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Abstract
Background: Johne’s disease, caused by Mycobacterium avium subspecies
paratuberculosis (MAP), is a chronic enteritis that adversely affects welfare
and productivity in cattle. Screening and subsequent removal of affected
animals is a common approach for disease management, but efforts are hin-
dered by low diagnostic sensitivity. Expression levels of small non-coding
RNA molecules involved in gene regulation (microRNAs), which may be
altered during mycobacterial infection, may present an alternative diagnostic
method.
Methods: The expression levels of 24 microRNAs affected by mycobacterial
infection were measured in sera from MAP-positive (n = 66) and MAP-
negative cattle (n = 65). They were then used within a machine learning
approach to build an optimal classifier for MAP diagnosis.
Results: The method provided 72% accuracy, 73% sensitivity and 71%
specificity on average, with an area under the curve of 78%.
Limitations: Although control samples were collected from farms nominally
MAP-free, the low sensitivity of current diagnostics means some animals may
have been misclassified.
Conclusion: MicroRNA profiling combined with advanced predictive mod-
elling enables rapid and accurate diagnosis of Johne’s disease in cattle.
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INTRODUCTION

Johne’s disease is a chronic enteritis of ruminants
caused by Mycobacterium avium subspecies paratu-
berculosis (MAP). It is of significant concern to the
dairy industry as it can lead to decreased production,
weight loss and death in infected cattle.1 Estimates
of losses range from £10m in the UK2 to $200 m in
the United States.3 Prevention and control of Johne’s
disease is difficult as MAP is environmentally resilient
and vaccine efficacy is variable.4 As such, manage-
ment and control strategies focus on testing and tar-
geted removal of infected animals.5 Despite detection
being a central component of control, diagnosis can
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be challenging as clinical signs are insidious and non-
specific.1 The most accurate diagnostic method to
date is bacterial culture, but this method is costly and
can take months to yield results.6 The most commonly
used tests are serum antibody ELISAs, which have high
specificity but low sensitivity in cattle (≈0.44), espe-
cially in the early stages of infection, leading to low
accuracy (≈0.55).6,7 Furthermore, it has been shown
that MAP shedding may be occurring for up to 2 years
before a positive milk ELISA result is obtained, result-
ing in high transmission rates that go undetected.8

Research is therefore needed to develop effective,
early-stage diagnostics and sustainable strategies to
mitigate the economic impact of Johne’s disease.
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A promising approach for developing novel and
reliable diagnostics is to harness the information
contained in the expression profiles of small non-
coding RNA molecules. MicroRNAs (miRNAs) are
found in most eukaryotes and play critical roles in
gene regulation.9 They have diagnostic and prognos-
tic value and are particularly suitable as biomarkers
due to being stable and easily detectable in biofluids.10

Importantly, there have been several studies show-
ing that expression levels of numerous miRNAs are
altered by mycobacterial infection, including early-
stage11 and pre-seroconversion MAP.12 Diagnostic
accuracy, or the capacity of a test to discriminate dis-
eased and healthy samples, can be further enhanced
through the deployment of advanced statistical and
machine learning (ML) methods within an artificial
intelligence framework. These tools can significantly
improve diagnosis by rapidly analysing experimen-
tal data, identifying patterns that could be missed by
humans or less sophisticated methods, and produc-
ing predictions to support an objective assessment
of the uncertainty regarding infection status. They
have already proven useful for improving diagnosis
and prognosis in human medicine, for instance in
oncology.13

To explore the potential of miRNA profiling in
Johne’s disease diagnosis, this preliminary study mea-
sured the expression of selected miRNAs affected
by mycobacterial infection in samples from MAP-
infected and uninfected cattle. These were processed
through an ML pipeline for predictive modelling with
the primary objective of building an optimal classi-
fier for the diagnosis of Johne’s disease using miRNA
profiles.

MATERIALS AND METHODS

Sample collection

All cases submitted to the UK-wide Premium Cattle
Health Scheme between November 2021 and Novem-
ber 2022 with reported signs of Johne’s disease were
considered for inclusion in the study. MAP positivity
was defined as animals with an ID Screen Paratubercu-
losis Indirect ELISA (Innovative Diagnostics) test result
of greater than 70% (sample optical density divided
by the positive control optical density, multiplied by
100) that either had a positive faecal PCR test within
the subsequent 2 months or were from herds with over
3% MAP-seropositive animals that had maintained
this high level of herd seropositivity for at least the
previous year. In total, 66 MAP-positive cattle were
identified over the sampling period. Sixty-five MAP-
negative samples submitted to the same scheme were
randomly selected as controls. To minimise false neg-
atives, seronegative control samples were from herds
that had no seropositive results in annual tests of all
animals over 24 months of age for a minimum of five
consecutive years.

MicroRNA panel

miRNAs to be included in the MAP-specific
miRNA panel were selected through a review of 17
manuscripts identified in a PubMed-based search
using the terms ‘(((Johne’s disease[Title/Abstract]) OR
(Mycobacterium avium[Title/Abstract])) AND
((miRNA[Title/Abstract]) OR (microRNA[Title/
Abstract])))’. Manuscripts were excluded if they
were reviews, used a non-bovine model, did not
use blood or serum samples, were testing responses
to interventions or were not directly assaying miR-
NAs. Candidate miRNAs were excluded if they were
not present in the bovine miRNA repertoire reported
by MIRBase14 or if there were significant differences
between the probe sequences used and the target
bovine miRNA in the database. These sequences
were used to design a custom panel for the Fireplex
miRNA platform (Abcam). Five miRNAs previously
validated as standards in cattle were also included to
act as normalisers for the expression data (Table 1).
Signalling pathways targeted by each miRNA and the
total panel were predicted using mirPathv3 (p < 0.05
threshold).15

Expression analysis

To generate Fireplex miRNA profiles, 50 µL aliquots of
serum from each sample were processed following the
manufacturer’s instructions, with hybridisation, melt-
off and capture temperatures of 39◦C, 62◦C and 39◦C,
respectively. Mean fluorescence intensities (MFIs) of
miRNA-specific particles per sample were measured
using a Novocyte flow cytometer (Agilent). Raw FCS
files were exported to Fireplex Analysis Workbench
2.0.274 (Abcam), and relative expression values were
prepared using the geNorm function with pre-selected
normalisers.

Supervised machine learning

Using the Fireplex-processed and normalised (cen-
tred, scaled, Yeo-Johnson’s transformed) miRNA pro-
files as predictors and the established Johne’s disease
infectivity status as the response variable (infected
vs. healthy sample), a preliminary investigation and
benchmarking of plausible supervised ML methods
for our predictive diagnosis aim was conducted. In line
with previous reports showing its high predictive accu-
racy and applicability for medical diagnosis,25–27 the
random forest (RF) algorithm stood out among the
best performers. The RF method generated a diverse
collection of decision trees trained on random sub-
sets (resamples) of samples and miRNAs signals, with
the predicted status for a sample being determined by
majority vote across all trees. In this process, a score of
variable importance in prediction (VIP) for the miRNA

 20427670, 2024, 11, D
ow

nloaded from
 https://bvajournals.onlinelibrary.w

iley.com
/doi/10.1002/vetr.4798 by U

niversitat de G
irona, W

iley O
nline L

ibrary on [10/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



VETERINARY RECORD 3 of 6

T A B L E 1 Summary information for the profiling panel, indicating the mature sequence and predicted signalling pathways targeted by
each microRNA (miRNA) (p < 0.05). Normalizer miRNAs are indicated with an asterisk.

miRNA name Mature sequence Signalling pathways Reference

bta-miR-105-5p UCAAAUGCUCAGACUCCUGUGGU ErbB, mTOR 16

bta-miR-100-5p AACCCGUAGAUCCGAACUUGUG Wnt, mTOR, Rap1 17

bta-miR-1247-5p ACCCGUCCCGUGCGUCCCCGGA * 16

bta-miR-155-5p UUAAUGCUAAUCGUGAUAGGGGU T cell receptor, B cell receptor, TGF-beta 18

bta-miR-6517-5p UCAGGGUCCGUGAGCUCCUCGGC * 17

bta-miR-24-1-5p GUGCCUACUGAGCUGAUAUCAGU ErbB 17

bta-miR-184-3p UGGACGGAGAACUGAUAAGGGU * 16

bta-miR-142-3p AGUGUUUCCUACUUUAUGGAUG * 18

bta-miR-137-3p UUAUUGCUUAAGAAUACGCGUAG ErbB, MAPK 16

bta-miR-29b-3p UAGCACCAUUUGAAAUCAGUGUU PI3K-Akt, Thyroid hormone 16

bta-miR-582-5p UUACAGUUGUUCAACCAGUUACU Wnt, Hippo, cGMP-PKG 11

bta-miR-196b-5p UAGGUAGUUUCCUGUUGUUGGGA ErbB 16

bta-miR-19b-3p UGUGCAAAUCCAUGCAAAACUGA mTOR, Rap1, cAMP, GnRH 17

bta-miR-21-5p UAGCUUAUCAGACUGAUGUUGACU Hippo, Jak-STAT 19

bta-miR-133b-3p UUUGGUCCCCUUCAACCAGCUA Adrenergic 16

bta-miR-378a-3p ACUGGACUUGGAGUCAGAAGU * 17,18

bta-miR-32-5p UAUUGCACAUGACUAAGUUGCAU * 17,18

bta-miR-202-5p UUCCUAUGCAUAUACUUCUUU Prolactin, FoxO, Oestrogen 16

bta-miR-1271-5p CUUGGCACCUAGUAAGUACUCA Oestrogen, Oxytocin 17

bta-miR-7857-5p AUAGCCAGUUGGGGAAGAAUGC * 17

bta-miR-29a-3p CUAGCACCAUCUGAAAUCGGUUA PI3K-Akt, Thyroid hormone 18

bta-miR-433-3p AUCAUGAUGGGCUCCUCGGUGU * 16

bta-miR-146a-5p UGAGAACUGAAUUCCAUAGGUUGU * 18

bta-miR-301a-3p CAGUGCAAUAGUAUUGUCAAAGCAU FoxO, p53, mTOR 17

*bta-miR-20a-5p UAAAGUGCUUAUAGUGCAGGUAG * 20

*bta-mir16a-5p UAGCAGCACGUAAAUAUUGGUG * 21

*bta-mir-92a-3p UAUUGCACUUGUCCCGGCCUGU * 22

*bta-mir-17-5p CAAAGUGCUUACAGUGCAGGUAGU * 23

*bta-mir-93-5p CAAAGUGCUGUUCGUGCAGGUA * 24

Abbreviations: cAMP, Cyclic Adenosine Monophosphate; ErbB, Erythroblastosis Oncogene B; GnRH, Gonadotropin-Releasing Hormone; Hippo, Hippo; Jak-STAT,
Janus Kinase and Signal Transducer and Activator of Transcription; mTOR, Mammalian Target of Rapamycin; MAPK, Mitogen-Activated Protein Kinase; Rap1,
Ras-association Proximate 1; PI3K-Akt, Phosphoinositide 3-Kinase and Protein Kinase B; Wnt, Wingless-related Integration Site.
*Indicates no significant signalling pathway was reported by DIANA search.

signals was determined by averaging how much the
predictive accuracy changed after adding or removing
each of them.

The training of the RF, including parameter tuning,
was conducted through a five-time repeated 10-fold
cross-validation (CV) pipeline; that is, the input data
were randomly partitioned into 10 folds, with nine
folds used to train the model and one fold held out
as the test set sequentially. Fold randomisation was
repeated five times to reduce dependence on the
initial partition. This helped to balance the variance
bias trade-off and to manage overfitting (where a
method is overly specific to the training data); hence,
contributing to a fairer assessment of their predictive
ability on new samples. Performance metrics included
those routinely used in classification tasks, including
overall accuracy, area under the receiver operating
curve (AUC), sensitivity and specificity. All measures
ranged from 0 to 1, with values closer to 1 indicating

better performance (95% confidence intervals given
in parenthesis). These were assessed on each test set
across the CV process and then averaged to provide an
overall assessment of performance on independent
blind samples. Our RF training was based 500 decision
trees grown in each CV round, with AUC used to tune
by random search the number of random predictors
included at each split in a tree (mtry tuning parameter,
optimal value = 13). Predicted status probabilities for
the given samples were obtained from the trained
RF by averaging across CV rounds. This analysis was
implemented using our own computing pipelines
written using the R system for statistical computing
v4.2.1,28 with the ML methods implemented using
the package Caret v6.0-94 and performance measure-
ments based on the package MLeval v0.3. Extensive
details about the ML approach and assessment of
classification algorithms can be found elsewhere (see
refs.29–31).

 20427670, 2024, 11, D
ow

nloaded from
 https://bvajournals.onlinelibrary.w

iley.com
/doi/10.1002/vetr.4798 by U

niversitat de G
irona, W

iley O
nline L

ibrary on [10/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 6 VETERINARY RECORD

(a)

(c)

(b)

F I G U R E 1 Random forest classifier results: (a) receiver operating curve and area under the curve (AUC). (b) Probabilities of status
(infected/healthy) for collected cattle samples (samples ordered from left to right according to probability, status allocation based on the
usual 0.5 probability threshold, background colour indicates allocated infectivity status, points at the bottom indicate misclassified samples
with colour corresponding to actual status). (c) Ranking of miRNA signals according to importance in discriminating infectivity status

RESULTS

A review of the literature, including experiments con-
ducted with cattle and MAP, suggested 24 miRNAs with
altered expression in response to mycobacterial infec-
tion (Table 1).16,17,32 Across the total panel, there was
enrichment for miRNA-target genes involved in PI3KT,
oestrogen, ErbB and FoxO signalling (p < 0.05). After
the MFI of each miRNA was measured across all sam-
ples, the mean coefficient of variation (CoV) was found
to be 0.49 (0.38‒60) for normalising miRNAs and 1.23
(0.82‒1.64) for diagnostically informative miRNAs. The
lower CoV indicated that the miRNAs selected for nor-
malisation were stable and suitable standards. The
RF trained on pre-processed miRNA profiles provided
cross-validated accuracy of 0.72 (0.70‒0.74), with this
being statistically significantly greater than the naïve
classifier accuracy (0.50; p < 0.001). Using infected sta-
tus as the reference class, an AUC of 0.78 (0.70‒0.86)
was reached (Figure 1a), with a sensitivity of 0.73
(0.61‒0.82) and a specificity of 0.71 (0.59‒0.80). Mis-
classification was more common for healthy samples
(Figure 1b; 14.96% healthy classed as MAP-infected
against 12.67% infected classed as healthy). The rank-
ing of the most relevant miRNAs to discriminate
infection status was led by (RF VIP scores scaled into
[0, 100] shown in parenthesis): bta-miR-100-5p (100),
bta-miR-21-5p (78.32), bta-miR-29b-3p (59.25) and

bta-miR-29a-3p (45.44). Moreover, the least contribut-
ing ones were: bta-miR-184-3p (0.00), bta-miR-582-5p
(0.66), bta-miR-6517-5p (0.99) and bta-miR-146a-5p
(1.47) (Figure 1c).

DISCUSSION

The aim of this study was to evaluate the potential
for a selected miRNA expression panel to be used in
combination with modern ML technologies to build
a diagnostic testing tool for discrimination between
MAP-positive and MAP-negative bovine sera.

Our preliminary results indicate that a panel of
24 miRNAs, previously identified as having altered
expression in MAP infection, processed by a tailored
RF algorithm (one of the most popular ML methods)
was able to achieve an accuracy of 0.72 (sensitiv-
ity 0.73; specificity 0.71) in discriminating between
healthy and MAP-infected cattle. It is possible that
specificity is underestimated in our dataset since,
despite control animals being screened with a high
specificity (>0.998),33 ELISA sensitivity is regarded low,
especially in the early stages of infection.6,7 Efforts
were made to minimise this issue by only includ-
ing control cattle from low-risk farms, but some
misclassification may have occurred due to the pres-
ence of undiagnosed MAP-positive animals within
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these herds, given the low sensitivity of current ELISA
screening methods. In future trials, cattle can be
diagnosed using more accurate culturing or PCR
techniques to overcome this shortcoming. Another
possible issue may be diagnostic cross-reactivity with
other mycobacterial species, such as Mycobacterium
tuberculosis (TB). Cross-reactivity can be negated by
including MAP- or gut-infection-specific miRNAs, but
future studies will include challenging the model
with known TB-positive sera. We hypothesise that
comparing the miRNA profiles of MAP, TB and co-
infected cattle will allow for the training of models able
to discern species, as well as infection status.

In the current analysis of the 24 miRNAs identified
in previous Johne’s disease studies, bta-miR-100-5p
and bta-miR-21-5p emerged as the most prominent
biomarkers, whereas others, such as bta-miR-582-5p
and bta-miR-184-3p, showed a less significant contri-
bution. Although these miRNAs have been associated
with Johne’s disease in prior research and likely play
a role in the complex biological processes of the
disease, our findings suggest that some offer better
diagnostic potential than others. However, these
results are based on a limited sample size, which
underscores the need for further validation and
extended trials to fully elucidate their potential as
biomarkers. In addition to widening the scope of
the assay, accuracy may be improved by including
additional informative markers. The current panel
was suggested by a limited literature review and
included target pathways known to be impacted by
Johne’s disease, including PI3KT, oestrogen, ErbB and
FoxO signalling.34,35 The panel could be expanded
by including data from additional mycobacterial
species, examining miRNAs known to target additional
MAP-affected pathways or performing a hypothesis-
generating study using miRNASeq. miRNAs may also
improve the MAP diagnosis pipeline by exploiting
their stability in biofluids, particularly milk.3,36 Most
commercial tests for Johne’s disease use sera, adding
expertise and cost barriers to screening. The feasi-
bility of profiling milk miRNAs for MAP diagnosis
is currently being evaluated. Finally, although pri-
marily an infection of cattle, MAP also affects other
ruminants.1 miRNAs are highly conserved between
species, suggesting that the current miRNA panel
would be suitable for sheep and goats with small
adjustment, although species-specific trained models
would be required. The capacity to provide a single
diagnostic that allows for pathogen detection and
identification across multiple species using an easily
accessible biofluid makes miRNA profiling a highly
attractive tool for veterinary diagnosis.

In summary, this study indicates that miRNA pro-
filing combined with advanced predictive modelling
has the potential to serve as a diagnostic test for
Johne’s disease in cattle. Efforts are currently ongoing
to expand and validate the method with more sample
data, which will help to further improve precision and
expand the approach to characterise Johne’s disease

stage and enhance early-stage diagnosis, including the
possibility of identifying MAP-positive animals prior
to seroconversion, and distinguish between alterna-
tive mycobacterial pathogens through miRNA diag-
nostics methods. This technology is patent pending.
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