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Summary

Summary

Enzymes, as biocatalysts, have evolved to catalyze biochemical reactions
efficiently under mild conditions, yet their utility in industry is often limited
by their natural substrate specificity and reaction scope. The enzyme
modification for achieving a function of interest in specific conditions is not
a straightforward task. Over the last decades, experimental techniques such
as Directed Evolution (DE) have given hope to start obtaining industrially-
relevant enzymes. However, DE results lack a rational explanation of why a
variant improved towards a certain trait. This together with the cost and
the time required, are considered the major drawbacks of DE techniques.

Computational techniques emerged as a new avenue of possibilities to
accelerate the end-to-end process of enzyme design. Previous studies have
computationally shown the importance of rationally understanding enzyme
catalytic mechanisms and dynamics to surpass the limitations of non-rational
procedures. These include static concepts like transition state stabilization,
to understand how enzymes accelerate reactions, or dynamic concepts like
the recovery of the Free Energy Landscape (FEL) to gain insights into the
conformational heterogeneity of enzymes. In this regard, recent advances
in Molecular Dynamics (MD) simulations allow the estimation of confor-
mational ensembles of enzymes. However, escaping from the global energy
conformation is sometimes difficult and expensive. Enhanced sampling
techniques like accelerated MD or metadynamics are great alternatives to
achieve a better exploration of conformational heterogeneity. Nonetheless,
these methods often start from a predefined structure, which can make it
difficult to fully explore significantly different conformational states that
are separated by large energy barriers. Once enough sampling is obtained,
translating these dynamics to meaningful low-dimension components, which
can be geometric information between relevant positions, is not an easy
task. Some dimensionality reduction techniques, like Principal Component
Analysis (PCA) or Time-lagged Independent Component Analysis (TICA),
have successfully helped to solve the intricate protein dynamics, yet they do
not identify which positions are connected to the identified conformational
change.

In this thesis, we develop new computational strategies for the exploration
of enzymes’ conformational landscape and the identification of mutational
hotspots for the design of enzymes with new functions. Herein, in Chapter
3, we present the Shortest Path Map (SPM) webserver to open access to
the academic community of our in-house tool for assessing the relevant
dynamic connections of the system. The user-friendly interface allows easy
modification of the only two parameters that can modify the results. We
present in Chapter 4 a complete review of advances in Deep Learning (DL)
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Summary

methods and Alphafold2 (AF2) for protein design followed by a new pipeline
for conformation structure prediction named template-based AF2 approach,
where multiple conformations can be predicted by altering the amount of
co-evolutionary information coupled with a specific 3D structure used as a
template. In this regard, these structures can accelerate the sampling of
FEL and recover protein conformational heterogeneity. In Chapter 5, we
show the conversion of hydroxynitrile lyase (HNL) to an efficient esterase
(EST) enzyme through targeted mutations suggested by the SPM results,
followed by a rational explanation of the improved variants. Finally, a brief
discussion of the findings from each article is given in Chapter 6, and the
primary conclusions derived from this thesis are provided in Chapter 7.
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Resum

Resum

Els enzims, com a biocatalitzadors, han evolucionat per catalitzar reaccions
bioqúımiques eficientment sota condicions suaus, però la seva utilitat en la
indústria sovint es veu limitada per la seva especificitat de substrat natural
i rang de reaccions possibles. La modificació enzimàtica per aconseguir una
funció d’interès en condicions espećıfiques no és una tasca directa. Durant
les últimes dècades, tècniques experimentals com l’Evolució Dirigida (DE,
per les sigles en anglès) han donat esperança per començar a obtenir enzims
rellevants per a la indústria. No obstant això, els resultats de DE manquen
d’una explicació racional de per què una variant millora cap a un determinat
tret. Això, juntament amb el cost i el temps requerits, es consideren els
principals inconvenients de les tècniques de DE.

Les tècniques computacionals han sorgit com una nova via de possibil-
itats per accelerar el procés de disseny d’enzims de principi a fi. Estudis
previs han demostrat computacionalment la importància de comprendre
racionalment els mecanismes cataĺıtics i la dinàmica dels enzims per superar
les limitacions dels procediments no racionals. Aquests inclouen conceptes
estàtics com l’estabilització de l’estat de transició, per comprendre com els
enzims acceleren les reaccions, o conceptes dinàmics com la recuperació de la
Superf́ıcie d’Energia Lliure (FEL, per les sigles en anglès) per aconseguir in-
formació sobre l’heterogenëıtat conformacional dels enzims. En aquest sentit,
els recents avanços en simulacions de Dinàmica Molecular (MD, per les sigles
en anglès) permeten l’estimació de conjunts conformacionals d’estructures
d’enzims. No obstant això, escapar de la conformació d’energia global a
vegades és dif́ıcil i costós. Tècniques de mostreig millorades com la MD
accelerada o metadynamics són excel·lents alternatives per assolir una millor
exploració de l’heterogenëıtat conformacional. Tanmateix, aquests mètodes
sovint parteixen d’una estructura predefinida, la qual cosa pot dificultar
l’exploració completa d’estats conformacionals significativament diferents
que estan separats per grans barreres energètiques. Un cop s’obté prou
mostreig, traduir aquesta dinàmica en components amb un redüıt nombre de
dimensions significatius, que poden ser informació geomètrica entre posicions
rellevants, no és una tasca fàcil. Algunes tècniques de reducció de dimen-
sionalitat, com l’Anàlisi de Components Principals (PCA, per les sigles en
anglès) o l’Anàlisi de Components Independents amb Retard en el Temps
(TICA, per les sigles en anglès), han ajudat amb èxit a resoldre la intrincada
dinàmica de les protëınes, no obstant això, no identifiquen quines posicions
estan connectades al canvi conformacional identificat.

En aquesta tesi, desenvolupem noves estratègies computacionals per a
l’exploració del superf́ıcie conformacional dels enzims i la identificació de
posicions interessants per a ser mutades per al disseny d’enzims amb noves
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Resum

funcions. En aquesta tesi, al Caṕıtol 3, presentem el servidor web Shortest
Path Map (SPM) per donar accés obert a la comunitat acadèmica de la
nostra eina per avaluar les connexions dinàmiques rellevants del sistema. La
interf́ıcie d’usuari permet la modificació d’una manera fàcil dels únics dos
paràmetres que poden modificar els resultats. En el Caṕıtulo 4 presentem
una revisió complerta dels avenços en els mètodes d’aprenentatge profund
(DL, per les sigles en anglès) y Alphafold2 (AF2) pel disseny de protëınes
seguit d’un nou mètode per a la predicció de conformacions de protëınes
anomenat template-based AF2 approach, on es poden predir múltiples con-
formacions modificant la quantitat d’informació de coevolució juntament
amb una estructura 3D espećıfica utilitzada com a plantilla. En aquest
sentit, aquestes estructures poden accelerar el mostreig de la FEL i recuperar
l’heterogenëıtat conformacional de la protëına. Al Caṕıtol 5, mostrem
la conversió de la hidroxinitril liasa (HNL) en una enzim esterasa (EST)
eficient a través de mutacions dirigides suggerides pels resultats de SPM,
seguida d’una explicació racional de les variants millorades. Finalment al
Caṕıtol 6, es presenta una breu discussió dels resultats de cada article, i es
proporcionen les principals conclusions derivades d’aquesta tesi al Caṕıtol
7.
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Resumen

Resumen

Las enzimas, como biocatalizadores, han evolucionado para catalizar reac-
ciones bioqúımicas eficientemente bajo condiciones suaves, sin embargo, su
utilidad en la industria a menudo se ve limitada por su especificidad por el
sustrato natural y rango de reacciones posible. La modificación de enzimas
para lograr una función de interés en condiciones espećıficas no es una tarea
fácil. En las últimas décadas, técnicas experimentales como la Evolución
Dirigida (DE, por sus siglas en inglés) han dado esperanza para comenzar a
obtener enzimas relevantes para la industria. Sin embargo, los resultados de
la DE carecen de una explicación racional de por qué una variante mejora
hacia un cierto rasgo. Esto, junto con el coste y el tiempo requeridos, se
consideran los principales inconvenientes de las técnicas de DE.

Las técnicas computacionales han surgido como una nueva v́ıa de posi-
bilidades para acelerar el proceso de diseño de enzimas de principio a fin.
Estudios previos han demostrado computacionalmente la importancia de
comprender racionalmente los mecanismos cataĺıticos y la dinámica de las
enzimas para superar las limitaciones de los procedimientos no racionales.
Estos incluyen conceptos estáticos como la estabilización del estado de tran-
sición, para entender cómo las enzimas aceleran las reacciones, o conceptos
dinámicos como la recuperación de la Superficie de Enerǵıa Libre (FEL,
por sus siglas en inglés) para obtener información sobre la heterogeneidad
conformacional de las enzimas. En este sentido, los avances recientes en
simulaciones de Dinámica Molecular (MD, por sus siglas en inglés) permiten
la estimación de conjuntos conformacionales de estructuras de enzimas. Sin
embargo, escapar de la conformación de enerǵıa global a veces es dif́ıcil y
costoso. Técnicas de muestreo mejorado como la MD acelerada o metady-
namics son excelentes alternativas para lograr una mejor exploración de
la heterogeneidad conformacional. Sin embargo, estos métodos a menudo
parten de una estructura predefinida, lo que puede dificultar la exploración
completa de estados conformacionales significativamente diferentes que están
separados por grandes barreras energéticas. Una vez que se obtiene suficiente
muestreo, traducir esta dinámica en componentes con un reducido número
de dimensiones significativas, que pueden ser información geométrica entre
posiciones relevantes, no es una tarea fácil. Algunas técnicas de reducción
de dimensionalidad, como el Análisis de Componentes Principales (PCA,
por sus siglas en inglés) o el Análisis de Componentes Independientes con
Retardo en el Tiempo (TICA, por sus siglas en inglés), han ayudado con éxito
a resolver la intrincada dinámica de las protéınas, sin embargo, no identifican
qué posiciones están conectadas al cambio conformacional identificado.

En esta tesis, desarrollamos nuevas estrategias computacionales para la
exploración de la superficie conformacional de las enzimas y la identificación
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Resumen

de posiciones interesantes para ser mutadas para el diseño de enzimas con
nuevas funciones. En esta tesis, en el Caṕıtulo 3, presentamos el servidor
web Shortest Path Map (SPM) para dar acceso abierto a la comunidad
académica de nuestra herramienta para evaluar las conexiones dinámicas
relevantes del sistema. La interfaz de usuario permite la modificación
de una manera fácil de los únicos dos parámetros que pueden modificar
los resultados. En el Caṕıtulo 4 presentamos una revisión completa de
los avances en los métodos de aprendizaje profundo (DL, por sus siglas
en inglés) y Alphafold2 (AF2) para el diseño de protéınas seguido de un
nuevo método para la predicción de conformaciones de protéınas llamado
template-based AF2 approach, donde múltiples conformaciones pueden ser
predichas modificando la cantidad de información de coevolución junto
con una estructura 3D espećıfica utilizada como plantilla. En este sentido,
estas estructuras pueden acelerar el muestreo de la FEL y recuperar la
heterogeneidad conformacional de la protéına. En el Caṕıtulo 5, mostramos
la conversión de la hidroxinitrilo liasa (HNL) en una enzima esterasa (EST)
eficiente a través de mutaciones dirigidas sugeridas por los resultados de SPM,
seguida de una explicación racional de las variantes mejoradas. Finalmente,
en el Caṕıtulo 6, se presenta una breve discusión de los resultados de cada
art́ıculo, y se proporcionan las principales conclusiones derivadas de esta
tesis en el Caṕıtulo 7.
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Introduction
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1.1 Enzymes: Nature’s Catalysts and Beyond

1.1 Enzymes: Nature’s Catalysts and Beyond

Enzymes are the proteins chosen as catalysts for our existence. These
biological catalysts are capable of performing a certain reaction efficiently;
some can accelerate chemical reaction rates by more than a million times,
while others perform in a highly enantioselective manner. These features,
among others, make them essential for life. Unlike non-biological catalysts,
enzymes can operate under mild conditions of temperature, pH, pressure,
and solvent (i.e., aqueous), making them the most environmentally friendly
catalysts. Enzymes display incredible specificity, rooted in their ability to
recognize and bind to specific substrates. This specificity contributes to their
ability to minimize cross-reactivity, which is often a challenge with synthetic
catalysts, leading to cleaner reactions.

Enzymes are crucial for regulating metabolic pathways such as glycolysis
and the citric acid cycle, which are essential for cell energy production. For
example, the enzyme hexokinase catalyzes the rate-limiting step of glycolysis
and is regulated by its product, glucose-6-phosphate.1

The study of enzymes has facilitated a deeper understanding of evolu-
tionary biology. Enzymes evolve to meet the organism’s needs, which can
be seen in the variety of enzymes in different species and environments.
This adaptability is a testament to the evolutionary success of enzymes
and provides a rich source of information for studying the principles of
natural selection and adaptation. For example, the work of Pinney et al.
demonstrated that thermal adaptability can be achieved simply by altering
the catalytic hydrogen bond donor (HBD) from D103 to S103 plus water
in mesophilic to thermophilic variants of the enzyme ketosteroid isomerase
(KSI). They highlighted the trade-off in both activity and stability of having
a strong HBD and a lower pKa of one of the key catalytic amino acids in
mesophilic KSI for high activity and low stability. The opposite was found
for thermophilic variants.2

The importance of enzymes is further highlighted by their application
across numerous fields, ranging from industrial processes to medicine. Within
industry, enzymes have transformed processes by offering greener, more ef-
ficient, and safer alternatives to traditional chemical catalysts. Their use
in synthesizing biofuels, processing food and beverages, improving coated
paper quality, or waste management exemplifies their utility in green chem-
istry, where the focus is on reducing environmental impact.3–8 Moreover,
enzymes’ ability to function in aqueous environments minimizes the depen-
dence on harmful organic solvents and aligns with the principles of green
chemistry, contributing to sustainable industrial processes. In medicine,
enzymes are utilized for diagnostic purposes, such as the early pregnancy de-
tection methods employing Enzyme-Linked ImmunoSorbent Assay (ELISA),

10



1.1 Enzymes: Nature’s Catalysts and Beyond

where horseradish peroxidase functions as the enzyme label for detecting
human chorionic gonadotropin.9–11 Another example is being used as treat-
ment options in the form of drug targets or therapeutic agents is enzyme
replacement therapy in Pompe disease (i.e., glycogen storage disease type
II), an inherited lysosomal disease caused by a deficiency of the enzyme
acid alpha-glucosidase. Since EU approval in 2023, patients can take an
intravenous infusion of the cipaglucosidase alfa enzyme (PombilitiTM).12

The research and innovation surrounding enzymes continue to broaden
their applications beyond natural biochemical pathways, enabling reactions
and processing of previously untouchable substrates.13 Recent work by Sarai
et al. demonstrates the ability of an evolved enzyme to cleave silicon-carbon
bonds in volatile methyl siloxanes, exemplifying the potential of enzymes to
address non-natural reactions for non-natural substrates.14

This advancement aligns with the rapidly growing field of protein design,
which benefits greatly from novel protein engineering methods. On the
computational side, breakthroughs such as AlphaFold2 (AF2), RoseTTAFold,
or trRosetta, which predicts protein structures with high accuracy using
deep learning techniques, have revolutionized the field.15–17 Concurrently,
the laboratory method of directed evolution (DE), awarded a Nobel Prize
in 2018, allowed the creation of novel proteins with specific functions by
emulating natural selection. This method iteratively selects the best variants
across multiple rounds, optimizing the desired properties to achieve the
fittest protein.18 These developments have enabled the creation of tailor-
made enzymes that can efficiently catalyze a wide range of chemical reactions,
pushing the boundaries of traditional enzyme applications in organic synthesis
and offering new avenues for biocatalysis.19,20

The amazing source of catalysis-related knowledge extracted from en-
zymes has helped us understand biological processes better and opened the
door for bioinspired catalysis. By creating synthetic catalysts that closely
resemble the active site and the confined space of the enzyme, bioinspired
catalysis aims to imitate the high selectivity and efficiency of enzymatic pro-
cesses under synthetically relevant conditions. Inspired by the mechanisms
of metalloenzymes, the development and application of catalysts that are
made from earth-abundant metals, such as manganese (Mn) and Iron (Fe),
in asymmetric oxidation reactions using benign oxidants such as hydrogen
peroxide (H2O2) and molecular oxygen (O2) represent significant progress
toward achieving sustainable chemical catalysis in the bioinspired field.21–23

This Ph.D. thesis explores innovative computational methods to unravel
the complexities of confined space catalysis inherent in enzymatic catalysis.
Thus aiming to speed up the development of new environmentally friendly
biocatalysts.

11



1.1 Enzymes: Nature’s Catalysts and Beyond

1.1.1 Enzyme structure, function, and dynamics

As proteins, the structure of enzymes is composed of a linear chain of amino
acids. Each amino acid, the building block of proteins, consists of a central
carbon atom (Cα) bonded to an amino group (NH2), a carboxyl group
(COOH), a hydrogen atom, and an R-group (i.e., side chain). That defines
the characteristics and role within the protein of the 20 canonical amino
acids encoded by the genetic code. The sequential arrangement of these
building blocks is the primary structure. The local spatial arrangement
of the sequence of amino acids by their backbone, excluding the R-groups,
through hydrogen bonds is the secondary structure, where the most frequent
elements are the α-helices and β-sheets and less frequent local foldings like
loops or coils. Further folding brings these elements into a three-dimensional
tertiary structure, where the side chains’ interactions determine the protein’s
final shape. For some proteins, a higher-order assembly between multiple
polypeptide chains (subunits) is necessary for their function, which forms
the quaternary structure.24

Figure 1.1: Representation of a reaction coordinate diagram in the
absence (grey) and in the presence (blue) of an enzyme as a catalyst.
The plot exemplifies the free energy as a function of the chemical reaction course,
which starts from the substrate (S) and involves a transition state (TS) to form
the final product (P). The enzyme-catalyzed reaction also involves the enzyme-
substrate (ES) complex. The activation energy in the absence (∆G1

‡) and in the
presence (∆G2

‡) of enzymes is also shown, as well as the energy difference between
the S and P (∆GR).

The precise folding of enzymes is what determines their function. Their
activity will be performed in a specific confined space of the protein, the
active site. The amino acid architecture of the active site is exquisitely

12



1.1 Enzymes: Nature’s Catalysts and Beyond

arranged to complement the substrate’s structure, allowing for a highly
selective interaction. This structural and chemical complementarity creates
an environment optimized to recognize, bind, and catalyze their respective
reactions with remarkable specificity and efficiency. These residues can serve
as donors or acceptors of electrons, participate in hydrogen bonding, or
contribute to the hydrophobic environment, guiding the substrate into a
transition state (TS) to lower the Gibbs free energy (G) barrier required for
the reaction (∆G‡), which is what defines how a catalyst acts (i.e., reducing
∆G‡ compared to the reaction occurring without the catalyst). The ∆G‡

is defined as the difference in Gibbs free energy between the TS and the
reactants. Therefore, catalysts do not change the free-energy difference
between reactants and products (∆GR), therefore their role in reducing the
TS Gibbs free energy (Fig. 1.1).

In this regard, in the mid-20th century, Linus Pauling proposed that
enzymes accelerate reactions based on the high specificity of the TS structure
compared to the Michaelis complex (MC).25 Continuing this idea, Warshell
and co-workers then established that enzymes’ mechanism to lower ∆G‡

is with their highly preorganized environment. These active site pockets
are precisely reassembled, orienting the catalytic residues in an optimal
arrangement for transition state stabilization (TSS). The concept of enzyme
active site preorganization involves not only geometrical descriptors but
also electrostatic complementarity to the transition state through strategic
alignment of electric fields within the enzyme structure, even in the absence
of the reactant. This preorganized structural and electronic configuration
mirrors the TS’s properties, minimizing the reorganization energy required
upon substrate binding and thus reducing the enthalpy and entropy of the
∆G‡ for the reaction.26–29 To exemplify this electric field reorganization,
Boxer and co-workers demonstrated through vibrational spectroscopy on KSI
and its mutants that an activation barrier’s increase was linearly correlated
with a decrease in electric field strength.30–32 In this regard, as stated by
Wolfenden, TS analogs must bind more tightly to the enzyme’s active site
than the natural substrates, proportionate to the level of catalytic rate
enhancement observed with the enzyme.33 For example, this is validated
for the human enzyme hypoxanthine-guanine phosphoribosyltransferases
(HGPRTs), which are strongly inhibited using TS analogs, showing more
than a 1,000-fold tighter binding compared to the binding of the natural
nucleotide substrates.34–36

While the concept of enzyme preorganization suggests a certain rigidity
or static character that can match in some sense the lock-and-key model (i.e.,
precise and static shape complementarity between enzyme and substrate)37

adding the ingredient of the preorganized state for the TS, enzymes are in
fact, dynamic entities. They exist in a landscape of microstates (i.e., confor-
mations) of different stabilities influenced by conditions such as temperature,
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pH, and substrate presence, among others. The enzyme’s dynamic nature
fosters its versatility and adaptability to facilitate a wide range of biochemi-
cal processes. This flexibility enables enzymes to accept different substrates
and catalyze diverse reaction types apart from those specifically evolved.
This is termed substrate and catalytic promiscuity, a property highly present
in ancestral enzymes, which makes them generalist enzymes.38,39 On the
contrary, enzymes with high substrate specificity are termed specialists.40

Due to this inherent flexibility, the lock-and-key view evolved to new models
of interaction, starting with the induced-fit model (i.e., substrate binding al-
ters enzyme shape for catalysis),41 and finally evolving to the conformational
selection model. This last model illustrates how enzymes exist in various
conformations before interacting with a substrate. This model suggests
the substrate binds to more energetically favorable conformations, thereby
selecting the enzyme state that best facilitates catalysis.42

This conformational dynamism can be reflected in the so-called free
energy landscape (FEL), where all thermally accessible conformations are
represented, and thus, the thermodynamic differences and kinetic barriers
that separate them are shown. The FEL is based on the free energy calcula-
tion obtained from the negative logarithm of the conformation population’s
distribution in kBT units, where kB is the Boltzmann constant and T is
the temperature value. So, highly populated microstates will be the most
stable energy minima and small energy barriers will be defined by fast in-
terconversions. The timescales for the conformational transitions can range
from bond vibrations at the femtosecond timescale, to side chain rotation or
loop motions in the range of picosecond (ps) to nanosecond (ns) timescale,
followed by protein folding in the range of microsecond (µs) to seconds (Fig.
1.2).

Figure 1.2: Timescale representation of different protein motions. These
go from bond vibration up to protein folding.
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For some enzymes, the activity can be controlled through various mecha-
nisms, including post-translational modifications, allosteric modulation, and
interactions with cofactors or other proteins. These regulatory mechanisms
allow the enzyme to respond dynamically to changes in the cellular environ-
ment, adjusting its activity to meet the cell’s metabolic needs. For instance,
allosteric modulation involves binding a molecule at a site other than the
active site, inducing a conformational change that affects enzyme activity,
or, in the case of cofactors, organic molecules like vitamins or metal ions,
that are essential for the catalytic activity of some enzymes, assisting in the
reaction by stabilizing the transition state or acting as electron donors or
acceptors. All these mechanisms will fine-tune the corresponding enzyme
FEL, making more or less thermodynamically accessible some conforma-
tions compared to others.19 In this regard, the cell can regulate its enzyme
activities and, thus, its available resources.

Similarly, enzyme designers (i.e., scientists specialized in the creation and
modification of enzymes for specific needs) can leverage the FEL concept to
selectively mutate and choose those enzyme variants that make microstates
more thermodynamically accessible, reassembling to an optimized, preorga-
nized enzyme state. In this regard, by incorporating insights from ancestral
enzymes, known for their high substrate and catalytic promiscuity, structural
flexibility, and stability, enzyme designers can benefit from these enzymes
and the FEL concept to guide and create variants improving the stabilization
of the biochemically relevant microstates.19,43 This is represented in Fig.
1.3 where mutations make the populations shift towards other conforma-
tional states. It is worth mentioning that although reconstructed ancestral
enzymes offer an excellent starting structure for enzyme design campaigns,
their advantages come at the cost of low catalytic efficiency compared to
modern enzymes.40

Figure 1.3: Representation of an enzyme’s free energy landscape (FEL)
and the population shift induced by mutations. The relative populations
of each conformation are represented by its size. Mutations are indicated as grey
circles.
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Leveraging the introduced concepts, such as the FEL theory and insights
from generalist enzymes, the following subsections outline the specific en-
zymes this thesis investigates. These systems are introduced, highlighting
their application and importance.

1.1.2 Tryptophan synthase

Tryptophan synthase is a heterodimeric enzyme complex comprising two
α-subunits (TrpA) and two β-subunits (TrpB). This enzyme catalyzes the
final production of L-tryptophan (L-Trp) and is governed by an allosteric
communication pathway between subunits. The overall reaction starts at
TrpA, where the retro-aldol cleavage of indole glycerol phosphate produces
glyceraldehyde 3-phosphate and indole. The latter is diffused to the active
site of TrpB through an inter-subunit channel, highlighting the key role of al-
losteric communication between subunits. TrpB is a pyridoxal-5'-phosphate
(PLP) (i.e., the metabolically active form of Vitamin B6 that acts as a cofac-
tor in the TrpB enzyme)-dependent enzyme that catalyzes the condensation
of L-Serine (L-Ser) with indole through a multistep reaction involving many
intermediates to produce the final L-Trp.

Figure 1.4: Overlay of the different tryptophan synthase B (TrpB) X-
rays. The different COMM domain conformational states are highlighted: O
highlighted in violet (PDB ID: 1WDW), PC in brown (PDB ID: 5DW0), and C in
blue (PDB ID: 3CEP). Pyridoxal-5'-phosphate (PLP) cofactor is shown in grey.

The communication (COMM) domain covers the active site of TrpB,
whose conformational dynamics, described by exposing the active site in
three different degrees (Fig. 1.4)), have been studied and are related to the
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catalytic efficiency of TrpB. Arnold and coworkers applied DE to the wild-
type (WT) Pyrococcus furiosus TrpB (Pf TprB) that operates inefficiently in
the absence of its partner, the TrpA subunit, due to restricted conformational
heterogeneity. It was found that the laboratory-evolved 0B2-Pf TrpB can
explore closed, partially closed, and open conformations of the COMM
domain, which translates to an increase in its stand-alone activity.44 In this
line, Osuna, Sterner, and coworkers rationally designed SPM6-TrpB, an
ancestral ANC3-TrpB enzyme variant that also improved their stand-alone
activity.45,46 It is worth mentioning that this design was based on the already
stand-alone Last Bacterial Common Ancestor (LBCA) TrpB, a reconstructed
ancestral enzyme with high catalytic efficiency, something unexpected for
an ancestral enzyme, therefore a generalist enzyme, lower specific activities
compared to specialist enzymes may be expected.45,47

The interest in TrpB enzymes can be endorsed for having been deeply
studied for more than 6 decades.48 Due to their highly selective carbon-
carbon bond-forming reaction, many engineering efforts have been applied
to the TrpB enzyme to perform new β-substitutions reactions with a wide
array of C-nucleophiles, including indole derivatives, ketone-derived enolates,
and nitroalkenes.49–51

In the context of this thesis, the conformational dynamics of the COMM
domain have been studied for the previously mentioned systems (i.e., Pf TprB,
0B2-Pf TprB, LBCA TrpB, and SPM6-TrpB) using a new protocol based on
AF2 (see chapter 4).

1.1.3 α/β-hydrolase fold enzymes from Plant: Hydrox-
ynitrile Lyase and Arylesterase

α/β-hydrolase fold superfamily comprises one of the largest groups of struc-
turally related enzymes that exhibit diverse catalytic functions. Some
enzymes in this family include arylesterase, acetylcholinesterase, lipase,
thioesterase, serine carboxypeptidase, haloalkane dehalogenase, epoxide hy-
drolase, amidase, and hydroxynitrile lyase, among others.52 They share a
common structure characterized by a core α/β-fold composed of a central
β-sheet flanked by α-helices. This fold contains a conserved catalytic triad,
typically composed of a nucleophile, a histidine, an acid (either aspartate or
glutamate), and an oxyanion hole formed by two or three amino acids. The
nucleophile is located in a sharp turn between a β-strand and an α-helix
named nucleophilic elbow, which is identified by the consensus sequence
Sm-X-Nu-X-Sm (i.e., Sm = small residue, X = any residue, and Nu =
nucleophile)53 In addition to this catalytic core, these enzymes often contain
other structural domains, like a lid or a cap. In some publications, these
extra domains are referred to as the enzyme’s lid, or in some cases, the
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flap. However, it is also accepted to differentiate them by the immobile or
mobile module covering the active site, referring to the cap or lid domains,
respectively.54–56

The versatility of this superfamily has been shown to have great potential
in a wide array of industrially relevant applications. Among these, microbial
lipase is a prime example, with an estimated market of about USD 425.0
Million in 2018. Its industrial applications extend to biodiesel production,
food and drink processing, leather and textile treatment, detergent formu-
lation, pharmaceuticals, and medical applications.8 Additionally, members
of this superfamily are promising candidates for industrial applications in
the degradation of polyethylene terephthalate (PET), a common plastic.
However, industrial-scale enzyme application for plastic recycling faces sig-
nificant challenges, despite advancements in enzyme optimization and a need
for continued research and development.57

Figure 1.5: X-rays of (A) HbHNL and (B) SABP2 active sites (PDB
IDs: 1YB6 and 1Y7I, respectively). For both cases, important residues are
shown in sticks and the shared catalytic triad is highlighted in deep blue. SABP2
has a HbHNL has a hydrophobic site and an oxyanion hole (OxH, highlighted in
purple), whereas HbHNL has a polar site and lacks an OxH. HbHNL substrate
mandelonitrile is shown in green, and SABP2 product salicylic acid is colored in
lilac.

Within this thesis, significant attention will be given to the hydroxynitrile
lyase enzyme from the rubber tree (Hevea brasiliensis, HbHNL) and the
arylesterase enzyme salicylic acid binding protein 2 (SABP2) from the
tobacco plant (Nicotiana tabacum).58–60 These enzymes play an important
role in the organism’s defense mechanism or metabolism. HbHNL enzyme
catalyzes the elimination of hydrogen cyanide from acetone cyanohydrin to
defend against herbivorous insects and microbial attack, or as a nitrogen
source.61–63 SABP2 enzyme catalyzes the arylesterase hydrolysis of the
inactive methyl salicylate (MeSA) into the active salicylic acid (SA) and
methanol, resulting in the activation of the SA-dependent defense signaling
pathway.64,65
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In a recent study by Kazlauskas and coworkers, the phylogenetic tree
that connects these two enzymes was reconstructed, and thus, the probable
ancestral branched enzymes were located. They highlighted the ancestral
enzymes’ generalist character, specifically the catalytic promiscuity of these
ancestral enzymes compared to modern specialist enzymes. Those recon-
structed ancient enzymes presented the main function of ester hydrolysis,
showing how the defensive cyanogenesis produced from the hydroxynitrile
lyase (HNL) reaction evolved from esterase (EST) enzymes. The different
evolutionary pressures made SABP2 and HbHNL enzymes share a sequence
identity of 44%, yet between both share a common fold and catalytic triad,
the HNL and EST mechanisms are quite different.66 SABP2’s reaction can
be split into two parts described by the formation of the stable acyl interme-
diate, and deacylation. To accomplish this, the enzyme needs an oxyanion
hole, created by two backbone amide groups, to stabilize the carbonyl oxy-
gen’s anion formed in the two subsequent tetrahedral intermediates, and the
catalytic triad serine acts as a nucleophile to attack the substrate’s carbonyl
carbon. Compared to EST enzymes, HbHNL’s reaction proceeds without any
stable intermediate and, therefore, can be considered a one-step reaction. In
this HNL reaction, the EST oxyanion hole’s positions are not used, instead,
a side-chain threonine hydroxyl group needs to activate and stabilize the
substrate’s hydroxyl group, and a lysine, assisted with glutamate, must
stabilize the formed cyanide anion in what is called the polar site of the
active site. Contrary to this polar site, HNL enzymes have a hydrophobic or
nonpolar site composed of histidine or phenylalanine (Fig. 1.5).67

Based on the knowledge gained in the previous study, Kazlauskas and
coworkers proposed to mutate the catalytic obvious positions from the
HbHNL enzyme to the ones present in the specialized esterase SABP2 enzyme,
thus creating a HbHNL variant (HbHNL-EST) with improved esterase
activity. The mutations consisted of Thr11Gly, to regenerate the oxyanion
hole in orientation and space, and Glu79His-Lys236Met, to regenerate from
the polar to the hydrophobic site. Compared to HbHNL, this new variant
improved the catalytic efficiency hydrolyzing p-nitrophenyl acetate from
110 M-1 min-1 up to 4200 M-1 min-1, or 10100 M-1 min-1 if instead K236M
there is K236G mutation, being far away from the SABP2 value of 86000
M-1 min-1. It is worth mentioning that this new variant nearly loses HNL
functionality.68 In a continuation of this study, they also tried to apply the
three obvious mutations (i.e., Thr11Gly-Glu79His-Lys236Gly, not copying
the SABP2 amino acid Met236) to the transitional functionality EST to
HNL enzyme ancestor HNL1, creating the HNL1-EST variant. As the HNL1
ancestor enzyme presents promiscuous esterase activity, the HNL1-EST has
even higher catalytic efficiency in hydrolyzing p-nitrophenyl acetate, up to
12000 M-1 min-1, and retains some HNL promiscuous activity.69

Although there is a relevant improvement in these HNL variants for the
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EST reaction, the activities are far from those of the specialized esterase
SABP2. This thesis will tackle this problem and show how we create
HbHNL-EST variants that surpass SABP2 activity.

1.2 In silico methods for enzymes

The field of computational chemistry has been profoundly shaped by advances
in our understanding of atomic and molecular dynamics (MD) over the past
several decades. Central to this evolution has been the pioneering work of
2013 Nobel laureates Martin Karplus, Michael Levitt, and Arieh Warshel,
whose developments in MD simulations and quantum mechanics/molecular
mechanics (QM/MM) methods have significantly influenced the study of
enzyme conformational dynamics and reactivity.

A key advancement was the development of the Consistent Force Field
(CFF) by Shneior Lifson and later enhanced by Warshel and Levitt at
the Weizmann Institute.70 They coded, using the Fortran programming
language, a program named CFF that let them compute the energy and the
corresponding first and second derivatives of any molecular system using a
simple potential energy function. This allowed for the simulation of molecular
systems based on simple potential energy functions, a revolutionary step
toward studying biological macromolecules.71

Building upon the CFF, Karplus conducted groundbreaking MD simula-
tions in the late 1970s. This includes his landmark 1977 study on bovine
pancreatic trypsin inhibitor (BPTI) with 9.2 ps of MD simulation in vac-
uum, which highlighted the dynamic nature of proteins beyond what static
X-ray crystallography could reveal and the potential of MD simulations for
unveiling the conformational flexibility of biomolecules.72

Concurrently, Warshel and Levitt introduced the QM/MM hybrid method,
which combined quantum and classical mechanics to model electronic in-
teractions at enzymatic active sites, while efficiently managing the larger
molecular structure through molecular mechanics (MM).73 This approach has
significantly enhanced our understanding of enzymatic processes, especially
in how enzymes manage complex biochemical reactions.

Further developments by Warhsel created the Empirical Valence Bond
(EVB) model, which improved simulation accuracy by offering a simple gen-
eral framework to model reactive processes through the coupling of multiple
FFs.74 Levitt and Sharon later demonstrated how using explicit solvents in
BPTI simulation could achieve more realistic dynamics behaviors.75

Advances in computational power, particularly through the use of GPUs,
have facilitated the study of larger and more complex systems through

20



1.2 In silico methods for enzymes

longer nanosecond-timescale MD simulations. The development of modern
FF for proteins (e.g., AMBER, CHARMM, GROMOS, and OPLS) and
water models (e.g., as TIP3P, TIP4P, and OPC) has enabled more precise
simulations.

1.2.1 Molecular Mechanics and Force Fields

Figure 1.6: Illustration of force field components in molecular dynamics.
The top diagrams in blue represent the bonded interactions, including bonds,
angles, and dihedrals with their respective energy functions. The lower diagrams
in green depict the nonbonded interactions, detailing Van der Waals forces and
electrostatics, with their mathematical expressions.

Molecular mechanics (MM) simplifies the simulation of complex biological
molecules such as proteins and enzymes, which may consist of thousands
to millions of atoms. In MM, atoms are treated as classical particles,
using a ”ball and spring” model where each atom is depicted as a sphere,
characterized by specific charges, masses, and radii. Bonds between atoms
are modeled as springs, capturing the essence of molecular interactions
without defining quantum mechanical details such as electron arrangement
and bond formation.

In MM, the potential energy of molecules is derived from force fields
(FFs), which are categorized based on complexity. Class 1 FFs, such as the
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AMBER99 protein-specific FFs and updates like ff14SB and ff19SB,76,77

employ simpler, harmonic terms for bonded interactions (such as bonds,
angles, and dihedrals) and Lennard-Jones potentials alongside Coulomb’s
law for nonbonded interactions like van der Waals forces and electrostatics
(Fig. 1.6). These FFs balance accuracy and computational efficiency, making
them suitable for simulating the molecule’s FEL as it shifts from one state
to another.

General FFs, like Generalized Amber Force Fields (GAFF)78 and the
updated version GAFF2, can cover a wider chemical space for accurately mod-
eling small organic molecules that are frequently part of larger biomolecular
systems. Class 2 and Class 3 FFs introduce advanced terms for anhar-
monic effects and polarization, respectively. For instance, Class 3 FFs like
AMOEBA polarizable FF79,80 account for complex chemical effects such
as polarization and are used for systems where a more detailed electron
distribution model is necessary. Other FF alternatives are reactive FFs, like
EVB created by Warshel,74 or ML-FFs, that try to narrow the gap between
the accuracy of ab initio methods and the efficiency of classical FFs.81

This thesis applies specifically parametrized protein FFs like ff14SB76

with the TIP3P water model and its updated version ff19SB77 paired with
the OPC water model, to refine simulation accuracy. For small molecules,
GAFF2 is employed. TIP3P82 is favored for its effective representation
of bulk water properties, while OPC’s83 four-point model improves the
representation of hydrogen bonding and thermodynamic properties, thus
providing a more refined approach with an extra computational cost.

Duran et al. demonstrated that the ff19SB+OPC combination bet-
ter described the X-ray structures of the TrpB enzyme as compared to
ff14SB+TIP3P, highlighting the importance of selecting appropriate force
fields and water models to accurately depict biomolecular interactions.84

1.2.2 Ligand Parametrization

Parameter computation is essential in MD simulations in which non-canonical
amino acids and other molecules not covered in protein force fields like
ff14SB or ff19SB are incorporated. The methodology that we followed
in this thesis begins with a quantum mechanics (QM) optimization to
determine the molecule’s ground state using the B3LYP (Becke, 3-parameter,
Lee–Yang–Parr) functional,85,86 a hybrid generalized-gradient approximation
(GGA) functional that incorporates 20% exact Hartree-Fock (HF) exchange.
Additionally, Grimme’s dispersion correction with Becke-Johnson damping
(D3-BJ) is applied to accurately model intramolecular dispersion effects.
The polarizable conductor model (PCM),87 utilizing dichloromethane, with
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a dielectric constant of 8.9, as a solvent, estimates dielectric permittivity
within the enzyme active site.88 Following this, a single-point HF calculation
captures the molecular electrostatic potential (ESP) grid. This grid, fitting
to the QM electrostatic potential, eases computing partial charges via the
two-stage restrained ESP (RESP) model using the antechamber package.89–93

All QM calculations performed employ the 6-31G(d) Pople basis set, chosen
for its ability to deliver accurate coordinates and ESPs, computed with
the Gaussian16 software package.94 Lastly, the parmchk2 module from the
antechamber package89 assigns bond and angle parameters for unlisted
parameters in the force field.

1.2.3 Computational Enzyme Design Approaches

In the rapidly evolving sector of enzyme design, two different methodologies
have co-evolved to create new desired enzymes. From the experimental part,
as previously highlighted, DE is the biggest breakthrough to close the gap
to industrial needs. On the computational side, a wide range of methods
have been developed to compete with the success of DE.

Focusing on computational approaches can be classified into three main
categories based on their primary focus.19 The first category is composed
of methods that utilize multiple sequence information or protein folds to
obtain evolutionary-based insights into which positions have important roles
in the desired feature (i.e., function or stability). Examples include SigniSite,
which uses MSA information to analyze the evolutionary conservation and
variability of residues within a protein family,95 or FuncLib, which obtains
the evolution conservation scores creating position-specific scoring matrices
(PSSM) coupled with Rosetta design calculations.96,97

The second category focuses on the chemical steps of catalysis. One of the
most successful methods in this category is the inside-out protocol, developed
through the collaboration of the Baker and Houk research groups.98 This
method is based on the TSS concept, obtaining the ideal QM geometry
of the minimum set of catalytic residues (i.e., also known as theozyme).99

This geometry is then transferred to an existing protein template using
RosettaMatch, and further mutations are introduced in the active site
with RosettaDesign.100,101 This method was later improved by including
conformational ensembles generated through MD simulations of the designs,
checking the deviation from the computed theozyme model.102 Building on
this idea, the Janssen Lab, in collaboration with the Baker Lab, released
the Catalytic Selectivity by Computational Design (CASCO) framework,
which quantifies the conformations through MD simulation that matches a
geometric criteria for near attack conformations (NACs) based on the TS
structure.103
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The last category focuses on the conformational dynamics of the enzyme,
not just the active site. This includes the keyhole-lock-key model, which
tackles the importance of the substrate entrance and product release channels
by understanding the effect on the tunnels that provide access from the
surface to the active site.104 Methods such as CAVER and AQUA-DUCT can
be used to identify these tunnels and their positions.105,106 Additionally, loop
engineering is known as a key factor for catalytic success, as modifications
in loop regions can significantly enhance enzyme performance.107

The next section presents our in-house approach that fits in the last
category of methods, where the overall dynamics of the protein are key for
finding the hot spots that affect catalysis.

1.2.4 Shortest Path Map (SPM) Tool

It could seem obvious that mutations around the catalytic cavity can have an
important effect on enzyme performance, as was shown in the introduction
for the evolutionary mutations in the KSI enzyme performance at different
temperatures.2 However, looking at this reduced space of the enzyme is
insufficient to achieve high improvements in the desired activity. In this
regard, distal mutations are of extreme importance for going beyond small
gains in activity.108 Distal mutations are defined as residues that go beyond
the active site’s first shell of residues. The relevance of distal mutations
will increase if we go beyond similar substrates or functions, which our
reference enzyme was not evolved to do. Thanks to techniques like DE, we
can learn the implications of these distal mutations through each round
of evolution for improving a desired function. For instance, DE enhanced
the acyltransferase LovD enzyme for simvastatin production, a blockbuster
cholesterol-lowering drug, achieving a 1000-fold increase in activity in the
9th DE round. Impressively, 18 of the 29 mutations introduced were located
on the protein’s surface.109 Additionally, the significance of mutations in
distal locations is noticeable in other DE applications, such as for broadening
substrate scope in monoamine oxidase (MAO-N), converting Pseudomonas
diminuta phosphotriesterase (PTE) into arylesterase (AE), and enhancing
PET depolymerization capacities in Ideonella sakaiensis .19,110–113

Rational identification of these hotspots, as DE does, has been a signifi-
cant challenge in computational enzyme design. This rationalization needs
to find what properties are these distal mutations affecting, which will be the
driving force behind determining what positions to select for mutagenesis.
These properties can range from conformational dynamism, stability, and
solubility, among others.

To tackle this problem, our group developed the Shortest Path Map
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Figure 1.7: Shortest Path Map (SPM) construction workflow. Key equa-
tions 1 and 2 convert an enzyme into a weighted graph,114 each node representing
a residue. The edges linking each pair of nodes are assigned weights following
equations 1 and 2, where is the computed correlation value, and are the displace-
ment of the Cα or Cβ atoms of residues i and j observed in the MD simulation
to a reference structure. This complex weighted graph is simplified to identify
the shortest paths (SP) that have a higher contribution to the conformational
dynamics. SPM can be drawn on the 3D structure to directly assess how different
parts of the enzyme are connected. Hotspots residues identified in the SPM are
colored in lilac.

(SPM), a powerful graph-based method for identifying key dynamic residues.
This method utilizes MD simulations to generate correlation and distance
matrices between atoms (Cα or Cβ), generally processed through packages
like cpptraj or pytraj in Python.115,116 A graph is then constructed, similarly
us Sethi et al. for allosteric study of aminoacyl-tRNA synthetases (aaRSs),114

using the igraph package,117 where residues are nodes and edges between
residues that are in less of 6Å are weighted according to the correlation
strength:

lij = − log (|Cij |) (1)

Here, Cij corresponds to the computed correlation value calculated as follows:

Cij =
⟨∆ri · ∆rj⟩√
⟨∆r2i ⟩⟨∆r2j ⟩

(2)
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In this equation, ∆ri and ∆rj are the displacements of the Cα or Cβ atoms
of residues i and j from their mean positions during the MD simulations to
a reference structure.

This extensive graph is then analyzed to determine the shortest path (SP)
between all nodes in the graph using Dijkstra’s algorithm implemented in
the igraph module.117 Each edge’s usage is counted every time it forms part
of the SP. All edges are normalized hereafter, and only those most frequently
used are represented in the SPM. The SPM is then superimposed on the 3D
structure of the enzyme for clearer analysis and interpretation. This map
of connections enables the identification of potential hot-spot residues that
can be key for enzyme design, and it provides a straightforward view of the
dynamics and relationships between amino acids (Fig. 1.7).

The effectiveness of SPM has already been proven by detecting mutations
introduced in DE campaigns. For example, SPM identified 13 mutations in
the top-performing RA95.5-8F variant, directly including 7 and adjacent 4 to
the SPM, enhancing retro-aldolase activity to match natural enzymes.19,118

Based on different studied enzymes, the recommended approach for
analyzing SPM results for enzyme (re)design is to first focus on the key
regions of the enzyme, and their interconnectivity (e.g., loops or domains
controlling allostery, active site, regulatory pockets. . . ). Still, many residues
can be detected using the SPM tool, therefore information about co-evolution
can be helpful, although it is not always needed. Those residues that
interconnect key regions and are important regarding co-evolution, can be
treated as hot spot positions and can be considered as mutation points. In
the ideal case, site-directed mutagenesis could be applied if a small set of
positions is found. Nevertheless, this experimental technique is not always
an option so co-evolutionary information can be beneficial to decide which
amino acid residue should be introduced in that particular position.

1.2.5 Protein folding and the success of AlphaFold2

In 1969, Cyrus Levinthal highlighted a fundamental issue in protein folding
that would later be known as Levinthal’s paradox: an unfolded protein
cannot find its folded states by randomly trying every possible configuration,
because the number of potential configurations is astronomically high so
requiring a time longer than the age of the universe to reach its native folded
state.119,120 Given that proteins fold within milliseconds to seconds, except
when slowed by factors like proline isomerization,121 makes the paradox.122

Levinthal’s problem makes us think about how vast the folding problem
could be if it happens with the simplest model, a random search in a FEL
of equally probable states (i.e., without energy barriers between them) with
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a single minimum corresponding to the most thermodynamically favorable
state, also referred to as the golf-course potential surface.123

The evolution of Levinthal’s golf-course definition arises with the intro-
duction of the funnel-shape energy landscape, which represents a broader
thermodynamic principle applicable to the folding of proteins, RNA, or
any polymers.124,125 This model illustrates how protein folding progresses
energetically downhill, where the width of the funnel defines the configu-
rational entropy of the system during protein folding. All these models
agree on the existence of a global minimal energy state that corresponds to
the native structure, the so-called Anfinsen’s dogma of protein folding, also
known as the thermodynamic hypothesis. Anfinsen postulated this in 1972
when he pointed out that the 3D structure of a native protein in its normal
physiological environment is the one in which the Gibbs free energy of the
whole system is lowest, determined by the totality of interatomic interactions
and hence by the amino acid sequence.126,127 In that article, Anfinsen also
indicated the need to predict in advance this 3D structure for major progress
in the field.128

The protein structure field tried to solve this problem and predict the
native protein structure with just the sequence. In 1994, Professor John
Moult and Professor Krzysztof Fidelis founded the Critical Assessment of
Structure Prediction (CASP), a biennial blind protein prediction competition
created to monitor the state-of-the-art (SOTA) in the field by measuring the
accuracy of predictions with the Global Distance Test (GDT), which scores
from 0-100. Over the CASP competitions, the scientific teams achieved
median GDT values across all targets of around 60 GDT. It wasn’t until the
CASP14 competition that DeepMind presented the AF2 system, a machine
learning (ML) model to predict protein structures that achieved a median
GDT score of 92.4 and marked a paradigm shift in the field.15

DeepMind’s deep neural network (DNN) model utilizes an attention-
based transformer architecture that interprets the complex ’spatial graph’ of
proteins. AF2 is trained end-to-end (i.e., the model learns from raw input
data directly into 3D structures, autonomously discovering the necessary
features and transformations needed to predict protein structures without
segmented or manually engineered processing steps) using evolutionarily
related sequences, from multiple sequence alignment (MSA) obtained from
large sequence databases, and a representation of amino acid residue pairs
formed by around 170.000 Protein Data Bank (PDB) structures and 355.993
self-distilled unlabeled data predicted by an undistilled model (i.e., trained
on just the PDB dataset).

The AF2 computation begins with a preprocessing pipeline, where the
user only needs to input the protein’s FASTA sequence of the protein that
wants to be predicted. The first step is to generate and process an MSA with
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tools like JackHMMER129 from HMMER3130 and HHblits131 using large
sequence databases such as MGnify,132 UniRef90,133 Uniref30 (i.e., formerly
known as Uniclust30),134 and BFD.135 These MSAs are then de-duplicated
and stacked, with MSA depth varying based on the database used. Then,
PDB Templates are identified using the previous UniRef90 MSA to search
PDB70 with HHSearch, selecting the top 4 templates based on alignment
quality.136

Once we have the stacked MSA and chosen templates, AF2 inference
can start. First, the feature embedding process is made, which creates
the FASTA sequence features corresponding to the atom types and residue
indexes, defined as target feat and residue index. Then, the MSA features,
msa feat, is created, which for computational and memory reasons, the
MSA is reduced to 512 randomly selected sequences that are the MSA
cluster centers (i.e., max msa clusters), which are subsequently masked for
processing. The remaining sequences are assigned to the closest cluster,
improving the feature extraction of statistics from all sequences in the MSA.
Additionally, a specific number of non-cluster center sequences (i.e., max -
extra msa) are randomly sampled to create the input feature extra msa feat
to promote diversity. Finally, template features are extracted to obtain
the spatial information of the PDBs creating the template pair feat and
template angle feat. During training for the CASP14 competition, AF2
created five models, where the max extra msa from models 1, 3, and 4 use
5120 sequences, and models 2 and 5 use 1024. In the case of template
features, models 1 and 2 integrate PDB template data, while models 3 to
5 do not. After CASP14, five more models were developed, incorporating
a pTM (predicted global superposition metric template modeling score)137

prediction objective.

Once the features are created, the inference loop starts. The core com-
putational step involves transforming the MSA and template features into
”MSA representations” and ”pair representations” and iteratively updating
them. The MSA representation encodes sequences, highlighting similarities
and differences across the alignment, while the pair representation captures
relations between pairs of amino acids, essential for understanding residue
interactions. The representation updating process is done in the Evoformer
modules, central to AlphaFold 2’s success, consisting of 48 blocks that itera-
tively refine these representations to enhance spatial and interactional residue
insight, crucial for accurate structure prediction. Post-Evoformer, the re-
fined representations are channeled into the Structure Module. This module
applies multiple loss functions, such as Frame Aligned Point Error (FAPE)
and torsion angle loss, to accurately translate the abstract representation of
the protein structure (created by the Evoformer stack representations) into
concrete 3D atom coordinates.
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Figure 1.8: Overview of different strategies developed for predicting
different conformational states with AlphaFold2 (AF2). Multiple Sequence
Alignment (MSA) depths can be altered,138 some of the MSA positions can be
masked,139 and the MSA can be clustered.140

Recycling plays a critical role here, reprocessing the outputs from the
Structure Module back as inputs in subsequent iterations in the inference
loop, enabling the model to refine its predictions through multiple cycles and
use different MSA inputs (i.e., msa feat). Optionally, multiple iterations
of the Evoformer module, as done in CASP14 predicted structures with 8
iterations (i.e., Nensemble=8 ), can be executed with different MSA inputs
and averaged before the structure module.

Finally, each protein residue’s position is evaluated for confidence with
per-residue local distance difference test (pLDDT) scores,141 reflecting the
reliability of the structural prediction. This elaborate orchestration of
embeddings, iterative refinement, and confidence assessment underscores
AF2’s advanced approach to predicting protein structures from sequence
data and template PDBs.
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Overall, AF2 solved the protein structure prediction problem for a wide
range of cases, but not for all the proteins. AF2 struggles with highly
flexible proteins, or proteins with a huge degree of native states, that is the
case for proteins with a huge percentage of intrinsically disordered regions
(IDR). In this regard, AF2 has been trained to find the native structure of
the target sequence, which has been attributed to what Anfinsen’s Dogma
says. However, it is important to realize that Anfinsen defines the native
structure as ”the one in which the Gibbs free energy of the whole system
is lowest”, describing as ”whole system” the protein plus solvent. In this
regard, AF2 does not account for solvent effects, nor can be attributed to
Anfisen’s statement that the native structure is determined only by the
protein’s amino acid sequence.128 Although it is important to clarify that
AF2 does not solve the folding problem, as during the inference iterations
AF2 is not finding folded intermediates from the FEL, in the end, AF2 is
focused on finding the folded native structure from the sequence. However,
even though the AF2 architecture does not compute any energy features
to predict the structure, a recent study has shown that AF2 has effectively
learned an implicit representation of the biophysical energy landscape.142

The study further suggests that AF2 uses this internalized energy function,
driven by insights from MSA and co-evolutionary data, to navigate the
complex protein folding space. This enables the identification of stable
conformations that likely represent the native state of the protein without
explicitly calculating energy during the prediction process. The importance of
this finding suggests that altering the input MSA information can successfully
sample alternative confirmation states. This is further demonstrated by the
work of del Alamo et al., varying the MSA depth,138 masking specific MSA
positions as demonstrated by Stein and McHaourab,139 and clustering the
MSA following methods as discussed by Kern and Ovchinnikov can influence
the prediction outcomes (Fig. 1.8).140 Additionally, modifying the set of
provided templates, as also shown in del Alamo et al. and chapter 4 of this
thesis, can further diversify the conformational states captured.138
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This thesis aims to advance the field of enzyme design through the
development of computational tools, with a focus on the insights retrieved
from protein dynamics through MD simulations. The specific objectives
are organized into distinct yet interconnected components, each addressing
critical aspects of the enzyme design pipeline, such as mutational hot spots
identification and protein conformation prediction, with a final system
example:

1. Development and Deployment of the SPM Webserver: The
first objective is to speed up the code and deploy the SPM tool,
using MD simulations to discover key dynamic residues that influence
enzyme functionality beyond the active site, as discussed in Chapter 3.
Additionally, this objective comprises launching the SPM webserver
to provide the scientific community with robust, accessible, and user-
friendly computational tools for enzyme research and design.

2. Advances in Deep Learning for Protein Design and Refining
AlphaFold2 with a Template-Based Approach: In Chapter 4, the
objective is first to show the advances in DL methods and AF2 usage for
protein and enzyme design, and second to enhance the conformational
exploration capabilities of AlphaFold2 beyond its lowest energy state
predictions by altering the MSA depth and incorporating diverse
structural templates. This approach aims to enable the model to
predict a broader range of functional conformations, thereby enhancing
our understanding of protein dynamics. Our interest is not limited
to the conformational heterogeneity obtained from AF2 predictions,
as we want to prove that those structures can speed up the FEL
reconstruction through MD simulations. To that end, we will use TrpS
as a case example.

3. Rational Design of Efficient Enzyme Variants from HNL to
EST: The specific goal for Chapter 5 is to use the computational tools
developed to rationally design and transform a natural HNL into an
efficient EST. This involves identifying and predicting the minimal
set of mutations required to yield this conversion, utilizing insights
from the SPM tool to guide the mutation selection. This objective is
focused on demonstrating the power of computational approaches in
achieving targeted enzyme functionality with precision and a rational
explanation.
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Chapter 3:

The shortest path method
(SPM) webserver for
computational enzyme

design

This chapter corresponds to the following publication:

Casadevall, G.; Casadevall, J.; Duran, C.; Osuna, S. The Shortest Path
Method (SPM) Webserver for Computational Enzyme Design. Protein Eng.
Des. Sel., 2024, 37, gzae005.

Reproduced with permission from: Casadevall, G.; Casadevall, J.; Duran, C.;
Osuna, S. The Shortest Path Method (SPM) Webserver for Computational
Enzyme Design. Protein Eng. Des. Sel., 2024, 37, gzae005, by permission
of Copyright ©2024 Oxford University Press.
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Abstract

SPMweb is the online webserver of the Shortest Path Map (SPM) tool for identifying the key conformationally-relevant positions of a given
enzyme structure and dynamics. The server is built on top of the DynaComm.py code and enables the calculation and visualization of the SPM
pathways. SPMweb is easy-to-use as it only requires three input files: the three-dimensional structure of the protein of interest, and the two
matrices (distance and correlation) previously computed from a Molecular Dynamics simulation. We provide in this publication information on
how to generate the files for SPM construction even for non-expert users and discuss the most relevant parameters that can be modified. The
tool is extremely fast (it takes less than one minute per job), thus allowing the rapid identification of distal positions connected to the active
site pocket of the enzyme. SPM applications expand from computational enzyme design, especially if combined with other tools to identify
the preferred substitution at the identified position, but also to rationalizing allosteric regulation, and even cryptic pocket identification for drug
discovery. The simple user interface and setup make the SPM tool accessible to the whole scientific community. SPMweb is freely available for
academia at http://spmosuna.com/.

Keywords: Shortest Path Method, webserver, computational enzyme design, distal mutations

Introduction

Enzyme design aims to create novel biocatalysts with
enhanced properties through the modification of their natural
amino acid sequences or via generation of novel sequences and
folds. The fascination with enzyme design and engineering is
motivated by the advantageous features exhibited by these
catalysts, including their capacity to function effectively
under gentle biological conditions, achieving remarkable
efficiency, selectivity, and specificity. Enzyme design is also
an intellectual challenge, as it is a stringent examination of
what we understand of enzyme stability, folding, evolution
and catalysis.

Designing enzymes taking as starting point a natural or
computationally reconstructed/generated scaffold involves
selecting specific residues for mutagenesis, generating new
variants, and employing screening protocols to assess
improvements in targeted properties (Bell et al. 2021). Two
main approaches exist: rational design (Damborsky and
Brezovsky 2014, Romero-Rivera et al. 2017a, Maria-Solano
et al. 2018) considering de novo and natural scaffolds, and
Directed Evolution (DE) (Arnold 2015, Currin et al. 2015),
which can be successfully combined to achieve higher levels
of performance. Rational design focuses on predetermined
hotspot positions, identified through multiple sequence
alignments, structural analysis of active site pockets, potential
substrate-binding tunnels, and comprehensive computational
modeling (using techniques like Quantum Mechanics, Quan-
tum Mechanics/Molecular Mechanics, Molecular Dynamics,

and MonteCarlo simulations) (Romero-Rivera, Garcia-Borràs
and Osuna, 2017a, Sequeiros-Borja et al. 2020). Rational
design efforts often focus on the active site pocket or in
the bottleneck regions of the computed substrate binding
tunnels and gates. The user-friendly tools such as CAVER
(Stourac et al. 2019), AQUA-DUCT (Stourac et al. 2019),
and HotSpot Wizard (Sumbalova et al. 2018), among others
can be used (Sequeiros-Borja et al. 2020). In contrast, DE
(Francis and Hansche 1972, Lutz and Bornscheuer 2008,
Bornscheuer et al. 2012, Packer and Liu 2015), honored
with the 2018 Nobel Prize in Chemistry, initially relied on
iterative cycles of random mutagenesis. Recent advancements
integrate bioinformatic tools (Jiang et al. 2008, Rothlisberger
et al. 2008, Kuipers et al. 2009, Kourist et al. 2010, Kuipers
et al. 2010, Siegel et al. 2010), sequence analysis (Pavelka
et al. 2009, Addington et al. 2013), smarter libraries, protein
engineering techniques (Kazlauskas and Bornscheuer 2009,
Turner 2009, Bornscheuer et al. 2012), gene synthesis (Currin
et al. 2014), and high-throughput screening techniques (Xiao
et al. 2015). Machine-learning sequence-function models can
be used to guide DE (Yang et al. 2019, Mazurenko et al. 2020).
As mentioned above, the powerful DE strategy can be applied
to boost the low activities of computational enzyme designs
(Jaeckel et al. 2008, Romero and Arnold 2009, Renata et al.
2015) and enhance promiscuous enzymatic side-activities
(Campbell et al. 2016, Leveson-Gower et al. 2019). Multiple
laboratory-engineered enzymes have been reported in the
literature, including enzymes for the production of drugs,
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biotherapeutics, potential bulk products, and fragrances
(Buller et al. 2023).

A notable strength of DE lies in its capability to introduce
mutations throughout the entire protein sequence. This con-
trasts with rational design approaches that are often restricted
to alterations in the active site pocket or available tunnels
and gates for promoting substrate binding/product release and
altering the water content (Gora et al. 2013, Sequeiros-Borja
et al. 2020). As observed in numerous DE studies, the remark-
able fold increases in catalytic activity achieved are accom-
plished thanks to mutations positioned far from the active
site, which are computationally very challenging to predict
(Jiménez-Osés et al. 2014, Currin et al. 2015, Obexer et al.
2017, Osuna 2021). This trend extends to diverse enzymes
such as cytochrome P450, Diels-Alderase, phosphotriesterase,
sitagliptinase, among many additional ones (Osuna 2021).
Often laboratory-evolved enzymes present mutations intro-
duced at an average distance of around 15 Å from the active
site (Currin et al. 2015). Intriguingly, there is no direct corre-
lation between the impact of introduced mutations on enzyme
turnover (kcat) and their proximity to the active site, in con-
trast to the more deterministic role of active site mutations
in specificity (Currin et al. 2015). The coupling of distal
residues affecting the enzyme catalytic activity suggests a
substantial influence of long-range allostery, i.e. regulation
of catalytic activity by effector and/or protein binding, in
many proteins (Gunasekaran et al. 2004). Extensive MD
simulations have successfully rationalized how distal muta-
tions influence the multiple conformations enzymes can adopt
thus impacting its catalytic activity (Jiménez-Osés et al. 2014,
Romero-Rivera et al., 2017b). Distal mutations often alter
non-covalent interaction networks, which might favor some
additional conformational states of the enzyme that are more
optimal for the promiscuous activity to be enhanced and/or
modify the flexibility of crucial structural elements such as
loops and lids gating the active site pocket (Campbell et al.
2016, Petrović et al. 2018, Curado-Carballada et al. 2019).
While computational modeling can satisfactorily explain these
changes in activity induced by distal alterations, the challenge
remains in predicting which distal mutations can impact
and regulate enzymatic activity (Jiménez-Osés et al. 2014,
Osuna 2021, Campitelli et al. 2020). Given the insights from
DE that distal mutations are essential for enhancing enzyme
catalytic activity, the development of computational tools
capable of predicting remote mutations holds great promise,
potentially advancing our underdeveloped ability to compu-
tationally design efficient Nature-like enzymes (Osuna 2021).

The effect exerted by distal mutations in enzyme design
reminds the allosteric regulation effect produced by effector
binding in allosteric systems or within the active sites of hete-
rocomplexes that present synchronised transportation of sub-
strates. Distal mutations can induce a shift in the conforma-
tional landscape, thus favouring the catalytically competent
arrangement of the catalytic residues for catalysis. Given the
striking similarity between these two scenarios (enzyme design
and allosteric regulation), we explored the potential develop-
ment and application of correlation-based tools in enzyme
design (Romero-Rivera, Garcia-Borràs and Osuna, 2017b,
Osuna 2021, Maria-Solano et al. 2018). We developed the
Shortest Path Map (SPM, DynaComm.py) tool by construct-
ing a first complex graph based on mean distances and corre-
lation values between the residues that compose the enzyme

computed during MD simulations, similar to the protocol by
Sethi et al. (Sethi et al. 2009) for studying allosteric systems
(see Fig. 1) (Osuna 2021). In contrast to prior allosteric studies
concentrating on identifying communities in the graph (Sethi
et al. 2009), our SPM approach involves computing shortest
path lengths using the Dijkstra algorithm implemented in the
igraph module (Csárdi and Nepusz 2006). Consequently, it
identifies those pairs of residues that are more correlated
and have a higher impact into the enzyme conformational
dynamics. Unlike community analysis that highlights impor-
tant regions of the enzyme, SPM directly identifies the most
crucial residues rather than regions. This feature is particularly
appealing for enzyme design, enabling the direct construction
of small libraries of hotspot positions.

SPM narrows down the sequence space to a subset of
conformationally relevant positions, with a notable capability
to pinpoint challenging distal positions that enhance activity
(Osuna 2021). The successful application of SPM in iden-
tifying DE mutations in retro-aldolase, monoamine oxidase,
and tryptophan synthase enzymes suggests its potential utility
in the rational design of enzyme variants (Osuna 2021).
The Mulholland lab utilized our SPM tool to assess changes
in dynamical networks during the transition-state ensemble
along DE of a computationally designed Kemp eliminase
(Bunzel et al. 2021). Additionally, we used SPM to investigate
allosteric communication within monomers, and in allosteric
systems (Curado-Carballada et al. 2019, Calvó-Tusell et al.
2022, Castelli et al. 2024). More recently, we have also used
SPM for rational enzyme design in combination with other
tools to further reduce the number of identified positions and
select the specific amino acid at each site, as described in
the following examples. We combined SPM with ancestral
sequence reconstruction for developing new stand-alone tryp-
tophan synthase B (TrpB) variants (Maria-Solano et al. 2021).
Focusing on including the ancestral amino acid in the non-
conserved SPM positions, our approach increased the stand-
alone activity of the new SPM6-TrpB variant by 7-fold (in
terms of kcat) (Maria-Solano, Kinateder, Iglesias-Fernández,
Sterner and Osuna 2021). It is worth noting that, while testing
only a single variant, the fold increase in kcat was comparable
to the 9-fold obtained through DE, which required generating
and screening over 3000 variants. In a recent pre-print, we
showcased the efficacy of our SPM methodology in design-
ing efficient Nature-like enzymes. Specifically, we achieved a
more than 1300-fold increase in the esterase catalytic effi-
ciency of a hydroxynitrile lyase (HNL), surpassing the esterase
activity of the reference enzyme (Casadevall et al. 2023).
Altogether, these studies provide compelling evidence for the
potential of our SPM methodology in computational enzyme
design.

In this study, we develop and describe the webserver version
of the SPM tool for its application in enzyme design for
academic use. First, we discuss the user-friendly webserver
generated, the input files needed and the overview of the
settings that the user can alter to generate different SPM
maps. Second, we show with the tryptophan synthase example
how information of inter and intramolecular SPM commu-
nications networks can be withdrawn. With this tool, we
hope the academic community can benefit from the applica-
tion of the SPM in the study of biomolecular systems and
aim to expand the current area of application of the SPM
methodology.
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Computational enzyme design 3

Fig. 1. Workflow and equations for Shortest Path Map (SPM) construction for computational enzyme design. The enzyme is simplified as a weighted
graph as done for studying allostery (Sethi et al. 2009), however, this complex graph is simplified to identify the shortest paths (pairs of residues) that
have a higher contribution to the conformational dynamics. SPM can be drawn back on the 3D structure to directly assess how the active site pocket is
connected to active site and distal sites. The key equations (1 and 2) for converting a protein into a graph are also displayed. Each node in the first
complex graph represents a residue. The edges linking each pair of nodes (residues) are assigned weights in accordance with equation 1 and 2, where
Ci,j is the computed correlation value, �ri and �rj are the displacement of the Cα of the i, j residue observed in the MD trajectory with respect to a
reference structure.

Results

Workflow

The basic workflow for SPM construction is shown in Fig. 1.
As described in the introduction, the enzyme structure and
dynamics is simplified using a weighted graph (step 1), which
is then further processed to identify the shortest paths to
generate the final SPM graph (step 2). SPM can then be plotted
back into the 3D-dimensional structure to visualize how the
active site pocket is connected to more remote sites.

Generation of the first weighted graph

Initial attempts to apply graph theory to investigate allosteric
regulation primarily focused on the static X-ray structure of
the enzyme (Guo and Zhou 2016). In the constructed graph,
two sets of nodes (residues) were linked by an edge if the dis-
tance between their representative atoms fell below a specific
threshold. The significant advancement in graph construction
came from Sethi et al. (Sethi et al. 2009), who employed short
MD simulations (lasting a few nanoseconds) to determine
the connected nodes and their respective edge weights. An
edge was established between a pair of residues (nodes) if the
representative atoms of each residue remained below a defined
distance threshold (see Fig. 1) for a specified fraction of the
MD simulation time. The edge connecting residues (i,j) was
weighted based on their correlation values (Ci,j, as outlined
in equations 1 and 2, Fig. 1). Residues undergoing highly
correlated conformational changes during the MD simulation
(i.e. Ci,j → 1) were linked by a relatively short edge (li,j → 0).
Conversely, a pair of residues with non-correlated movements
(Ci,j → 0) were connected by relatively long edges (li,j → ∞).

In this protocol, the enzyme conformational dynamics
is summarized through this first weighted graph (shown
in Fig. 1). Further subdivision of the graph into communi-
ties, utilizing the Girvan-Newman algorithm (Girvan and
Newman 2002), results in the identification of what is
called the optimal community network used in the study of

allosterically-regulated enzymes (Rivalta et al. 2012, Schupfner
et al. 2020). However, for computational enzyme design it is
more preferred to identify a subset of positions rather than
regions or communities.

Generation of the SPM

For SPM generation instead of pinpointing communities
within the initial graph, we use the Dijkstra algorithm,
implemented in the igraph module (Csárdi and Nepusz 2006),
to calculate the shortest path lengths. The algorithm considers
all nodes of the graph and determines the shortest path
from the first to the last protein residue. Consequently, the
method identifies the edges in the graph that are shorter,
thus indicating higher correlation and more frequently
used in going through all protein residues. All edges are
then normalized, and only those with the most significant
contribution (a visualization/significance threshold is applied,
see Fig. 2) are represented in the SPM. Drawing the SPM
directly onto the 3D structure of the protein, rather than its
2D graph representation (see Fig. 1), is more advantageous as
one can directly see how the network expands through the
3D structure. The primary benefit of SPM over community
analysis lies in directly identifying the most critical residues
(as opposed to regions), making it more appealing for
enzyme design, as small libraries of hotspot positions can
be constructed directly. SPM enables the prediction of distal
active site mutations that lead to enhanced enzymatic activity
for the first time in a computational protocol (Osuna 2021).

Description of the webserver
Input files

There are three mandatory files for SPM construction: the
tertiary structure of the enzyme/protein in pdb format for visu-
alizing the results, and the distance and correlation matrices
obtained often through MD simulations (but not necessarily
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4 Casadevall et al.

Fig. 2. SPM main page of the webserver. The user needs to upload in the corresponding boxes the three mandatory files that are needed for SPM
construction: the enzyme 3D structure, and the two matrices: distance and correlation previously computed from the MD simulations. Two important
parameters can be modified for SPM construction: the distance threshold (bottom right panel), and the significance threshold (bottom left panel). The
webserver link is: https://spmosuna.com.

restricted to). Our recommendation is to generate the dis-
tance and correlation matrices using at least three replicates
of MD simulations of 200–500 ns of simulation length in
explicit solvent and considering either Cα or Cβ positions.
The calculation of the distance and correlation matrices can
be done considering the whole MD trajectory, the last 100–
200 nanoseconds of the MD simulations or using distinct sets
of conformations in case of proteins undergoing large confor-
mational changes. We, however, recommend using either the
whole MD trajectory or the last 100–200 ns of the MD runs
(Duran et al. 2024).

The distance and correlation matrix can be computed with
different MD analysis software, but we provide as example
the input file used for cpptraj included in AMBER tools:

Input files for cpptraj module for computing the correlation
and proximity matrices:

# We recommend taking as reference the most populated
cluster from the MD trajectory. This is especially relevant for
proteins undergoing large conformational changes.

cpptraj <parm file>
reference structure.pdb
trajin MD_trajectory.nc 1 last 1
rms reference @CA
matrix dist @CA out dist_mat.dat
matrix correl @CA out corr_mat.dat
exit
The three mandatory files (structure.pdb, dist_mat.dat,

corr_mat.dat) can then be uploaded in the corresponding
boxes included in the main page of the webserver (see Fig. 2).
It should be also mentioned that the webserver also accepts
the distance and correlation matrices as numpy binary files
(.npy).

SPM parameters

As discussed in the previous section, two thresholds need to
be defined for SPM construction. The first one is related to
the mean distance value between the user defined atoms along
the MD simulation (often distances between either Cα or Cβ ).
While we recommend the use of a distance threshold of 6 Å,
in some cases, it might be useful to play with the distance
matrix threshold. Increasing this value to higher numbers will

of course consider a higher portion of the protein residues
for each targeted site, and thus the computed SPM graph will
contain a larger number of positions. In the opposite direction,
rather small values for the distance matrix will only consider
nearby residues thus being very local and restricted (see the
distance threshold tests in the case example below).

The other important threshold is related to the number of
positions represented in the final SPM graph. This visualiza-
tion/significance threshold will restrict the number of edges
and nodes displayed. We recommend a threshold of 0.3, as it
will reduce the number of positions and will only display the
ones playing a higher role in the conformational dynamics.
In any case, we believe it might be also useful to play with
the visualization/significance threshold as well to visualize a
higher proportion of the identified edges and evaluate how
the disconnected parts of the graph are actually connected.
Therefore, this has been added as an extra parameter in the
SPM webserver. In Fig. 2, the two boxes related to distance
and significance threshold are also displayed.

Output files

SPM visualization.
After uploading the three requested input files, the SPM is
built and visualized in the main screen panel (see Fig. 3).
SPM can be shown in the 3D structure of the uploaded
protein structure, where the important residues are marked
with spheres and labelled according to its ranked ID, and
edges connecting the pairs of residues are highlighted in black.
Those pairs of residues that have a higher contribution to the
conformational dynamics present bigger spheres and thicker
edges. However, the sizes of spheres and widths of edges are
mostly qualitative. By default, a distance threshold of 6 Å and
a visualization/significance threshold of 0.3 is used. However,
as mentioned before, these two parameters can be modified
using the threshold panels. The SPM is also displayed in 2D
in an additional panel below the 3D representation, in which
the residue labels and connections can be more easily seen.

PyMoL script for SPM visualization.
Another interesting feature of the SPM webserver is that it
generates a PyMoL script that can be executed in PyMoL
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Computational enzyme design 5

Fig. 3. SPMweb main page displaying the output after running the SPM calculation. SPM is visualized on top of the 3D structure of the protein as shown
in the left panel. The 2D representation of the SPM graph is also shown (right panel). The results can be visualized as full screen by clicking the ‘Toggle
Fullscreen’ button, and the labels of the atoms can also be added/removed by clicking the ‘Toggle Labels (It can take several seconds to process)’ button.

software after loading the 3D structure of the enzyme. The
visualization in PyMoL is rather simple, the user needs to
first load the reference structure (load reference.pdb), and
then in the command line execute the SPM pymol script
defining the correct path where it is located (@$PATH/
pymol_shortest_path_reference). In pymol, the user can tune
all parameters and also include some transparency into the
cartoon of the protein structure to visualize better the SPM
graph (for instance by typing the command in the command
line: set cartoon_transparency, 0.6).

Case examples

SPMweb can be used to address different relevant enzymatic
properties. We provide some examples of how the SPM tool
can be employed: (1) to identify the conformationally relevant
distal positions connected to the enzyme active site for the
generation of some mutational libraries, and (2) to rationalize
the existing allosteric communication between the enzyme
subunits in a dimeric structure.

Case example 1. Identification of the key

conformationally relevant positions either at the active

site or at distal sites connected to the catalytic pocket.

SPM can be applied for identifying mutational spots not
restricted to the active site and neither to the tunnel regions
targeted by DE. Along the years, we have shown how SPM
allows, for the first time, the prediction of which distal active
site positions might lead to enhanced enzymatic activity after
mutation (Romero-Rivera, Garcia-Borràs and Osuna, 2017b).
This has been tested in different unrelated enzyme families
showcasing the potential of SPM for the rational design of
enzyme variants (Osuna 2021). In this case example, we
applied the SPM in the case of tryptophan synthase B (TrpB)
subunit, as we first realized that SPM was capturing some of
the DE positions (Maria-Solano et al. 2019) and subsequently
applied it for designing a stand-alone TrpB (Maria-Solano,
Kinateder, Iglesias-Fernández, Sterner and Osuna 2021). As
shown in Fig. 4, the computed SPM in the webserver shows
how the graph connects the active site pocket that holds
the catalytic lysine and the PLP cofactor with remote sites
that interestingly contain many of the DE mutations. For
constructing this main SPM, the default parameters for the

distance and visualization/significance thresholds have been
used (panel A in Fig. 4). However, as shown in panel B in
Fig. 4 by changing the two threshold parameters the obtained
SPM maps differ quite substantially. Despite PfTrpB0B2 being
dimeric in solution in the absence of its binding TrpA partner,
we computed the distance and correlation matrices consid-
ering only one of the monomeric units. This computed SPM
therefore identifies the intramolecular conformationally rele-
vant positions with the monomeric structure connected to the
active site pocket.

Case example 2. Rationalization of the allosteric pathway

existing between monomers in a dimeric enzyme

structure.

Another interesting feature to analyze in those enzymatic
systems that are not monomeric in solution is the existing
communication pathway within subunits. This is particularly
relevant for allosterically regulated enzymes such as trypto-
phan synthase, but also in enzymes that require a higher order
oligomeric structure for function like monoamine oxidase
(MAO-N) (Curado-Carballada et al. 2019, Osuna 2021). We
have again used the example of TrpB that adopts a dimeric
structure to analyze the communication existing between the
two subunits. In this case, the whole dimeric structure has
been used for SPM construction: the distance and correla-
tion matrices are computed considering the complete dimeric
structure. As shown in Fig. 5, the computed SPM pathway
using the default parameters now expands from one subunit to
the other and does not necessarily connect the respective active
site pockets of both TrpB monomers. This analysis can be used
to identify residues crucial for the intersubunit (allosteric)
communication and can also be relevant for explaining coop-
erative effects.

Conclusions

SPMweb is a new webserver for identifying a subset of con-
formationally relevant positions located throughout the pro-
tein structure. This unique tool can be used for rationally
identifying distal sites whose conformational dynamics is
connected to the enzyme active site pocket. Although the tool
was initially developed for computational enzyme design as
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6 Casadevall et al.

Fig. 4. Case example of computed SPM for investigating the distal sites connected to the active site pocket of the enzyme tryptophan synthase B
(PfTrpB0B2) considering only the monomeric structure. (A) Visualization of the SPM using the default thresholds for significance and distance. (B) Top
panel: visualization of the effect of altering the SPM significance threshold using 0.1 (left) and 0.5 (right). Bottom panel: visualization of the effect of
altering the distance threshold and using a value of 5 Å (left) and 8 Å (right). The active site of the enzyme that holds the PLP-cofactor and the catalytic
residues is highlighted with a discontinuous circle.

Fig. 5. Case example of computed SPM for studying the allosteric communication existing between monomers in a dimeric tryptophan synthase B
(PfTrpB0B2) structure. (A) Visualization of the SPM using the default thresholds for significance and distance. (B) Top panel: visualization of the effect of
altering the SPM significance threshold using 0.1 (left) and 0.5 (right). Bottom panel: visualization of the effect of altering the distance threshold and
using a value of 5 Å (left) and 8 Å (right). The active site of the enzyme that holds the PLP-cofactor and the catalytic residues is highlighted with a
discontinuous circle.
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Computational enzyme design 7

discussed in the whole paper, the potential applications of this
novel methodology are broad. SPM can be directly used for
rationalizing the allosteric communication between enzyme
subunits as shown in the case example discussed above.
However, it could also be potentially applied for instance for
identifying cryptic pockets for designing allosteric inhibitors
in drug discovery. We hope that by releasing this webserver
to the scientific community, the number of applications and
successful cases in which SPM can be applied is expanded.

Author contributions

Guillem Casadevall (Conceptualization [equal], Methodology [equal],
Software [equal], Visualization [equal], Writing—original draft [equal],
Writing—review & editing [equal]), Jordi Casadevall (Conceptualiza-
tion [equal], Methodology [equal], Software [equal]), Cristina Duran
(Conceptualization [equal], Methodology [equal], Software [equal],
Writing—original draft [equal], Writing—review & editing [equal]),
and Silvia Osuna (Conceptualization [equal], Methodology [equal],
Software [equal], Writing—original draft [equal], Writing—review &
editing [equal]).

Supplementary data

Supplementary data is available at PROENG Journal online.

Funding

We thank the Generalitat de Catalunya for the consolidated group
TCBioSys (SGR 2021 00487), Spanish MICIN for grant projects
PID2021-129034NB-I00 and PDC2022-133950-I00. S.O. is grateful
to the funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program
(ERC-2015-StG-679001, ERC-2022-POC-101112805, and ERC-2022-
CoG-101088032), and the Human Frontier Science Program (HFSP)
for project grant RGP0054/2020. C.D. was supported by the Spanish
MINECO for a PhD fellowship (PRE2019-089147), and G. C. by a
research grant from ERC-StG (ERC-2015-StG-679001) and ERC-POC
(ERC-2022-POC-101112805).

References

Addington, T.A., Mertz, R.W., Siegel, J.B. et al. (2013) J Mol Biol, 425,
1378–1389. https://doi.org/10.1016/j.jmb.2013.01.034.

Arnold, F.H. (2015) Q Rev Biophys, 48, 404–410. https://doi.o
rg/10.1017/S003358351500013X.

Bell, E.L., Finnigan, W., France, S.P. et al. (2021) Nat Rev Methods
Primers, 1, 46. https://doi.org/10.1038/s43586-021-00044-z.

Bornscheuer, U.T., Huisman, G.W., Kazlauskas, R.J. et al. (2012)
Nature, 485, 185–194. https://doi.org/10.1038/nature11117.

Buller, R., Lutz, S., Kazlauskas, R.J. et al. (2023) Science, 382, eadh8615.
https://doi.org/10.1126/science.adh8615.

Bunzel, H.A., Anderson, J.L.R., Hilvert, D. et al. (2021) Nat Chem, 13,
1017–1022. https://doi.org/10.1038/s41557-021-00763-6.

Calvó-Tusell, C., Maria-Solano, M.A., Osuna, S. et al. (2022) J Am
Chem Soc, 144, 7146–7159. https://doi.org/10.1021/jacs.1c12629.

Campbell, E., Kaltenbach, M., Correy, G.J. et al. (2016) Nat Chem Biol,
12, 944–950. https://doi.org/10.1038/nchembio.2175.

Campitelli, P., Modi, T., Kumar, S. et al. (2020) Annu Rev
Biophys, 49, 267–288. https://doi.org/10.1146/annurev-bio
phys-052118-115517.

Casadevall, G., Pierce, C., Guan, B. et al. (2023) bioRxiv
2023.2008.2023.554512. https://doi.org/554510.551101/552023.
554508.554523.554512.

Castelli, M., Marchetti, F., Osuna, S. et al. (2024) J Am Chem Soc, 146,
901–919. https://doi.org/10.1021/jacs.3c11396.

Csárdi, G. and Nepusz, T. (2006) InterJournal, Complex Systems,
1695–1704.

Curado-Carballada, C., Feixas, F., Iglesias-Fernández, J. et al. (2019)
Angew Chem Int Ed, 58, 3097–3101. https://doi.org/10.1002/a
nie.201812532.

Currin, A., Swainston, N., Day, P.J. et al. (2014) Protein Eng Des Sel,
27, 273–280. https://doi.org/10.1093/protein/gzu029.

Currin, A., Swainston, N., Day, P.J. et al. (2015) Chem Soc Rev, 44,
1172–1239. https://doi.org/10.1039/C4CS00351A.

Damborsky, J. and Brezovsky, J. (2014) Curr Opin Chem Biol, 19,
8–16. https://doi.org/10.1016/j.cbpa.2013.12.003.

Duran C, Casadevall G, Osuna S. 2024; submitted for publication.
Francis, J.C. and Hansche, P.E. (1972) Genet, 70, 59–73. https://doi.o

rg/10.1093/genetics/70.1.59.
Girvan, M. and Newman, M.E.J. (2002) Proc Natl Acad Sci U S A, 99,

7821–7826. https://doi.org/10.1073/pnas.122653799.
Gora, A., Brezovsky, J. and Damborsky, J. (2013) Chem Rev, 113,

5871–5923. https://doi.org/10.1021/cr300384w.
Gunasekaran, K., Ma, B. and Nussinov, R. (2004) Proteins, 57,

433–443. https://doi.org/10.1002/prot.20232.
Guo, J. and Zhou, H.-X. (2016) Chem Rev, 116, 6503–6515. https://

doi.org/10.1021/acs.chemrev.5b00590.
Jaeckel, C., Kast, P. and Hilvert, D. (2008) Annu Rev

Biophys, 37, 153–173. https://doi.org/10.1146/annurev.bio
phys.37.032807.125832.

Jiang, L., Althoff, E.A., Clemente, F.R. et al. (2008) Science, 319,
1387–1391. https://doi.org/10.1126/science.1152692.

Jiménez-Osés, G., Osuna, S., Gao, X. et al. (2014) Nat Chem Biol, 10,
431–436. https://doi.org/10.1038/nchembio.1503.

Kazlauskas, R.J. and Bornscheuer, U.T. (2009) Nat Chem Biol, 5,
526–529. https://doi.org/10.1038/nchembio0809-526.

Kourist, R., Jochens, H., Bartsch, S. et al. (2010) Chembiochem, 11,
1635–1643. https://doi.org/10.1002/cbic.201000213.

Kuipers, R.K.P., Joosten, H.-J., Verwiel, E. et al. (2009) Proteins, 76,
608–616. https://doi.org/10.1002/prot.22374.

Kuipers, R.K., Joosten, H.-J., van Berkel, W.J.H. et al. (2010) Proteins,
78, 2101–2113. https://doi.org/10.1002/prot.22725.

Leveson-Gower, R.B., Mayer, C. and Roelfes, G. (2019) Nat Rev Chem,
3, 687–705. https://doi.org/10.1038/s41570-019-0143-x.

Lutz S, Bornscheuer UT. Protein Engineering Handbook. Wiley-VCH
Verlag GmbH & Co. KGaA,Weinheim, Germany, 2008. https://
doi.org/10.1002/26.

Maria-Solano, M.A., Serrano-Hervás, E., Romero-Rivera, A. et al.
(2018) Chem Commun, 54, 6622–6634. https://doi.org/10.1039/C8
CC02426J.

Maria-Solano, M.A., Iglesias-Fernández, J. and Osuna, S. (2019) J
Am Chem Soc, 141, 13049–13056. https://doi.org/10.1021/jacs.9
b03646.

Maria-Solano, M.A., Kinateder, T., Iglesias-Fernández, J. et al. (2021)
ACS Catal, 11, 13733–13743. https://doi.org/10.1021/acscatal.1
c03950.

Mazurenko, S., Prokop, Z. and Damborsky, J. (2020) ACS Catal, 10,
1210–1223. https://doi.org/10.1021/acscatal.9b04321.

Obexer, R., Godina, A., Garrabou, X. et al. (2017) Nat Chem, 9, 50–56.
https://doi.org/10.1038/nchem.2596.

Osuna, S. (2021) Wiley Interdiscip Rev Comput Mol Sci, 11, e1502.
https://doi.org/10.1002/wcms.1502.

Packer, M.S. and Liu, D.R. (2015) Nat Rev Genet, 16, 379–394. https://
doi.org/10.1038/nrg3927.

Pavelka, A., Chovancova, E. and Damborsky, J. (2009) Nucleic Acids
Res, 37, W376–W383. https://doi.org/10.1093/nar/gkp410.

Petrović, D., Risso, V.A., Kamerlin, S.C.L. et al. (2018) J R Soc Interface,
15, 20180330. https://doi.org/10.1098/rsif.2018.0330.

Renata, H., Wang, Z.J. and Arnold, F.H. (2015) Angew Chem Int Ed,
54, 3351–3367. https://doi.org/10.1002/anie.201409470.

D
ow

nloaded from
 https://academ

ic.oup.com
/peds/article/doi/10.1093/protein/gzae005/7618441 by U

N
IVER

SITAT D
E G

IR
O

N
A user on 24 June 2024

40



8 Casadevall et al.

Rivalta, I., Sultan, M.M., Lee, N.-S. et al. (2012) Proc Natl Acad Sci U S
A, 109, E1428–E1436. https://doi.org/10.1073/pnas.1120536109.

Romero, P.A. and Arnold, F.H. (2009) Nat Rev Mol Cell Biol, 10,
866–876. https://doi.org/10.1038/nrm2805.

Romero-Rivera, A., Garcia-Borràs, M. and Osuna, S. (2017a) https://
doi.org/10.1039/C6CC06055B.

Romero-Rivera, A., Garcia-Borràs, M. and Osuna, S. (2017b) ACS
Catal, 7, 8524–8532. https://doi.org/10.1021/acscatal.7b02954.

Rothlisberger, D., Khersonsky, O., Wollacott, A.M. et al. (2008) Nature,
453, 190–195. https://doi.org/10.1038/nature06879.

Schupfner, M., Straub, K., Busch, F. et al. (2020) Proc Natl Acad Sci U
S A, 117, 346–354. https://doi.org/10.1073/pnas.1912132117.

Sequeiros-Borja, C.E., Surpeta, B. and Brezovsky, J. (2020) Brief
Bioinform, 22, 1–15. https://doi.org/10.1093/bib/bbaa150.

Sethi, A., Eargle, J., Black, A.A. et al. (2009) Proc Natl Acad Sci U S A,
106, 6620–6625. https://doi.org/10.1073/pnas.0810961106.

Siegel, J.B., Zanghellini, A., Lovick, H.M. et al. (2010) Science, 329,
309–313. https://doi.org/10.1126/science.1190239.

Stourac, J., Vavra, O., Kokkonen, P. et al. (2019) Nucleic Acids Res, 47,
W414–W422. https://doi.org/10.1093/nar/gkz378.

Sumbalova, L., Stourac, J., Martinek, T. et al. (2018) Nucleic Acids Res,
46, W356–W362. https://doi.org/10.1093/nar/gky417.

Turner, N.J. (2009) Nat Chem Biol, 5, 567–573. https://doi.o
rg/10.1038/nchembio.203.

Xiao, H., Bao, Z. and Zhao, H. (2015) Ind Eng Chem Res, 54,
4011–4020. https://doi.org/10.1021/ie503060a.

Yang, K.K., Wu, Z. and Arnold, F.H. (2019) Nat Methods, 16, 687–694.
https://doi.org/10.1038/s41592-019-0496-6.

D
ow

nloaded from
 https://academ

ic.oup.com
/peds/article/doi/10.1093/protein/gzae005/7618441 by U

N
IVER

SITAT D
E G

IR
O

N
A user on 24 June 2024

41



42



Chapter 4:

AlphaFold2 and Deep
Learning for Estimating

Conformational
Heterogeneity and

Designing Proteins: The
Case of Tryptophan

Synthase

This chapter corresponds to the following publications:
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ABSTRACT: The recent success of AlphaFold2 (AF2) and other deep learning (DL) tools in
accurately predicting the folded three-dimensional (3D) structure of proteins and enzymes has
revolutionized the structural biology and protein design fields. The 3D structure indeed reveals
key information on the arrangement of the catalytic machinery of enzymes and which structural
elements gate the active site pocket. However, comprehending enzymatic activity requires a
detailed knowledge of the chemical steps involved along the catalytic cycle and the exploration
of the multiple thermally accessible conformations that enzymes adopt when in solution. In this
Perspective, some of the recent studies showing the potential of AF2 in elucidating the
conformational landscape of enzymes are provided. Selected examples of the key developments
of AF2-based and DL methods for protein design are discussed, as well as a few enzyme design
cases. These studies show the potential of AF2 and DL for allowing the routine computational
design of efficient enzymes.

KEYWORDS: AlphaFold2, conformational heterogeneity, free energy landscape, enzyme design, deep learning

1. INTRODUCTION
The 60-year problem of knowing the folded structure from the
primary sequence of proteins (and enzymes) was thought to be
solved by the recent success of Alphafold2 (AF2).1−3 AF2 is a
deep-learning (DL) algorithm that incorporates novel neural
network architectures based on the evolutionary, physical, and
geometric constraints of protein structures and is able to
predict with high levels of accuracy the three-dimensional
structure of proteins. AF2 is recognized as one of the
milestones in protein structure prediction and has boosted
the application of DL methods for many other applications.4

Despite the impressive performance of AF2 algorithms in
predicting the native lowest in energy structure of enzymes,
knowing the single static folded structure is not sufficient for
understanding and engineering function, as recently high-
lighted.5,6 As discussed below, another limitation of these
methods is that nonprotein parts (i.e., cofactors, substrates,
metal ions) are not predicted.
The three-dimensional structure of the enzymes indeed

provides very relevant information on the arrangement of the
catalytic machinery and structural elements gating the active-
site pocket, but understanding enzymatic function requires the
exploration of the ensemble of thermally accessible con-
formations that enzymes adopt in solution. This ensemble of
conformations can be represented in the so-called Free Energy
Landscape (FEL, see Figure 1 for FELs at different reaction
stages),7 which displays the relative stabilities of the thermally
accessible conformations, as well as the kinetic barriers
separating them. Conformational changes that can directly

impact catalytic function include side-chain conformational
changes in the fast time scale, loop motions often playing a key
role in substrate binding/product release in slower time scales,
and in some cases allosteric transitions that usually correspond
to the slowest processes. The evaluation of the conformational
landscapes of natural and evolved enzymes has provided
relevant new insights. Experimental X-ray structures and
associated B-factors,8 room-temperature X-ray experiments,9,10

and NMR experiments11 have been used to explore the
changes in the conformational landscape induced by mutations
along several enzyme variants generated with the experimental
Directed Evolution technique. From a computational perspec-
tive, the reconstruction of the FEL and how this is shifted after
mutation provides crucial information for understanding
enzyme function (and also for design).7

It has been recently shown by different groups that AF2 can
be actually tuned to provide multiple conformations of the
same protein, which suggests the potential of AF2 for
elucidating the conformational landscape of enzymes and
proteins.12,13 Given the rather low computational cost of AF2,
especially if compared to the computationally demanding
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Molecular Dynamics (MD) simulations, its application for
assessing the effect of mutations on the conformational
landscape is highly appealing. This could impact the develop-
ment of AF2-based conformationally focused enzyme designs
protocols.7,14

Multiple reviews are available in the literature covering the
available tools for rationalizing the changes in activity induced
by mutations in several enzymes15−17 and for rationally
designing novel enzymes by means of computational protocols
based on Quantum Mechanics (QM), hybrid QM and
Molecular Mechanics (QM/MM), Empirical Valence Bond
(EVB), MD, and Monte Carlo simulations, or combinations of
them.14 Instead, in this Perspective we will cover a few of the
most recent applications of DL strategies for elucidating
enzyme conformational flexibility and for its application for
enzyme design.

2. THE ROLE OF CONFORMATIONAL DYNAMICS IN
ENZYME FUNCTION AND EVOLUTION

Enzymes present highly preorganized active-site pockets with
the catalytic residues perfectly arranged for efficiently
stabilizing the transition state(s) of a specific reaction.18,19

This preorganization is complemented by the enzyme ability to
adopt multiple conformations of importance for substrate
binding and/or product release. The importance of conforma-
tional flexibility was clearly shown with the design of catalytic
antibodies presenting an ideal complementary structure to the
transition state, which showed a clearly inferior catalytic
activity with respect to enzymes.20 This shows that efficient
catalysis requires not only transition-state stabilization but also
the optimization of the conformational ensemble.14,21 In fact,
the ability of enzymes to adapt and evolve toward novel
functions either by natural or laboratory evolution has been
connected to their inherent conformationally rich dynamic
nature.7,22−25 Enzymes display a high degree of flexibility and
versatility as shown by their promiscuous side activities26 and
also their tolerance to evolve toward novel functions.7,22−25

Along the enzymatic cycle the following steps take place: (1)
first, the substrate(s) bind to the catalytic pocket, which often

require and/or induce a change in the conformation of loops
and flexible domains regulating the access to the active
site;27,28 (2) the substrate(s) are activated to facilitate
productive formation of the Enzyme−Substrate (ES) complex;
(3) this is followed by the stabilization of the transition
state(s) for the formation of multiple reaction intermediates
and product(s); (4) finally, once the Enzyme−Product (EP)
complex is formed the product(s) are released from the pocket,
which is often accompanied by conformational changes that
initiate the next round of the catalytic cycle. All of these steps
are essential for maximizing catalytic activity by optimized
throughput of the overall pathway. The binding of the
substrate for ES formation can also modulate the conforma-
tional landscape as shown for the multienzyme complex
pyruvate dehydrogenase complex.29 In Figure 1, the conforma-
tional changes that take place along the catalytic itinerary of
the enzyme adenylate kinase (AdK) is shown as a model. The
catalytic cycle involves the conformational change from open
to closed structures of a lid that covers the active site. The
computational evaluation of the chemical steps along the
catalytic itinerary (steps 2 and 3) require the use of QM,
hybrid QM/MM, and EVB, which are too expensive to be
applied for analyzing the conformational changes taking place
through the cycle and the processes of substrate binding and
product release (steps 1 and 4).7,14,15 This explains the large
available number of computational approaches developed
along the years. Current computational strategies put mostly
the focus to only some of the above-mentioned features, in part
explaining the often low success in achieving high levels of
enzymatic activity.14

3. COMPUTATIONAL RECONSTRUCTION OF THE
FREE ENERGY LANDSCAPE

The ensemble of conformations that enzymes adopt in solution
can be represented in the free energy landscape (FEL). The
free energy (G) is proportional to the negative logarithm of the
population distribution in kBT units; thus, a maximum in this
distribution is a minimum in the FEL. The FEL therefore
provides crucial information on the thermodynamics (i.e.,

Figure 1. Schematic representation of a catalytic cycle of a model enzyme and associated conformational changes represented in the Free Energy
Landscape (FEL) at the different steps: free enzyme (E), enzyme−substrate (ES), and enzyme−product (EP). For FEL reconstruction some key
degrees of freedom (DOF) need to be defined, as explained in section 3.
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which are the lowest in energy conformations at a given set of
conditions) and the kinetics for the conformational transitions.
These energy barriers separating the different minima will
determine the time scale of the conformational exchange: fast
conformational changes occur in the picosecond to micro-
second time scales (this is the case of loop motions crucial for
enzyme catalysis), whereas slow motions will take place in
millisecond to seconds.
Enzymes can be captured in different conformational states

by means of X-ray, room-temperature, and time-resolved X-ray,
cryo-EM, NMR, and biophysical techniques can be applied for
providing complementary kinetic information.30 These multi-
ple conformations of the same enzyme deposited in the protein
data bank (PDB) played an important role in AF2 training but
also for the AF2 application for assessing the conformational
heterogeneity of biological systems (as discussed below).
Computational methods are particularly appropriate for
reconstructing the FEL: MD simulations sample the
population distribution by integrating Newton’s laws of
motion. By defining a reduced set of collective degrees of
freedom (DOFs) the high dimensional data obtained in the
MD runs can be projected for probability distribution
calculation and thus FEL reconstruction (see Figure 2). The
selection of the reduced set of DOFs can be made manually or
automatically by means of different dimensionality reduction
schemes.7,31 The accurate exploration of the conformational
changes for FEL reconstruction requires extensive MD
simulations, and depending on the time scale of the
conformational transitions enhanced sampling techniques
need to be applied.7,14,15 These techniques have a high

computational cost associated with them (from weeks to many
months of simulations), which limits the applicability of these
strategies for computationally designing and ranking enzyme
designs.

4. APPLICATION OF AF2 FOR CAPTURING
CONFORMATIONAL HETEROGENEITY

The standard AF2 protocol requires the primary sequence of
the enzyme, a multiple sequence alignment (MSA) generated
with information on evolutionary related proteins, and the 3D
coordinates of a small number of homologous structures
named templates (see Figure 3). Although AF2 was designed
to predict single static structures, some recent papers have
shown that by reducing the depth of the input MSAs used in
the AF2 algorithm (in addition to decrease the number of
recycles) accurate models in multiple conformations can be
generated.12,13,32 In particular, del Alamo and coworkers
showed that multiple conformations of transporters and G-
protein-coupled receptors can be obtained by altering the AF2
pipeline and providing a reduced number of MSA sequences
(as low as 16 sequences only).12 They generated up to 50
different models of each protein receptor for each MSA size, as
opposed to the standard AF2 protocol that provides conforma-
tionally homogeneous and nearly identical models. Interest-
ingly, they observed limited conformational sampling for
proteins that were contained in the AF2 training set. In
another study, Stein and McHaourab reported a universal
method for biasing the models generated by AF2 based on the
replacement of specific residues within the MSA to alanine or
another residue.13 AF2 was used to generate initial models, and

Figure 2. Schematic representation of the Free Energy Landscape (FEL) reconstruction process. The high dimensional data of the MD simulations
needs to be reduced and projected into a set of key collective degrees of freedom (DOF) for probability distribution calculation to reconstruct the
FFEL.

Figure 3. Overview of strategies developed for predicting alternate states with AlphaFold2 (AF2). As done in del Alamo et al.12 the Multiple
Sequence Alignment (MSA) depth can be altered, some of the MSA positions can be masked as shown by Stein and McHaourab,13 and the MSA
can be clustered as in the Kern and Ovchinnikov preprint paper.37 The provided set of templates can also be changed as done in some cases in del
Alamo et al.12 and also in our recent publication.34
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the MSA was modified based on possible contact points in the
initial structures, prior structural information, or regions of
uncertainty within the main structure. They found that the
replacement of certain amino acid columns to alanine or other
residues turns the attention of the network to other parts of the
MSA allowing for AF2 to find alternative conformations based
on other coevolved residues. One of the provided examples is
AdK that undergoes a large-scale conformational change of a
lid and a flap that gate the active site, as revealed by the
unbound and inhibitor-bound crystal structures (see Figure 1).
By masking some residues and replacing them to alanine,
closed and open strcutures of AdK were obtained. Although
none of the AF2 open structures reached the level of opening
of the crystal structure (PDB: 4AKE), the set of generated AF2
models displaying a different level of closure showed the
potential of the methodology for predicting alternate
conformations describing the conformational heterogeneity
of the systems.
Inspired by these previous publications showing AF2’s

ability to sample additional conformational states, we
developed a template-based AF2 approach to assess the
conformational heterogeneity and how this is altered by
mutations on the β subunit of several tryptophan synthase
enzymes (TrpB, see Figure 4).33−35 As done in the work of del
Alamo et al.,12 we tested the effect of reducing the provided
number of sequences in the MSA, but we additionally assessed
how AF2 predictions are altered when different templates
displaying multiple conformational states are provided.34 We
tested the template-based AF2 pipeline by providing either X-
ray based or conformations extracted from MD simulations as
templates. With these settings AF2 revealed major differences
in the conformational landscapes among the analyzed systems.
Interestingly, this was further demonstrated by running
multiple short MD simulations from the set of AF2 structures
and reconstructing the associated FELs (Figure 4). The
comparison of the generated FEL from the template-based
AF2 predictions were in line with the computationally
expensive FELs generated with well-tempered multiple-walker
metadynamics simulations. This is exciting as it shows the
potential of AF2 for rapidly and accurately assessing the FELs
of different systems, which could be applied for conforma-

tionally driven enzyme design approaches.7,14 The multiple
outputs obtained via AF2 at different MSA depths were also
recently combined with Reweighted Autoencoded Variational
Bayes for Enhanced (RAVE) sampling.36

In a recent preprint paper, Kern and Ovchinnikov showed
that clustering the input MSA by sequence similarity allows
AF2 to visit multiple conformational states of some
metamorphic proteins known to display large conformational
changes.37 They also identified two mutations that according
to AF2 predictions could switch the circadian rhythm protein
KaiB between the two major conformational states. Their
developed methodology was also applied for searching for
alternative conformational states in other proten families and
found a putative alternate state for the oxidoreductase DsbE.
These computational predictions were, however, not tested
experimentally in the published preprint paper.

5. APPLICATION OF AF2 AND OTHER DEEP
LEARNING TECHNIQUES FOR PROTEIN AND
ENZYME DESIGN

Inspired by the AF2 approach, other DL techniques have been
recently developed for elucidating the folded structure of
enzymes and providing some metrics to be potentially used for
protein design. The field is advancing fast, and the number of
DL strategies developed especially for protein design is
constantly increasing. In this section, we aim to provide a
brief overview of the most representative techniques
developed, and we put special emphasis to those strategies
that are particularly relevant for enzyme design. Some recent
reviews focused on structure-based protein design with DL
strategies are available,39,40 as well as a review related to the
design of more stable enzymes.41

These available strategies for structure prediction can be
classified depending on the number of input parameters used:
those that require the input query sequence, MSA, and set of
templates for accurate predictions and those that predict the
folded structure based on the input sequence only. Similarly to
AF2, the RoseTTAFold (RF) algorithm developed almost at
the same time as AF2 requires an MSA and a set of initial
templates to make accurate predictions of the folded structure.
RF showed improved accuracy toward protein−protein

Figure 4. Our template-based AF2 (tAF2) approach for estimating the conformational heterogeneity. Different Multiple Sequence Alignment
(MSA) depths and set of templates taken from either selected X-ray structures or Molecular Dynamics (MD) snapshots are provided to AF2.34 The
multiple output models generated by AF2 at the different MSA depths shown as vertical lines in the central plot are then subjected to short MD
simulations for FEL reconstruction. The new FEL generated from the 10 ns MD simulations starting from the ca. 1000 AF2 outputs at different
MSA is shown in a blue to red colormap on top of the computationally reconstructed FEL obtained via well-tempered multiple-walker
metadynamics simulations (in gray).33,34 The x and y axis of the reconstructed FELs indicate the Open-to-Closed (O-to-C) transition of the
COMM domain of TrpB that covers the active site, and the Mean Square Deviation (MSD) from the path of the generated O-to-C structures,
respectively.33−35 The input sequence is the 0B2-pfTrpB variant.38 Reproduced with permission from ref 34. Copyright 2022 John Wiley & Sons,
Inc.
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complex prediction as compared to AF2 and AF2 multi-
mer.42,43 OpenFold2 was also developed to replicate the AF2
algorithm and make it accessible to the structural biology
community.44 AlphaLink was also introduced to incorporate
experimental distance restraint information, thus generating a
modified version of the AF2 network architecture.45

Sequences contain implicit information about the enzyme
structure and function, as the position of each amino acid in
the sequence is determined by the spatial arrangement and the
possible interactions established between them. The main
advantage is the comparison of sequences is computationally
cheap (at least as compared to physics-based approaches) and
provides crucial information about the most frequent residues
at each position, conservation score, and correlated mutation
pairs that have emerged during evolution. Covarying mutations
have been associated with function, tertiary contacts, and
binding. It has also been shown that the use of language
models previously used for Natural Language Processing
(NLP) could be applied in the context of the biology language
to generate “content-aware” data representations from large-
scale sequence data sets. This is the case of ESM-2, which
corresponds to the largest language model of protein
sequences developed to date.46 ESMFold was then developed,
which was found to perform end-to-end folded structure
predictions with similar accuracies to AF2, albeit at an order of
magnitude faster.46 OmegaFold (OF) is another end-to-end
structure prediction algorithm developed that combines a
pretrained language model and a geometrical transformer
model for reconstructing the structure.47 Similarly to ESMfold,
OF only needs the input sequence and is 10-fold faster than
AF2 and RF. More importantly, OF was found to do a better
job in predicting the folded structure of orphan proteins, i.e.,
those proteins that do not have any assigned functional family.
Apart from the different methodologies developed to predict

the folded structure of proteins, different NLP and deep-
learning architectures have been developed to generate new
non-natural sequences. These different strategies have targeted
different objectives that range from generating new sequences
for maintaining some natural activities48,49 to imagining new
folds and sophisticated symmetric assemblies,50 among others.
The generative language models ProGen and ProGen2

trained on millions of raw protein sequences were developed to
generate de novo artificial proteins that express well and
maintain enzymatic function.51,52 ProtGPT2 is an unsuper-
vised language model that can generate new sequences based
on the principles of natural ones.53 Similarly, variational
autoencoders trained on a data set of luciferase-like
oxidoreductases were also used to generate new sequences
maintaining the luciferase activity.49 ProteinGAN, which is
based on a self-attention-based variant of the generative
adversarial network, learns natural protein sequences for
generating new functional variants.54 The conditional language
model ZymCTRL trained on the BRENDA database of
enzymes has also been recently developed, which is able to
provide new artificial enzymes within a user-defined Enzyme
Classification (EC)-based enzymatic class.55 Language models
have also been used to obtain a set of sequences that are likely
to fold into a given desired structure. This is, for instance, the
case for recently developed LM-Design56 and ProteinDT57. Yu
and co-workers have recently developed CLEAN based on
contrastive learning that is able to assign EC numbers to a
given sequence.58

The transform-restrained Rosetta (trRosetta) was developed
by the Baker lab in 2020 to design a variety of proteins by
randomly modifying the starting sequences to find sharply
predicted residue−residue interdistance maps.59 The combi-
nation of trRosetta and the physics-based Rosetta was shown
to provide more funneled energy landscapes: trRosetta was
used to disfavor alternative states, and high-resolution Rosetta
was used for creating a deep energy minimum at the designed
target structure.60 Small β barrel proteins and proteins with
discontinuous functional sites were developed with trRoset-
ta.61,62 Recently, Dauparas and co-workers developed a
method called ProteinMPNN, which is a graph neural network
that was found to rescue previously failed designs targeted with
Rosetta or AF2.63 ProteinMPNN was recently applied to
generate de novo luciferases.64 MutComput is a convolutional
neural network (CNN) that was successfully applied for
designing new hydrolases for poly(ethylene terephthalate)
depolymerization.65 Another more recent CNN for protein
sequence design was provided by Anand et al. to generate a de
novo TIM-barrel protein backbone.66 Holographic CNNs have
also been developed to learn the shape of protein micro-
environments to predict the impact of mutations on stability
and binding of protein complexes.67

Different protocols based on the use of AF2 for predicting
the structure of the generated sequences and use the output
AF2 metrics for the design of new proteins have also been
developed. The AlphaDesign computational framework was
constructed to enable the rapid prediction of completely novel
protein monomers starting from random sequences.68 The
potential application of AlphaDesign for designing proteins
that bind to prespecific target proteins was also shown. AF2
was also used for the rapid and accurate fixed backbone design
of sequences that are strongly predicted to fold to a specific
backbone.69 The Baker lab combined ProteinMPNN with AF2
to design closed repeat proteins with central pockets50 and
generate symmetric protein assemblies.50 Similarly, RF instead
of AF2 was used for designing high-affinity protein binders70 or
proteins with prespecified functional motifs.71 RF has also the
potential to predict the effect of mutations on protein
function.72

The RF-based diffusion model (named RFdif fusion) has
been recently developed by the Baker lab.73 RFdif fusion can
very rapidly and accurately design topology-constrained
protein monomers, protein binders, symmetric oligomers,
metal-binding proteins, and even enzyme scaffolds containing
specific active-site residues.73 The performance of RFdif fusion
outperforms hallucination in terms of success rate, accuracy,
and speed. Even though RFdif fusion does not explicitly
consider the substrate molecule, it can be implicitly modeled
using an external potential to guide the generation of the
active-site pocket.
As mentioned in the Introduction, catalytic function requires

substrate binding and product release, and in many cases
enzymatic activity is dependent on cofactor and metal ion
binding. In this direction, different strategies based on DL have
also been generated to dock ligands, substrates, and missing
cofactors into potential pockets. AlphaFill uses sequence and
structural similarity to include the missing organic molecules
and metal ions into the AF2 models.74 The diffusion generative
model DiffDock was designed to dock small molecules into
potential protein pockets. This strategy was shown to
outperform previous traditional and DL docking protocols.75

Meller and co-workers also developed an AF2-based strategy to
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find cryptic pockets.76 DL has also been applied for finding
potential location sites of transition metals in proteins
(Metal1D and Metal3D).77 The coevolution based MetalNet
pipeline has also been recently created to predict potential
metal-binding sites.78

6. OUTLOOK AND FUTURE PRESPECTIVES
Enzyme catalysis is a complex multidimensional process that
requires the optimal sequence and structure for allowing
substrate(s) binding, catalyzing the chemical steps and
product(s) release, and optimizing the multiple conformations
needed for developing its function. This high complexity
makes the task of enzyme design, especially toward non-natural
reactions or substrates in high efficiencies very challenging.
The selected examples highlighted in this review show the
potential of DL techniques to generate new functional variants
mostly within the allowed biological constraints of the
sequence space. The application of DL strategies for
computational enzyme design for any target reaction and
non-natural substrate is only at its beginning. For many years,
the lack of precision in incorporating the desired active-site
residues into protein scaffolds in computational enzyme design
has been considered one of the many limitations of the overall
process. This point, however, seems to be solved with the
recent RosettaFold-based diffusion model developed by the
Baker lab. The incorporation of the QM-based models of the
enzyme active site into new non-natural scaffolds specifically
designed to hold the functional motifs in place might no longer
be the limiting factor, but instead predicting which scaffolds
might be more appropriate for the optimization of the
conformational ensemble for efficient catalysis will most likely
be essential. Considering the huge advances especially in the
field of structure prediction and protein design seen these
recent years, the combination of DL methods with physics-
based approaches will play a key role the coming years for
finding optimal solutions for the rational and routine design of
highly efficient and stable enzymes for non-natural reactions
and substrates.
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Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A.
J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.;
Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.;
Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.;
Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.;
Hassabis, D. Highly accurate protein structure prediction with
AlphaFold. Nature 2021, 596 (7873), 583−589.
(4) Callaway, E. ‘It will change everything’: DeepMind’s AI makes
gigantic leap in solving protein structures. Nature 2020, 588 (7837),
203−204.
(5) Clementi, C. Fast track to structural biology. Nat. Chem. 2021,

13 (11), 1032−1034.
(6) Jones, D. T.; Thornton, J. M. The impact of AlphaFold2 one
year on. Nat. Methods 2022, 19 (1), 15−20.
(7) Maria-Solano, M. A.; Serrano-Hervás, E.; Romero-Rivera, A.;
Iglesias-Fernández, J.; Osuna, S. Role of conformational dynamics in
the evolution of novel enzyme function. Chem. Commun. 2018, 54
(50), 6622−6634.
(8) Campbell, E.; Kaltenbach, M.; Correy, G. J.; Carr, P. D.;
Porebski, B. T.; Livingstone, E. K.; Afriat-Jurnou, L.; Buckle, A. M.;
Weik, M.; Hollfelder, F.; Tokuriki, N.; Jackson, C. J. The role of
protein dynamics in the evolution of new enzyme function. Nat.
Chem. Biol. 2016, 12 (11), 944−950.
(9) Fraser, J. S.; van den Bedem, H.; Samelson, A. J.; Lang, P. T.;
Holton, J. M.; Echols, N.; Alber, T. Accessing protein conformational
ensembles using room-temperature X-ray crystallography. Proc. Natl.
Acad. Sci. U.S.A. 2011, 108 (39), 16247−16252.
(10) Broom, A.; Rakotoharisoa, R. V.; Thompson, M. C.; Zarifi, N.;
Nguyen, E.; Mukhametzhanov, N.; Liu, L.; Fraser, J. S.; Chica, R. A.
Ensemble-based enzyme design can recapitulate the effects of

JACS Au pubs.acs.org/jacsau Perspective

https://doi.org/10.1021/jacsau.3c00188
JACS Au 2023, 3, 1554−1562

1559

49



laboratory directed evolution in silico. Nat. Commun. 2020, 11 (1),
4808.
(11) Otten, R.; Pádua, R. A. P.; Bunzel, H. A.; Nguyen, V.;
Pitsawong, W.; Patterson, M.; Sui, S.; Perry, S. L.; Cohen, A. E.;
Hilvert, D.; Kern, D. How directed evolution reshapes the energy
landscape in an enzyme to boost catalysis. Science 2020, 370 (6523),
1442−1446.
(12) del Alamo, D.; Sala, D.; McHaourab, H. S.; Meiler, J. Sampling
alternative conformational states of transporters and receptors with
AlphaFold2. eLife 2022, 11, e75751.
(13) Stein, R. A.; McHaourab, H. S. SPEACH_AF: Sampling
protein ensembles and conformational heterogeneity with Alphafold2.
PLoS Comput. Biol. 2022, 18 (8), e1010483.
(14) Osuna, S. The challenge of predicting distal active site
mutations in computational enzyme design. Wiley Interdiscip. Rev.
Comput. Mol. Sci. 2021, e1502.
(15) Romero-Rivera, A.; Garcia-Borras̀, M.; Osuna, S. Computa-
tional tools for the evaluation of laboratory-engineered biocatalysts.
Chem. Commun. 2017, 53 (2), 284−297.
(16) Himo, F.; de Visser, S. P. Status report on the quantum
chemical cluster approach for modeling enzyme reactions. Commun.
Chem. 2022, 5 (1), 29.
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Abstract

The three-dimensional structure of the enzymes provides very relevant infor-

mation on the arrangement of the catalytic machinery and structural elements

gating the active site pocket. The recent success of the neural network Alpha-

fold2 in predicting the folded structure of proteins from the primary sequence

with high levels of accuracy has revolutionized the protein design field. How-

ever, the application of Alphafold2 for understanding and engineering func-

tion directly from the obtained single static picture is not straightforward.

Indeed, understanding enzymatic function requires the exploration of the

ensemble of thermally accessible conformations that enzymes adopt in solu-

tion. In the present study, we evaluate the potential of Alphafold2 in assessing

the effect of the mutations on the conformational landscape of the beta subunit

of tryptophan synthase (TrpB). Specifically, we develop a template-based

Alphafold2 approach for estimating the conformational heterogeneity of sev-

eral TrpB enzymes, which is needed for enhanced stand-alone activity. Our

results show the potential of Alphafold2, especially if combined with molecu-

lar dynamics simulations, for elucidating the changes induced by mutation in

the conformational landscapes at a rather reduced computational cost, thus

revealing its plausible application in computational enzyme design.

KEYWORD S

Alphafold2, computational enzyme design, conformational heterogeneity, tryptophan
synthase

1 | INTRODUCTION

“What are the features that make proteins evolvable?”
questioned Tokuriki and Tawfik in their seminal review
paper.1 As opposite to the traditional view of one well-
defined structure of proteins, a new “avant-garde view”

in which proteins display conformational variability key
for their evolvability was proposed. They described that
evolution operates by enriching pre-existing diversities,
which provide the protein the ability to acquire new
functions. These ensembles of pre-existing conformations
in thermal equilibrium with the so-called native state are
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the basis for proteins' evolutionary adaptability1–5 and
provide an explanation for the observed divergency origi-
nated from a few common ancestors,6 as well as their ver-
satility as shown by the enzymatic promiscuous side
activities.6 However, the ability of proteins and enzymes
to adopt multiple conformations might a priori seem to
counter with their characteristics of being proficient,
accurate, and specific. Indeed, the high catalytic activity
of enzymes is mostly attributed to their highly pre-
organized active site pockets presenting the catalytic
machinery well-positioned for efficiently stabilizing the
transition state(s) of the reactions.7,8 However, the impor-
tance of conformational flexibility was demonstrated
with the design of catalytic antibodies.9 Their modest effi-
ciencies as compared to enzymes were attributed to the
imperfect steric and electrostatic environment, but also to
their restricted conformational heterogeneity.10 This
shows that efficient catalysis requires a delicate balance
between active site pre-organization for transition state
stabilization, and also the optimization of the conforma-
tional ensemble along the catalytic itinerary. Following
an enzymatic cycle in detail, the major steps that take
place along a general catalytic itinerary are the following:
(1) binding of the substrate(s) in the catalytic pocket,
which often involves the exploration of additional confor-
mational states presenting properly positioned loops and
flexible domains gating the active site access,11,12 (2) acti-
vation of the substrate(s) for productive enzyme-substrate
(ES) formation; (3) stabilization of the transition state(s)
leading to the formation of the multiple reaction interme-
diates and product(s); (4) release of the product(s), which
again is often accompanied by conformational changes to
restart the catalytic cycle. All these steps are key players
for enhanced catalytic activity.

Since the proposal of Tokuriki and Tawfik of the
ensemble-based conformational diversity key for evolva-
bility, many experimental and computational studies
have been reported in the literature supporting this
idea.1,3–5,13 The study of the conformational landscape of
natural and laboratory-evolved enzymes showed that by
introducing mutations at the active site and also at
remote positions changes in the stabilities of the pre-
existing conformations can be induced. This was experi-
mentally demonstrated in the laboratory evolution of a
phosphotriesterase into an arylesterase (AE) enzyme.2,13

The AE activity was gradually increased by changing the
fluctuation of some key active site gating loops, as shown
by the B-factors of the multiple x-ray structures obtained
along the laboratory-evolution path. NMR and room-
temperature x-ray crystallography of several HG3 Kemp
eliminases also showed a change in the conformational
ensembles along laboratory evolution.14,15 From a com-
putational perspective, this ensemble view of enzymes

can be represented in the so-called free energy landscape
(FEL, Figure 1 for FELs at different reaction stages),4

which can be reconstructed by means of molecular
dynamics (MD) simulations and enhanced sampling
techniques.16–18 In the reconstructed FEL, the relative
stabilities of the thermally accessible conformations, as
well as the kinetic barriers separating them are repre-
sented. Depending on the barrier height that separates a
given pair of conformational states, the timescale associ-
ated to the transition is faster or slower. Conformational
changes that can directly impact catalytic function
include side-chain conformational changes in the fast
timescale, loop motions often playing a key role in sub-
strate binding/product release in slower timescales, and
in some cases allosteric transitions that usually corre-
spond to the slowest processes. The reconstruction of the
FEL and how this is shifted after mutation provides cru-
cial information for understanding and designing enzyme
function.4 The introduced mutations located at the active
site and many times at remote sites induce a long-range
effect affecting enzymatic catalysis. Induced by the muta-
tions introduced, catalytically productive conformational
states are stabilized, whereas the non-productive ones for
the novel functionality are disfavored, thus converting
computational enzyme design into a population shift
problem.19 These observations promoted the exploration
of enzyme conformational dynamics for enzyme
design.3,4,13 The reconstruction of ancestral enzymes dis-
playing a higher degree of flexibility with respect to the
modern counterparts and their use as initial scaffolds for
enzyme design yielded interesting new insights.20 The
higher flexibility of many ancestral variants was found to
be key for achieving higher levels of catalytic activity
with only a few mutations located at the active site. In
this direction, several ancestrally reconstructed enzymes
have been used as starting points for enzyme design, for
instance for enhancing some residual catalytic promiscu-
ity contained in an enzyme family, for altering the allo-
steric regulation of some heterodimeric enzymes, among
others.20–22

The recent success of the neural network Alphafold2
(AF2) in predicting the folded structure from the primary
sequence with high levels of accuracy has revolutionized
the field.23–26 The novel AF2 neuronal network incorpo-
rates information on the evolutionary, physical and geo-
metric constraints of existing protein structures. AF2 is
recognized as one of the milestones in protein structure
prediction, and has boosted the application of deep-
learning methods for many other applications.26 Despite
the impressive performance of AF2 algorithms in predict-
ing the native lowest in energy structure of proteins,
application of AF2 for understanding and engineering
function directly from the obtained single static picture is

2 of 13 CASADEVALL ET AL.
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not straightforward. However, some recent studies have
suggested that AF2 can additionally predict multiple con-
formations of the same protein, and thus it can be poten-
tially used to elucidate the conformational plasticity of
biological systems.27,28 This is exciting as it suggests that
AF2 could be applied for assessing the effect of the intro-
duced mutations on the conformational landscape at a
rather reduced computational cost, which would boost
the development of conformationally driven enzyme
designs protocols.4,19

In this study, we evaluate the potential of AF2 in
assessing the effect of the mutations on the conforma-
tional landscape of tryptophan synthase (TrpS). TrpS is a
heterodimeric enzyme complex (based on TrpA and TrpB
subunits) that performs a multistep reaction mechanism
together with a sophisticated allosteric signal communi-
cation. TrpA catalyzes the retro-aldol cleavage of indole
glycerol phosphate producing glyceraldehyde
3-phosphate and indole, the latter being able to diffuse
through an internal TrpA-TrpB tunnel to reach the TrpB
subunit (Figure 1). For this enzyme, the allosteric

communication between TrpA and TrpB keeps the
proper conformations along the cycle optimizing the cat-
alytic steps, thus the absence of the protein partner leads
to a deficient conformational ensemble.17 In the case of
TrpB, this involves the change of conformation of a
COMM domain that covers the active site, which is
known to adapt closed, partially closed, and open confor-
mations (Figure 1).17,30,31 This fine-tuning of the confor-
mational ensemble induced by the binding partner
makes both TrpB and TrpA substantially less efficient
when isolated.32–37 By applying laboratory-evolution, the
Arnold lab enhanced the stand-alone activity of Pyrococ-
cus furiosus TrpB and generated a new variant named
0B2-pfTrpB exhibiting a 2.9-fold increase in kcat with
respect to the original complex.32,33 The reconstruction of
the last bacterial common ancestor (LBCA) TrpB by
means of ancestral sequence reconstruction showed a
high level of stand-alone activity, which was found to be
lost along evolution.22,38 We previously explored the FEL
of the ancestrally reconstructed LBCA TrpS in complex
and as stand-alone catalyst (LBCA-TrpB), as well as the

FIGURE 1 (a) Representation of the reconstructed conformational landscape (Source: Data from Ref. 17) of tryptophan synthase B

(TrpB) at several reaction intermediates along the catalytic itinerary. The enzyme displays a different conformation of the catalytically

relevant COMM domain that covers the active site (shown in pink in the structure displayed at the center of panel b): open (O) states are
adopted in the resting state E(Ain), partially closed (PC) at the reaction intermediates E(Aex1) and E(A-A), and closed (C) at E(Q2) states.

Most stable conformations are represented in blue, whereas least stable ones in red. (b) Reaction mechanism of TrpB subunit.29 The

conformational states of the COMM domain according to available x-ray data at each reaction intermediate along the catalytic cycle are

displayed. Overlay of the different COMM domain conformational states: O highlighted in lilac, PC in pink, and C in brown. Pyridoxal

phosphate cofactor is shown in teal, L-Ser in pink and L-Trp in lilac. TrpB, tryptophan synthase B

CASADEVALL ET AL. 3 of 13
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wild-type pfTrpS complex, isolated pfTrpB, and
laboratory-evolved stand-alone 0B2-pfTrpB enzyme.17

Our results showed that the low stand-alone activity of
isolated pfTrpB is due to the restricted conformational
heterogeneity of the COMM domain, and the inability to
adopt catalytically productive closed conformations. The
distal mutations introduced in 0B2-pfTrpB recovered the
conformational flexibility of the COMM domain to simi-
lar levels to those observed for the allosterically regulated
pfTrpS complex. However, the closed conformation of the
COMM domain was substantially more stable in the case
of 0B2-pfTrpB, which explains its superior catalytic activ-
ity with respect to pfTrpS. Similar observations were
found for LBCA-TrpB whose stand-alone activity was
mainly attributed to its conformational heterogeneity and
ability to adopt catalytically productive closed conforma-
tions of the COMM domain.39 These two works eluci-
dated the conformational ensemble that a stand-alone
catalyst has to display for being efficient, and revealed
dramatic changes in the COMM domain conformation,
which are important for the multi-step catalytic pathway
of TrpB (as shown in Figure 1).17,39 This information is
pivotal for designing new stand-alone TrpB variants,
which requires the fine-tuning of the conformational
ensemble. In a recent paper,39 we applied the Shortest
Path Map (SPM) methodology18,19 together with ancestral
sequence reconstruction to predict distal activity-
enhancing mutations and design a new TrpB variant, that
we named SPM6-TrpB. The experimental validation of
SPM6-TrpB design demonstrated its superior stand-alone
activity in the absence of TrpA to similar levels to those
achieved with laboratory evolution (seven-fold increase
in kcat with respect to the starting ancestral ANC3-TrpB
enzyme).39 Still the stand-alone activity of the designed
SPM6-TrpB was far from that of the reference LBCA-
TrpB (kcat of 0.5 and 0.2 s�1 for LBCA and SPM6, respec-
tively). This was mostly due again to a restricted confor-
mational heterogeneity and the lack of catalytically
productive closed conformations of the COMM domain,
as revealed by the FEL reconstruction.

In this work, we evaluate the potential of AF2 for
quickly estimating the conformational heterogeneity of
different TrpB displaying different levels of stand-alone
activity. We first evaluate the effect of using different
multiple sequence alignment (MSA) depths in the AF2
predictions for all TrpB systems. We then develop a
template-based AF2 approach consisting on providing a
set of either x-ray based templates or conformations
extracted from MD simulations to estimate the conforma-
tional heterogeneity of the different systems. Finally, we
run short nanosecond timescale MD simulations from
each AF2 prediction to quickly estimate the FEL. Our
results show the potential of AF2, especially if combined

with MD simulations, for elucidating the changes
induced by mutation in the conformational landscapes.

2 | RESULTS

2.1 | Exploring the conformational
heterogeneity by altering the multiple
sequence alignment depths in AF2

Inspired by recent pre-print papers in which the confor-
mational heterogeneity of some proteins was estimated
by reducing the depth of the input MSAs used in AF2
algorithm (as well as the number of recycles),27,28 we
decided to test this methodology in pfTrpB, 0B2-pfTrpB,
LBCA-TrpB, and SPM6-TrpB (see more details in
Section 4). For these systems, we have previously recon-
structed the FEL and have the experimental characteriza-
tion of the stand-alone activity.17,39 In Figure 2, the
previously reconstructed FEL of the 0B2-pfTrpB variant17

is shown together with the predictions of AF2 for the dif-
ferent analyzed systems considering different MSAs
depths (represented with vertical lines colored from
orange to dark blue depending on the MSA depth). The
x axis denotes the open-to-closed transition of the COMM
domain, which ranges from 1–5 (open, O), 6–10 (par-
tially-closed, PC), and 11–15 (closed, C). The predictions
obtained by AF2 for pfTrpB and 0B2-pfTrpB are very sim-
ilar: in both cases PC conformations of the COMM
domain are predicted when the MSA depth is higher than
512 (teal lines). Indeed, by increasing the MSA depth
more structures closer to the native PC state as predicted
by the original AF2 are obtained (Table S1). O structures
are also predicted when a reduced number of MSA (32–
64) is used instead (the standard deviation of the O-to-C
path of the predicted structures is ca. 2 for both systems
at low MSA depths of 32–64 indicating that several levels
of closure of the COMM domain are predicted, Table S1).
For these variants no C conformations are obtained. This
is completely changed in the case of LBCA-TrpB and
SPM6-TrpB. In both cases, C conformations of the
COMM domain are predicted when high MSA depths are
used (256–5120), and by reducing the MSA depth to 32–
64 only PC structures (no O structures) are instead
obtained (Table S1). Although most of the predicted
structures for LBCA and SPM6 TrpB (with high MSAs)
fall in the range of C conformations (mean value of 11 in
the O-to-C pathway in Figure 2 and Table S1), a higher
flexibility of the COMM domain is predicted for the
ancestral enzyme: LBCA-TrpB predictions have O-to-C
values in the 11–15 range, whereas SPM6-TrpB in the
13–15 (see x axis in Figure 2, and larger deviation in
Table S1). It should be emphasized that the native state
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predicted by the default AF2 for both LBCA and SPM6
TrpB has a C conformation of the COMM domain. Alto-
gether these results obtained by reducing the MSA depths
suggest that 0B2-pfTrpB and pfTrpB have a higher ability
to visit O and PC conformations, whereas LBCA and
SPM6 TrpB PC and C structures. Interestingly, a higher
conformational flexibility is predicted for LBCA-TrpB,
especially if compared with SPM6-TrpB, which is in line
with our previous reconstructed FELs that show a much-
limited conformational heterogeneity of the designed
SPM6 variant with respect to LBCA TrpB.39 Finally, to
quantitatively assess the AF2 predicted conformational
heterogeneity in the context of structural variance as
observed in x-ray data, we applied Principal Component
Analysis (PCA, Figure S3). We focused on the carbon
alpha distances of the conserved amino acids of the set of
x-ray structures used. The first two components describe
74% and 12.5% of the total variance. The projection of the

predicted AF2 structures with different depths of MSA
shows no major deviations from the space generated with
experimentally determined structures, thus providing evi-
dence for the validity of the predictions even with a low
MSA depth.

2.2 | Exploring the conformational
heterogeneity by altering the multiple
sequence alignment depths and using x-
rays as templates

The inputs for AF2 calculation are the primary sequence
of the enzyme, a MSA generated with information of evo-
lutionary related proteins, and the three-dimensional
(3D) coordinates of a small number of homologous struc-
tures named templates. In the previous section, we
reduced the depth of the input MSAs used in AF2

FIGURE 2 Representation of the previously reconstructed FEL of the 0B2-pfTrpB variant.17 The x axis denotes the open-to-closed

transition of the COMM domain, which ranges from 1–5 (open, O), 6–10 (partially closed, PC), to 11–15 (closed, C), the y axis is the MSD

deviation from the path of O-to-C structures generated. Most stable conformations are shown in blue, whereas higher in energy regions in

red.17 The predictions of AF2 for the different analyzed systems are represented on the 2D-FEL representation using vertical lines colored

from orange to dark blue depending on the MSA depth: AF2 predictions obtained with a 32 MSA depth are shown with a vertical orange

line, 64 in light orange, 128 in light brown, 256 in light cyan, 512 in cyan, 1024 in teal, and 5120 in dark blue. Black dots indicate some

representative available x-ray structures, the size of the spheres is proportional to the sequence identity of the x-ray with respect to the

studied TrpB system. FEL, free energy landscape; MSD, mean square deviation
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algorithm to evaluate the conformational heterogeneity
of four TrpB enzymes displaying different levels of stand-
alone activity, and found mostly C conformations for the
ancestral and designed TrpB, whereas PC for pfTrpB
based variants. Our hypothesis is that by additionally
fine-tuning the other input parameter of AF2, that is, the
set of templates used to extract the 3D information, more
information regarding the enzyme ability to adopt O, PC,
and C conformations can be derived. In fact, in the origi-
nal formulation of AF2 five models are provided that use
different number of MSA depths and template structures
to encourage diversity in the predictions.25 It should be
also noted that in a recent paper the effect of including
different x-ray templates on AF2 predictions was tested
only for a specific protein target that was exclusively
modeled in only one of the conformations (even with low
MSA depths).27 Different decoy structures were used as
templates in a recent pre-print paper based on assessing
the coevolution dependency of the AF2 learned potential
function for scoring protein structures.40 In this study, we

have tested the hypothesis that by altering the set of AF2
templates the conformational heterogeneity of the target
enzymes can be estimated. We have used a reduced num-
ber of template structures based on the available x-ray
structures presenting a sequence identity larger than 70%
with respect to all systems (Table S2 and Figure S1). The
side-chain conformation was kept in the template, how-
ever, as done in a previous study40 we also run the simu-
lations by hiding side-chain information from the
template and providing only the coordinates of the carbon
beta (or carbon alpha in the case of glycine, Figures S4
and S5 for the results without side-chain). In Figures 3
and S6, the results from this template-based AF2 strategy
are displayed. For the same primary sequence, the predic-
tion from this template-based AF2 approach suggests a
different level of closure of the COMM domain depending
on the x-ray template structures used (either in a C, PC,
or O conformation, Figures 3 and S6). When C and PC x-
ray templates are used, AF2 prediction for pfTrpB and
0B2-pfTrpB mostly suggests PC conformations of the

FIGURE 3 Representation of the previously reconstructed FEL of the 0B2-pfTrpB variant,17 and the predictions of the x-ray template-

based AF2 approach for the different analyzed systems: pfTrpB (a), (b) 0B2-pfTrpB, (c) LBCA-TrpB, (d) SPM6-TrpB. The x axis denotes the

open-to-closed transition of the COMM domain, which ranges from 1–5 (open, O), 6–10 (partially closed, PC), to 11–15 (closed, C), the y axis
is the MSD deviation from the path of O-to-C structures generated. Most stable conformations are shown in blue, whereas higher in energy

regions in red.17 The predictions of the x-ray template-based AF2 for the different analyzed systems are represented on the 2D-FEL

representation using vertical lines colored from orange to dark blue depending on the MSA depth: AF2 predictions obtained with a 16 MSA

depth are shown with a vertical orange line, 32 in light orange, 64 in light brown, 128 in light cyan, 256 in cyan, 512 in teal, and 1024 in dark

blue. For each studied case, the predictions obtained by AF2 using x-ray templates with O-PC conformations of the COMM domain are

shown in the left, whereas the results with x-ray templates presenting PC-C conformations in the right. Black dots indicate the used x-ray

structures as input templates, and the size of the spheres is proportional to the sequence identity of the x-ray with respect to the studied

TrpB system. FEL, free energy landscape; MSD, mean square deviation
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COMM domain, especially at high MSA depths (ca. 72%
of PC and C structures are predicted, Table S3). The dif-
ferences between the predicted structures for both systems
are small (they only differ in six mutations), although a
slightly higher number of C conformations are suggested
for 0B2-pfTrpB (74 vs. 71% for 0B2-pfTrpB and pfTrpB,
respectively, Table S3). When O and PC templates are
used instead, PC conformations are predicted similarly
for both cases (79 and 21% of O-PC and PC-C, respec-
tively, for both cases). The same strategy when applied in
the case of LBCA and SPM6 TrpB shows that
C conformations of the COMM domain are most fre-
quently predicted irrespectively of the x-ray template
structure used and the MSA depth applied, as shown in
the previous section (Table S3). As discussed in the previ-
ous section, the conformational variance of the obtained
predictions with this x-ray template-based approach is in
line with the structural variance observed in x-ray data
(Figure S3).

2.3 | Exploring the conformational
heterogeneity by altering the multiple
sequence alignment depths and using
molecular dynamics conformations as
templates

In the specific case of TrpB multiple x-ray structures dis-
playing different conformations of the COMM domain
are actually available (Figure S1). However, this is not
the case for most of the systems. In this section, we
assessed and compared the outcome of the template-
based AF2 using conformations extracted from MD simu-
lations instead of x-ray structures. As far as we know, this
was not tested in any of the previously mentioned studies
based on using AF2 to extract information of the confor-
mational landscape.27,28 In particular, we used as input a
reduced number of conformations displaying either C,
PC, or O conformations of the COMM domain extracted
from our recently published FELs at the Q2-bound state

FIGURE 4 Representation of the previously reconstructed FEL of the 0B2-pfTrpB variant,17 and the predictions of the MD extracted

template-based AF2 approach for the different analyzed systems: pfTrpB (a), (b) 0B2-pfTrpB, (c) LBCA-TrpB, and (d) SPM6-TrpB. The x axis

denotes the open-to-closed transition of the COMM domain, which ranges from 1–5 (open, O), 6–10 (partially closed, PC), to 11–15 (closed,

C), the y axis is the MSD deviation from the path of O-to-C structures generated. Most stable conformations are shown in blue, whereas

higher in energy regions in red.17 The predictions of the MD template-based AF2 for the different analyzed systems are represented on the

2D-FEL representation using vertical lines colored from orange to dark blue depending on the MSA depth: AF2 predictions obtained with a

16 MSA depth are shown with a vertical orange line, 32 in light orange, 64 in light brown, 128 in light cyan, 256 in cyan, 512 in teal, and

1024 in dark blue. For each studied case, the predictions obtained by AF2 using as templates conformations extracted from MD simulations

with O-PC conformations of the COMM domain are shown in the left, whereas the results with MD templates presenting PC-C
conformations in the right. (a–d) With vertical lines colored from yellow to teal depending on the MSA depth. The x axis denotes the open-

to-closed transition of the COMM domain, which ranges from 1–5 (open, O), 6–10 (partially closed, PC), to 11–15 (closed, C). Black dots

indicate the used representative MD conformations as input templates. FEL, free energy landscape; MD, molecular dynamics; MSD, mean

square deviation; MSA, multiple sequence alignment
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of the most evolved 0B2-pfTrpB variant (gray dots in
Figure 4).17 Similarly to what was done with x-ray-based
templates, the side-chain conformation was included in
the 3D template (Figures S9 and S10 for the results with-
out side-chain information). When MD-extracted
C conformations are used as input templates, the pre-
dicted structures for pfTrpB and 0B2-pfTrpB present PC
conformations of the COMM, especially if high MSA
depths are used (green lines in Figures 4 and S11). This is
in line with the results obtained in the previous sections
where either the MSA depths were only altered or differ-
ent x-ray templates combined with different levels of
MSA were used. Interestingly, by comparing the range of
predicted structures at high MSA depths for both pfTrpB
and 0B2-pfTrpB systems, which differ only in six distal
active site mutations, a slightly higher ability to adapt
C conformations of the COMM domain is predicted for
the stand-alone 0B2-pfTrpB variant (74% of the predicted
structures adopt PC-C conformations, whereas 67% in
the case of pfTrpB, Table S3). Indeed, some structures
present O-to-C values in the 12–15 range for 0B2 instead
of the 10–13 for pfTrpB with MSA depths higher than
256 (teal vertical lines in Figures 4 and S11). As expected,
the use of O and PC conformations of the COMM
domain as input templates generate mostly PC conforma-
tions for both pfTrpB systems irrespective of the MSA
depth (ca. 85% of the predicted structures present O-PC
conformations for both systems, Table S3). Altogether
these results suggest that AF2 predicts as the lowest in
energy conformation PC structures for pfTrpB and
0B2-pfTrpB. However, by altering the MSA depths and
providing as input templates different conformations of
the COMM domain taken from MD simulations some
hints about the conformational heterogeneity can be
extracted: a higher ability to adopt the catalytically pro-
ductive C conformation is predicted for the stand-alone
0B2-pfTrpB, if compared to pfTrpB.

The same analysis was performed on the ancestral
LBCA-TrpB and SPM6-TrpB design. When
O conformations are used as input templates, PC and
C structures are predicted for LBCA at high MSA
levels, whereas for SPM6 more C conformations are
obtained (Table S3). At low MSA (brown colored lines
in Figure 4), O, PC, and C structures are similarly pre-
dicted for both cases. These results are again suggesting
a higher conformational flexibility for the ancestral
LBCA-TrpB as compared to the SPM6 design, which is
accordance with our previously computed FELs. By
using C conformations as templates, the predictions for
both systems at either high and low levels of MSA
depths yield C structures of the COMM domain
(ca. 91% of the predicted structures present PC-C con-
formations of the COMM domain in both systems,

Table S3). As found for the x-ray template-based AF2
predictions, the conformational variance of the struc-
tures generated with this MD template-based approach
is in line with the structural variance observed in x-ray
data (Figure S3).

2.4 | Exploring the conformational
heterogeneity by short nanosecond
timescale molecular dynamics simulations
from the x-ray template-based AF2
predicted structures

The previous sections have shown that by altering the
MSA depth and providing different sets of templates
(either based on x-ray structures or conformations
extracted from MD simulations) the conformational
landscape of different TrpB systems can be estimated.
To further validate AF2 predictions and assess its
potential application for rapidly estimating the confor-
mational heterogeneity, we decided to run multiple
replica short nanosecond timescale MD simulations
starting from the set of AF2 structures predicted in
Section 2 (2 replicas of 10 ns MD simulations starting
from the ca. 60 different AF2 outputs obtained in the x-
ray template based AF2 approach, that is, ca. 1200 ns
of accumulated MD simulation time for each TrpB var-
iant). In Figure 5, the reconstructed FEL from the set
of MD simulations performed starting from AF2 output
structures is shown on top of the previously recon-
structed FELs of pfTrpB, 0B2-pfTrpB, LBCA-TrpB, and
SPM6-TrpB.17,39 As discussed in the previous sections,
a higher conformational heterogeneity is predicted for
0B2-pfTrpB and pfTrpB with respect to LBCA and
SPM6-TrpB that mostly adopt C conformations of the
COMM domain. Interestingly, larger differences are
observed when comparing 0B2-pfTrpB and pfTrpB that
only differ in six mutations (98.4% of sequence iden-
tity): although there is only one minimum at
C conformations of the COMM domain in both cases,
the estimation of the FEL for 0B2-pfTrpB suggest the
existence of an additional minima at O conformations.
The O-to-C value of the COMM domain at the
C minima is ca. 9 in pfTrpB, whereas ca. 10.5 in
0B2-pfTrpB, thus suggesting a higher ability for adopt-
ing the catalytically productive C conformation in
0B2-pfTrpB, as found in our previous study.17 In the
case of LBCA and SPM6-TrpB a much more restricted
conformational heterogeneity is found, in line with the
previously reconstructed FELs.39 In fact, in our previ-
ous study we found that at the Q2 intermediate LBCA-
TrpB has a wide energy minima at C conformations
(mostly presenting a larger deviation along the y axis),

8 of 13 CASADEVALL ET AL.
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which confers the enzyme the ability to visit both cata-
lytically productive and unproductive conformations of
the COMM domain. The estimated FEL obtained here
from the ensemble of short MD simulations starting at
the different AF2 structures also suggest a higher devi-
ation along the y axis, and the ability to visit
C conformation of the COMM domain (O-to-C values
of ca. 11) in line with its high stand-alone activity. The
estimated FEL for LBCA and SPM6-TrpB are similar
(Figure 5), although the C minima for SPM6-TrpB is
wider along the O-to-C axis as it ranges between 9.5
and 12. Although the estimated FELs from this rather
short MD simulations present some deviations from
the previously reconstructed FELs based on well-
tempered multiple-walker metadynamics simulations,
the conformational heterogeneity of the different sys-
tems can be estimated, which suggests its potential
application for rapidly evaluating the effect of muta-
tions into the conformational landscape of enzymes.
Finally, the projection of the accumulated MD dataset
into the principal component space generated based on
the ensemble of available x-ray structures shows no
major deviations with experimentally determined
structures (Figure S12).

3 | DISCUSSION AND
CONCLUSIONS

Tryptophan synthase is a heterodimeric enzyme that fea-
tures a mechanistically complex reaction mechanism
(as shown in Figure 1), together with a fine-tuned confor-
mational ensemble that needs to be optimized for
enhanced function.17,32–37,39 Our previously recon-
structed conformational landscapes of the heterodimeric
complex as well as several isolated TrpB enzymes showed
that by altering the relative stabilities of the open, par-
tially closed, and closed conformations of the catalytically
relevant COMM domain, the reaction steps along the cat-
alytic itinerary are optimized.17 Such conformational
changes play an important role in pre-organizing the
active site for efficient catalysis, for the binding of the
two substrates and for product release. By computation-
ally analyzing multiple TrpBs displaying different stand-
alone activities, we found that enhanced stand-alone
activity requires the ability to adopt closed conformations
of the COMM domain in the absence of the binding part-
ner, as well as a high conformational flexibility to allow
substrate binding and product release.39 The high compu-
tational cost associated to FEL reconstruction limits the

FIGURE 5 Representation of the previously reconstructed FELs of the pfTrpB, 0B2-pfTrpB, LBCA-TrpB, and SPM6-TrpB (shown in

gray scale).17,39 The estimated FEL from multiple replica short nanosecond timescale MD simulations performed starting at the x-ray

template-based AF2 predictions for the different analyzed systems is shown in color on top of the previously reconstructed FELs. The x axis

denotes the open-to-closed transition of the COMM domain, which ranges from 1–5 (open, O), 6–10 (partially closed, PC), to 11–15 (closed,

C), the y axis is the MSD deviation from the path of O-to-C structures generated. Most stable conformations are shown in blue, whereas

higher in energy regions in red.17 FEL, free energy landscape; MD, molecular dynamics; MSD, mean square deviation
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exploration of such conformational changes to only a few
selected enzyme systems, which is a clear limitation for
the routine computational design of new stand-alone var-
iants.19 In this study, we aimed to test the ability of AF2
to quickly estimate the conformational heterogeneity and
changes in the conformational landscapes induced by
mutations. We focused on the following systems: the allo-
sterically regulated pfTrpB enzyme that in the absence of
its binding TrpA partner has restricted conformational
heterogeneity and thus low catalytic activity; the
laboratory-evolved 0B2-pfTrpB that presents stand-alone
activity thanks to the six distal mutations introduced that
recover the allosterically regulated conformational
ensemble; the ancestrally reconstructed LBCA TrpB that
does not require TrpA to operate efficiently as it presents
the ability adopt different levels of closed conformations
of the COMM; and our recently designed SPM6 TrpB var-
iant displaying some stand-alone activity.17,39 By chang-
ing the depth of the MSA used and altering the input
template structures (either from x-ray data or conforma-
tions taken from MD simulations), the conformational
heterogeneity of the systems can be estimated. This is
particularly evidenced by running multiple short nano-
second timescale MD simulations from the provided set
of structures by this tuned AF2 approach and recon-
structing the associated conformational landscapes.

Interestingly, by altering the MSA depth and includ-
ing either x-ray or MD-based structures as templates,
AF2 predicts mostly partially closed (PC) conformations
of the COMM domain for 0B2 and pfTrpB, whereas
closed (C) structures for the ancestral LBCA and SPM6
TrpB design. By further analyzing the output structures
provided by using either C or O templates in the different
systems, one can estimate a higher conformational het-
erogeneity for pfTrpB-based systems, as O, PC, and
C conformations can be generated at both higher and
lower MSA depths. In contrast, LBCA and SPM6 TrpB
predictions are much more restricted to the PC and
C ensemble. The lack of O structures for LBCA-TrpB and
SPM6-TrpB is also in accordance with our previous calcu-
lations at the Q2 intermediate that suggested an infre-
quent transition towards O states as the reaction
progresses, thus suggesting that product release might be
rate-limiting.39 A high similitude in the predictions is
observed when comparing 0B2 and pfTrpB systems,
which is attributed to the high sequence identity between
both systems (only six mutations are introduced in 0B2,
that is, 98.4% of sequence identity). However, AF2 predic-
tions suggest a higher number of C conformations of the
COMM domain for 0B2-pfTrpB variant (74% vs. 67% of
PC-C structures when using C MD templates). This
increased number of C structures for the evolved variant
is in accordance with the reconstructed FELs that show

that at the Q2 intermediate the C conformation of the
COMM is much more accessible for 0B2 than for pfTrpB
in the presence of TrpA (i.e., for pfTrpS complex).17 The
estimation of the conformational landscapes from multi-
ple replica short nanosecond timescale MD simulations
starting at the different x-ray template-based AF2 predic-
tions are in line with the previously reconstructed com-
putationally expensive FELs obtained from well-
tempered multiple-walker metadynamics simulations.39

This suggests that the developed tuned AF2 approach
combined with short MD simulations could be poten-
tially applied for rapidly estimating changes on the con-
formational landscape at a rather reduced
computational cost.

Altogether, the distribution of the AF2 predictions in
the reconstructed FEL highlights how AF2 learned to
locate the global minimum for the input sequence. In this
regard, the increase of co-evolutionary information from
the MSA forces the network to predict structures close to
the global minimum, even if a deviated template is pro-
vided. As it can be rationalized from Figures S4 and S6,
AF2 predicted as the most probable FEL regions those
containing the templates with the highest sequence iden-
tities (see largest spheres in Figures S4 and S6). Thus,
including co-evolutionary information limits the confor-
mational exploration, which highlights the importance of
developing tuned template-based AF2 approaches for
assessing the conformational heterogeneity of protein
structures. The results provided in this study indicate that
by altering the MSA depth and using either x-ray struc-
tures or conformations taken from MD simulations, the
conformational heterogeneity of related TrpB variants
can be quickly estimated. This is specially the case if AF2
predictions are then further evaluated by means of multi-
ple short nanosecond timescale MD simulations.
Although much drastic differences are observed when
comparing systems presenting lower sequence identities,
subtle conformational changes induced by a small num-
ber of mutations can also be potentially captured. This is
exciting as it suggests that AF2 could be applied for asses-
sing the effect of the introduced mutations on the confor-
mational landscape at a rather reduced computational
cost, and opens the door to new AF2-based computa-
tional enzyme design approaches.

4 | MATERIALS AND METHODS

AF2 structure prediction starts with a FASTA sequence
as an input that is used to generate the MSA and find
structural templates, with which AF2 was trained. Five
models are obtained as a result, which come from differ-
ent combinations of random seeds, and considering a

10 of 13 CASADEVALL ET AL.
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different number of structural templates and extra
sequences. This blend of strategies leads to a larger diver-
sity in the predictions.41 Even so, the obtained structures
are often very similar as they are exploring the lowest in
energy conformations of the protein. In recent papers,
different strategies have been proposed to overcome this
static picture provided by AF2: (a) del Alamo et al.27 the
number of sequences of the MSA provided to AF2 was
modified to contain as few as 16 sequences, they also
reduced the number of recycles to 1, and avoid the final
MD simulation to reduce the computational cost of the
pipeline; (b) Stein and coworkers proposed to replace
some specific residues within the MSA to alanine or
another residue to potentially manipulate the distance
matrices leading to alternate conformations.28 To investi-
gate whether AF has learned a coevolution-independent
potential function for scoring protein structures Roney
and Ovchinnikov evaluated the effect of using decoy
structures as templates with missing amino acids.40 In
this work, we fine-tune several parameters that differ
from the default AF2: (1) MSA depths, as described in
the previously mentioned papers,27,28 giving less co-
evolution information and thus leading to an increase of
the conformation diversity and (2) the set of templates
used, that come either from a subset of x-ray structures
(as done in del Alamo et al.27), or from conformations
taken from previous MD simulations17 (this was not
tested in any of the previously mentioned papers).

In particular, we used the following protocol: Starting
from the MSA depth alteration, we reduced the number
of recycles to one (“num_recycle = 1”) because of perfor-
mance reasons. Similarly, Amber minimization was also
deactivated, so no structure relaxation was requested
(“amber_relaxed” = none). Each of the five models were
run with 10 different MSA depths. This value is con-
trolled by “max_extra_msa” and “max_msa_clusters”
parameters. The first parameter is described as the num-
ber of extra sequences used; and the latter determines the
number of the sequence clusters used for the AF2 neural
network. Here, the first parameter was comprised
between 5120 and 32. Note that, as described in a previ-
ous paper,27 we set the latter parameter as the half of the
former parameter except when 5120 sequences are used.
In that particular case, “max_msa_clusters” parameter
was set to 512.27 In order to include templates, two strate-
gies were performed: (1) considering x-ray structures and
(2) conformations extracted from our previously recon-
structed free energy landscape of 0B2-pfTrpB.17 Nine x-
ray structures (Figure S2) and 11 MD structures
(Figure S8) were used as templates presenting different
levels of closure of the COMM domain. The parameters:
“num_recycle” and “amber_relaxed” were also main-
tained as described before. We focused on

“model_ptm_2” as it presented the most confident struc-
ture results in terms of the predicted LDDT-Cα score
(pLDDT) and TM-score (pTM) values. In the case of
template-based calculations, the MSA depth was altered
in the 1024–16 range (“max_extra_msa” comprised
between 1024 and 16, and “max_msa_clusters” was set at
its half). Finally, the parameter “reduce_msa_clusters_-
by_max_templates” was deactivated. Also, AF2 calcula-
tions considering only the targeted sequence in the MSA
was done to ignore co-evolution information (Figures S5
and S10).

4.1 | Molecular dynamics simulations

The starting structures for the four enzymes (pfTrpB,
0B2-pfTrpB, LBCA-TrpB, and SPM6-TrpB) were generated
with the predictions of the x-ray template-based AF2
approach. We performed two replicas of 10 ns MD simula-
tions at the Q2 intermediate starting from a total of 60, 59,
62, and 59 AF2 structures for pfTrpB, 0B2-pfTrpB, LBCA-
TrpB, and SPM6-TrpB systems, respectively. All calcula-
tions were performed using a modification of the amber99
force field (ff14SB) using AMBER 20 (see Appendix S1 for a
complete description of the methods).42
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Abstract: Hydroxynitrile lyase from rubber tree (HbHNL) shares 45% identical amino acid 
residues with the homologous esterase from tobacco, SABP2, but the two enzymes catalyze 
different reactions. The x-ray structures reveal a serine-histidine-aspartate catalytic triad in 
both enzymes along with several differing amino acid residues within the active site. Previous 
exchange of three amino acid residues in the active site of HbHNL with the corresponding 
amino acid residue in SABP2 (T11G-E79H-K236M) created variant HNL3, which showed 
low esterase activity toward p-nitrophenyl acetate. Further structure comparison reveals 
additional differences surrounding the active site. HbHNL contains an improperly positioned 
oxyanion hole residue and differing solvation of the catalytic aspartate. We hypothesized that 
correcting these structural differences would impart good esterase activity on the 
corresponding HbHNL variant. To predict the amino acid substitutions needed to correct the 
structure, we calculated shortest path maps for both HbHNL and SABP2, which reveal 
correlated movements of amino acids in the two enzymes. Replacing four amino acid 
residues (C81L-N104T-V106F-G176S) whose movements are connected to the movements 
of the catalytic residues yielded variant HNL7TV (stabilizing substitution H103V was also 
added), which showed an esterase catalytic efficiency comparable to that of SABP2. The x-
ray structure of an intermediate variant, HNL6V, showed an altered solvation of the catalytic 
aspartate and a partially corrected oxyanion hole. This dramatic increase in catalytic 
efficiency demonstrates the ability of shortest path maps to predict which residues outside the 
active site contribute to catalytic activity.  

Introduction 
One of the most important qualities of an enzyme is its ability to efficiently catalyze 
reactions. Nature’s enzymes are efficient with natural substrates, but many potential 
applications require enzymes to work with unnatural substrates or even catalyze new 
chemical steps. Engineering enzymes to Nature-like efficiencies remains an unsolved 
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problem.[1] Protein design often yields enzymes millions of times slower than natural 
enzymes.  

Improving enzyme efficiency is challenging for several reasons. First, an efficient 
enzyme must simultaneously optimize substrate binding, transition state stabilization, and 
product release. Second, proteins move continuously,[2-6] but catalysis requires precisely 
positioning the substrate and catalytic groups for reaction. It is difficult to predict how to shift 
the conformational landscape to favor the catalytically competent conformations. Third, 
residues outside the active site, not in direct contact with substrate, contribute to catalysis as 
shown by many directed evolution experiments, but it is difficult to predict how these distant 
residues impact catalysis. 

The objective of this paper is to test whether correlated protein motions (shortest path 
maps, SPM[1,  4]) can predict residues outside the active site that contribute to catalysis. These 
SPM’s identify residues that move together during molecular dynamics simulations. We 
hypothesize that residues whose motion is correlated with the motions of the catalytic 
residues are those that contribute most strongly to efficient catalysis. Mutating these 
correlated positions should shift global minimum energy conformation towards catalytically 
competent conformations. Previously, SPM’s identified locations of beneficial substitutions 
previously identified by directed evolution,[1, 4] and substitutions that allosterically activated  
tryptophan synthase B a modest 7-fold in kcat and 4-fold in kcat/KM.[7]  

The test case is to increase the efficiency of an inefficient esterase (a modified 
hydroxynitrile lyase, HNL3V) by computational design. The engineering uses a homologous 
esterase, SABP2, for comparison and focuses on transferring substitutions from the 
homologous esterase to the modified hydroxynitrile lyase. This approach limits the scope of 
the problem, but it remains challenging since the esterase and modified hydroxynitrile lyase 
differ by 146 residues. There are 2146 or approximately 1044 possible variants one could create 
by exchanging residues between the two enzymes.  

Previous design of esterase activity achieved only modest catalytic efficiencies;[8-12] 

the best kcat/KM was 6,600 M-1 min-1.[11]  In contrast, the work below reports an eight-
substitution variant with excellent catalytic efficiency (kcat/KM of 120,000 M-1 min-1), which 
is two-fold higher than that for the target esterase. In addition, computational and x-ray 
structure analysis of the variants reveal the molecular basis of the improved esterase activity: 
improved positioning of an oxyanion-hole-stabilizing residue and altered solvation of the 
catalytic aspartate. 

Results 

Homologs SABP2 and HbHNL catalyze different reactions with similar active sites 
HbHNL and SABP2 are homologous enzymes with similar catalytic triads but different 
catalytic activity. HbHNL shares 44% sequence identity and 62% similarity over 260 
positions with the modern esterase SABP2 (salicylic acid binding protein 2 from tobacco), 
Supplementary Fig. 1. HbHNL and SABP2 contain the same Ser-His-Asp catalytic triad, but 
HbHNL catalyzes cyanohydrin cleavage,[13] while SABP2 catalyzes ester hydrolysis.[14] Both 
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enzymes belong to the ɑ/β-hydrolase fold superfamily.[15, 16] HbHNL and other hydroxynitrile 
lyases diverged from the esterases approximately 100 million years ago.[17, 18]  

SABP2 and other serine esterases contain a catalytic triad (Ser-His-Asp) and an 
oxyanion hole, which consists of two main chain N-H’s that form hydrogen bonds to the 
substrate carbonyl oxygen, Fig. 1. In the first step of the reaction, His238 abstracts a proton 
from the O𝛾 of Ser81, which initiates a nucleophilic attack on the carbonyl carbon of the 
pNPAc substrate (Fig. 1a). The resultant oxyanion is stabilized through H-bonds with 
backbone N-H’s at positions 13 and 82.  

 

Fig. 1 | Although esterase SABP2 and hydroxynitrile lyase HbHNL both contain a Ser-
His-Asp catalytic triad, HbHNL lacks a functional oxyanion hole preventing it from 
catalyzing ester hydrolysis. a, The carbonyl oxygen of the p-nitrophenyl acetate substrate 
(blue) accepts hydrogen bonds from two main chain N-H's (Gly12, Leu82). These 
simultaneous hydrogen bonds are known as the oxyanion hole. Hydrolysis of the ester starts 
with a nucleophilic attack of Ser81 on the carbonyl carbon to form a tetrahedral intermediate 
(not shown). The oxyanion hole stabilizes the negative charge that forms on the oxygen in the 
tetrahedral intermediate. b, HbHNL catalyzes cleavage of a cyanohydrin (blue) in a single 
step. The reaction does not involve an oxyanion intermediate, so catalysis does not require an 
oxyanion hole. c, HbHNL catalyzes slow p-nitrophenyl acetate hydrolysis (blue). The 
oxyanion hole in HbHNL is disrupted by the side chain of Thr11, which hinders access of the 
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substrate to this region and by a twist in the main chain that points the N-H (green) away 
from the substrate. For clarity none of the diagrams show the aspartate of the catalytic triad.  

HbHNL catalyzes the enantioselective cleavage of mandelonitrile, an aromatic 
cyanohydrin (Fig. 1b).[19, 20] In contrast to the multi-step ester hydrolysis catalyzed by 
SABP2, this lyase reaction occurs in a single step. Catalysis of mandelonitrile cleavage uses 
the catalytic triad for simple acid-base chemistry. The catalytic Ser deprotonates the substrate 
hydroxyl; subsequent elimination of cyanide yields benzaldehyde. The lyase reaction does 
not involve an oxyanion intermediate. 

HbHNL also catalyzes promiscuous hydrolysis of pNPAc, but 500-fold slower than 
SABP2 (kcat of 0.25 min-1 vs. 130 min-1 for SABP2), Fig. 1c. One reason for the low esterase 
activity of HbHNL is that access to the oxyanion hole is blocked by the side chain of Thr11. 
During lyase catalysis, the side chain hydroxyl of Thr11 can donate a hydrogen bond to the 
cyanohydrin hydroxyl, Fig. 1b. The corresponding residue in SABP2 is Gly12, which allows 
full access to the oxyanion hole. Replacement of Gly12 with threonine in SABP2 decreased 
the esterase activity 2000-fold[21] confirming that the threonine hinders ester hydrolysis. 
However, replacement of Thr11 in HbHNL with glycine increases the promiscuous 
hydrolysis of pNPAc only slightly[19] suggesting that additional structural differences between 
the oxyanion hole in HbHNL and SABP2 contribute to the low esterase activity of HbHNL.  

The positioning of one oxyanion hole residue differs significantly between SABP2 and 
HbHNL 
The x-ray crystal structures of SABP2 and HbHNL show similar placement for the catalytic 
atoms. The x-ray structure of apo SABP2 and three x-ray structures of apo HbHNL were 
overlaid to best fit the positions of all corresponding Cɑ, Fig. 2. The comparison was 
restricted to structures without a ligand in the active site to avoid structure changes caused by 
the ligand. The comparison of multiple structures may also account for some of the motion of 
the atoms in solution. Four of the catalytic atoms (serine Oɣ, histidine Nε2, aspartate Oδ2, 
and oxyanion hole residue OX2 N) align closely between SABP2 and the three HbNHL 
structures with RMSD of 0.4-0.9 Å.  
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Fig. 2 | Overlay of the catalytic residues of three apo HbHNL structures (pdb id = 6yas, 
3c6x, 2g4l; white carbons) onto the structure of apo SABP2 (1y7h; blue carbons). The 
alignment minimized the RMSD between the corresponding Cɑ atoms in the entire protein. 
The average deviation was 0.68 Å over 213-218 aligned Cɑ atoms out of 256. The five 
catalytic triad and oxyanion hole atoms deviated by slightly more than the average Cɑ 
deviation, an average of 0.8 ± 0.3 Å. The largest deviation was the catalytic nitrogen atom of 
oxyanion residue OX1 (Ala13 in SABP2, Ile12 in HbHNL), which deviated by 1.21±0.02 Å. 
This deviation likely contributes to the poor esterase activity of HbHNL. Another way to 
measure this difference is the serine Cɑ to OX1 N distance within each structure. For SABP2, 
this distance is 5.8 Å, while for the three HbHNL structures, this distance is longer, 6.8 ± 0.2 
Å. 

The remaining catalytic atom (oxyanion hole residue OX1 N) differs significantly 
between SABP2 and HbHNL: 1.2 Å. We hypothesized that this difference contributes to the 
poor promiscuous esterase activity of HbHNL. The kcat/KM value for hydrolysis of p-
nitrophenyl acetate by HbHNL is only 0.1% of the value for SABP2, Table 1. Since OX1 N is 
a main chain atom, fixing this deviation requires shifting the protein backbone. A disrupted 
oxyanion hole in HbHNL is not expected to hinder lyase catalysis because it does not involve 
an oxyanion intermediate. 
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a Preliminary data for HNL6V measured at the typical temperature of 21℃.  kcat at 29℃  
was 2.3 ± 0.02 min-1, KM 0.13 ± 0.01 mM 

The internal distance between serine Cɑ and OX1 N is significantly longer in the 
HbHNL structures (6.8 ± 0.2 Å) than in SABP2 (5.8 Å). This difference indicates that the 
ester carbonyl group, which interacts with the serine Oɣ and OX1 N in the transition state, 
cannot make the same interactions in HbHNL and SABP2. 

Previous engineering within active site yielded only inefficient esterase activity 
Three amino acid residues in the active site of HbHNL are thought to have a mechanistic role 
in the catalysis of the lyase reaction, but hinder ester hydrolysis.[21] The side chain of Thr11 
helps orient the hydroxynitrile substrate, but blocks access of the ester substrate to the 
oxyanion hole (Fig. 1c). Lys236, oriented by Glu79, stabilizes the leaving cyanide from 
hydroxynitriles but hinders the loss of a hydrophobic group from an ester. Replacement of 
these three residues in HbHNL with the corresponding residues in SABP2 (HbHNL-T11G-
E79H-K236M) to create HNL3 increased the esterase catalytic efficiency (kcat/KM) of 

Table 1. Steady-state kinetics parameters for p-nitrophenyl acetate hydrolysis 
catalyzed by SABP2, HbHNL and HbHNL enzyme variants. See Supplementary 
Table 1 for a more extensive list of enzyme variants.

Variant kcat (min-1) KM (mM) kcat/KM 

(M-1·min-1

)

kcat 

 (% relative 
to SABP2)

kcat/KM 
(% relative 
to SABP2)

SABP2 134 ± 4 2.2 ± 0.2 61,000 100% 100%

HbHNL 0.25 ± 0.02 3.0 ± 0.4 83 0.2% 0.1%

HNL3 0.33 ± 0.02 0.71 ± 0.1 460 0.2% 0.8%

HNL3V 0.32 ± 0.02 0.65± 0.1 490 0.2% 0.9%

H N L 3 V 
N 1 0 4 A - 
G176S

2.1 ± 0.17 0.04 ± 0.01 52,000 1.6% 87%

HNL6Va 0.59 ± 0.14 0.03 ± 0.003 20,000 0.4% 33%

HNL7V 3.9 ± 0.5 0.16 ± 0.07 25,000 2.9% 40%

HNL7TV 9.3 ± 0.3 0.08 ± 0.04 120,000 7.0% 190%

HNL8V 8.1 ± 0.4 0.35 ± 0.06 23,000 6.1% 38%
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HbHNL 5.6-fold from 84 to 470 M-1·min-1, Table 1. For experimental convenience, we 
created HNL3V, which contains an additional H103V substitution that stabilizes the protein. 
This H103V substitution did not affect the esterase activity of HNL3 and is analogous to the 
stabilizing H103L substitution in the homologous HNL from Manihot esculenta.[22] We 
hypothesized that additional substitutions outside the active site are required to reposition the 
catalytic machinery of HbHNL, including the oxyanion hole, to enable efficient esterase 
activity. 

Shortest path map identifies residues outside the active site that alter the conformational 
landscape 

Since proteins move and flex continuously, repositioning of the catalytic atoms requires 
altering the conformational landscape of the enzyme. The shortest path map (SPM) 
methodology identified the positions that contribute most strongly to conformational 
dynamics in SABP2 and HNL3V and replaced those amino acids that differed between them 
within the SPM closest to the active site. SPM starts with a molecular dynamics simulation 
and identifies which residues move together and have a higher contribution to the 
conformational dynamics.[1,4] Importantly, SPM predicts which amino acids outside the active 
site can alter the positioning of the catalytic groups within the active site.  

The SPMs constructed for HNL3V and SABP2 revealed differences in the motions 
involving the catalytic residues, Fig. 3. Based on those SPM’s, two regions were identified 
for mutagenesis. In the first region two substitutions are expected to add a correlated motion 
with OX1 and  in the second region three substitutions are expected to remove a correlated 
motion to the catalytic Asp207. The SPM of SABP2 indicates that movements of OX1 
(Ala13) are directly connected to motions of residues Cys14, Gly12, Ser179, and Leu 82,  
Supplementary Fig. 2. The first two residues are conserved between SABP2 and HNL3V, but 
the second two residues differ. Positions Ser179 and Leu82 in SABP2 correspond to Gly176 
and Cys81 in HNL3V. Residue Cys81 does not appear in the SPM of HNL3V indicating that 
its motions are not strongly correlated with the movements of any other residues including 
OX1 (Ile12). While the motion of Ser179 is directly correlated to OX1 (Ala13) in SABP2, 
the motion between OX1 (Ile12) and Gly176 in HNL3V differs because it correlates 
indirectly via Cys13. Therefore, SPM analysis predicted that the C81L and G176S 
substitutions in HNL3V would create motions directly correlated with the oxyanion hole 
residue Ile12 and may fix its orientation. OX1 (Ala13), which corresponds to Ile12 in HNL, 
is also part of the correlated motion in SABP2. We did not include an Ile12Ala substitution in 
the variants because the Ala13Leu substitution had no effect on esterase activity.[23] 

The second region for mutagenesis involves removing correlated motions from 
HNL3V. The residues 104-106 in HNL3V are located at the loop connecting the β-sheet β6 
and the beginning of the lid domain. In HNL3V, Asn104 is directly connected to Trp203, 
whose movement is correlated to Thr204, Gln206, and the catalytic Asp207. The SPM of 
SABP2 shows no such correlations. Residues Ala105 and Ala106 (correspond to Asn104 and 
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Ser105 in HNL3V) do not appear in the SPM indicating that their motions are not strongly 
correlated to any other residues. Residue Phe107 (corresponds to Val106 in HNL3V) appears 
in the SPM, but in contrast to HNL3V, its motion is not correlated with the catalytic aspartate. 
Therefore, the SPM predicted that substitutions Asn104Ala, Ser105Ala, Val106Phe in 
HNL3V would remove the connection of motions between this loop and the catalytic 
aspartate.  

 
Fig. 3 | Shortest path maps of (a) SABP2 and (b) HNL3V showing five substitutions 
predicted to make the conformational dynamics of catalytic residues in HNL3V more 
like that of SABP2. The substitutions Gly176Ser and Cys81Leu add a connection to OX1 
(Ile11)  similar to that  present in SABP2 where OX1 corresponds to Ala13. The substitutions 
at 104-106 in HNL3V remove a connection to the catalytic Asp207 that is present in HNL3V, 
but absent in SABP2. Adding these five substitutions to HNL3V created HNL8V. The spheres 
in the SPM indicate residues conserved between the two proteins, while cubes indicate 
residues that differ between the two proteins. Catalytic residues and the amides of the 
oxyanion hole are shown in sticks.  

Four of the five SPM mutations predicted to fix the oxyanion hole orientation and the 
correlated motions of the catalytic aspartate are in the second or third shell outside the active 
site (Fig. 4). Residues 104-106 are on a loop adjacent to the catalytic serine and histidine. The 
G176S substitution is on a loop adjacent to one of the oxyanion hole residues. The fifth of the 
five substitutions is in the active site since it replaces the oxyanion hole residue Cys81 with 
leucine. Variant HNL8V contains the HNL3V substitutions and all five substitutions 
predicted by the SPM. Variant HNL7V contains the HNL3V substitutions and only four of 
the substitutions predicted by the SPM; the Ser105Ala substitution is omitted because the 
similarity of serine and alanine suggested that this substitution may be less important. 
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Fig. 4 | Location of the five substitutions (C81L N104A, S105A V106F G176S) added to 
HNL3V to create HNL8V. The catalytic triad residues (Ser80, Asp207, His235) and the 
oxyanion hole residues (Ile12, Cys81Leu) are blue spheres at the Cɑ with the side chains 
shown as sticks. The initial set of three substitutions (blue spheres at the Cɑ) were next to 
catalytic residues: Thr11Gly next to Ile12, Glu79His next to Ser80, Lys236Met next to 
His235. Four of the substitutions predicted by the SPM (yellow) are 2nd and 3rd shell changes 
outside the loops holding the catalytic residues: Gly176Ser outside Ile12, Asn104Ala, 
Ser105Ala, Val106Phe outside Ser80 and His235. One of the substitutions predicted by the 
SPM was the replacement of a catalytic residue (Cys81Leu, OX2) next to the catalytic serine 
(Ser80). Stabilizing substitution His103Val is shown as a blue sphere at the Cɑ. Part of the 
main chain trace is not shown for clarity; in reality the active site is buried. 

Designed substitutions yield an esterase more efficient than SABP2 

The predicted variants HNL8V (HNL3V plus the five predicted SPM substitutions) and 
HNL7V (omit the Ser105Ala substitution from HNL8V) both proved to be good esterases, 
Fig. 5, Table 1. HNL7V was 50-fold more catalytically efficient (kcat/KM of 25,000 M-1 min-1) 
than HNL3V and 290-fold more efficient than HbHNL. HNL8V showed a slightly lower 
catalytic efficiency (kcat/KM of 23,000 M-1 min-1), but the kcat was  2-fold higher (kcat of 8.1 ± 
0.4 min-1).  HNL6V, containing substitutions C81L, N104A, and G176S, showed a 2.4-fold 
improvement in turnover (kcat of 0.59 ± 0.14 min-1) and a 100-fold improvement in binding 
(KM of 0.03 ± 0.003 mM) relative to HbHNL, resulting in a 240-fold improvement in 
catalytic efficiency (kcat/KM of 20,000 M-1·min-1).   
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Fig. 5 | Protein engineering of HbHNL (green text) for improved esterase activity (kcat/
KM represented by ball size) yielded a variant (largest blue ball) with two-fold better 
catalytic efficiency than SABP2 (orange ball). Most variants showed better binding than 
SABP2, i.e. are further right on the x-axis, but the catalytic step was slower, i.e. lower on the 
y-axis. All HbHNL variants are shown with blue balls. The kcat/KM values in units of M-1 
min-1 are shown for selected variants. 

Of the four substitutions added to HNL3V to create HNL7V, the Asn104Ala 
substitution had the largest effect on catalytic activity. Excluding HNL7TV (discussed 
below), 9 of the 10 fastest variants and the 5 most efficient variants all contained N104A. 
HNL3V N104A’s turnover rate was as fast as HNL7V (kcat of 3.8 ± 0.2 vs. 3.9 ± 0.4 min-1), 
though its catalytic efficiency (kcat/KM of 9,100) was nearly 3-fold lower because of poorer 
binding (KM of 0.42 ± 0.08 vs. 0.16 ± 0.07 for HNL7V). All of the intermediate variants 
between HNL3V N104A and HNL7V - those containing some combination of mutations 
C81L, N104A, V106F, and G176S - showed lower activity and poorer efficiency than 
HNL3V N104A and HNL7V. Mutations C81L, N104A, V106F, and G176S therefore interact 
epistatically and result in non-linear fitness effects. To confirm the importance of N104A for 
esterase catalysis, we made the reverse substitution in SABP2 to create SABP2 A105N and 
found a 4.7-fold decrease in enzyme turnover (kcat dropped from 134 to  29 min-1). A decrease 
in binding (KM increased from 2.2 to 3.0 mM) resulted in a 6.3-fold decrease in catalytic 
efficiency (kcat/KM dropped from 61,000 to  9,600 M-1 min-1) as compared to SABP2. 
Relative to the best HbHNL-based variant that does not contain N104A (HNL3V V106F-
G176S), SABP2 A105N showed a 9-fold higher turnover rate. We expected a larger decrease 
in catalysis in SABP2 A105N given the importance of N104A for improved esterase activity 
in HbHNL-based variants. This smaller than expected change suggests that epistasis plays a 
role in esterase activity for both SABP2- and HbHNL-based variants. 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.23.554512doi: bioRxiv preprint 

77



The best variant, HNL7TV, contained eight substitutions and was 1390-fold more 
catalytically efficient (kcat/KM of 120,000 M-1 min-1) than HbHNL and two-fold more 
catalytically efficient than the benchmark esterase SABP2 (Fig. 5). We made the N104T 
substitution because although SABP2 contains Ala at position 105, Thr is the most highly 
conserved amino acid at that position among homologous esterases (Supplementary Fig. 3). 
Thus the N104T mutation was expected to yield soluble, active protein. HNL7TV showed the 
highest activity (kcat of 9.3 ± 0.3) of all variants, a 37-fold improvement, and a 28-fold 
improvement in binding compared to HbHNL (KM of 0.08 ± 0.04 mM).  

All of the HbHNL variants containing SPM-predicted substitutions demonstrated an 
improvement in substrate binding and catalytic efficiency over HbHNL. Notably, 65% and 
59% of the variants showed at least 5-fold enhancements in binding over HbHNL and 
SABP2, respectively. Despite the increase in catalytic activity, the fastest variants did not 
necessarily translate to superior binders; only three out of the ten fastest variants ranked in 
the top ten for binding and we found no correlation (R2 = 0.01) between kcat and KM 
(Supplementary Fig 4, Supplementary Table 2). 

Molecular dynamics simulations reveal restored oxyanion hole  

Molecular dynamics (MD) simulations confirm a distorted OX1 N positioning in HNL3V as 
compared to SABP2 (Fig. 6a) similar to that seen in the x-ray structure comparisons of 
HbHNL and SABP2 above (Fig. 2). Multiple replica nanosecond timescale MD simulations 
reveal a distribution in the distance between OX1 N and the serine Cɑ of ca. 5.5 Å in SABP2 
as compared to 5.8 Å in the x-ray, but a much longer distance of ca. 6.2 Å for HNL3V as 
compared to 6.8 Å in the x-ray of HbHNL. This shorter distance in SABP2 allows OX1 N to 
orient properly to stabilize the developing negative charge during catalysis.  
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Fig. 6 | The OX1 N position of the most active variants mimic that of SABP2. a, 
Histogram of the distances (in Å) between the amide backbone of OX1 N  (Ile12 or Ala13) 
and Cɑ of the catalytic serine (Ser80 or 81) for the following proteins: SABP2 (pink), 
HNL3V (blue), HNL3V N104A G176S (orange), HNL6V (green), HNL7V (dark pink), 
HNL7TV (purple), HbHNL8V (brown). b, Overlay of most populated conformations of the 
variants presenting properly preorganized oxyanion hole residues (i.e., distances of ca. 5.5 Å, 
left panel): SABP2 (pink), HNL7V (dark pink), HNL7TV (purple), HNL8V (brown), and 
those presenting a non-optimal oxyanion hole positioning (i.e., distances of 6.2 Å): HNL3V 
(blue), HNL3V N104A G176S (orange), HNL6V (green). The labels refer to HbHNL residue 
numbering. 

MD simulations of many variants displaying higher levels of esterase activity 
matched the OX1 N positioning in SABP2, while those with lower esterase activity matched 
the OX1 N positioning in HNL3V (Fig. 6). An overlay of the most populated conformations 
in the multiple replica nanosecond timescale MD simulations confirm a restored oxyanion 
hole similar to that found in SABP2 for HNL7V, HNL7TV, and HNL8V. HNL3V and 
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HNL6V do not present a catalytically productive positioning of the oxyanion hole residues, 
in line with their inferior esterase catalytic efficiency.  

However, the OX1 N positioning in the MD simulation does not match the esterase 
activity in several cases. The second most efficient variant, i.e., HNL3V N104A-G176S, 
adopts longer distances between the catalytic serine and the oxyanion hole residue similar to 
those found in the less efficient HNL3V and HNL6V. Similarly, HNL7V and HNL7TV show 
similar OX1 N positioning, but their esterase activity differs.  Thus, the properly restored 
oxyanion hole explains only part of the enhancements in esterase activity. 

MD simulations identify changes in the pKa of catalytic aspartate  

One of the substitutions that enhanced esterase catalytic efficiency is N104A/T, which lies 
close to the catalytic histidine and aspartate. The electrostatic environment of the catalytic 
triad has a profound effect on the catalytic activity of cysteine and serine proteases.[24, 25] The 
catalytic Asp in the serine peptidase trypsin and a cysteine peptidase of the papain 
superfamily lie in different electrostatic environments creating different pKa values for the 
Asp-His of the triad. MD simulations of variants with and without the N104A substitution 
show similar positions of OX1 N indicating that this substitution does not affect the oxyanion 
hole reorganization. 

We hypothesize that the close location of N104A/T to the catalytic aspartate alters its 
local environment and pKa value. We estimated the pKa of Asp using the deep learning 
approach pKaI[26] at each frame of an MD simulation and validated our predictions using 
constant pH MD simulations[25] (Fig. 7). The catalytic aspartate in SABP2 was highly flexible 
causing changes to the local environment of aspartate and its pKa. The predicted pKa values 
for the catalytic aspartate varied between 2 and 7. For the HNL variants containing the 
N104A/T substitution, the pKaI predictions match constant pH MD simulations, both 
predicting a pKa of ∼5 for the catalytic aspartate. The catalytic aspartate is less flexible in 
these variants and the range of predicted pKa values is narrower than that for SABP2. In 
contrast, HNL3V, which lacks the N104A substitution, has an estimated pKa of <3. This shift 
in pKa is consistent with the altered solvation and the lower catalytic activity. The catalytic 
aspartate maintained its hydrogen bond to the catalytic histidine throughout all the 
simulations in all cases. 
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Fig. 7 | Estimation of the pKa of the catalytic aspartate in SABP2 (pink) and HNL 
variants. a. Histogram of the pKa values of the catalytic aspartate as predicted by pKaI at 
multiple frames of the MD simulation of SABP2 (pink), HNL3V (cyan), HNL3V N104A 
G176S (gold), HNL6V (green), HNL7V (brown), HNL7TV (purple), and HNL8V (light 
gold). The pKa values estimated by constant pH MD simulations are marked with a vertical 
line for SABP2 (pink), HNL3V (cyan), and HNL3V N104A G176S (gold). b. Representative 
SABP2 conformation presenting a low pKa value of ca. 2 (left panel), higher pKa of ca. 5 
(middle panel), and overlay of both conformations (right panel). The distances between the 
carbon alpha of the catalytic D210 and S81 are shown in Å. 

X-ray structure of HNL6V reveals aspartate hydrogen bond network 

To confirm the changes in OX1 N positioning and solvation of the catalytic aspartate, we 
solved the x-ray crystal structure of HNL6V, which contains three of the five substitutions 
that were added to HNL3V to create HNL8V. Substitutions C81L, N104A, and G176S are 
present in HN6V, but substitutions V106F and S105A are missing. 

The structure of HNL6V aligns closely with the structure of wild-type HbHNL. The 
catalytic domain (residues 1-114, 179-264) adopts the ɑ/β-hydrolase fold and contains the 
catalytic triad and oxyanion hole residues. The lid or cap domain (residues 115-178) covers 
the active site to create a substrate binding pocket. The seven amino acid substitutions in 
HNL6V were in and around the active site, and none of the residues were on the outer protein 
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surface. Six of the substitutions are in the catalytic domain; only Gly176Ser is in the lid 
domain. 

The OX1 N in HNL6V has moved closer to the position of SABP2, but remains 
intermediate between HbHNL and SABP2 (Fig. 8). The distance from OX1 N in HNL6V and 
OX1 N in SABP2 is 0.9 Å, while the corresponding distance between the three HbHNL 
structures and SABP2 is longer: 1.2 ± 0.2 Å. The internal distance between OX1 N and serine 
Cɑ is 6.2 Å in HNL6V, which is intermediate between that in SABP2 (5.8 Å) and the three 
HbHNL structures (6.8 ± 0.2 Å), see Fig. 2 above. Thus, the substitutions in HNL6V moved 
the main chain nitrogen (OX1 N) closer to its position in SABP2. 

 
Fig. 8 | Changes in (a) the position of OX1 N and (b) the solvation of the catalytic 
aspartate in the x-ray structure of HNL6V (magenta carbons) as compared SABP2 
(blue carbons) or HbHNL (three structures, white carbons). a) The position of OX1 N in 
HNL6V has moved closer to the corresponding position in SABP2. The distance between 
OX1 N  in SABP2 and HNL6V (0.9 Å) is shorter than the distance between SABP2 and the 
three HbHNL structures (1.2 ± 0.2 Å).  The internal distance between OX1 N and serine Cɑ 
is 6.2 Å in HNL6V, which is intermediate between that in SABP2 (5.8 Å) and the three 
HbHNL structures (6.8 ± 0.2 Å). b) The Asn104Ala substitution in HNL6V creates space for 
a water molecule (red sphere) near the catalytic aspartate. This space is blocked in HbHNL 
by the side chain of the asparagine. The alignment of the structures minimized the RMSD of 
the corresponding Cɑ atoms in the entire protein. 

  
The Asn104Ala substitution in HNL6V created space for a water molecule that 

hydrogen bonds to the catalytic aspartate. In the HbHNL structures, the asparagine residue 
fills this region, but does not interact with the catalytic aspartate. Upon replacement of 
Asn104 with alanine, more space is available. A water occupies this region in the x-ray 
structure of HNL6V and contributes a hydrogen bond to the catalytic aspartate (O-O distance 
is 3.1 Å).   
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Discussion 
Previous computational designs have required additional experimental optimization to reach 
catalytic efficiencies comparable to Nature’s enzymes. Computational design of a luciferase 
using Rosetta combined with deep learning yielded impressive catalytic efficiencies of  106 
M-1·s-1 but this design also included experimental optimization of the ligand-binding pocket.
[27] A bioinformatics-based design of a hydroxynitrile lyase from an esterase yielded a 
catalytic efficiency of 3,300 M-1·s-1.[28] It required >120 substitutions, which make it difficult 
to explain how each substitution contributes to catalysis. The computational design of multi-
step reactions has been less successful. A designed retroaldolase showed a kcat/KM of 0.2 
M-1·s-1 and reached a kcat/KM of 34,000 M-1·s-1 only after multiple rounds of directed 
evolution.[29, 30] Designed esterases based on a designed cysteine-histidine dyad and oxyanion 
hole yielded catalytic efficiencies of kcat/KM of 10-400 M-1·s-1.[12] One attempt at esterase 
design with serine-histidine-aspartate catalytic triads failed to complete a catalytic cycle. The 
enzymes could only react irreversibly with fluorophosphonate probes.[9] A more recently 
designed esterase showed a catalytic activity 1000-times lower than commercially available 
esterases, but saturation kinetics were not reported.[8] A Kemp eliminase also required eight 
substitutions outside the active site for high catalytic efficiency, but these were not rationally 
predicted, but found with experimental directed evolution.[31] This inability to design efficient 
enzymes limits new applications of enzymes in medicines, non-polluting manufacture of fine 
chemicals and pharmaceuticals, food processing, and biodegradation of environmental 
contaminants. 
  
The low catalytic efficiencies achieved by computational enzyme design have been 
associated with non-optimal arrangements of the catalytic residues for transition state(s) 
stabilization, the lack of a proper description of the conformational changes key for substrate 
binding and product release, and the limitation of introducing mutations in the active site 
pocket only.[1] Our approach of identifying the correlated motions established by catalytic 
residues with second and third shell mutations has achieved catalytic efficiencies surpassing 
that of the reference SABP2 enzyme.   

Comparison of the shortest path maps for HNL3V and SABP2 revealed differences in 
correlated movements in the two enzymes. To engineer increased esterase activity into 
HNL3V, we focused on correlated movements connected to the active site residues. HNL3V 
contained one movement associated with catalytic aspartate that was missing from SABP2. 
We hypothesized that this movement should be removed from HNL3V to increase esterase 
activity. HNL3V also lacked a correlated movement associated with an oxyanion hole residue 
that was present in SABP2. We hypothesized that this movement should be added to HNL3V 
to increase esterase activity. To add or remove movements, we replaced residues in HNL3V 
with the corresponding residues from SABP2. Only residues within the SPM of either 
HNL3V or SABP2 were changed. Since HNL3V and SABP2 share 45% sequence identity, 
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only five amino acid substitutions were required. Four of the five substitutions were outside 
of the active site demonstrating that the shortest path maps identify residues outside the 
active site that contribute to catalysis.   

The resulting variant, HNL8V, showed a 25-fold increase in both catalytic rate (kcat) 
and a 1.9-fold improvement in KM for esterase catalysis demonstrating the value of the SPM-
based predictions. The interactions between the substitutions showed negative cooperativity 
with respect to KM, but positive cooperativity with respect to kcat. Individually, the five 
substitutions showed modest improvements in KM (mean of 2.5 ± 1.6-fold improvement). If 
the improvements act additively, then HNL8V should show a 34-fold improvement in KM, 
but it showed only a 1.9-fold improvement. The eighteen-fold lower observed value indicates 
negative cooperativity between the five substitutions with respect to KM. For kcat, four of the 
substitutions showed modest changes, but N104A showed a twelve-fold improvement (mean 
= 3.2 ± 4.9-fold improvement). If the improvements act additively, then HNL8V should show 
a 8.1-fold improvement in kcat, but it showed a 25-fold improvement. The 3.1-fold higher 
observed value indicates positive cooperativity between the five substitutions with respect to 
kcat.  

This cooperativity is consistent with the notion that cooperative movements cause the 
changes in esterase activity. The predicted SPM substitutions – C81L, V106F, and G176S – 
interact epistatically, Fig. 9. The effect of all three substitutions combined is more than twice 
the effect of the sum of the three individual substitutions. The conformational changes 
induced by each substitution suggest a mechanism for this epistasis. The replacement of a 
glycine by a serine at position 176 changes the backbone conformation, which properly 
positions the oxyanion hole residue Ile12 as (OX1)-Ala13 in SABP2. Fixing the orientation 
of the other oxyanion hole residue Cys81 (OX2-Leu82 in SABP2) requires both Cys81Leu 
and Val106Phe. The side chain of Leu81 can adopt two different conformations in HNL3V; 
one conformation hinders catalysis as it blocks access of the ester substrate to the active site 
pocket. Mutation Val106Phe restricts the side chain of Leu81 to the conformation that allows 
ester binding for catalysis. As noted in the results section, the effect of the mutation N104A/T 
is not connected to the oxyanion hole reorganization, but rather to the change of the 
electrostatic environment of the catalytic aspartate. Variants containing the key mutations for 
fixing the oxyanion hole (C81L, V106F, and G176S) together with N104A/T show the 
highest esterase catalytic efficiency.   
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Figure 9 | Substitutions that enhance catalytic activity act cooperatively. Representative 
conformations for the HNL variants: starting variant HNL3V (left panel, light blue carbons), 
the singly mutated variants HNL3V+G176S (center panel, green carbons), HNL3V+C81L 
(gold carbons), HNL3V+V106F (dark blue carbons), and the triple variant (right panel, pink 
carbons). All panels include a representative conformation of the active site and oxyanion 
hole residues of SABP2 (purple carbons) and a bar at the left side indicating the catalytic 
efficiency (kcat/KM, M-1·min-1) of each HNL variant. The combined effect of the three 
individual mutations is higher than their sum, due to positive sign epistasis highlighted in 
pink and with an arrow. The color of the labels of the oxyanion hole residues (OX1, OX2) 
indicate a proper (green) or bad (red) orientation as compared to SABP2. Double arrows 
mark the different conformations of the sidechain of C81 with respect to SABP2.    

Combining the SPM analysis with a multiple sequence alignment of esterases yielded 
the best variant, HNL7TV. The substitution N104A yielded the largest increase in kcat of all 
the substitutions tested. The multiple sequence alignment showed that most esterases 
contained threonine, not an alanine, at this position. The substitution N104T yielded the best 
variant with approximately twice the catalytic efficiency (kcat/KM) of SABP2. 

Although the shortest path maps combined with sequence comparison identified the 
substitutions needed to improve catalytic activity, they did not identify why the substitutions 
increased catalytic activity. Gaining insight on why esterase activity increased required 
additional experiments combined with computational modeling. Molecular dynamics 
simulations support the notion that substitutions have repositioned the main chain of the 
oxyanion hole residue, Ile12. The 25-fold increase in kcat from HNL3V vs. HNL7TV is 
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consistent with previous experiments that disrupted the oxyanion hole in enzymes using site-
directed mutagenesis. Removing an N-H from the oxyanion hole in subtilisin lowered kcat 
approximately 100-fold.[32, 33] Experiments with ketosteroid isomerase[34] and a 
decarboxylase[35] gave similar estimates for the contributions of an oxyanion hole N-H to 
catalysis.  

Both molecular dynamics simulations and an x-ray structure of HNL6V show changes 
in the local environment of the catalytic aspartate that might impact its pKa. The mutation of 
the catalytic aspartate in trypsin by an asparagine lowers the pKa of histidine by 1.5 pH units 
and dramatically reduces the catalytic activity.[36, 37] One mechanism to explain the role of the 
catalytic aspartate in serine proteases is the formation of a low-barrier hydrogen bond 
between His-Asp, especially in the transition state or in enzyme-intermediate complexes.[38, 

39] This mechanism requires that both histidine and aspartate present similar pKa values, 
which for aspartate was estimated to be around 6.7.[40] The increase in catalytic efficiency 
observed for the variants containing N104A/T directly in contact with the catalytic aspartate 
suggest that this mutation impacts the pKa of the catalytic aspartate. Our calculations predict 
higher pKa values for aspartate especially in SABP2, and in the most efficient variants 
HNL7V, HNL7TV and HNL8V. This finding is in line with the requirement of matching pKa 
values between His-Asp for the formation of a low-barrier hydrogen bond at the transition 
states and/or tetrahedral intermediates formed along the multistep esterase mechanism. 

There must be additional contributions to esterase catalysis in SABP2 besides those 
identified here. The kcat of the best variant, HNL7TV, is still about thirteen-fold lower than 
that for SABP2 indicating that additional substitutions are needed to fully match the kcat of 
SABP2. Even more distant substitutions are likely required to modulate the conformational 
landscape of the enzymes and generate a SABP2-like environment of the catalytic His-Asp 
dyad for esterase catalysis. The higher flexibility of the catalytic aspartate in SABP2 
identified in our MD simulations may contribute to its higher kcat.  

Methods 
Chemicals were purchased from commercial suppliers and used without further purification. 

Site-directed mutagenesis to create enzyme variants 

The gene encoding the wild-type HNL from Hevea brasiliensis in the pSE420 plasmid[41] was 
recloned into a pET21a(+) plasmid. HbHNL enzyme variants were constructed via inverse 
PCR[42] using non-overlapping mutagenic primers in a sequential manner (Supplementary 
Table 3). Briefly, mutagenic primers anneal to the plasmid template in a back-to-back, 
outward-facing orientation and are amplified using New England Biolabs (NEB) Q5 HiFi 
polymerase (M0491S) to produce a linear, double-stranded DNA product containing the 
desired mutation(s). Primers were designed using the NEBaseChanger (https://
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nebasechanger.neb.com) web tool and checked for secondary structure and self-dimer/
heterodimer propensity with IDT’s OligoAnalyzer Tool (https://www.idtdna.com/pages/tools/
oligoanalyzer). Primers were purchased from Integrated DNA Technologies (Coralville, IA) 
and used without further purification. PCR was performed using a BioRad 2000 Thermal 
Cycler with the following conditions: initial denaturation at 98 ℃ for 30 sec, 30 cycles of 
denaturation (98 ℃ for 30 sec), annealing (calculated annealing temperature for 25 sec), and 
extension (72 ℃ for 150 sec), and a final extension step of 72 ℃ for 2 minutes . The PCR 
products were treated with a KLD enzyme mix (NEB M0554S), which phosphorylates the 5’ 
ends of the linearized PCR products, ligates the phosphorylated ends, and degrades the 
original plasmid template. Five µl of the KLD product was used directly to transform 
chemically-competent Escherichia coli DH5ɑ cells (NEB C2988) according to the 
manufacturer’s protocol and plated on lysogeny broth (LB) plates containing 100 µg/ml 
carbenicillin. After overnight growth at 37 °C, individual colonies were picked and grown up 
overnight in LB media, and the plasmids were extracted via NEB Monarch Plasmid mini-
prep kit (NEB T1010). Plasmid concentrations were measured spectrophotometrically at 260 
nm via a Nanodrop 2000 (Thermo Scientific) and diluted to <1.0 OD units if necessary. 
Sanger sequencing from Genewiz/Azenta Life Sciences was used to confirm mutations. The 
sequence-confirmed plasmid was transformed into Escherichia coli strain BL21(DE3) 
chemically competent cells (NEB C2527) according to NEB’s transformation protocol and 
plated on LB plates containing 100 µg/ml carbenicillin. 

SABP2 A104N was constructed via isothermal assembly (also called Gibson 
assembly)[43] using a gene fragment ordered from Twist Biosciences (San Francisco, CA). We 
used the NEB Gibson Assembly® Master Mix kit to perform the assembly under the 
following conditions: template DNA (pET21a(+) plasmid containing SABP2 gene), enzyme 
master mix, and the synthesized gene fragment were incubated in a thermocycler for 15 
minutes at 50°C. 2 µl of the assembly reaction mixture was used directly for transformation 
into NEB 5-alpha competent E. coli included in the assembly kit. All subsequent steps, i.e. 
expression, purification, and assays, are as described above. For detailed information on the 
protocol, including primer design, please see NEB’s Gibson Assembly® Application 
Overview website (https://www.neb.com/applications/cloning-and-synthetic-biology/dna-
assembly-and-cloning/gibson-assembly).  

Protein expression and purification 

LB media containing carbenicillin (100 µg/ml, 5 ml) was inoculated with a single bacterial 
colony from an agar plate and incubated in an orbital shaker at 37 °C and 240 rpm for 15 h to 
create a seed culture. A 1-L baffled flask containing terrific broth-amp media (250 ml) was 
inoculated with 2.5 mL of seed culture. The pre-induction culture was incubated at 37 °C and 
240 rpm for 3–4 h until the absorbance at 600 nm reached 0.4-1.0. The culture was then 
transferred to ice for 30 minutes to cool. Isopropyl β-D-1-thiogalactopyranoside (0.75–1.0 
mM final concentration) was added to induce protein expression, and cultivation was 
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continued for 20-24 h at 18℃. The cells were harvested by centrifugation (7000 rpm, 15 min 
at 4 °C), resuspended in NiNTA loading buffer (10 mM imidazole, 50 mM Tris pH 8.0, 500 
mM NaCl, 4 ml/g of wet cells), and either directly sonicated or frozen for storage and later 
purification. Cells were flash frozen in liquid nitrogen or a dry ice-ethanol bath  and stored at 
-80°C. Frozen cells were thawed at room temperature or in a room temperature water bath, 
and fresh/thawed cells were disrupted by sonication (400 W, 40% amplitude for 3 min). The 
cell lysate was centrifuged to pellet the cell debris (4 °C, 20,000 rcf for 20 min) and the 
supernatant was mixed with 1-2.5 ml of NiNTA resin (pre-equilibrated with 10 ml of NiNTA 
loading buffer) and incubated for 45 minutes at 4 °C with rotation (10 rpm). The resin/
supernatant mixture was loaded onto a 25 ml column (Bio-Rad) and the resin was washed 
with 10 column volumes each of buffer containing increasing amounts of imidazole (25-50 
mM imidazole, 50 mM Tris pH 8.0, 500 mM NaCl). The His-tagged protein was eluted with 
10 column volumes of elution buffer (125 mM imidazole, 50 mM Tris pH 8.0, 500 mM NaCl) 
and collected in 1 ml fractions. The protein concentration of each elution fraction was 
determined from spectrophotometric measurements at 280 nm via Nanodrop 2000 (Thermo 
Scientific). The calculated extinction coefficient was determined using the ProtParam web 
tool (https://web.expasy.org/protparam/). Protein gels were used to check for the presence and 
purity of protein and run using sodium dodecyl sulfate polyacrylamide gradient gels (NuPage 
4−12% Bis-Tris gel from Invitrogen) using the Precision Plus Dual Color protein standard 
(BioRad, 5 µl/lane), run for 50 min at 120V, stained with SimplyBlue Safe Stain (Thermo 
Fisher Scientific), and destained 2x with milliQ UltraPure H2O. SDS-PAGE indicated a 
molecular weight of ~30 kDa in agreement with the predicted weight of 31.1 kDa. The 
imidazole-containing elution buffer was exchanged by addition of BES buffer (5 mM N, N-
bis(2-hydroxyethyl)-2-aminoethanesulfonic acid, pH 7.2, 14 ml) followed by ultrafiltration 
(Amicon 15-ml ultrafiltration centrifuge filter, 10 kDa cutoff) to reduce the volume to ~ 250 
µl. This addition of buffer and filtration was repeated four times. A 250-ml culture typically 
yielded 2-5 mg of protein. 

Enzyme assays 

Enzyme activity was monitored at room temperature (typically 22±2 ˚C) in triplicate for 10 
min using a SpectraMax 384 Plus microplate reader. Ester hydrolysis activity was measured 
at 405 nm using p-nitrophenyl acetate (pNPAc), which releases the yellow p-nitrophenoxide. 
The reaction mixture (100 µL; path length 0.29 cm) contained 0.01-7.0 mM pNPAc, 6–8% v/
v acetonitrile, 5 mM BES buffer, pH 7.2, and up to 15 µg enzyme. The slope of increase in 
absorbance versus time was measured in triplicate, fit to a line using linear regression, and 
corrected for spontaneous hydrolysis of pNPAc with blank reactions lacking protein, also 
measured in triplicate. The extinction coefficient used for calculations (ε405 nm = 11,588 cm-1 

M-1) accounts for the incomplete ionization of p-nitrophenol at pH 7.2. For steady-state 
kinetic measurements, the enzyme concentration was determined by average absorbance at 
280 nm measured in duplicate and normalized by subtracting a buffer blank. The enzyme 
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concentrations in the assay solution ranged from 50 nM to 5 µM. kcat and KM were 
determined using a non-linear fit of the experimental data to the Michaelis-Menten equation 
using the solver program in Microsoft Excel or using the statistical program R (Huitema & 
Horsman, 2019).[44] 

An alternative assay protocol (the KP protocol) results in faster rates relative to the 
BES protocol described in the previous paragraph.  The reaction mixture volume, substrate 
concentrations, amount of enzyme, and absorption wavelength are the same between both 
assays.  In the KP protocol, the substrate is dissolved in methanol instead of acetonitrile and 
uses 100 mM KP buffer, pH 7.5, 1% v/v acetonitrile, and an extinction coefficient (ε405 nm = 
12,300 cm-1 M-1) that accounts for the effect of the change in pH on absorbance.[45]  The 
faster rate is due to the differing organic solvents; increasing the acetonitrile concentration 
decreases the observed rate, as has been previously described.[46] All kinetic parameters 
reported in this manuscript were obtained using the BES protocol. 

Molecular modeling system preparation 

The starting structures for the different enzymes (HbHNL, HNL3V, HNL6V, HNL7V, HNL7TV, 
HNL8V, SABP2) were generated with the predictions of the neural network AlphaFold 2 
approach.[47] The structures were prepared using the Python packages MDTraj,[48] pytraj[49] 
which is part of the cpptraj package,[50] MDAnalysis,[51] PyEMMA,[52] and networkx.[53] 

Molecular dynamics simulation 

The protocol applied for the MD equilibration phase was the one described by Roe and 
Brooks with small differences fine-tuned to our systems.[54] For non-minimization steps, the 
bonds involving hydrogen are constrained by the SHAKE algorithm. Long-range electrostatic 
effects were modeled using the particle mesh-Ewald method.[55] A 10 Å cut-off was applied 
to Lennard–Jones and electrostatic interactions. The MD protocol starts with the 
minimization phase of 1500 steps steepest descent method followed by 3500 steps of the 
conjugate gradient method with a positional restrain (i.e., force constant of 5.0 
kcal·mol-1·Å-2) to the protein heavy atoms. Then, a heating phase is performed with 
increasing the temperature from 25 K to 300 K during 20 ps of MD simulation, a Langevin 
thermostat with a collision frequency of 5 ps-1, and a positional restrain (i.e., force constant of 
5.0 kcal·mol-1·Å-2) to the protein heavy atoms. The next step is the minimization and heating 
of all the atoms in the system. Starting with two minimization stages of 1000 steps steepest 
descent method followed by 1500 steps of the conjugate gradient method each with a 
positional restrain (i.e., force constant of 2.0 kcal·mol-1·Å-2 in the first minimization and 0.1 
kcal·mol-1·Å-2 in the second) to the protein heavy atoms. Then, a third minimization phase of 
1500 steps steepest descent method followed by 3500 steps of the conjugate gradient method 
without any positional restraint is performed. Afterwards, the system is heated in the same 
way as previously defined. Finally, a five-round equilibration phase at the NPT ensemble 
with a constant pressure of 1 atm is performed: whereas the first four were done with the 
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Berendsen barostat, the fifth one with Monte-Carlo barostat. Langevin thermostat with a 
collision frequency of 1 ps-1 was used in the five equilibration rounds. The first two 
equilibration rounds of 5 ps had a positional restraint to the protein-heavy atoms with a force 
constant of 1.0 and 0.5 kcal·mol-1·Å-2, respectively. A third round of 10 ps equilibration is 
followed with positional restraint to the backbone-heavy atoms with a force constant of 0.5 
kcal·mol-1·Å-2. The fourth equilibration round of 10 ps was performed without any restraint. 
The last equilibration round was of 1 ns without any restraint. The production runs were 
performed at the NVT ensemble with the Langevin thermostat with a collision frequency of 1 
ps-1 during 250 ns. Finally, three replicas of equilibration and production runs were performed 
for each homodimer, reaching a total simulation time of 750 ns for HbHNL, HNL3V, 
HNL3V_104A_176S, HNL6V, HNL7V, HNL8V, SABP2 systems, respectively. The MD 
trajectories were analyzed using the Python packages MDTraj,[48] pytraj[49] which is part of 
the cpptraj package,[50] MDAnalysis,[51] PyEMMA,[52] and networkx.[53] 

Constant pH Molecular dynamics simulation 

Constant pH molecular dynamics simulations were done following the same protocol 
described in the molecular dynamics simulation section. Residues are allowed to change 
protonation state in the fifth equilibration and the production runs. All systems were 
simulated at pH values from 4.5 to 8.0 with a 0.5 spacing. The protonation state changes were 
attempted every 100 steps. The following 100 steps were used to relax the solvent after a 
successful attempt. A salt concentration of 0.1 was used. For SABP2 HID6, HID11, HID15, 
HIE32, HIE80, HIP113, HID158, ASP210, HID238, HID257 residues were selected to titrate, 
and for HNL variants HID5, HID10, HID14, HID20, HIE31, HIE79, HIP112, ASP207, 
HID235 were selected to titrate. Three replicas of equilibration and production run of 30 ns 
were performed for SABP2, HNL3V, HNL3V G176S N104A. pKa values are estimated from 
the extrapolation of the sigmoidal function. 

Molecular dynamics analysis 

Shortest Path Map (SPM) calculations. The Shortest Path Map (SPM) analysis was 
performed using the MD simulations of SABP2 and HNL3V. For SPM calculation, the inter-
residue mean distance and correlation matrices computed along the MD simulations need to 
be computed. From both matrices a simplified graph is drawn, in which only those pairs of 
residues displaying a mean distance shorter than 6 Å along the MD simulation time are 
connected through a line. The edge connecting both residues is weighted to the Pearson 
correlation value (dij=-log |Cij|). Short lines will be drawn for those pairs of residues whose 
motions are more correlated. The generated graph is further simplified to identify the shortest 
path lengths. Following this strategy, those lines in the graph that are shorter, i.e. the 
connecting residues are more correlated, and that play a substantial role in the enzyme 
conformational dynamics are detected. The generated SPM graph is then drawn on the 3D 
structure of the enzyme. More details about our SPM tool can be found in references 1 and 5. 
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X-ray crystal structure determination 

HNL6V containing a C-terminal 6His tag was expressed from plasmid pET21a(+) in 
Escherichia coli BL21 (DE3). The protein was purified using nickel-affinity chromatography 
and concentrated to 9.3 mg/ml. Crystallographic screening was done using Phoenix 
crystallography dispenser from Art Robbins Instruments Inc. Sitting-drop vapor diffusion 
trays, the low profile INTELLI-PLATE® from Art Robbins Instruments Inc, were used for 
crystallization setup. All the setup and washing procedure was done through the Art Robbins 
Instruments software Phoenix. Each crystallization drop contained 0.1 µl protein sample (9.3 
mg/ml protein) and 0.1 µl well solution. A total of 960 conditions were tested. Crystals 
appeared within one day from the Index HT screen from Hampton Research Inc, under the 
condition of 0.1 M Bis-Tris, pH 5.5, 2 M (NH4)2SO4, and grew to the full size of 0.35 mm in 
three days. Two distinct crystals formed (Supplementary Fig. 5). The robotic screening 
crystals proved sufficient to refine the model so additional crystal screening trays were not 
needed.  

The structural dataset was collected on beamline 24 ID-C (NE-CAT) at the Advanced 
Photon Source, Argonne National Laboratory (Supplementary Table 4). Crystals were 
transferred into cryoprotectant solutions consisting of well solution components and 
increasing concentration of sodium malonate. The final concentration of sodium malonate in 
the cryoprotectant solution was 1.2 M. Harvested crystals were flash frozen in liquid 
nitrogen. The datasets were collected at an oscillation angle of 0.2°. The crystal belonged to 
space group C2221, with unit cell parameters a = 47.054, b =106.378, c = 128.396 Å and, one 
molecule per asymmetric unit (Supplementary Table 5). The reconstructed ancestral 
hydroxynitrile lyase (PDB ID: 5tdx[20]) with 75.85% sequence identity was used for 
molecular replacement, and refined to a 2.3 Å resolution model. This 2.3 Å initial model was 
used to aid in the refinement of the second and final model resulting in a 1.99 Å structure. 
HKL2000[56] was used to process collected data and Phaser[57] in Phenix[58] was used for 
molecular replacement and refinement (Supplementary Table 6). Refinement modeling was 
performed using Coot.[59] The structure was refined to Rwork and Rfree values of 0.1844 and 
0.2376, respectively. 

Structural refinement revealed 2FO-FC (blue) and FO-FC (red/green) electron density 
near the active site, located around the catalytic serine Oɣ (Supplementary Fig. 6). This 
density suggested the presence of a bound molecule, perhaps in multiple orientations. Placing 
water, glycerol, malonate, or sulfate in this region did not improve the R-work and R-free 
statistics, nor did these placements satisfy the density. Placing water around the catalytic 
Serine Oɣ in multiple orientations did not reduce the FO-FC density, suggesting the structure 
still required the addition of one or more molecules, and perhaps in sub-100% occupancies. 
Adding glycerol in multiple locations proved unsatisfactory due to the increase in red FO-FC 
around pieces of the molecule unable to fit in the 2FO-FC density properly. Placing glycerol in 
varying locations with occupancies summing to 100% in attempts to solve this issue 
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remained insufficient to satisfy the 2FO-FC density. When adding malonate, negative 
interactions with nearby amino acid residues became unavoidable, no matter the position or 
orientation of the malonate. Additionally, experimental placement of malonate with varying 
occupancy proved unfulfilling to the 2FO-FC density. Finally, the inability to find a placement 
of sulfate molecules that would fulfill the active site density without interaction with each 
other concluded attempts to place a ligand in the active site. As this electron density near 
catalytic serine Oɣ remains unmodeled, this model should be considered a putative structure. 
Further refinement of other HbHNL structures could potentially aid in identifying the 
structure in the currently unresolved FO-FC density active site. Zuegg and coworkers[13] also 
observed unidentified electron density near the active site during refinement of an x-ray 
crystal structure of wild-type HbHNL. The final model was deposited in the Research 
Collaboratory for Structural Bioinformatics Protein Data Bank (PDB ID: 8euo).  

The three structures of wild-type hydroxynitrile lyase from Hevea brasiliensis without 
a bound ligand used for comparison have the following protein data bank IDs: 6yas,[20] 3c6x,
[60] 2g4l.[61] The structure of salicylic acid binding protein 2 from tobacco without a bound 
ligand used for comparison has the protein data bank ID 1y7h.[14] PyMOL v.2.5.4 was used to 
overlay the structures using the align function and to create images of protein structures.[62] 
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Chapter 6:

Results and Discussion
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6.1 SPM Webserver for Computational Enzyme Design

This chapter will expose and discuss the three main publications included
in this thesis. It will start by explaining the SPM webserver included in
Chapter 3. Then, as shown in Chapter 4, a brief discussion of recent protein
and enzyme design DL methods followed by a discussion of how to speed
up the exploration of the TrpB enzyme conformational heterogeneity with
a template-based AF2 approach. Finally, how to convert an HNL enzyme
to an EST enzyme with only eight predicted mutations using the SPM tool
and the rational insights that prove the remarkable improvement, including
the epistatic effects learned with the intermediate variants are presented.

6.1 SPM Webserver for Computational En-
zyme Design

Enzymes can be designed using a rational approach or by applying DE, always
involving the selection of specific residues for mutagenesis and employing
screening protocols to evaluate the enhancement of some targeted traits.
Rational approaches often restrict alteration in the active site or tunnels, but
DE studies reveal that mutations far away from those important regions can
remarkably impact the catalytic activity.108 Still, the challenge remains in
rationally predicting which distal mutations can affect and regulate enzyme
activity.

The already-introduced SPM tool (see Section 1.2.4) has been explored
in different scenarios providing evidence for the potential of this tool for
rationalizing DE mutations, deciphering allosterically important residues,
and more recently for design.19,143 A webserver for the computation of SPM
(SPMweb) has been released to open this tool to the scientific community.

Three files are needed to construct the final 3D graph using the SPMweb:
the coordinates of the protein atoms in PDB format, and the distance
and correlation matrices. These two matrices are obtained using the in-
formation from MD simulations and can be computed with different MD
analysis software (e.g., cpptraj or pytraj),115,116 usually considering Cα or
Cβ positions.

For SPM construction, two thresholds must be defined. The distance
threshold, which is by default set at 6Å, is based on identifying the pair
of residues whose mean distance between atoms (Cα or Cβ) along the MD
simulations is below the defined threshold. This information is obtained
from the distance matrix. As a result, a small distance threshold value will
only take into account residues that are close by, producing a very localized
and constrained SPM graph.
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6.1 SPM Webserver for Computational Enzyme Design

Figure 6.1: Main interface of the SPM Webserver. Users can upload the
required files, including distance matrix, correlation matrix, and PDB file from
MD simulations, into the corresponding boxes. Users have the option to adjust
key parameters such as the SPM significance threshold and distance threshold,
with default values set at 0.3 and 6Å respectively. A green box in the center of the
interface allows the downloading of a PyMOL script, which can be used to visualize
the SPM superposed on the protein structure within PyMOL software. Below, a 3D
representation displays the protein with the SPM overlay, where SPM is highlighted
with labeled spheres. Access the webserver directly at https://spmosuna.com.

The default value for the visualization/significance threshold is set to 0.3,
being the significance value normalized to 1.0; bigger values will limit the
number of connections to be visualized in the final SPM. Those threshold
values were established based on experience in identifying distal mutations
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from DE variations.19 Nonetheless, having the chance to change these pa-
rameters allows the user to explore which default settings would work best
in their particular case.

In the developed webserver the SPM is displayed in the provided enzyme
3D structure, where important residues appear as gray spheres labeled
according to the residue number, and edges connecting pairs of residues are
highlighted in black. The SPM is also displayed in 2D. The nodes’ associated
sphere sizes and the nodes’ connecting edge widths are primarily qualitative.
Moreover, a PyMol script is generated that can be executed in the software
to represent the SPM in the loaded structure, thus allowing the user to
change and customize the visualization settings (Fig. 6.1).

To show the functionalities of the webserver, the SPM has been computed
to identify the key conformationally relevant positions and how they are
connected in the case of 0B2-Pf TrpB, considering both monomeric and
dimeric TrpB units. Therefore, information about how the active site is
connected to distal sites and intersubunit communication between monomers
can be obtained. The default parameters are first used, but also, distinctive
threshold values have been tested to see how the SPM differs.

SPMweb is now freely accessible to academic users. Although it was
initially developed for enzyme design, the potential applications are broad
and can be further expanded by the scientific community ranging from
enzyme design to cryptic pocket identification for drug discovery.

6.2 AlphaFold2 and Deep Learning for Esti-
mating Conformational Heterogeneity and
Designing Proteins: The Case of Trypto-
phan Synthase

As shown in Chapter 4 Review AlphaFold2 and Deep Learning for Elucidating
Enzyme Conformational Flexibility and Its Application for Design, many new
methods have been revolutionizing the field of protein and enzyme design
since 2020 with the appearance of AF215 and RoseTTAFold.16 Many of these
methods come from the Baker lab group, with ProteinMPNN144 or, more
recently, the diffusion-based model RoseTTAFold diffusion (RFdifussion).145

Other groups have made significant contributions, such as the team behind
the ESM models at Facebook AI Research, which developed ESMFold,146

or the team from the Profluent company with the ProGen2147 model. Our
group also worked on developing a pipeline for protein conformational explo-
ration using AF2 and short-MDs. In this regard, we took advantage of the
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Trps enzyme, which is known to have catalytically relevant conformational
dynamics.148

TrpS is an enzyme with a well-studied allosteric communication network.
This communication involves a conformational rearrangement of different
regions of TrpA (e.g., loop 6) and TrpB (e.g., COMM domain). As described
in a previous publication of the group,149 the WT enzyme PfTrpB in the
absence of its partner has restricted conformational heterogeneity, whereas
the laboratory-evolved 0B2-Pf TrpB can explore open (O), partially closed
(PC), and closed (C) conformations of the COMM domain, resulting in a
stand-alone variant. On the other hand, ancestrally reconstructed Anc3 and
LBCA displayed opposite behavior between them, being the last found to
display stand-alone activity (i.e., TrpA is not needed for efficient catalysis).45

In this line, SPM6 TrpB enyzme, based on Anc3 scaffold, was rationally
designed.46 In these previous studies, the conformational heterogeneity of
all the above-mentioned enzymes was assessed through FEL reconstruction
from the computationally demanding metadynamics simulations.149

As mentioned in Section 1.2.5, AF2 is a DNN that performs extraordinar-
ily well at predicting the lowest energy structure of a protein. Escaping from
this static picture to understand enzyme function is not straightforward.
Nonetheless, and as suggested in some studies, multiple conformations of the
same protein can be predicted by fine-tuning AF2.138,139 In this study, we fi-
nally developed a template-based AF2 approach coupled to short nanosecond
MD simulations to estimate the FEL of different TrpBs quickly.

The template-based AF2 pipeline consists of modifications to two impor-
tant parts of the AF2 prediction procedure: the MSA depth and the templates
used. The MSA depth is defined as the number of sequence co-evolutionary
information features used for the prediction. As described in Section 1.2.5,
the max msa clusters default value is 512, and the max extra msa changes
between 1024 and 5120 based on the model used. In this approach, we
defined the MSA depth to the max msa clusters and max extra msa used
as features, being max msa clusters value half compared to max extra msa
(i.e., ranging from 1024/512 up to 32/12 max extra msa/max msa clusters),
with the exception when max extra msa is set to 5120. The templates used
in each calculation are set to just one, which can come from an X-ray or an
MD frame structure. Another important modification is to set num recycle
and num ensemble to 1. In this regard, just two different MSA samples are
used. The model usage in this approach is reduced to only the model ptm 2,
as it is trained using less max extra msa (i.e., 1024), and we got a better
confidence score result, thus adapting better when lower MSA depth is used.
To validate this template-based AF2 approach, we hypothesized that more
information regarding the enzyme’s ability to adopt O, PC, and C confor-
mations could be derived by fine-tuning the number of co-evolutionary and
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Figure 6.2: Representation of the template-based AF2 approach dia-
gram. Key parameters that differ from default settings in the AF2 algorithm
are highlighted. Max msa clusters = 16 and max extra msa = 32 are set to the
minimum values used from the range of MSA Depth. Other modifications include
setting num recycle and num ensemble to 1, with model ptm 2 utilized as the
model.

template features used. In this regard, assuming the AF2 has learned some
FEL,142 lowering MSA depth (i.e., lowering co-evolutionary information)
will flatten the AF2’s learned FEL and facilitate the prediction of other less
probable structures. By adding templates, we incorporate 3D information
that will bias the predicted structure to resemble the template.

First, to know how the templates bias the resulting prediction, the
structures are predicted with different MSA depths and without templates.
The results show that the most probable state for Pf TrpB and 0B2-Pf TrpB
enzymes is the PC, with some O states at lower MSA depth. In the case
of the LBCA and SPM6 enzymes, the most probable state of the COMM
domain is C. However, the ancestral LBCA populates a wider range of states
between PC and C. Instead, the SPM6 enzyme is less flexible, and the

102



6.2 AlphaFold2 and Deep Learning for Estimating Conformational
Heterogeneity and Designing Proteins: The Case of Tryptophan Synthase

increase of co-evolutionary information forces AF2 to predict the closest
COMM conformations among the systems (Fig. 6.3).

Structure prediction using the template AF2 approach with X-ray struc-
tures as templates was done with those available X-ray structures with
sequence identities higher than 70% for all systems. When using C and
PC X-ray templates, regarding 0B2-Pf TrpB and Pf TrpB, PC conforma-
tions of the COMM are mostly predicted. Although the differences between
both systems are small, AF2 models suggest a slightly higher number of
C conformations for 0B2-Pf TrpB. For the LBCA and SPM6 TrpB pair, C
conformations of the COMM domain are mostly predicted, irrespective of
the template structure and MSA depth used. However, when the MSA depth
is low in all systems, the 3D information pushes the resulting structure to
all possible COMM states (Fig. 6.3).

TrpB has multiple X-ray structures available, with different conformations
of the COMM domain. Unfortunately, this is not the case for most systems.
Therefore, instead of using X-ray structures as the input template for AF2
prediction, we use structures from MD simulations, which display C, PC, or
O conformations of the COMM domain.

When MD-extracted O and PC conformations are used as templates, the
predicted structures for 0B2-Pf TrpB and Pf TrpB present PC conformations,
although a slightly higher ability to adopt C conformations can be predicted
for 0B2-Pf TrpB (74% of the predicted structures adopt PC-C conformation,
whereas 67% in the case of PfTrpB). When using O conformations as
templates, PC and C structures are predicted for LBCA (at high MSA
depths), whereas for SPM6, more C conformations are obtained. This is
in line with the higher conformational flexibility of LBCA TrpB. Herein,
when the MSA depth is low in all systems, the MD structure also pushes
the resulting structure to all possible COMM states (Fig. 6.3).

To further assess the potential application of this template-based AF2
approach for rapid estimation of the conformational heterogeneity, two
replicas of short (i.e., 10 ns) MD simulations were run starting from all AF2
structures obtained in X-ray template analysis. Although all systems explore
productively the C conformation of the COMM, the FEL reconstruction
of 0B2-Pf TrpB suggests an additional minimum at O conformations. It is
worth mentioning that the O-to-C value (x-axis) at the C minima is ca. 9
for PfTrpB, whereas ca. 10.5 for 0B2-Pf TrpB, suggesting a higher ability of
the latter to adopt the catalytically productive C conformations.
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Figure 6.3: Representation of the previously reconstructed FEL of the
0B2-pfTrpB variant.149 The x-axis represents the open-to-closed (O-to-C)
transition of the COMM domain with a scale from 1–5 for open (O), 6–10 for
partially closed (PC), and 11–15 for closed (C) states. The y-axis measures the
mean square deviation (MSD) from the pathway of O-to-C structural transitions.
The color spectrum on the plots indicates the stability of conformations: blue
represents the most stable regions, transitioning to red for higher energy states.
The three columns depict different prediction methodologies: the first column shows
AlphaFold2 (AF2) predictions without templates at varying multiple sequence
alignment (MSA) depths, the second column utilizes X-ray structures in a template-
based AF2 approach, and the third column uses MD simulation structures as
templates in the AF2 predictions. The depth of the MSA is color-coded at the
bottom of the figure, ranging from orange to dark blue, indicating increasing depth.
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Altogether, AF2 tends to predict structures close to the global minimum
by increasing the co-evolutionary information from the MSA. By altering
the MSA depth and using a template as an input (either X-ray structures or
conformations taken from MD simulations), the conformational heterogeneity
of TrpB can be rapidly estimated, thus visiting structures that escape from
the global minimum learned by AF2. Some conformational changes induced
by a reduced set of mutations (6 positions included by DE in 0B2-Pf TrpB)
can be further captured utilizing short MD simulations (i.e., 10 ns each
replica). This template-based AF2 approach can therefore be potentially
applied for assessing the conformational landscape of new enzyme variants
at a rather reduced computational cost.

It is worth mentioning that the analysis of this template-based AF2 has
been recently extended. Shortly, the 10 ns MD simulations were elongated
up to 50 ns with the already used ff14SB and TIP3P water model, and
additionally the ff19SB/OPC combination. To assess the length of the MD
simulations and the force field/water model combination, the template-based
AF2 approach was further coupled with the SPM analysis. Interestingly, the
new SPM coming from the 50 ns MD simulations using the ff19SB/OPC
combination, can capture two additional mutations (I68V and T292S) if
compared to the results using the computationally demanding metadynamics
simulations.84

6.3 Designing Efficient Enzymes: Eight Pre-
dicted Mutations Convert a Hydroxyni-
trile Lyase into an Efficient Esterase

Reaching nature-like enzyme efficiencies in enzyme design variants is still an
unresolved problem, as engineered variants often perform much slower than
natural enzymes (i.e., being inefficient). The sophisticated catalytic mecha-
nisms of enzymes involve the simultaneous optimization of substrate binding,
TS stabilization, and product release. Enzymes are continuously moving,
which is beneficial for precisely positioning the substrate and catalytic groups.
Residues far away from the active site can affect catalysis. For all these
reasons, it is difficult to predict which mutations will give rise to a shift in
the conformational landscape favoring the catalytically active conformations.
In this regard, by using the information from MD simulations, the SPM
tool can predict the conformationally relevant positions that contribute to
catalysis.

HbHNL catalyzes cyanohydrin cleavage, while the homologous esterase
SABP2 catalyzes ester hydrolysis. Both enzymes share 45% of sequence
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identity and are structurally very similar. For instance, they have the same
serine-histidine-aspartate catalytic triad. HbHNL also catalyzes promiscuous
hydrolysis of pNPAc, but much slower than SABP2 (i.e., kcat/KM of 83 and
61,000 M-1 min-1, respectively). To improve the esterase activity of HbHNL,
four positions in the active site were reverted towards the corresponding
residue found in SABP2, leading to a (still) inefficient esterase named HNL3V
(i.e., kcat/KM of 490 M-1 min-1).

X-ray structures were overlaid to best fit the Cα positions to compare
the active site residues. Although a similar placement of the catalytic atoms
was found, one residue from the oxyanion hole (OX1 N atom, the oxyanion
residue that is not in the nucleophilic elbow) differs significantly between
systems. The internal distance between the Cα of Serine and OX1 N is
significantly longer in HbHNL structures (1Å difference). Altogether, this
indicates that HbHNL and SABP2 cannot form the same interactions, and
thus display the same activity.

Figure 6.4: Shortest Path Maps (SPM) of HNL3V (left) and SABP2
(right). Highlighted five key substitutions with yellow cubes, designed to en-
hance the catalytic dynamics of HNL3V to mimic those of SABP2. Significant
modifications include Gly176Ser and Cys81Leu, which establish a connection to
OX1 (Ala13 in SABP2, Ile12 in HNL3V) in SABP2 SPM. Additional significant
substitutions are at residues 104–106, connected to the catalytic Asp207 in HNL3V
and disconnected in SABP2 SPM. These substitutions collectively result in the
HNL8V variant. Spheres denote conserved residues across both proteins and cubes
denote residues that differ. Key catalytic residues and the amides forming the
oxyanion hole are depicted with stick representations.

Taking HNL3V as a basis and SABP2 as a reference, MD simulations
of both systems were performed, and the SPM was further constructed.
Interestingly, some differences in the catalytic residues were revealed, thus
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resulting in two regions liable for mutagenesis. Five mutations were pre-
dicted with the SPM tool (i.e., C81L-N104A-S105A-V106F-G176S set of
five mutations) based on the network connectivity to the oxyanion hole
and catalytic aspartate loop. These five positions were predicted to fix the
oxyanion hole orientation and the correlated motions of the catalytic aspar-
tate. The application of these five mutations in HNL3V yields a new variant
named HNL8V, composed of the stabilization mutation H103V (i.e., V from
HNL8V coming from mutation H103V), the three obvious mutations (i.e.,
Thr11Gly-Glu79His-Lys236Gly mutations), and the five mutations coming
from the SPM tool. Moreover, HNL7V is also designed as an additional
variant similar to HNL8V, excluding the Ser105Ala substitution, as it may
be less important because of the similarity between residues (Fig. 6.4). Both
variants proved to enhance the esterase activity. HNL7V and HNL8V showed
a kcat/KM of 25,000 and 23,000 M-1 min-1, respectively. This corresponds to
an improvement of 290-fold compared to HbHNL. However, those variants
did not surpass the SABP2 catalytic efficiency of 61,000 M-1 min-1. The
incredible activity improvement of the single mutated HNL3V with N104A
and the doubly mutated HNL3V with N104A-G176S (i.e., kcat/KM of 9,100
and 52,000 M-1 min-1, respectively) highlighted the importance of residue
position 104 (i.e., position 105 in SABP2). In this regard, identification of
the most conserved amino acid at this position among homologous esterases
being 105T made it interesting to test the variant HNL7T (i.e., HNL7 with
A104T mutation). Surprisingly, the catalytic efficiency increased to 120,000
M-1 min-1, which is almost twice the SABP2 enzyme’s catalytic efficiency.
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Figure 6.5: a) Histogram of the distances (in Å) between the amide backbone
of OX1 N (Ile12 or Ala13) and Cα of the catalytic serine (Ser80 or 81) for the
following proteins: SABP2 (pink), HNL3V (blue), HNL3V N104A G176S (orange),
HNL6V (green), HNL7V (dark pink), HNL7TV (purple), HbHNL8V (brown). b)
Representation of two SABP2’s catalytic triad conformational states
presenting closer and longer distances between nucleophilic Ser Cα and catalytic
Asp Cα, and the corresponding overlay.

The improvements in EST activity in HbHNL variants can be rational-
ized through MD simulations, which can be attributed to two important
improvements concerning the SABP2 enzyme. The first is the oxyanion
hole regeneration, where these active variants have a highly similar distance
distribution between OX1 N and the serine Cα to SABP2 enzyme, being of
about ca. 5.5Å compared to the ca. 6.2Å of the bad variants (Fig. 6.5a).
The second improvement corresponds to the distance distribution between
the nucleophilic Ser amino acid and the catalytic triad His-Asp pair, where
the HbHNL highly active variants resemble the SABP2 distribution of closer
distances, being represented as SABP2 state 2 in Fig. 6.5b.
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Figure 6.6: Cooperative interactions among mutations enhance catalytic
activity. Represented are the conformations of HNL variants: HNL3V (left
panel, light blue carbons) as the starting variant; the singly mutated variants
HNL3V+G176S (center top panel, green carbons), HNL3V+C81L (center middle
panel, gold carbons), and HNL3V+V106F (down middle panel, dark blue carbons);
and the triple variant (right panel, pink carbons). All panels include a representa-
tive conformation of the active site and oxyanion hole residues of SABP2 (purple
carbons) and a bar at the left side indicating the catalytic efficiency (kcat/KM, M-1

min-1) of each HNL variant. The synergistic effect of the three mutations exceeds
their individual contributions, indicating a positive sign of epistasis, highlighted
in pink with an arrow. The labels of the oxyanion hole residues (OX1, OX2) are
color-coded to indicate correct (green) or incorrect (red) orientation relative to
SABP2. Double arrows indicate the different conformations of the C81 sidechain
compared to SABP2. Distances between the amide backbone of OX1 N Ile12 and
Cα of the catalytic serine are defined in HNL3V and the triple variant.

In this line, the regeneration of the oxyanion hole’s functionality in the
enzyme variant was elucidated through the epistatic effects among three
specific mutations identified via SPM predictions: C81L, V106F, and G176S.
These mutations collectively enhance the enzyme’s EST catalytic efficiency
by more than twice what would be expected if they were simply additive.
Specifically, the cooperative interaction among these mutations leads to
an optimal rearrangement of the oxyanion hole. The G176S mutation
adjusts the enzyme’s backbone conformation, effectively positioning residue
Ile12 optimally for orienting the second oxyanion hole (i.e., the OXI2 N
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atom) (Fig. 6.6). The double mutations of C81L and V106F are crucial
for correctly orienting the first oxyanion hole residue (i.e., the OXI1 N
atom) and facilitating substrate access to the active site for catalysis. This
demonstrates positive cooperativity among these mutations and underscores
their critical roles in enhancing the catalytic function by structurally and
dynamically reconfiguring key elements of the enzyme’s active site.
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Conclusions

In this thesis, we have extensively explored the utility of computational
tools in advancing the field of enzyme design. The development and applica-
tion of the SPM webserver tool and a template-based AF2 approach have
demonstrated significant improvements in our understanding and capability
to design enzymes with desired functionalities and explore the conformational
heterogeneity of proteins. The major conclusions drawn from this thesis
organized by chapter are as follows:

1. In Chapter 3, the SPM tool has proven to be a groundbreaking
approach for identifying key dynamic residues essential for enzyme
function beyond the active site. This tool uses MD simulations to
build an extensive map of connections within the enzyme, showing
how distal mutations impact enzyme dynamics and activity. The
release of SPMweb extends the accessibility and applicability of this
tool, promoting wider use in the scientific community for research and
enzyme design. The user-friendly interface allows the user to change
the key parameters to not be limited by the default settings.

2. In Chapter 4, the advances in DL methods and AF2 for protein
design are shown, and the template-based AF2 pipeline is presented,
which consists of modifying the MSA depth and template inputs in
the AF2 protocol to promote conformational exploration of enzymes.
Utilizing four TrpB enzymes with their already computed FEL of
states from O to C of the COMM domain, and a huge amount of X-ray
structures, we could prove the benefits of tuning the AF2 pipeline with
the balance of co-evolutionary and physical information to obtain the
widest conformational search of each system. With the introduction
of short-MD in the pipeline, we could compare the benefits of this
approach to the expensive metadynamics calculation for recovering
the FEL. The low cost of this approach helps to get insights that
will be highly beneficial for the fast rational design of enzymes or for
discovering the complexity of protein dynamics.

3. In Chapter 5, the rational design of an HNL enzyme into an efficient
EST through the introduction of eight predicted mutations utilizing the
SPM tool highlights the power of including the dynamics of enzymes
are an important part of the enzyme design process. The rational
identification of the properties that were gained by the HbHNL vari-
ants through oxyanion regeneration and catalytic triad repositioning,
combined with the epistatic effects needed for the final improvement,
showcases the utility of MD simulations to get insights for further
enzyme design campaigns. Thanks to a deeper understanding of these
enzymes we can further use this enzyme to design new variants with
novel functionalities.
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The findings from this thesis underline the complex connection between
enzyme structure, its dynamic behavior, and catalytic function. The ability to
manipulate enzyme activity through strategic mutations reported by detailed
dynamic maps and structurally validated through cheap conformational
sampling pipelines offers a powerful method for enzyme design. The potential
to apply these computational strategies to the tailored design of industrially
relevant enzymes presents an exciting frontier for research and development.
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(143) Calvó-Tusell, C.; Maria-Solano, M. A.; Osuna, S.; Feixas, F. Journal
of the American Chemical Society 2022, 144, 7146–7159.

(144) Dauparas, J.; Anishchenko, I.; Bennett, N.; Bai, H.; Ragotte, R. J.;
Milles, L. F.; Wicky, B. I.; Courbet, A.; de Haas, R. J.; Bethel, N.,
et al. Science 2022, 378, 49–56.

(145) Watson, J. L.; Juergens, D.; Bennett, N. R.; Trippe, B. L.; Yim, J.;
Eisenach, H. E.; Ahern, W.; Borst, A. J.; Ragotte, R. J.; Milles, L. F.,
et al. Nature 2023, 620, 1089–1100.

(146) Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin, N.;
Verkuil, R.; Kabeli, O.; Shmueli, Y., et al. Science 2023, 379, 1123–
1130.

(147) Nijkamp, E.; Ruffolo, J. A.; Weinstein, E. N.; Naik, N.; Madani, A.
Cell systems 2023, 14, 968–978.

(148) Casadevall, G.; Duran, C.; Estévez-Gay, M.; Osuna, S. Protein Sci-
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Molecular dynamics simulations. System preparation. The starting structures for the four 

enzymes (pfTrpB, 0B2-pfTrpB, LBCA-TrpB, and SPM6-TrpB) were generated with the 

predictions of the X-ray template-based AF2 approach. The AF2 models simulated were the ones 

without backbone steric clashes and with the predicted LDDT-Cα score (pLDDT) higher than 89. 

Finally, from the 63 predicted AF2 structures for each system, we simulated a total of 60, 59, 62, 

and 59 structures for pfTrpB, 0B2-pfTrpB, LBCA-TrpB, and SPM6-TrpB systems, respectively. 

To generate the TrpB homodimer enzyme of pfTrpB and 0B2-pfTrpB AF2 predictions, we used 

the TrpB crystal structure from Pyrococcus furiosus (PDB: 5DW0) as a template to superpose the 

AF2 structure to each TrpB monomer. Whereas, for the LBCA-TrpB and SPM6-TrpB AF2 

predictions, we used the TrpB homodimer of the LBCA TrpS complex (PDB: 5EY5) to generate 

the TrpB homodimer. The Q2 intermediate was placed in the TrpB subunits through superposition 

to the Aex2 intermediate of the engineered TrpB X-ray structure with PDB accession code 6AM8. 

Also, to avoid clashes with the Q2 intermediate, the chi2, chi3, and chi4 torsion angles of the 

catalytic lysine (i.e., Lys84) were switched to the ones in the 6AM8 X-ray structure. Likewise, 

the chi4 torsion angle of the Arg375 sidechain was switched to maintain the Arg-Arg interaction 

at the dimer interface. The structures were prepared using the Python packages MDTraj, pytraj, 

MDAnalysis, PyEMMA, and networkx.1-4 

 

The water molecules added to each homodimer were selected from the DBSCAN clusterization5,6 

algorithm implemented in the scikit-learn Python library,7 of all X-ray TrpB monomers with a 

sequence identity greater than 70% for the four systems i.e., order by PDB accession number and 

chain: 5IXJ_A, 5IXJ_B, 5IXJ_C, 5IXJ_D, 5DW3_A, 5DW3_B, 5DW3_C, 5DW3_D, 5E0K_B, 

5E0K_D, 5E0K_F, 5E0K_H, 5E0K_J, 5E0K_L, 5DW0_A, 5DW0_B, 5DW0_C, 5DW0_D, 

1V8Z_A, 1V8Z_B, 1V8Z_C, 1V8Z_D, 5T6M_A, 5T6M_B, 5T6M_C, 5T6M_D, 1WDW_B, 

1WDW_D, 1WDW_F, 1WDW_H, 1WDW_J, 1WDW_L, 5DVZ_A, 5DVZ_B, 5DVZ_C, 

5DVZ_D, 6AMH_A, 6AMH_B, 6AMH_C, 6AMH_D, 6AMI_A, 6AMI_B, 6AMI_C, 6AMI_D, 

6AMC_A, 6AMC_B, 6AMC_C, 6AMC_D, 5VM5_A, 5VM5_B, 5VM5_C, 5VM5_D, 

6AM8_A, 6AM8_B, 6AM8_C, 6AM8_D, 6AM9_A, 6AM9_B, 6AM9_C, 6AM9_D, 6AM7_A, 

6AM7_B, 6AM7_C, 6AM7_D, 6CUV_A, 6CUV_B, 6CUV_C, 6CUV_D, 6CUT_A, 6CUT_B, 

6CUT_C, 6CUT_D, 6CUZ_A, 6CUZ_B, 6CUZ_C, 6CUZ_D, 5EY5_B, 5EY5_D. Additionally, 

three conserved sodium ions in the X-ray structures were added to all structures located at the 

dimer interface and in each monomer close to the active site. 

  

The MD parameters for Q2 intermediate were generated with the antechamber and parmchk2 

modules of AMBER208 using the 2nd generation of the general amber force-field (GAFF2).9,10 

The Q2 intermediate was optimized at the B3LYP/6-31G(d) level of theory including Grimme's 

dispersion correction with Becke-Johnson Damping (D3-BJ) and the polarizable conductor model 

(PCM) (dichloromethane, ε = 8.9) as an estimation of the dielectric permittivity in the enzyme 

active site.11 The partial charges (RESP model)12 were set to fit the electrostatic potential 

generated at the HF/6-31G(d) level of theory. The charges were calculated according to the Merz-

Singh-Kollman13,14 scheme using the Gaussian16 software package.15 The protonation states were 

predicted using PROPKA.16,17 However, the protonation state of the catalytic residue Lys84 was 

neutral (i.e., LYN84), as is described in the mechanism at the Q2 intermediate.  All the histidine 

residues were neutral and protonated in the epsilon nitrogen (i.e., Hie), excluding His334 in 

pfTrpB and 0B2-pfTrpB systems, His257 in SPM6-TrpB, and His350 in the four systems that are 

protonated just in the delta position (i.e., HID). The enzyme structures were solvated in a pre-

equilibrated truncated octahedral box of 11 Å edge distance using the TIP3P water model, 

resulting in the addition of ca. 24.000 water molecules, and neutralized by the addition of explicit 

counterions (i.e., Na+) using the AMBER20 leap module. All MD simulations were performed 

using a modification of the amber99 force field (ff14SB).18 

 

MD simulation details. The protocol applied for the MD equilibration phase was the one 

described by Roe and Brooks with small differences fine-tuned to our systems.19 During the non-

production phase, a distance harmonic restraint was applied between the Q2 intermediate and the 

catalytic Lys84 to maintain a catalytic pre-organized conformation and a time step of 1 fs (i.e., 
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excluding the fourth and fifth equilibration rounds that the time step is 2 fs), to allow potential 

inhomogeneities to self-adjust. For non-minimization steps, the bonds involving hydrogen are 

constrained by the SHAKE algorithm. Long-range electrostatic effects were modelled using the 

particle mesh-Ewald method.20 A 10 Å cut-off was applied to Lennard–Jones and electrostatic 

interactions. The MD protocol starts with the minimization phase of 1500 steps steepest descent 

method followed by 3500 steps of the conjugate gradient method with a positional restrain (i.e., 

force constant of 5.0 kcal·mol-1·Å-2) to the protein-heavy atoms. Then, a heating phase is 

performed with increasing the temperature from 25 K to 300 K during 20 ps of MD simulation, a 

Langevin thermostat with a collision frequency of 5 ps-1, and a positional restrain (i.e., force 

constant of 5.0 kcal·mol-1·Å-2) to the protein-heavy atoms. The next step is the minimization and 

heating of all the atoms in the system. Starting with two minimization stages of 1000 steps 

steepest descent method followed by 1500 steps of the conjugate gradient method each with a 

positional restrain (i.e., force constant of 2.0 kcal·mol-1·Å-2 in the first minimization and 0.1 

kcal·mol-1·Å-2 in the second) to the protein-heavy atoms. Then, a third minimization phase of 

1500 steps steepest descent method followed by 3500 steps of the conjugate gradient method 

without any positional restraint is performed. Afterwards, the system is heated in the same way 

as was previously defined.  Finally, a five-round equilibration phase at the NPT ensemble with a 

constant pressure of 1 atm is performed: whereas the first four were done with the Berendsen 

barostat, the fifth one with Monte-Carlo barostat. Langevin thermostat with a collision frequency 

of 1 ps-1 was used in the five equilibration rounds. The first two equilibration rounds of 5 ps had 

a positional restraint to the protein-heavy atoms with a force constant of 1.0 and 0.5 kcal·mol-1·Å-

2, respectively. A third round of 10 ps equilibration is followed with positional restraint to the 

backbone-heavy atoms with a force constant of 0.5 kcal·mol-1·Å-2. The fourth equilibration round 

of 10 ps was performed without any restraint. The last equilibration round was of 500 ps without 

any restraint. The production runs were performed at the NVT ensemble with the Langevin 

thermostat with a collision frequency of 1 ps-1 during 10 ns. Finally, two replicas of equilibration 

and production runs were performed for each homodimer, reaching a total simulation time of 

1200 ns, 1180 ns, 1240 ns, and 1180 ns for pfTrpB, 0B2-pfTrpB, LBCA-TrpB, and SPM6-TrpB 

systems, respectively. 

 

 

 

 

Table S1. Mean and standard deviation of the O-to-C values of the AF2 predicted structures for 

all systems at different MSA depths (section 1 in results and discussion).  

 

MSA pfTrpB 0B2-TrpB LBCA-TrpB SPM6-TrpB 

32 5,1 ± 1,6 3,2 ± 2,1 8,8 ± 1,5 8,0 ± 1,5 

64 5,1 ± 2,1 5,2 ± 2,2 9,9 ± 1,1 10,5 ± 1,0 

128 4,5 ± 2,0 4,9 ± 1,5 10,2 ± 1,1 11,4 ± 0,8 

256 5,0 ± 1,3 4,8 ± 1,0 10,6 ± 0,8 11,9 ± 0,5 

512 5,0 ± 0,7 5,1 ± 0,8 10,5 ± 0,9 11,5 ± 0,5 

1024 5,1 ± 0,7 5,1 ± 0,6 10,0 ± 0,9 11,1 ± 0,7 

5120 5,1 ± 0,6 5,0 ± 0,5 10,2 ± 0,8 11,3 ± 0,6 

 

 

Table S2. Representation of the sequence identity between the different analyzed systems and 

the available X-ray structures, as well as the selected X-rays for developing the template-based 

AF2 approach in section 2.  

 

Identity % for LBCA-TrpB ALL X-rays. MAX: 100.0, MIN: 69.6 

Identity % for LBCA-TrpB SELECTED X-rays. MAX: 100.0, MIN: 69.6 
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Identity % for 0B2-pfTRPB ALL X-rays. MAX: 99.7, MIN: 70.4 

Identity % for 0B2-pfTRPB SELECTED X-rays. MAX: 99.0, MIN: 70.4 

  

Identity % for pfTRPB ALL X-rays. MAX: 100.0, MIN: 70.9 

Identity % for pfTRPB SELECTED X-rays. MAX: 99.7, MIN: 70.9 

  

Identity % for SPM6 TrpB ALL X-rays. MAX: 91.1, MIN: 68.3 

Identity % for SPM6 TrpB SELECTED X-rays. MAX: 91.1, MIN: 68.3 

 

Table S3. Percentage of O-PC and PC-C structures as predicted by the X-ray and MD template-

based AF2 for the different analyzed systems. The percentages are provided taking into account 

all predicted structures with the complete ensemble of templates (named X-ray templates and MD 

templates), and also by analyzing separately the results with templates with only O or C 

conformations. The mean and standard deviation of the O-to-C values of the AF2 predicted 

structures for all systems is also provided.  

 

 
 

 

 
Figure S1. On the left, projection of the available X-ray structures presenting a sequence identity 

higher than 70% with respect to 0B2-pfTrpB. X-ray structures deposited after the training of AF2 

network was made are highlighted in white. Multiple structures have been deposited presenting 
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different levels of closure of the COMM domain, as shown by the x axis that denotes the open-

to-closed transition of the COMM domain, which ranges from 1-5 (open, O), 6-10 (partially-

closed, PC), to 11-15 (closed, C). The y axis is the mean square deviation (MSD) deviation from 

the path of O-to-C structures generated. Most stable conformations are shown in blue, whereas 

higher in energy regions in red.21 Most stable conformations are shown in blue, whereas higher 

in energy regions in red.1 On the right, representation of the 9 X-ray structures used as templates 

in section 2. 

 

 

 
Figure S2. Overlay of the 9 X-ray structures used as templates that display different 

conformations of the COMM domain.  
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Figure S3. Representation of the principal component analysis (PCA) space created using carbon 

alpha distances between conserved residues all around the protein for the available X-ray 

structures presenting a sequence identity higher than 70% with respect to 0B2-pfTrpB (the 

different X-rays are represented with black dots). All generated structures with AF2 pipelines are 

projected into this experimentally-based PC space. AF2 models of the different systems generated 

without the use of any templates but altering the MSA depths are shown in light blue (named AF2 

in the legend), the structures predicted with X-ray template-based AF2 in red (named X-ray tAF2) 

and MD template-based AF2 in green (MD tAF2). 
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Figure S4. Representation of the previously reconstructed free energy landscape (FEL) of the 

0B2-pfTrpB variant.21 The x axis denotes the open-to-closed transition of the COMM domain, 

which ranges from 1-5 (open, O), 6-10 (partially-closed, PC), to 11-15 (closed, C), the y axis is 

the mean square deviation (MSD) deviation from the path of O-to-C structures generated. Most 

stable conformations are shown in blue, whereas higher in energy regions in red.21 The predictions 

of the X-ray template-based AF2 approach for the different analyzed systems are represented 

on the 2D-FEL representation using vertical lines colored from orange to dark blue depending on 

the MSA depth: AF2 predictions obtained with a 32 MSA depth are shown with a vertical orange 

line, 64 in light orange, 128 in light brown, 256 in light cyan, 512 in cyan, 1024 in teal, and 5120 

in dark blue. Black dots indicate the used X-ray structures as input templates, and the size of the 

spheres is proportional to the sequence identity of the X-ray with respect to the studied TrpB 

system. No side-chain information was included in the provided set of X-ray templates. 
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Figure S5. Representation of the previously reconstructed free energy landscape (FEL) of the 

0B2-pfTrpB variant.21 The x axis denotes the open-to-closed transition of the COMM domain, 

which ranges from 1-5 (open, O), 6-10 (partially-closed, PC), to 11-15 (closed, C), the y axis is 

the mean square deviation (MSD) deviation from the path of O-to-C structures generated. Most 

stable conformations are shown in blue, whereas higher in energy regions in red.21 The predictions 

of the X-ray template-based AF2 approach for the different analyzed systems are represented 

on the 2D-FEL representation using vertical lines with a MSA depth of 1. Black dots indicate the 

used X-ray structures as input templates, and the size of the spheres is proportional to the sequence 

identity of the X-ray with respect to the studied TrpB system. No side-chain information was 

included in the provided set of X-ray templates. 
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Figure S6. Representation of the previously reconstructed free energy landscape (FEL) of the 

0B2-pfTrpB variant.21 The x axis denotes the open-to-closed transition of the COMM domain, 

which ranges from 1-5 (open, O), 6-10 (partially-closed, PC), to 11-15 (closed, C), the y axis is 

the mean square deviation (MSD) deviation from the path of O-to-C structures generated. Most 

stable conformations are shown in blue, whereas higher in energy regions in red.21 The predictions 

of the X-ray template-based AF2 approach for the different analyzed systems with vertical 

lines colored from orange to dark blue depending on the MSA depth: AF2 predictions obtained 

with a 32 MSA depth are shown with a vertical orange line, 64 in light orange, 128 in light brown, 

256 in light cyan, 512 in cyan, 1024 in teal, and 5120 in dark blue. Black dots indicate the used 

X-ray structures as input templates, and the size of the spheres is proportional to the sequence 

identity of the X-ray with respect to the studied TrpB system. Side-chain information was 

included in the provided set of X-ray templates. 
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Figure S7. Overlay of the different COMM domain conformational states (O highlighted in lilac, 

PC in pink, and C in light brown) of the predictions obtained with X-ray template-based AF2 

approach for the different analyzed systems. 
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Figure S8. Overlay of the 11 MD conformations used as templates, and  extracted from the 

previously reconstructed free energy landscape (FEL) of the 0B2-pfTrpB variant.21  These 11 

structures were used as templates and display different conformations of the COMM domain. 
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Figure S9. Representation of the previously reconstructed free energy landscape (FEL) of the 

0B2-pfTrpB variant.21 The x axis denotes the open-to-closed transition of the COMM domain, 

which ranges from 1-5 (open, O), 6-10 (partially-closed, PC), to 11-15 (closed, C), the y axis is 

the mean square deviation (MSD) deviation from the path of O-to-C structures generated. Most 

stable conformations are shown in blue, whereas higher in energy regions in red.21 The predictions 

of the Molecular Dynamics (MD) extracted template-based AF2 approach for the different 

analyzed systems with vertical lines colored from orange to dark blue depending on the MSA 

depth: AF2 predictions obtained with a 32 MSA depth are shown with a vertical orange line, 64 

in light orange, 128 in light brown, 256 in light cyan, 512 in cyan, 1024 in teal, and 5120 in dark 

blue. Black dots indicate the used representative MD conformations as input templates. No side-

chain information was included in the provided set of MD-based templates. 
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Figure S10. Representation of the previously reconstructed free energy landscape (FEL) of the 

0B2-pfTrpB variant.21 The x axis denotes the open-to-closed transition of the COMM domain, 

which ranges from 1-5 (open, O), 6-10 (partially-closed, PC), to 11-15 (closed, C), the y axis is 

the mean square deviation (MSD) deviation from the path of O-to-C structures generated. Most 

stable conformations are shown in blue, whereas higher in energy regions in red.21 The predictions 

of the Molecular Dynamics (MD) extracted template-based AF2 approach for the different 

analyzed systems with vertical lines with a MSA depth of 1. Black dots indicate the used 

representative MD conformations as input templates. No side-chain information was included 

in the provided set of MD-based templates. 
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Figure S11. Representation of the previously reconstructed free energy landscape (FEL) of the 

0B2-pfTrpB variant.21 The x axis denotes the open-to-closed transition of the COMM domain, 

which ranges from 1-5 (open, O), 6-10 (partially-closed, PC), to 11-15 (closed, C), the y axis is 

the mean square deviation (MSD) deviation from the path of O-to-C structures generated. Most 

stable conformations are shown in blue, whereas higher in energy regions in red.21 The predictions 

of the Molecular Dynamics (MD) extracted template-based AF2 approach for the different 

analyzed systems with vertical lines colored from orange to dark blue depending on the MSA 

depth: AF2 predictions obtained with a 32 MSA depth are shown with a vertical orange line, 64 

in light orange, 128 in light brown, 256 in light cyan, 512 in cyan, 1024 in teal, and 5120 in dark 

blue. Black dots indicate the used representative MD conformations as input templates. Side-

chain information was included in the provided set of MD-based templates. 
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Figure S12. Representation of the principal component analysis (PCA) space created using 

carbon alpha distances between conserved residues all around the protein for the available X-ray 

structures presenting a sequence identity higher than 70% with respect to 0B2-pfTrpB (the 

different X-rays are represented with black dots). AF2 models of the different systems generated 

with the X-ray template-based AF2 approach are shown in red (named X-ray tAF2), whereas 

conformations sampled in the multiple replica short nanosecond timescale MD simulations 

starting from the different AF2 predictions are shown in gray (MD data from X-ray tAF2). 
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Supplementary Figures 

SABP2          1 MKEGKHFVLVHGACHGGWSWYKLKPLLEAAGHKVTALDLAASGTDLRKIE  50 
                  ....||||:|..|||.|.|:||||||||.|||||||||||||.|.|:|| 
HbHNL          1 -MAFAHFVLIHTICHGAWIWHKLKPLLEALGHKVTALDLAASGVDPRQIE  49 

SABP2         51 ELRTLYDYTLPLMELMESLSADEKVILVGHSLGGMNLGLAMEKYPQKIYA 100 
                 |:.:..:|:.||:..:|:|...|||||||.|.||:|:.:|.:||.:||.| 
HbHNL         50 EIGSFDEYSEPLLTFLEALPPGEKVILVGESCGGLNIAIAADKYCEKIAA  99 

SABP2        101 AVFLAAFMPDSVHNSSFVLEQYNERTPAENWLDTQFLPYGSPEEPLTSMF 150 
                 |||..:.:||:.|..|:|:::..|..|  :|.||.:..|....:.:|.:. 
HbHNL        100 AVFHNSVLPDTEHCPSYVVDKLMEVFP--DWKDTTYFTYTKDGKEITGLK 147 

SABP2        151 FGPKFLAHKLYQLCSPEDLALASSLVRPSSLFMEDLSKAKYFTDERFGSV 200 
                 .|...|...||.||.||:..||..|.|..|||...|:|..:||.|.:||: 
HbHNL        148 LGFTLLRENLYTLCGPEEYELAKMLTRKGSLFQNILAKRPFFTKEGYGSI 197 

SABP2        201 KRVYIVCTEDKGIPEEFQRWQIDNIGVTEAIEIKGADHMAMLCEPQKLCA 250 
                 |::|:...:|:....|||.|||:|....:..:::|.||...|.:.:::.. 
HbHNL        198 KKIYVWTDQDEIFLPEFQLWQIENYKPDKVYKVEGGDHKLQLTKTKEIAE 247 

SABP2        251 SLLEIAHKYN 260 
                 .|.|:|..|| 
HbHNL        248 ILQEVADTYN 257 

Supplementary Fig. 1 | Pairwise amino acid sequence alignment of SABP2 (UniProt Q6RYA0) and 
HbHNL (UniProt P52704) using the  Needleman-Wunsch algorithm.[1] The comparison over 260 positions 
identified 114 (44%) identical positions (marked by ‘|’), 161 (62%) similar positions (identical plus those 
marked by ‘:’) and 3 (1.2%) gaps (marked by a blank and a ‘-’ in the HbHNL sequence). The default settings 
(EBLOSUM62 matrix, gap penalty of 10, extend penalty of 0.5) of the web tool EMBOSS Needle  (https://
www.ebi.ac.uk/Tools/psa/emboss_needle/) were used to create the alignment. 
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Supplementary Fig. 2 | Zoom and slight rotation relative to Fig. 3 of the SPM of SABP2 showing the 
correlated motions of OX1 (Ala13) and residues Cys14, Gly12, Ser179, and OX2 (Leu 82). Cys14 and Gly12 
are conserved between SABP2 and HNL3V (and are shown as spheres), whereas Ser179 and Leu82 (shown as 
cubes) correspond to Gly176 and Cys81 in HNL3V. The catalytic residues and amides of the oxyanion hole 
residues are shown in sticks. C14 and G12 were hard to see in Fig. 3.  

 
Supplementary Fig. 3 | Relative frequencies of amino acids at positions 104-107 among 889 homologs of 
SABP2. The height of the letters indicates the relative frequency of the amino acid. The positions correspond to 
positions 103-106 in HbHNL. The most common amino acid at SABP2 position 105 is threonine; the second 
most common is alanine. The multiple sequence alignment was generated using Consensus Finder[2] (http://
kazlab.umn.edu/) using default settings and the UniProt SABP2 sequence Q6RYA0. Consensus Finder searches 
for homologs using BLAST, reduces sequence redundancy by clustering all sequences into groups with 90% 
sequence identity using CD-HIT and retains only one representative sequence from each cluster. Finally, Clustal 
W creates the multiple sequence alignment. The image was generated with WebLogo[3]  (https://
weblogo.berkeley.edu/).  
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Supplementary Fig. 4 | Improvements in catalytic turnover and binding are independent. Linear 
regression of kcat (y-axis) vs. 1/KM (x-axis) values for HbHNL variants shows no correlation (R2 = 0.01). kcat 
values are shown for selected variants. 
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Supplementary Fig. 5 | HNL6V crystal used for data collection prior to extraction or soaking. Growth 
conditions: 0.1 M BIS TRIS, pH 5.5, 2.0 M ammonium sulfate. The HNL6V crystals measured 90x175 µm (left 
crystal) and 350x300 µm (right crystal). The right crystal was harvested for data collection. The five circular 
“bubbles” are optical artifacts of the microscope. 

 
Supplementary Fig. 6 | Cross-eyed stereo view of the unmodeled density (green mesh) of HNL6V near the 
active site at a 3.0 Å contour level. The electron density associated with the catalytic triad (S80-D207-H235) is 
labeled. 

350 
µm
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Supplementary Tables 

Supplementary Table 1 | Steady-state kinetic parameters for hydrolysis of p-nitrophenyl acetate of all 
enzyme variants. See Materials and Methods for experimental conditions and details. 

Enzyme kcat (min -1) KM (mM) kcat/KM 

(M-1*min-1)

SABP2 130±3.7 2.2±0.17 61,000

WT (HbHNL) 0.25±0.02 3±0.4 84

HNL3 = WT T11G-E79H-K235M 0.33±0.02 0.71±0.1 460

HNL3V = HNL3 H103V 0.32±0.02 0.65±0.1 490

HNL3V C81A 0.29±0.04 0.42±0.3 690

HNL3V N104A 3.8±0.23 0.42±0.08 9,100

HNL3V G176S 0.62±0.02 0.16±0.03 3,900

HNL3V I12A 0.28±0.03 0.53±0.17 530

HNL3V C81L 0.28±0.02 1±0.18 270

HNL3V F54L 0.35±0.01 0.16±0.03 2,200

HNL3V V106F 0.27±0.01 0.15±0.05 1,800

HNL3V I209G 0.61±0.07 0.11±0.08 5,500

HNL3V I209G-F210I 0.23±0.04 1.3±0.56 180

HNL3V N104A-G176S 2.1±0.06 0.04±0.01 52,000

HNL3V C81L-N104A 2.2±0.08 0.99±0.13 2,200
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HNL3V N104A-V106F 3.2±0.22 0.27±0.08 12,000

HNL3V V106F-G176S 3.1±0.21 0.25±0.06 13,000

HNL3V C81L-V106F 1.3±0.03 0.25±0.03 5,300

HNL3V C81A-G176S 0.42±0.02 0.17±0.04 2,500

HNL3V C81L-F54L 0.41±0.02 0.33±0.06 1,200

HNL3V C81L-F54L-V106F 1.1±0.05 0.8±0.13 1,400

HNL3V C81L-G176S 0.3±0.02 1±0.23 300

HNL3V C81L-F54L-G176S 0.25±0.01 0.08±0.01 3,100

HNL3V C81L-N104A-V106F 2.7±0.18 0.15±0.05 18,000

HNL3V N104A-V106F-G176S 2.6±0.21 0.28±0.09 9,400

HNL3V C81L-V106F-G176S 1.5±0.02 0.12±0.01 13,000

HNL3V C81L-I12A-V106F 0.56±0.08 0.84±0.41 670

HNL3V C81L-I12A-G176S 0.3±0.01 0.21±0.05 1,400

HNL3V C81L-F54L-V106F-G176S 1.1±0.02 0.1±0.01 11,000

HNL3V C81L-I12A-G176S-V106F 0.56±0.06 0.71±0.26 790

HNL3V C81L-G176S-V106F-I209G-F210I 0.34±0.03 1.2±0.32 290

HNL3V C81L-G176S-V106F-I209G-F210I-L121Y-F125T 0.2±0.01 1.2±0.16 170

Enzyme kcat (min -1) KM (mM) kcat/KM 

(M-1*min-1)
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a Activity was measured at a higher temperature (29℃) relative to other variants (22 ±2 ℃).  Increased temperature correlates with 
higher observed reaction rates. 

Supplementary Table 2 | Rank of HbHNL variants ordered by kcat and KM 

HNL3V I209G-F210I-L121Y-F125T 0.7 ± 0.11 0.97 ± 0.12 720

HNL6V (HNL3V C81L-N104A-G176S) 2.3±0.02a 0.13±0.01a 18,000a

HNL7V (HNL3V C81L-N104A-V106F-G176S) 3.9±0.45 0.16±0.07 25,000

HNL7TV (HNL3V C81L-N104T-V106F-G176S) 9.3±0.33 0.08±0.04 120,000

HNL8V (HNL3V C81L-N104A-S105A-V106F-G176S) 8.1±0.38 0.35±0.06 23,000

SABP2 A104N 29±1.6 3±0.16 9,600

Enzyme kcat (min -1) KM (mM) kcat/KM 

(M-1*min-1)

Ordered by kcat Ordered by KM

Variant  k c a t 
(min-1)

R a n k 
order

K M 
(mM)

Variant

HNL7TV 9.34 1 0.04 HNL3V N104A-G176S

HNL8V 8.13 2 0.08 HNL7TV

HNL7V 3.92 3 0.08 HNL3V C81L-F54L-G176S

HNL3V N104A 3.81 4 0.1 HNL3V C81L-F54L-V106F-G176S

HNL3V N104A-V106F 3.21 5 0.11 HNL3V I209G

HNL3V V106F-G176S 3.14 6 0.12 HNL3V C81L-V106F-G176S

HNL3V C81L-N104A-V106F 2.72 7 0.13 HNL3V C81L-N104A-G176S (aka 
HNL6V)
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HNL3V N104A-V106F-G176S 2.63 8 0.15 HNL3V C81L-N104A-V106F

HNL6V (HNL3V C81L-N104A-
G176S)

2.3 9 0.15 HNL3V V106F

HNL3V C81L-N104A 2.2 10 0.16 HNL7V

HNL3V N104A-G176S 2.08 11 0.16 HNL3V G176S

HNL3V C81L-V106F-G176S 1.52 12 0.16 HNL3V F54L

HNL3V C81L-V106F 1.33 13 0.17 HNL3V C81A-G176S

HNL3V C81L-F54L-V106F 1.12 14 0.21 HNL3V C81L-I12A-G176S

HNL3V C81L-F54L-V106F-G176S 1.08 15 0.25 HNL3V V106F-G176S

HNL3V G176S 0.62 16 0.25 HNL3V C81L-V106F

HNL3V I209G 0.61 17 0.27 HNL3V N104A-V106F

HNL3V C81L-I12A-V106F 0.56 18 0.28 HNL3V N104A-V106F-G176S

HNL3V C81L-I12A-G176S-V106F 0.56 19 0.33 HNL3V C81L-F54L

HNL3V C81A-G176S 0.42 20 0.35 HNL8V

HNL3V C81L-F54L 0.41 21 0.42 HNL3V N104A

HNL3V F54L 0.35 22 0.42 HNL3V C81A

HNL3V C81L-G176S-V106F-I209G-
F210I

0.34 23 0.53 HNL3V I12A

Ordered by kcat Ordered by KM

Variant  k c a t 
(min-1)

R a n k 
order

K M 
(mM)

Variant
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Supplementary Table 3 | Mutagenic primers for site-directed mutagenesis  

HNL3 0.33 24 0.65 HNL3V

HNL3V 0.32 25 0.71 HNL3V C81L-I12A-G176S-V106F 

HNL3V C81L-G176S 0.3 26 0.71 HNL3

HNL3V C81L-I12A-G176S 0.3 27 0.8 HNL3V C81L-F54L-V106F

HNL3V C81A 0.29 28 0.84 HNL3V C81L-I12A-V106F

HNL3V I12A 0.28 29 0.99 HNL3V C81L-N104A

HNL3V C81L 0.28 30 1 HNL3V C81L-G176S

HNL3V V106F 0.27 31 1.04 HNL3V C81L

HNL3V C81L-F54L-G176S 0.25 32 1.16 HNL3V C81L-G176S-V106F-I209G-
F210I-L121Y-F125T

HNL3V I209G-F210I 0.23 33 1.17 HNL3V C81L-G176S-V106F-I209G-
F210I

HNL3V C81L-G176S-V106F-I209G-
F210I-L121Y-F125T

0.2 34 1.3 HNL3V I209G-F210I 

HNL3V I209G-F210I-L121Y-F125T 0.19 35 1.7 HNL3V I209G-F210I-L121Y-F125T 

Ordered by kcat Ordered by KM

Variant  k c a t 
(min-1)

R a n k 
order

K M 
(mM)

Variant

Primer/sequence name Primer sequence 

I208G-F209I Rev tcggtccacacataaattttc

I208G-F209I Fwd ccaagacgaaggtattttacctgaatttcaactctgg
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I208G Fwd ccaagacgaaggttttttacctgaatttcaac

F209I Fwd ccaagacgaaataattttacctgaatttc

C81L-L54F-G176S-H103V Fwd gattggctcatttgatgagtattc

C81L-L54F-G176S-H103V Rev tcctcaatttgccttggg

81L-103V-104A-106F-176S Fwd tgttttcgtcgcgtcatttttgccagacac

81L-103V-104A-106F-176S Rev gcagctgcaatcttttcac

103V-104A Fwd tgttttcgtcgcgtcagtattgccagacac

103V-104A Rev gcagctgcaatcttttcac

103V-81L-104A-106F Fwd tgttttcgtcgcgtcattcttgccagacac

103V-81L-104A-106F Rev gcagctgcaatcttttcac

103V-C81L-N104T-V106F-G176S 
Fwd

tgttttcgtcacctcattcttgccag

103V-C81L-N104T-V106F-G176S 
Rev

gcagctgcaatcttttcac

H103V_C81L_N104A_Fwd tttcgtcgcgtcagtattgccagacacc

H103V_C81L_N104A_Rev acagcagctgcaatcttttcacagtatttatcagc

103V_N104A_V106F_Fwd gtcattcttgccagacaccgagcac

103V_N104A_V106F_Rev gcgacgaaaacagcagctgcaatcttttc

C81L Fwd cagcctgggaggactcaatatagcaattg

C81L Rev tggccaaccagaatcaccttttcccc
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SABP2 A104N Fwd tgttttcttgaacgctttcatgcctg

SABP2 A104N Rev gcagcatagatcttttgtg

SABP2 A104N Gibson vector Fwd ttaaaggtgctgatcacatggcaatgctatg

SABP2 A104N Gibson vector Fwd taaccttctcatctgctgaaagagattcc

SABP2 A104N Gibson gene Fwd ttcagcagatgagaaggttatattagtggg

SABP2 A104N Gibson gene Rev catgtgatcagcacctttaatctctattgc

C81A Fwd    attctggttggccatagcgctggaggactcaatatagc         

C81L Fwd tggccacagcctgggaggactcaatatag                

C81L Rev accagaatcaccttttcc

H103V-N104A-S105A-V106F Fwd tgccagacaccgagcactgcccat

H103V-N104A-S105A-V106F Rev agaatgccgcgacgaaaacagcagc

F54L Fwd gattggctcactggatgagtattc

F54L Rev tcctcaatttgccttggg   

G176S Fwd          gacaaggaagagctcattatttcaaaatattttagc  

G176S Rev aacatcttcgccagttcatattc

H103V Fwd gattgcagctgctgttttcgtcaattcagtattgccagac        

H103V Rev gtctggcaatactgaattgacgaaaacagcagctgcaatc       

I12A Fwd tattcatggcgcgtgccacggtgc         

I12A Rev agaacaaaatgagcgaatg
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Supplementary Table 4 | Crystallization conditions for the x-ray structure determination of HNL6V 

Supplementary Table 5 | Data collection and processing for the x-ray structure determination of HNL6V. 
Values in parentheses are for the outer shell. 

L121Y F125T Fwd tatatggaggtgacccccgactggaaagacacc

L121Y F125T Rev cttatccacgacgtaagatgggc            

V106F Fwd ccacaattcatttttgccagacac

V106F Rev aaaacagcagctgcaatc

Method Vapor diffusion, sitting drop

Plate type CrystalMation Intelli-Plate 96-3 low-profile

Temperature (K) 293

Protein concentration (mg ml-1) 9.3

Buffer composition of protein solution 5 mM BES, pH 7.2

Composition of reservoir solution 0.1 M Bis-Tris, pH5.5, 2 M (NH4)2SO4

Volume and ratio of drop (nl) 200, 1:1 (protein:screen solution)

Volume of reservoir (µl) 50

X-ray source APS BEAMLINE 24-ID-C

Wavelength (Å) 0.979 Å

Detector DECTRIS EIGER2 S 16M

Exposure Time (s) 0.2

Crystal-to-detector distance (cm) 230

Angle increment (°) 0.2

Resolution Range (Å) 43.03 -1.99 (2.04-1.99)

Space Group C2221

a, b, c (Å) 47.054, 106.378, 128.396

α, β, γ (°) 90, 90, 90

Matthews coefficient (Å3Da-1) 2.74

Solvent Content (%) 55.07
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Supplementary Table 6 | Structure refinement for the x-ray structure determination of HNL6V. Values in 
parentheses are for the outer shell. 

Total reflections 102923 (7877)

Unique Reflections 20181 (1606)

Multiplicity 5.1

Mosaicity (°) 0.2

Completeness (%) 89.43 (89.95)

(I/𝜎(I)) 13.9 (2.3)

Wilson B Factor (Å2) 28.09

Rmerge 0.063 (0.703)

Rmeas 0.077 (0.861)

Rp.i.m 0.032 (0.490)

CC1/2 0.998 (0.689)

Reflections used in refinement 20178 (2005)

Reflections used for Rfree 2000 (199)

Rwork 0.1849 (0.2285)

Rfree 0.2374 (0.2603)

No. of non-H atoms

       total 2162

       Macromolecules 2030

       Ligands 0

       Solvent 123

No. of protein residues 255

R.m.s.d, bonds (Å) 0.009

R.m.s.d, angles (°) 1.03

Ramachandran favored (%) 96.44

Ramachandran preferred (%) 96.44

Ramachandran allowed (%) 3.56
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