈ C \ (R∪D) :|c + 1| ≤
√

2n, |c − 1| ≤
√

2n
}

=
(

B
(√

2n,−1
)
∩ B
(√

2n, 1
))

\ (R∪D).

(7)

See Figure 6 for an illustration of the region X8.

Theorem 2. Mn ∩ Xn ⊂ clos(int(Mn)) for any integer n ≥ 2. Moreover, if n ≥ 21, then
Mn ∩ Xn = Mn \R.

An immediate consequence of Theorem 2 is that the generalized Bandt’s conjecture is
true for n ≥ 21.
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The proof of Theorem 2 provides numerous specific examples of interior points in Mn.
Let M̂n be the set of zeros of polynomials with coefficients in Dn defined as

M̂n :=

{
c ∈ C \D : ∃ a1, . . . , am ∈ Dn such that cm

(
1 +

m

∑
k=1

akc−k

)
= 0

}
. (8)

We will show that every point in M̂n ∩ Xn is located within the interior of Mn.

D

B
(√

2n, −1
)

B
(√

2n, 1
)

R0−1 1

X8

i
√
2n− 1

−1 +
√
2n

Figure 6. Illustration of the region Xn defined in (7) for n = 8. The shaded area represents X8, which
is the intersection of two disks of radius

√
2n centered at −1 and 1, excluding the unit disk D and the

real axis R.

4. Proof of Theorem 2

To prove Theorem 2, we need some preliminary lemmas, adapting techniques from [24].
The first result is standard: see, for instance, Lemma 7 of [22].

Lemma 1. If F ⊂ C is a compact set, c ∈ C \D, and

F ⊂
⋃

t∈An

(
t +

F
c

)
,

then F ⊂ E(c, n).

Lemma 2. If F ⊂ E(c, 2n − 1) and there exist a1, a2, . . . , am ∈ Dn such that

1 +
m

∑
k=1

akc−k ∈ 1
2cm+1 F,

then c ∈ Mn.

Proof. Our hypothesis, via (3) and (5), implies that

1 +
m

∑
k=1

akc−k =
1

cm+1

∞

∑
k=0

bkc−k =
∞

∑
k=0

bkc−k−(m+1) (9)
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for some sequence {bk}∞
k=1 such that bk ∈ Dn. Now, take qk := ak ∈ Dn for 1 ≤ k ≤ m and

qk := −bk−(m+1) ∈ −Dn = Dn for all k > m. Rewrite (9) as

1 +
∞

∑
k=1

qkc−k = 0.

Since qk ∈ Dn for all k ≥ 1, Proposition 2 tells us that c ∈ Mn. □

Next, we state a covering property which will be the key tool to prove Theorem 2. Its
proof is much simpler than the one given by Solomyak and Xu for the case n = 3, see [24],
Lemma 3.3. For instance, they lacked an explicit parameterization for the covering rectangle.
Let R(c, n) ⊂ C denote the rectangle centered at the origin with vertices

{
ψ(c, n), ψ(c, n),−ψ(c, n),−ψ(c, n)

}
, (10)

where ψ(c, n) is the complex conjugate of the vertex ψ(c, n) defined as

ψ(c, n) :=

{
c(n + 1)/(1 + c) if Re(c) ≥ 0
c(n + 1)/(1 − c) if Re(c) < 0,

(11)

where Re(c) denotes the real part of c. The expression of the vertex ψ(c, n) in terms of c
and n was obtained by imposing the geometric conditions prescribed in the proof of the
covering property (Lemma 3).

Lemma 3 (covering property). For any c ∈ X n+1
2

, the rectangle R(c, n) is covered by its n
first-level images

R(c, n) ⊂
⋃

t∈An

(
t +

R(c, n)
c

)
.

Proof. Recall that R(c, n) is the rectangle (10) centered at the origin with vertices defined in
(11). One can easily check that for any t ∈ An, there is a pair of diagonally opposing vertices
of the rectangle t + c−1R(c, n) placed along the horizontal lines containing the upper and
lower edges of R(c, n). The remaining pair of vertices of t + c−1R(c, n) are placed above
and below those lines (see Figure 7).

To show that the n rectangles t + c−1R(c, n) cover R(c, n) as long as the parameter c is
in X n+1

2
, consider the outer boundary of X n+1

2
defined as ∂X n+1

2
\ (∂D∪R) which, after some

algebraic manipulations, can be implicitly parameterized by

n = |c|2 + 2|c||cos θ| = |c|2 + 2|Re(c)|, (12)

where θ denotes the argument of c.

Now, observe that if the parameter c satisfies (12), then

|c| =
√

n + 1 − sin2 θ − |cos θ|

and the vertices ψ(c, n) and −ψ(c, n) intersect the edges −AB and AB of the leftmost

and rightmost rectangles, where A := n − 1 + c−1ψ(c, n) and B := n − 1 − c−1ψ(c, n). See
Figure 8. Moreover, the n rectangles t + c−1R(c, n) intersect tangentially side by side, thus
critically covering the rectangle R(c, n); see Figure 9.

If c ∈ int
(
X n+1

2

)
, then

1 <|c|<
√

n + 1 − sin2 θ − |cos θ|

and R(c, n) is covered by its n images (Figure 9, bottom). Finally, if c /∈ X n+1
2

∪ (D∪R), then
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|c|>
√

n + 1 − sin2 θ − |cos θ|

and the n rectangles t + c−1R(c, n) are disjoint (Figure 9, top), thus not covering R(c, n). □

R(c, n)
t0

Figure 7. Geometric configuration of the rectangle R(c, n) and its image t + c−1R(c, n) for t ∈ An.

n− 1 + c−1R(c, n)1− n+ c−1R(c, n)

ψ(c, n)

−ψ(c, n)

AB−AB
R(c, n)

0

Figure 8. An illustration of the critical case n = |c|2 + 2|Re(c)| in the proof of Lemma 3.

|c| >
√
n+ 1− sin2 θ − | cos θ|

|c| =
√
n+ 1− sin2 θ − | cos θ|

1 < |c| <
√
n+ 1− sin2 θ − | cos θ|

Figure 9. An illustration of the proof of the covering property (Lemma 3).

The following lemma is a standard consequence of Rouché’s theorem. Recall that M̂n
denotes the set of zeros of polynomials with coefficients in Dn given in (8).

Lemma 4. Mn = clos
(
M̂n

)
.

Now, we have all the necessary ingredients to prove Theorem 2.

Proof of Theorem 2. Let us prove that Mn ∩Xn ⊂ clos(int(Mn)) for any n ≥ 2. In view of
Lemma 4, it is enough to show that int(Xn) ∩ M̂n ⊂ int(Mn). So, let c0 ∈ int(Xn) ∩ M̂n.
We must see that there is an open neighborhood U of c0 contained in Mn.
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Since c0 ∈ M̂n, there exist a1, a2, . . . , am ∈ Dn such that

p(c0) = 0, where p(z) = 1 +
m

∑
k=1

akz−k.

Note that 1
2cm+1

0
R(c0, 2n − 1) is a solid (with nonempty interior) rectangle centered at

0. Hence,

p(c0) = 0 ∈ int

(
1

2cm+1
0

R(c0, 2n − 1)

)
. (13)

We are assuming that c0 ∈ int(Xn). Moreover, the functions (11) that define the
rectangles R(c, 2n − 1) are continuous with respect to c. These facts, together with (13)
and the continuity of p(z), imply that there is an open neighbourhood U of c0 such that
U ⊂ Xn and

p(c) ∈ 1
2cm+1 R(c, 2n − 1) for every c ∈ U. (14)

On the other hand, from Lemmas 1 and 3, it follows that

R(c, 2n − 1) ⊂ E(c, 2n − 1) for all c ∈ Xn. (15)

Finally, (14) and (15) allow us to use Lemma 2, which tells us that c ∈ Mn for every
c ∈ U.

Let us now prove the second statement of the theorem. We must show that for n ≥ 21,
we have Mn ∩ Xn = Mn \ R. The inclusion Mn ∩ Xn ⊂ Mn \ R is obvious because
Xn ∩R = ∅. Hence, we only need to show that Mn \R ⊂ Xn for n ≥ 21. It is easy to check
that 1 +

√
n − 1 < −1 +

√
2n for n ≥ 21. See Figure 10 for an example. In consequence,

B
(

1 +
√

n − 1, 0
)
⊂ B

(√
2n,−1

)
∩ B
(√

2n, 1
)

f or n ≥ 21. (16)

Since Xn =
(

B
(√

2n,−1
)
∩ B
(√

2n, 1
))

\ (R∪D) and, from Proposition 4, we know

that Mn \R is contained within the disk B
(
1 +

√
n − 1, 0

)
, it follows that Mn \R ⊂ Xn. □

M21 \ R

B
(
1 +

√
20, 0

)
X21

D

B
(
1 +

√
20, 0

)

D

B
(√

2n, −1
)

B
(√

2n, 1
)

X21

i
√
2n− 1

1 +
√
20 < 5.48 < −1 +

√
42

Figure 10. The set M21 \R contained in X21. Since 1 +
√

20 < −1 +
√

42, the region X21 contains

B
(

1 +
√

20, 0
)
\ (R∪D) which in turn contains M21 \R by Proposition 4.
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5. Remarks and Suggestions on Further Research

The connection we established between the convexity set M∗
n and the connectedness

locus Mn is clearer when we consider the following characterizations of Mn and M∗
n

involving the set E(c, 2n − 1) of differences of E(c, n) and its convex hull H(c, 2n − 1).

Mn= {c ∈ C \D : 2c ∈ E(c, 2n − 1)},

M∗
n= {c ∈ C \D : 2c ∈ H(c, 2n − 1)}.

In particular, the condition 2c ∈ E(c, 2n − 1) implies that there is an asymptotic self-
similarity between Mn and E(c, 2n − 1). For each c ∈ ∂Mn \R, we have 2c ∈ ∂E(c, 2n − 1),
and a neighborhood of c from Mn looks asymptotically similar to a neighborhood of 2c
from E(c, 2n − 1); observe the animation [36].

For 3 ≤ n < 21, we conjecture that the set Mn \ (R∪ Xn) is regular-closed. One could
try to extend the partial results of Nguyen Viet Hung for n = 2, who, as part of his Ph.D.
thesis [37], obtained three new regions in addition to X2. Note that for any n, it holds that
Xn ⊂ B

(√
2n − 1, 0

)
, and when |c|<

√
2n − 1, it is expected that E(c, 2n − 1) possesses a

nonempty interior, given that the similarity dimension of the IFS exceeds 2. Computational
evidence ([38] personal notes) suggests that by replacing the rectangle R(c, n) with the
parallelogram P(c, n) centered at the origin with vertices

{
n − 1 + c−1, n − 1 − c−1, −n + 1 − c−1, −n + 1 + c−1

}
,

we have that P(c, 2n − 1) ⊂ E(c, 2n − 1) for any non-real c ∈ Mn. These findings are part
of ongoing work and will be further investigated in future research.

Additionally, inspired by Solomyak and Xu’s investigation into complex Bernoulli con-
volutions [24], exploring the measures supported on E(c, n) and their absolute continuity
could prove to be a productive avenue for future research.

6. Conclusions

In this paper, we have introduced the family of collinear fractals E(c, n) defined as the
compact sets invariant under the iterated function system

{
ft(z) := t + c−1z

}
t, where c is

a complex parameter outside the unit disk and t ranges over the symmetric set of integers
{−n + 1,−n + 3, . . . , n − 3, n − 1}.

For any integer n ≥ 2, we define the connectedness locus Mn as the set of parameters
c for which E(c, n) is connected. Among other results, we have proven that a nontrivial
portion of Mn is contained in the closure of its interior for any n ≥ 2. In addition, we prove
that when n ≥ 21, the whole Mn \R lies in fact within the closure of its interior. In other
words, the generalized Bandt’s conjecture about the regular-closedness of Mn is true.
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