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Contribution of EEG Signals for Students’ Stress
Detection
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Abstract—Stress is a prevalent global concern impacting individuals across various life aspects. This paper investigates stress
detection using electroencephalographic (EEG) signals, which have proven valuable for studying neural correlates of stress. Stress
was induced in students, and physiological data was recorded as part of the experimental setup. Different feature sets were extracted
and four machine learning models, including LightGBM, Convolutional Neural Network (CNN), K-Nearest Neighbors (KNN), and
Support Vector Machine (SVM), were utilized for classification tasks. The findings indicate that the mean and standard deviation of 19
channels consistently outperform other feature sets. LightGBM demonstrates superior performance across all scenarios compared to
CNN, KNN, and SVM. Overall, this study presents an effective stress detection approach using EEG signals and demonstrates the
potential of integrating simple statistical features for enhanced classification accuracy. The findings contribute to the advancement of
stress monitoring technologies, with potential applications in wearables and BCIs for real-time stress management.

Index Terms—Stress, Electroencephalogram (EEG), emotion recognition, feature extraction, feature selection, machine learning
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1 INTRODUCTION

S TRESS is a natural human response to challenges and
threats, influenced by both external factors like living

conditions and internal factors such as cognitive processes
[1], [2]. When stress becomes chronic and goes undetected, it
can lead to serious mental health issues [3]. Effective stress
detection is crucial for preventing these conditions. While
psychological methods have traditionally been important
for measuring stress, recent studies emphasize the growing
importance of using physiological indicators for a more
accurate assessment [4] [5]. This work focuses on developing
stress detection solutions using biosignals, with particular
emphasis on the contribution of EEG (Electroencephalog-
raphy) signals. Traditional methods rely on manual exami-
nations by health professionals, which are time-consuming
and expensive [4]. This research aims to automate stress
detection through physiological data, reducing the burden
on both patients and healthcare systems.

Among various physiological measures, EEG signals
stand out due to their ability to provide a direct reflection
of neural activity during stress conditions [6]. While other
measures like electrocardiogram (ECG) [7], electrodermal
activity (EDA) [8], and respiration rate (RSP) [9] also show
consistent stress-related changes, EEG offers unique insights
into how the brain responds to stressors by capturing elec-
trical patterns that correlate with cognitive and emotional
processes [10]. This makes EEG devices particularly valu-
able for understanding the complex dynamics of stress at
the neural level.

Furthermore, the application of machine learning meth-
ods to biosignal data enables the automatic detection of
stress states. For example, Heyat et al. [11] used Decision
Tree (DT), Naive Bayes (NB), Random Forest (RF), and
Logistic Regression (LR) to classify subjects in mental stress
and non-stress. The study was carried out considering the
data available for a single subject (intra-subject classifi-
cation) as well as taking into account all available data
(inter-subject classification). Similarly, Hosseini et al. [12]

focused on stress detection using normalized EDA signals
and employing machine learning models such as AdaBoost,
RF, and Support Vector Machines (SVM). Asif et al. [13]
examined the effect of music tracks on human stress levels
using EEG signals from twenty-seven subjects. The authors
of [13] used sequential minimal optimization, stochastic
gradient descent, LR, and Multilayer Perceptron (MLP) to
classify the subject’s stress level into two (stressed and not-
stressed) and three classes (non-stressed, medium stressed
and highly stressed). However, the application of machine
learning to biosignal data requires a preliminary signal
processing step [14] Biosignal data comes in the form of
times series sampled at a given frequency, with eventually
some noise and artifacts. After a cleaning phase, a com-
mon practice is to reduce the original data to the lowest
dimensional space by extracting features that resume them.
For example, Heyat et al. [11] calculated the following fea-
tures from ECG records: the average heart rate (AHR) and
mean of the RR interval (distance between signal peaks).
In the case of the EEG signals, features in the time domain
(as principal component analysis, independent component
analysis), the frequency domain (i.e. Fourier transform,
power spectral density (PSD)), and time-frequency domain
(as spectrogram-based features or wavelet analysis-based
features) are considered [15]. While feature extraction re-
duces the computational burden for subsequent processing,
the selection of an optimal feature set remains challenging,
as each method has inherent limitations [10]. For instance,
PSD interpretation requires domain expertise, while wavelet
analysis depends on the choice of an appropriate function
to balance time and frequency resolution. Moreover, despite
the computational benefits in later stages, the process of
computing these features itself can be resource-intensive,
adding to the overall computational cost.

Additionally, with the advances in sensor and wearable
technologies, the use of biosignals outside of the clinical
environment could provide an invaluable source of infor-

This article has been accepted for publication in IEEE Transactions on Affective Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2024.3503995

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1107-3163
https://orcid.org/ 0000-0003-4655-0983
https://orcid.org/0000-0002-1544-9658
https://orcid.org/0000-0001-9210-0073


IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 2

mation to understand patterns of stress in daily life contexts.
Regarding EEG, simple devices that do not require conduc-
tive gels and other complex installations to measure brain
activity, can be used for monitoring health conditions [16].
This kind of device, however, provides a single biosignal.
The question is if the EEG data gathered by simple biosen-
sors could be enough regarding stress detection, or should
be complemented by other devices, such as wristbands that
provide additional physiological data. Most of the studies
analyzing EEG focus on machine learning performance
while ignoring the analysis of how EEG contributes to stress
detection regarding other biosignals.

In this context, our study serves as a crucial bridge,
aiming to evaluate the substantial contribution of EEG to
stress prediction when compared to established physiolog-
ical measures such as ECG and EDA. In doing so, we
analyze which EEG channel could provide more relevant
data regarding stress detection, to condition the purchase
of a simple EEG wearable for such purpose. As a secondary
contribution, we explore several feature extraction methods,
revealing that simple, low-cost computational ones, could
be enough for detecting stress.

2 RELATED WORK

Recent research has introduced innovative methodologies
that utilize biosignals, with a particular emphasis on EEG
as the primary signal of interest, to detect and classify
stress at different levels. Samarpita et al. [17] trained a
diverse set of machine learning algorithms, such as RF,
DT, K-Nearest Neighbors (KNN), MLP, SVM, Adaboost,
and Extreme Gradient Boosting (XGBoost). Baliga et al. [18]
extracted only the alpha (8-13 Hz) and beta (13-30 Hz) bands
from EEG records and then applied two binary classification
algorithms (”under stress” or ”not under stress”), SVM and
LSTM, conversely to our work, which considered the full
spectrum of EEG signals for a more comprehensive analysis.
Marthinsen et al. [19] proposed a cost-effective minimally
intrusive framework with only eight EEG channels selected
with a Genetic Algorithm (GA). Features were extracted
using Wavelet Scattering and they employed two classifica-
tion algorithms, SVM and Convolutional Neural Network
(CNN), for their analysis. These works differ from ours in
several key respects. While [17] focused solely on 4 subjects
and 4 channels, we leveraged data from 30 participants
across 19 channels. [18] employed data from 40 subjects, but
with recordings of only 80 seconds duration, whereas our
recordings extend to approximately 22 minutes. In addition,
the increased number of channels and longer recording
duration may contribute to a richer feature space and po-
tentially enhance spatial resolution in our study compared
to [19]’s 8-channel selected approach.

Alternatively, Alshorman et al. [20] applied Fast Fourier
Transform (FFT) as a feature extraction stage to measure all
bands’ power density for the frontal lobe and then used
SVM and NB classifiers. Similarly, Nirabi et al. [21] pre-
sented a feature extraction method using discrete wavelet
transform (DWT). The features were classified using KNN,
SVM, NB, and LDA. Our study takes a distinct approach
compared to previous works by [20] and [21]. While they
relied on complex feature extraction methods like FFT or

DWT, this work utilizes simpler statistical features based on
means and standard deviations.

Other studies in stress detection have focused on the
combination of multiple biosignals. Hemakom et al. [22]
used EEG and ECG signals, and Zontone et al. [23] proposed
a method that combines EDA and ECG signal analysis to
detect stress in car drivers. Similarly, Affani [24] introduced
a stress detection design with two EDA sensors and two
ECG sensors, exhibiting high-level performances in terms
of linearity and jitter during metrological characterization.
Our approach differs significantly from some of these works
in the number of features employed. While we utilize 38
features, the methodologies of other studies include a sub-
stantially smaller set: 5 features in [20] and [24], 9 in [23],
and 10 in [21]. Notably, [22] utilized a much larger feature
set (147 features) derived from only 8 EEG channels. While
a larger number of features can potentially capture a wider
range of information, it also increases the risk of including
redundant or irrelevant features. These redundant features
can lead to several issues, including increased computation
time, overfitting, model complexity, and difficulty in feature
selection.

On the other hand, some studies have focused on
using multimodal data for stress detection. For instance,
Umematsu et al. [25] examined how multi-modal data,
including physiological signals (EDA), mobile phone usage,
location, and behavioral surveys collected over the previous
N days, can forecast tomorrow evening’s stress levels in stu-
dents. Alternatively, Bobade and Vani [26] used multimodal
data extracted from wearable physiological and motion sen-
sors, including three-axis acceleration (ACC), ECG, blood
volume pulse (BVP), body temperature (TEMP), respiration
(RESP), electromyogram (EMG), and EDA. While [25] and
[26] employed multimodal data excluding EEG, our study
focused on EEG data and its contribution to stress detec-
tion. This approach avoids the complexities and potential
confounding effects associated with integrating multiple
modalities, streamlining the stress detection process.

Table 1 presents the summary of the related work sec-
tion. Unlike previous studies, this work uniquely incor-
porates a channel importance analysis for EEG data. This
analysis can pave the way for the development of more
focused and efficient stress-detection wearables in the fu-
ture. By identifying the most informative EEG channels, we
can potentially reduce the number of electrodes needed in
wearable devices, leading to more comfortable and user-
friendly designs. Additionally, we conducted a comparative
performance study of EEG against ECG and EDA, examin-
ing the effectiveness of these signal types in stress detection
applications. Our review of the literature also revealed a
prevalent absence of LightGBM models for classification,
despite their potential to outperform traditional methods,
particularly in handling large datasets with greater speed.
Moreover, our approach leverages a low computational cost
due to relatively simple feature extraction techniques, en-
suring the efficient extraction of relevant information from
these signals.
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Ref. Data # Subjects # EEG
channels

EEG
Features

# Features # Labels EEG and ECG/EDA
comparison

EEG channel
importance study

Samarpita et al. [17] EEG 4 4 PSD (3 bands) Unspecified 3 No No
Baliga et al. [18] EEG 40 32 DWT (2 bands) Unspecified 2 No No
Marthinsen et al. [19] EEG 28 8 Wavelet scattering Unspecified 2 No No
Alshorman et al. [20] EEG 14 128 FFT (5 bands) 5 2 No No
Nirabi et al. [21] EEG 25 7 DWT (5 bands) 10 2 No No
Hemakom et al. [22] EEG, ECG 40 8 FFT (7 bands) 147 3 Yes (only EEG and ECG) No
Zontone et al. [23] EDA, ECG 16 0 - 9 2 No -
Affani [24] EDA, ECG 10 0 - 5 2 No -
Umematsu et al. [25] EDA, Other 142 0 - 375 2 No -
Bobade and Vani [26] EDA, ECG,

Other
15 0 - 39 2, 3 No -

This work EEG 30 19 Mean and std 38 3 Yes Yes

TABLE 1: Related work summary.

3 METHODS

In this section, we presented the fundamental framework
of the proposed stress recognition system (see Fig. 1). Our
aim is to analyze the contribution of the EEG biosignal.
To achieve this, two main pathways are defined in the
methodology: one that considers EEG data and another
one that deals with ECG and EDA data. Therefore, data
collection involves obtaining EEG, ECG, and EDA signals
from the same subject, using the same protocol, to enable the
comparison of the results. Subsequently, signal processing
techniques are applied to clean the data and ensure con-
sistency across all signals. Next, several feature extraction
methods are applied to transform the longitudinal nature of
the biosignals (time series data) into a tabular representa-
tion. Following this, the data is labeled (stress, neutral, and
relax) and balanced across different stress classes. Finally, to
evaluate their efficacy in stress detection, various machine
learning methods are employed, leading to the building of
different detection models.

3.1 Data Collection Protocol
A total of 30 subjects (fifteen men and fifteen women)
were recruited for this study. All participants were students,
ranging in age from 18 to 38 years (mean = 20.8, SD =
3.4). The selection of an equal number of male and female
participants aimed to mitigate potential gender biases in
emotional responses. This study had already been approved
by the corresponding ethical committee and met all the crite-
ria required by the current regulations (CEISH-UPV/EHU,
BOPV 32 (M10 2016 189)).

3.1.1 Devices Description
The acquisition of the participants’ data was carried out
with the EEG Enobio device from Neuroelectrics and the
BIOPAC MP36 hardware (Biopac Systems Inc., USA) for
physiological signals. For the acquisition of EEG signals
using the Enobio device, a configuration with 19 standard
electrodes was employed, following the setup illustrated in
Fig. 2. The data acquisition process was facilitated by the
NIC2 software, ensuring a sampling rate of 500 Hz.

BIOPAC has one set of electrodes for capturing ECG
signals and another for EDA signals. The EDA sensors were
placed on two fingers of the subjects. For ECG signals, the
electrodes were placed following the configuration shown
in Fig. 3. The signals were processed using the BIOPAC Stu-
dent Lab software, employing a three-channel configuration.

Channel 1 was designated for recording ECG signals and
Channel 2 for EDA signals. The sampling frequency for all
three channels was uniformly set at 500 Hz.

Fig. 4 illustrates the comprehensive configuration of
electrodes used in the study to capture EEG, ECG, and EDA
signals. The image provides a visual representation of the
electrode placement on the subject. This electrode configu-
ration was employed during data collection to ensure accu-
rate and simultaneous acquisition of multiple physiological
signals, allowing for a holistic analysis of the subject’s stress
responses.

3.1.2 Tests Description
The experimental procedure adopted in this study was
based on the approach previously developed by Martinez
and collaborators [5], who conducted two experiments in a
group of participants, one of them seeking to induce stress.
The experiment consisted of a single activity, with a pre and
post-phase taking the subject to a basal state of relaxation
by watching a relaxing video. As emotional responses to
stimuli can vary significantly between individuals, the use
of a single activity was concluded to be poor in capturing
the subjects’ variability.

Therefore, in this study, we chose to expose partici-
pants to a variety of stressful stimuli, to address a broader
range of stressful situations. To achieve this purpose, the
experimental procedure encompassed three stress induction
tests, interspersed with intervals during which subjects were
presented with two-minute relaxation videos. These stress
induction tests comprised the use of 3D puzzles [5], mathe-
matical calculations widely used in scientific literature [28]
[29] and, finally, the implementation of a video game on
mobile devices. Apart from the tests themselves, an attempt
was made to generate a stressful environment and the sub-
ject’s reactions and behaviors were noted while monitoring
the experiment.

Fig. 5 provides a comprehensive view of the complete
test sequence employed in the study. The details of every
step are the following:

• 3D Puzzle: In this test, the subject was asked to
solve a 3-dimensional puzzle in a limited time. After
watching a relaxing video, the subject had a limit of
seven minutes to solve the puzzle. When there were
only two minutes left, the subject was alerted to try
to make them nervous. Subsequent to the test, the
subject was presented with the solution, whereby it
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Fig. 1: Flowchart of the proposed method.

Fig. 2: EEG standard electrode configuration

Fig. 3: ECG Electrode Positioning

Fig. 4: Electrode configuration (EEG, ECG and EDA)

was occasionally observed that comprehending the
solution on paper proved more challenging than en-
gaging in the puzzle itself. This discrepancy between
the perceived difficulty of solving the puzzle and
the actual complexity of understanding the solution
introduced an additional source of frustration and
stress.

• Mathematical Calculations: In this test, the experi-
menter sequentially proposed mathematical calcula-
tions of increasing difficulty. As the subject answered
each question correctly, another calculation of greater
difficulty was proposed. The objective was to answer
the maximum number of calculations in a limited
time, in this case, three minutes.

• Video Game: In this experiment, the subject was
provided with a musical mobile game that incorpo-
rates increasing difficulty. Depending on the subject’s
knowledge of this type of video game, the difficulty
was adjusted to challenge the subject.

At the end of the experiment, an interview and a ques-
tionnaire were conducted to contrast this information with
the data gathered by the sensors. Post-experiment inter-
views with the subjects provided valuable insights into the
participants’ subjective experiences during specific tests and
moments throughout the experiment. Participants were en-
couraged to express their feelings and perceptions, allowing
researchers to contrast this qualitative information with the
physiological data.

3.2 Signal Processing

Signal processing techniques were applied to the raw data
(see Fig. 6) to ensure the integrity and reliability of the
subsequent analysis [30].

EEG preprocessing. The initial step involved the ap-
plication of a band-pass filter ranging from 0.1 to 45 Hz,
enabling the identification of electrodes with noise or no
discernible signal. Such electrodes were flagged as ”bad”
in the initial configuration, facilitating their exclusion from
further analysis.

To address the presence of ocular artifacts, an Indepen-
dent Component Analysis (ICA) was employed. ICA is a
widely accepted approach that aims to identify linear trans-
formations minimizing the statistical dependence between
components in the signal. This enables the isolation and
removal of artifactual sources, particularly those associated
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Fig. 5: Tests sequence

Fig. 6: Signal Processing

with eye movements and blinks. By effectively eliminating
these artifacts, the EEG signal can be corrected, preventing
the loss of valuable information essential for accurately
detecting the subject’s emotional state [31].

Given the multi-subject nature of the analysis, it was
imperative to maintain consistent dimensionality across all
subjects. To achieve this, interpolation of the bad channels
was preferred over their outright removal, as the set of bad
channels may not coincide between subjects. The spherical
spline method was employed for channel interpolation [32],
involving the projection of sensor locations onto a unit
sphere. Subsequently, the signal at the bad sensor locations
was interpolated based on the signals obtained from the
surrounding good locations.

In the final preprocessing step, a re-referencing pro-
cedure was implemented to ensure a consistent reference
point across all channels. The earlobe (GND) reference was
transformed to the Cz electrode, chosen for its symmetrical
configuration. This re-referencing process further standard-
ized the EEG data, enhancing the comparability and coher-
ence of subsequent analyses.

ECG and EDA preprocessing. A high-pass filter was
applied to eliminate noise, enhancing the integrity of the
ECG data. In the case of EDA signals, mean normalization
was employed, considering that each subject may exhibit
varying levels of sweating, and environmental conditions
such as temperature and humidity in the laboratory may
not be uniform across subjects.

3.3 Feature Extraction
Once the signal is cleaned, in the feature extraction step the
longitudinal data captured by the signals is transformed
into a tabular approach, so obtaining a set of features per
subject. To that end, first, the biosignal is split into windows,

and then the information of the windows is summarized in
different features.

EEG. The total recording duration was approximately 22
minutes. EEG data were recorded at 500Hz, and windows
of 500 samples were selected to represent 1 second of EEG
data, considering the sampling frequency of 500 samples per
second. Each window is an instance for further analysis.

Then, two distinct approaches were employed for feature
extraction.

The first approach revolved around incorporating time
domain features. We opted for the mean and standard
deviation of the values within a window because these
statistics effectively capture the basic characteristics of the
signal. The mean, representing central tendency, provides
insights into average signal amplitude, while the standard
deviation quantifies the dispersion of values, indicating sig-
nal variability. This combination offers a concise summary
of EEG dynamics while being computationally efficient and
suitable for reducing dimensionality. This approach strikes
a balance between simplicity, informative representation,
and classification efficacy in EEG signal analysis. The sec-
ond approach of this study involved dividing the EEG
frequency spectrum into five distinct subbands based on
brain rhythms: delta (0.5−4 Hz), theta (4−8Hz), alpha (8−14
Hz), beta (14−30 Hz), and gamma (30-45 Hz) [33]. We
are utilizing the complete range of these bands, which are
commonly associated with various cognitive processes, to
capture a broader spectrum of neural activity. From these
subbands, the power spectral density (PSD) values were
extracted. Although traditional methods frequently use joint
time-frequency analysis techniques, such as Continuous
Wavelet Transform (CWT) and Stockwell transforms, we
prioritize PSD analysis to effectively capture neural activity
across the identified frequency bands. Previous research
has consistently shown the significance of these specific
frequency bands in characterizing different mental states
[34] [35].

ECG and EDA. Regarding ECG, a typical heartbeat (car-
diac cycle) lasts around 0.8 seconds [36]. Using a 1-second
window size would restrict the analysis to capture only one
complete cardiac cycle. Therefore, 10-second windows were
used. Concerning EDA signals, window size selection is
more flexible. While previous research on EDA has utilized
window sizes ranging from 10 to 300 seconds [37] [38],
we opted for a 10-second window in this analysis. This
choice aligns with the window size used for ECG signals
and allows for the integration of these two different types of
physiological data.

3.4 Labeling and Class Balancing

Initially, a binary labeling scheme was employed to classify
each sample as either ”stress” or ”relax.” However, due
to instances where the subject’s state was ambiguous, a
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third class called ”neutral” was introduced. This new class
accounted for time periods where the subject’s emotional
state was neither distinctly stressed nor relaxed, providing
a more accurate representation of their responses during the
experiment.

Labeling has been conducted by visual inspection. To
perform the visual labeling, references were derived from
the recorded ECG and EDA data obtained with the Biopac
device. Both ECG and EDA signals are known to reflect
changes in the autonomic nervous system, which is closely
linked to emotional responses. The ECG signal stabilizes
during relaxed states, while the EDA signal decreases, in-
dicating a reduction in the subject’s sweating. Conversely,
in stressful situations, the EDA signal tends to increase due
to heightened perspiration. Fig. 7 shows a fragment of the
captured ECG and EDA signals. As can be seen, the ECG
signal stabilizes when the subject enters a relaxed state.
At the same time, the EDA signal decreases in that state,
indicating a decrease in the subject’s sweating, while in the
state of stress, it tends to increase [39]. By analyzing these
physiological indicators, relevant time periods during the
experiment were identified for labeling as ”stress”, ”relax”
or ”neutral.”

The labels assigned to the ECG and EDA data based on
the physiological responses were also extended to the si-
multaneous EEG data. Since all three signals were acquired
simultaneously, their temporal alignment allowed for the
association of the emotional states determined from ECG
and EDA signals with the corresponding EEG data samples.
This integration ensured that the emotional labels derived
from the physiological data were consistently applied to the
EEG data, thus enabling a comprehensive classification of
the EEG signals into the three categories.

The information from questionnaires and interviews
gathered from the subjects helped to refine the labeling
process and ensure that the emotional states assigned to
each data sample aligned more accurately with the partici-
pants’ actual experiences during the stress induction tests.
The questionnaires consisted of a simplified version of the
SAM [40], focusing solely on the questions. By combining
the objective physiological data from ECG and EDA signals
with subjective feedback from post-experiment interviews
and the streamlined SAM questionnaire, a more robust and
nuanced visual labeling approach was established.

Fig. 7: Labeling with ECG and EDA signals

After labeling, the number of samples in each class was

not evenly distributed. Imbalanced class distributions can
lead to biased model training, where the model might favor
the majority class, resulting in suboptimal performance in
detecting minority classes. To address this issue, a class
balancing technique, specifically random oversampling, was
utilized. Random oversampling involves duplicating in-
stances from the minority classes, thereby increasing their
representation in the dataset and achieving a more balanced
distribution across all classes [41]. Although random over-
sampling might cause the model to become overly reliant on
the duplicated minority class instances, we have preferred
this technique to other ones that generate synthetic samples
as SMOTE [42] because the latter is based on interpolation
between existing instances. In some cases, this process may
introduce noise or outliers, impacting the overall quality
of the dataset and potentially affecting model performance.
Moreover, methods like SMOTE assume local linearity be-
tween instances, while in EEG data, where complex non-
linear relationships may exist, this assumption might not
always hold, potentially leading to the generation of unre-
alistic synthetic samples.

3.5 Classification
We considered LightGBM, a gradient-boosting model with a
tree-based learning algorithm, as the first model for our clas-
sification task due to its promising results in the literature
[43] [44]. Additionally, we also explored other algorithms,
such as a state-of-the-art 16-layer CNN [45], KNN (with
Grid Search for Hyperparameter Tuning), and a Radial Basis
Function Support Vector Machine (RBF-SVM). The chosen
algorithms span a spectrum of complexity. LightGBM and
CNN are capable of capturing complex relationships, KNN
is simple and non-parametric, while SVM creates optimal
hyperplanes, accommodating various data complexities. In
particular, RBF kernels have shown superior performance in
various scenarios [46]. These diverse models were trained
on our datasets to comprehensively evaluate their effective-
ness in stress detection.

3.6 Experimental Setup
The main aim of our work is to analyze the contribution
of EEG for stress detection. To that end, we defined five
experimental scenarios.

1) EEG Data for Stress Detection. First, we define sev-
eral combinations of features to determine the best
set of features that provides the highest performance
for stress detection over EEG data according to the
machine learning methods proposed.

2) Sensitivity Analysis of the Window Size on EEG.
As feature extraction depends on the window size,
a sensitive analysis is conducted regarding this pa-
rameter of the methodology.

3) EEG Intrasubject Analysis. An intrasubject classi-
fication was conducted to assess the feasibility of
creating personalized models without sacrificing ac-
curacy. This analysis aimed to identify any conflicts
in model classification caused by individual subject
samples.

4) Potential of EEG regarding ECG and EDA. We
analyze the potential of EEG data regarding ECG
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and EDA for stress detection, by combining differ-
ent configurations of the biosignals. This experiment
would validate the main contribution of this work.
Our hypothesis is that EEG provides richer informa-
tion regarding ECG and EDA.

5) EEG Channel Importance. In pursuit of simpler
EEG-based stress detection methods, we analyze
which EEG channels offer the greatest contribution
to identifying stress.

All models were trained using 80% of the available data,
while the remaining 20% was reserved for testing purposes.
To validate the results, a 5-fold cross-validation has been
applied to ensure that the models were rigorously evaluated
to obtain robust and reliable performance estimates. For the
intersubject validation, we employed separate subjects for
training and testing to ensure that our model’s performance
is robust and generalizable across different individuals.
Regarding intrasubject validation, we ensured that the win-
dows do not overlap, which inherently means that there
is no shared information between the training and testing
sets. This approach minimizes the risk of data leakage and
helps maintain the integrity of the validation process. The
classification performance was evaluated using accuracy,
precision, and F1 score. Other particular details of every
experiment configuration are provided below.

3.6.1 EEG Data for Stress Detection: Configuration Set Up
Three feature sets were extracted from the preprocessed
EEG data: ”Mean & std”, ”Frequency bands”, and ”Mean &
std + bands”. Lastly, the ”Mean & std + bands” feature set
combined both statistical and frequency domain features,
aiming to capture a broader range of information. The
window size used is 1 second according to the methodology
explained in Section 3.3.

Regarding machine learning, first, a three-class problem
has been considered (stress, neutral, relax), and next a one-
vs-all classification approach was employed to distinguish
stress vs. all other states and relaxation vs. all other states.
The binarization of the classification task with the one-vs-all
strategy is used to provide more accurate results.

3.6.2 Sensitivity Analysis of the Window Size on EEG:
Configuration Set Up
Feature selection results are subject to the window size.
Therefore, different window sizes (1s, 10s, and 20s) were
considered. The experiment was performed using the Light-
GBM machine learning algorithm as the sole model for the
classification task, according to our proposal (see Section
3.5).

3.6.3 EEG Intrasubject Analysis: Configuration Set Up
Personalized or Precision Medicine is a concept that relies
on building models based on individual, rather than multi-
subject data. The key idea is to base medical decisions
on individual patient characteristics rather than population
averages to achieve the best possible outcome through per-
sonalized treatments [47]. For this reason, an intrasubject
classification was performed to analyze whether it is feasible
to create personalized models without losing accuracy and
to check whether any subject’s samples cause conflicts in the

classification of the models. For each subject, the experiment
was performed according to our proposal (see Section 3.5),
using the ”Mean & std” feature set and the LightGBM
algorithm.

3.6.4 Potential of EEG regarding ECG and EDA: Configu-
ration Set Up
To ensure a uniform temporal representation of the phys-
iological signals, a 10-second window size was chosen for
feature extraction, as explained in Section 3.3. This decision
was further influenced by the favorable results obtained
from window size analysis with EEG data in the previous
experiments.

The features extracted from the EEG data were the mean
and standard deviation values computed from the 19 EEG
channels. Additionally, the mean and standard deviation of
the ECG and EDA signals were also extracted as features.
These features were chosen due to their proven effective-
ness in representing the underlying physiological patterns
relevant to stress detection in the previous experiments. The
machine learning approach used is LightGBM.

3.6.5 EEG Channel Importance: Configuration Set Up
This analysis aimed to study the EEG channels (see Fig.
2) that provide the most information for predicting stress
states, quantifying the feature contributions as percentages
of all channels. The ultimate goal was to identify the exis-
tence of specific areas that are more relevant for stress de-
tection, potentially allowing the replacement of the electrode
cap with a less intrusive portable EEG device (i.e. wearable).

The quantification of the feature contributions has been
conducted with the feature importance method provided by
the LightGBM method. Feature importance in LightGBM is
calculated using two main approaches: split importance and
gain importance. Split importance counts how frequently
a feature is used to split the data across all decision trees
in the model, while gain importance measures the average
improvement in the model’s performance achieved by split-
ting on a feature. After calculating these importance scores,
they are normalized to bring them to a common scale.
The combined feature importance score is then obtained by
averaging the normalized scores from both methods. This
combined score provides insights into which features, in this
case, channels/electrodes, are most influential in predicting
the target variable.

The features used in this experiment were ”Mean & std”
feature set and a window size of 10 sec, consistent with the
previous experimental results.

4 RESULTS

This section presents the findings obtained from the analysis
of the results obtained with the experimentation conducted
in this study.

4.1 Results on EEG Data for Stress Detection
Table 2 compares classification results using different feature
sets and machine learning models based on EEG signals.
The accuracy of the models is provided for each feature-
model combination.
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Feature set LightGBM CNN KNN SVM
Acc Prec F1 Acc Prec F1 Acc Prec F1 Acc Prec F1

Mean & std 86.24 84.12 84.15 51.57 50.23 50.25 82.00 81.66 81.73 55.98 55.06 55.11
Frequency bands 63.18 67.56 67.63 32.70 33.39 33.42 70.00 72.14 72.21 35.06 37.56 37.62
Mean & std + bands 84.34 83.82 83.86 52.02 51.67 51.75 81.00 80.53 80.61 52.36 50.98 51.06

TABLE 2: Classification results: Comparison of features and models

The ”Mean & std” feature set achieved the highest ac-
curacy (86.24%) with LightGBM, while ”Frequency bands”
had the lowest accuracies for all models. The CNN and SVM
machine learning approaches performed worse compared to
LightGBM and KNN.

The ”Mean & std” feature set performed consistently
better across different models, demonstrating its effective-
ness for classification. The ”Frequency bands” feature set
showed lower accuracies, indicating that it might not cap-
ture enough discriminative information on its own. The
combination of ”Mean & std + bands” yielded competitive
results, although slightly lower than ”Mean & std” for
LightGBM, KNN and SVM. Overall, ”Mean & std” appears
to be the most reliable and informative feature set.

Comparing the four models, LightGBM is validated as
the most effective model for the classification task (relax,
neutral, stress), achieving the highest accuracies across two
different feature sets. KNN performed reasonably well,
while CNN and SVM had the least success in accurately
classifying the EEG signals.

Table 3 shows classification results when considering
the binarization problem, in which the one-vs-all strategy
has been applied. Therefore, two classification tasks have
been defined: distinguishing stress vs. all other states and
relaxation vs. all other states. LightGBM performed best
in both tasks, achieving the highest accuracy for relaxation
vs. all (93.89%) and competitive accuracy for stress vs. all
(86.77%). On the other hand, KNN also performed well but
fell short of LightGBM’s accuracy, while CNN and SVM had
lower accuracies in both tasks.

The results consistently demonstrate that LightGBM is
the most effective machine learning model across different
scenarios. Not only did it excel in the classification task
using the best feature set (”Mean & std”), achieving the
highest accuracy, but it also outperformed other models
when following a one-vs-all strategy. This reinforces the su-
periority of LightGBM in accurately classifying EEG signals
for stress detection in this study.

The computational cost of feature extraction is also cru-
cial for understanding a classification process’s efficiency,
particularly in real-time applications or those dealing with
large datasets. Table 4 presents the average time taken for
feature extraction for each feature set.

As the results show, ”Mean & std” is significantly faster
(588 ms) compared to ”Frequency bands” (1,123 ms). This
substantial difference underlines that calculating mean val-
ues is computationally less demanding than the broader
feature extraction process. These findings emphasize the
importance of considering the computational cost of feature
extraction during feature selection.

4.2 Results on Sensitivity Analysis of the Window Size
on EEG
Table 5 displays classification results for different feature
sets and window sizes. ”Mean & std” consistently outper-
forms other feature sets in accuracy, precision, and F1 scores.
”Frequency bands” has the lowest performance. Combining
”Mean & std” with ”Frequency bands” shows some im-
provement but still falls short of ”Mean & std” alone.

For the ”Mean & std” feature set, the performance drops
slightly when transitioning from a 1s window size to larger
window sizes of 10s and 20s. This indicates that a smaller
window size provides more fine-grained information, lead-
ing to better classification results for this particular feature
set. In contrast, for the ”Frequency bands” feature set, there
is a consistent improvement in accuracy, precision, and F1
scores with increasing window size. The ”Mean & std +
bands” feature set also exhibits a similar pattern as the
”Mean & std” feature set, with diminishing performance as
window size increases.

The contrasting behavior of the ”Frequency bands” and
”Mean & std” feature sets with respect to window size
can be attributed to the types of information they capture.
Larger window sizes benefit the ”Frequency bands” set,
as they allow the model to capture broader patterns in
frequency distribution. Conversely, the ”Mean & std” set
may be adversely affected by larger window sizes, losing
sensitivity to rapid variations and key patterns.

4.3 Results on EEG Intrasubject Analysis
Figure 8 presents the intrasubject variation in accuracy
scores obtained across different subjects. The dashed red line
denotes the average accuracy of the LightGBM model across
all subjects, which stands at 76.92%.

Fig. 8: Classification results: Intrasubject

Comparing the intrasubject to the intersubject results,
where an accuracy of 86.24% was achieved, reveals notable
differences. The intrasubject analysis highlights consider-
able variability in model performance across individual
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LightGBM CNN KNN SVM
Acc Prec F1 Acc Prec F1 Acc Prec F1 Acc Prec F1

Stress vs the rest 86.77 86.54 86.67 69.03 67.98 68.05 77.00 78.22 78.27 63.41 61.09 61.13
Relax vs the rest 93.89 93.94 93.91 51.08 50.12 50.20 77.00 77.25 77.25 63.41 61.76 61.76

TABLE 3: Classification results: One vs All

Feature set Time (ms)

Mean & std 588
Frequency bands 1,123

TABLE 4: Average computational times

Feature set Window size Acc Prec F1

Mean & std
1s 86.24 84.12 84.15

10s 85.13 86.51 86.53
20s 83.55 88.90 88.92

Frequency bands
1s 63.18 67.56 67.63

10s 63.40 69.37 69.47
20s 65.44 69.59 69.64

Mean & std + bands
1s 84.34 83.82 83.86

10s 84.20 83.78 83.80
20s 83.25 81.23 81.22

TABLE 5: Classification results: Window size

Biosignals Acc Prec F1

EEG 85.13 86.51 86.53
ECG + EDA 75.88 75.46 75.04
EEG + ECG + EDA 91.44 91.54 91.42

TABLE 6: Classification results: Comparison between EEG
and ECG + EDA data.

subjects, with accuracy scores ranging from near-perfect
(e.g., subjects S14 and S18) to relatively lower scores (e.g.,
subjects S10 and S21).

The observed intrasubject variability may stem from
individual differences in physiological responses or inherent
noise within the EEG signals. While the intersubject analy-
sis demonstrates the strong performance of the ”Mean &
std” feature set, the intrasubject analysis underscores the
importance of considering individual variability in model
evaluation. Despite the variability, the LightGBM model
maintains a relatively high average accuracy across most
of the subjects.

4.4 Results on the Potential of EEG regarding ECG and
EDA

Table 6 presents the classification results comparing differ-
ent combinations of signals: EEG alone, ECG and EDA, and
all three biosignals.

The results show that EEG data improves up to 10 points
the results of ECG and EDA together (12.19%). This could
be the reason why there are most recent research works
focusing on EEG. However, it is important to highlight that
EEG, ECG, and EDA data combined leads to significantly
improved classification performance compared to using in-

Fig. 9: ROC Curve: EEG (0: relax, 1: neutral, 2: stress)

dividual biosignals alone: the combined feature set provides
six points more accuracy (6.31%).

In addition to the tabulated results, the analysis of Re-
ceiver Operating Characteristic (ROC) curves further elu-
cidates the discriminatory power of the classifiers. Specif-
ically, when considering individual modalities, the EEG-
based classifier (Fig. 9) demonstrates strong performance,
with area under the curve (AUC) values of 0.96 for Class 0
(relax), 0.99 for Class 1 (neutral), and 0.96 for Class 2 (stress).
Similarly, the ECG + EDA-based classifier (Fig. 10) exhibits
respectable AUC values of 0.91, 0.95, and 0.90 for Classes
0, 1, and 2, respectively. Remarkably, combining EEG with
ECG and EDA (Fig. 11) yields further improvements, with
AUC values of 0.98, 1.00, and 0.98 for Classes 0, 1, and
2, respectively. These findings underscore the synergistic
benefits of integrating multiple modalities, as evidenced
by the enhanced discriminatory power observed in the
combined classifier. However, the small differences should
be discussed in depth, regarding the implications of the use
of a single or multiple devices.

4.5 Results on EEG Channel Importance

As explained in Section 3.6.5, this analysis focused on deter-
mining the importance of various EEG channels for predict-
ing stress, particularly by examining the mean and standard
deviation. Fig. 12 presents the feature importance values
obtained using LightGBM for all the EEG electrodes. ”T8”
exhibits the highest importance with a value of 0.065643,
followed closely by ”Fp1”, ”Fz” and ”C3” with impor-
tance values of 0.064449, 0.063147 and 0.063115, respectively.
Other notable electrodes include ”Pz”, ”F8”, ”F3” and ”P4”
(0.059876 to 0.057654). ”P7”, ”O2”, ”P8”, ”T7” and ”F4” have
lower but meaningful contributions (0.055432 to 0.051234).
Lastly, ”O1,” ”F7,” ”P3,” ”C4,” and ”Fp2” are the least
important (0.050123 to 0.043510).
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Fig. 10: ROC Curve: ECG + EDA (0: relax, 1: neutral, 2:
stress)

Fig. 11: ROC Curve: EEG + ECG + EDA (0: relax, 1: neutral,
2: stress)

Fig. 12: Electrode Importance

5 DISCUSSION

The results show that EEG is a good source of data for stress
detection; this is something that previous works already
support. ECG and EDA are behind of the EEG potential,
performing up to a 12.19% worse. Although the combina-
tion of all of the sensors enhances stress detection (7.41%
concerning EEG alone), the results should be understood

in the context of where the data is gathered, and the
critical condition of the patient. In the case of considering
wearable devices capable of collecting diverse physiological
signals for stress detection applications, could be a difficult
endeavor. ECG and EDA could be available in a single
product (e.g. wristband), while EEG could be in a different
one (for example the brain–sensing Muse headband used in
[16]). Choosing one or both could respond to the severity
condition of the subject. Therefore, this work contributes
to understanding the information provided by each sensor,
and to choosing the appropriate combination according to
the monitoring conditions.

In terms of the research methodology, this work uses
an inter-subject and intra-subject design. In the inter-subject
design, we gather data from multiple participants experi-
encing stress through controlled activities. Consequently,
the findings are generalizable to a broader population.
Regarding the intra-subject design, data labeling has been
performed according to the ECG and EDA signals. This is
of particular importance since most previous works use EEG
data alone, and the stress state is determined according to
the protocol procedure, and not to the individual reaction.
The chosen duration might not induce uniformly strong
stress responses in all participants. For instance, the 7-
minute puzzle could allow participants to adapt to the
challenge over time, potentially reducing stress levels as
they progress. We might need to consider incorporating
puzzles with increasing difficulty or monitor stress levels
throughout the activity to capture the initial stress response
more effectively. The 3-minute mental math calculation, on
the other hand, could introduce fatigue towards the end,
impacting the reliability of the collected physiological data.

Concerning the features to be considered to represent
the biosignals for stress detection, this work discloses the
performance of simple features, as the ”Mean & std”. Using
statistical measures that are easy to compute and a fast
model like LightGBM offers several advantages for stress
detection. LightGBM is known for its efficiency in handling
large datasets and rapid training times, making it a rela-
tively simple and fast approach to classifying EEG data for
stress detection. Its speed and low computing cost allow for
quick real-time analysis, making it suitable for applications
requiring timely stress monitoring.

Analyzing the channel importance, the results show
that despite the minor disparities in the percentage values,
some differences suggest that certain electrodes offer more
valuable information than others for stress detection. This
finding holds particular significance in fields like Brain-
Computer Interface (BCI) research. There are wearable BCI
devices in the market with low visual impact, that could
be applied for stress detection. The ability to detect stress
through a focused brain zone could be especially relevant in
specific areas such as surgery or other clinical applications.
For example, during surgical procedures, the detection of
stress in the operating room personnel, such as surgeons or
nurses, could be valuable in ensuring optimal performance
and patient safety.

5.1 Limitations
This study has provided valuable insights into stress detec-
tion using EEG data, but it is essential to recognize some
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of its limitations. Firstly, in the intrasubject analysis, the
current model employs a one-size-fits-all strategy, uniformly
treating everyone’s data. While this approach provides a
general overview of performance across a diverse popula-
tion, it may not fully capture individual variations within
the data. To address this limitation, alternative strategies
focusing on personalized modeling techniques can be ex-
plored. Secondly, conducting the experiment with a more
diverse group of subjects would bolster the validity and
applicability of the findings. Moreover, the study might
have been conducted under specific conditions or in a
controlled environment that may not fully represent real-
life scenarios. Replicating the experiment under various
settings and contexts would offer a more comprehensive
understanding of stress detection in different situations.

6 CONCLUSION

The field of stress detection using physiological signals has
gathered significant interest in recent years due to its poten-
tial for enhancing mental health monitoring and well-being
[48]. In this work, we focus on the study of the role of EEG
data for stress detection. A data collection protocol has been
defined in order to induce stress in the participants, and the
biosignals have been gathered with EEG, EDA, and ECG.
Different feature extraction methods and machine learning
models have been tested to accurately identify stress states.

The results of our experiments emphasize the signifi-
cance of selecting appropriate feature sets, machine learning
models, and window sizes for stress detection based on
EEG data. LightGBM consistently proved to be the most
effective method, achieving the highest accuracies across
different scenarios. EEG data outperforms ECG and EDA,
but all the physiological signals together achieve the best
outcome. Nevertheless, the integration of multiple physio-
logical signals depends on the context in which stress would
be measured.

Future research includes exploring contextual informa-
tion on stress detection. The investigation of stress detection
in more ecologically valid and real-world scenarios can also
be an important direction for future studies. Furthermore,
the application of attention mechanisms might further en-
hance the classification performance [49].
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K. H. Chon, ”Electrodermal Activity Is Sensitive to Cognitive
Stress under Water,” Front Physiol., 2018, Jan 17; 8:1128, doi:
10.3389/fphys.2017.01128.

[40] TM. Bynion, M.T. Feldner, ”Self-Assessment Manikin,” Encyclo-
pedia of Personality and Individual Differences, Springer, 2017, doi:
10.1007/978-3-319-28099-8 77-1.

[41] H. Ali, M. Salleh, K. Hussain, A. Ullah, A. Ahmad and R. Naseem,
”A review on data preprocessing methods for class imbalance
problem,” International Journal of Engineering & Technology, 390-397,
2019, doi: 10.14419/ijet.v8i3.29508.

[42] N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer,
”SMOTE: synthetic minority over-sampling technique,” J. Artif. Int.
Res., vol. 16, 2002, 321–357.

[43] H. Zeng, C. Yang, H. Zhang, W. Zhenhua, J. Zhang, G. Dai, F.
Babiloni and W. Kong, ”A LightGBM-Based EEG Analysis Method
for Driver Mental States Classification,” Computational Intelligence
and Neuroscience, 2019. 1-11. 10.1155/2019/3761203.

[44] S. Aggarwal, L. Aggarwal, M. S. Rihal and S. Aggarwal, ”EEG
Based Participant Independent Emotion Classification using Gradi-
ent Boosting Machines,” 2018 IEEE 8th International Advance Com-
puting Conference (IACC), Greater Noida, India, 2018, pp. 266-271,
doi: 10.1109/IADCC.2018.8692106.

[45] D. Acharya et al., ”Multi-class Emotion Classification Using EEG
Signals,” Communications in Computer and Information Science, vol.
1367. Springer, IACC 2020.

[46] Q. Que and M. Belkin, ”Back to the Future: Radial Basis Function
Network Revisited,” in IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 42, no. 8, pp. 1856-1867, 1 Aug. 2020, doi:
10.1109/TPAMI.2019.2906594.
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