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Abstract

Although there exist several modelling approaches to simulate the strength of the single lap shear

configuration, the application to obtain design allowables has not been addressed. Moreover, the

determination of design allowables by simulation needs to be sustained by a feasible modelling

and simulation approach, demonstrating their ability to propagate uncertainties. In this paper, we

present a structured methodology to validate a modeling and simulation approach for the forward

propagation of parameter uncertainty. This methodology is applied to determine the single lap

shear allowable strength of a thermoplastic carbon fiber composite. The defined approach, which

involves advanced damage models, has been validated through a dedicated test campaign. We

analyze the influence of batch size on the validation process and the prediction of allowable strength.

The results obtained demonstrate the feasibility of obtaining design allowables by simulations.

Keywords: Uncertainty Quantification and Management, A. Thermoplastic resin, C. Finite

element analysis (FEA), B. Strength, C. Statistical methods

1. Introduction1

Lightweight materials, like carbon fiber reinforced polymers (CFRPs) are increasingly used in2

designing aircraft components due to their high specific stiffness and strength. However, one of the3

major drawbacks lies in recycling thermoset polymer (TS) matrices used in CFRPs, as they are4

difficult to separate at the end of an aircraft’s life [1, 2]. To address this, the aerospace industry is5

exploring thermoplastic matrices (TP) for CFRPs, which can be melted and separated, enhancing6

recyclability and end of life considerations [2–7].7

Recent studies have shown that CFRPs with thermoplastic matrices (TP-CFRPs) have superior8

material properties compared to those with thermoset matrices (TS-CFRPs) [8, 9], for matrix dom-9
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inated failure mechanisms. TP-CFRPs allow for the production of lighter components, providing10

a significant advantage over TS-CFRP.11

Unlike other materials, manufacturing processes for CFRP components are complex and may12

lead to variability, defects, flaws, and misalignment, which may have an impact on the design13

properties, thus compromising the reliability of the structure [2–7]. Therefore, to minimize risks14

and ensure safety, the certification bodies define regulations and demands the implementation of15

a meticulous certification process. The existing certification and qualification method for airframe16

structures is nowadays based on experimental testing campaigns following a pyramid of levels,17

commonly referred to as the building block approach (BBA) [10]. This methodology places a18

strong emphasis on conducting physical tests at lower pyramid levels to systematically quantify19

the uncertainty of the material properties to define material allowables and, based on the mate-20

rial allowables and on specific loading conditions, obtain the design allowables (DA), which are21

subsequently used for sizing.22

The DA for CFRP components are defined as the basis values. A-basis value (A-value) is23

typically required for primary load-carrying structures and B-basis value (B-value) for strucutres24

with redundant/multi-load-path. The basis values can be determined experimentally following the25

guidelines provided by the CMH-17 [11]. The determination of the A-value is more demanding,26

requiring at least 75 specimen results compared to the 30 (referred to as robust sampling) needed27

for the B-value under the same approach and 18 for the reduced sampling approach [11].28

The requirement for a high number of samples in an exhaustive experimental campaign con-29

tributes to an expensive and time consuming procedure. As a consequence, the ability to fully30

exploit the weight-saving potential offered by advanced composite materials is limited due to the31

low reliability of the DA when only a few specimens are tested. In addition, these extensive and32

time consuming experimental campaigns can significantly complicate the entry of the next genera-33

tion aircrafts with disruptive technologies into the service. Consequently, this conservative stance34

may not allow for the full optimization of the structure for weight savings, thus running counter35

to the objectives of Clean Aviation program [12] and negatively impacting fuel consumption.36

As a result, advancing methodologies to enhance the reliability of generated DA could pre-37

pare for a cost-effective, efficient and faster certification and qualification processes in airframe38

structures. In recent years, methodologies employing numerical approaches for obtaining DA have39

emerged based on non-deterministic approaches. For instance, Vallmajó et al. [13] introduced a40

semi-analytical approach, and Furtado et al. [14] expanded on this work by integrating machine41

learning algorithms.42

While semi-analytical approaches catch attention due to their significantly lower computational43
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time compared to high-fidelity models (HFMs), their applicability is limited by a constrained44

domain of validity. Therefore, addressing challenges in more complex loading scenarios or situations45

lacking a semi-analytical model involves employing finite element (FE) simulations. Nam et al.46

[15] estimated DA for unnotched and open-hole laminates under tension using FE simulations.47

Catalanotti [16] confronted with the same issue, incorporating a more advanced progressive damage48

model for FE simulations and employing a machine learning approach with bootstrapping, for49

enhanced prediction efficiency and reliability. For intricate loading scenarios, Cózar et al. [17]50

generated A/B-values through a HFM for a combination of low-velocity impact and compression-51

after-impact tests accounting for input parameter uncertainties.52

However, the determination of single lap shear (SLS) strength allowables through simulation53

remains unexplored. Despite numerous studies in the literature exploring the simulation of SLS54

strength using HFMs — either relying only on cohesive elements [18–20] or incorporating a progres-55

sive damage model for laminate failure [21] — a non-deterministic validation of these simulation56

approaches is not enough developed.57

The deterministic validation of the numerical methodology encompasses both qualitative and58

quantitative evaluations. On a qualitative level, a comparison can be made between the defor-59

mation of an experimental sample during testing, the shape of the load displacement curve and60

the failure mode against the predictions of the HFM. In quantitative terms, the average failure61

strength derived from experimental data can be compared with the failure strength predicted by62

the HFM as done by Fatemi et al. [22].63

However, a deterministic HFM alone is insufficient to incorporate the uncertainties inherent in64

the manufacturing process and the experimental tests procedure. To address this, it is imperative65

to define a modeling and simulation (M&S) approach that involves HFM and can account for and66

propagate these uncertainties [23]. The non-deterministic validation becomes crucial to account67

for uncertainties and to compare with the dispersion observed in the experimental data.68

Some research attached the intrinsic deterministic behavior of the HFM by propagating the dis-69

persion of the experimentally obtained results by the statistical technique of design of experiments70

(DOE) [24–26] generating what is know as forward modeling and simulation approach. The DOE71

consist of a methodology for the generation of different values, following a specific strategy, which72

permits to be taken into account the characteristic of the existent data. Thus, the forward M&S73

approach consist in running multiple simulations of the same model with different combinations74

of the input values generated in the DOE. Some examples of the application of forward M&S by75

the application of DOE in the generation of the SLS strength, is the work done by Da Silva et al.76

[27, 28] to quantify the influence of the adhesive, adherent and geometric parameters of the SLS77
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test. Rangaswamy et al. [29] predicted by DOE and neural network approach the impact of the78

overlap length and the adhesive thickness in the SLS test. However, a comprehensive validation of79

the forward M&S approach for being reliable to predict DA has not been addressed. Some efforts80

were done by Joannès et al. [30], by studying the influence in the measurement of the uncertainty81

and due to the sampling randomness fitting the experimental results with a 2-parameters Weibull82

distribution in the fibre strength. However, the validation remains incomplete, since only a de-83

terministic comparison of the error in the parameters and in the results obtained from them was84

performed.85

Some other researchers developed a forward M&S approach propagating the uncertainty and86

validating in multi-scale simulations approaches. As Tao et al. [31], who based in Representative87

Volume Element (RVE), for woven composites, generated Statistical Representative Volume Ele-88

ments (SRVE), surrogate models and experimental tests to address the simultaneous uncertainties89

at micro-scale, meso-scale and macro-scale respectively following a Gaussian distribution for all90

the inputs. They validated the model by the error average between SRVE and analytical equations91

in micro-scale, cross validation in meso-scale and the error average between SRVE and the exper-92

imental results. Zhang et al. [32] proposed also a physically based multi-scale approach for the93

uncertainty quantification of hybrid aluminum-CFRP riveted or bonded lap joints propagating the94

distribution of the experimental data. Despite the fact the validation is based on the comparison95

between experimental and numerical distributions, the validation of is based in the comparison of96

the error between the statistics of the distributions, non taken profit of the multiple data generated97

for a non-deterministic validation.98

Catalanotti [33] propagate the uncertainty of the material properties through bootstrapping,99

followed by Markov Chain Monte Carlo methods which combined with Bayesian analysis, permits100

to determine the distribution of a QoI. The distribution is validated by the Gelman-Rubin in-101

dex, which check when a Markov Chain is stationary (criterion for a valid distribution following102

Markov Chain methods). Catalanotti’s approach optimizes the statistics of the QoI distribution by103

restricting the optimization to a single type of distribution, thereby limiting the flexibility of this104

approach. Finally, the validation of the numerical approach is done by the comparison between105

the experimental results and the DA numerically generated.106

Another proposed approach is the inverse M&S, in which the uncertainty in the well known107

results are propagated to obtain the uncertainty in the material properties used in the model.108

Ciampaglia used this approach in [34] for calibrating the SRVE for different scales based on the109

experimental results obtained with DIC in a tensile test.110

As can be seen, the validation of the uncertainty done in the studies presented is based on the111

4



deterministic error comparison between the experimental average data and nominal HFM results112

or, as maximum, a non-deterministic validation consisting in the error quantification between the113

statistics of the distributions obtained.114

It is not the case of Fatemi et al. [22, 35] and Poort et al. [36] which applied the area metric115

(Roy et al. [37]) in a non-deterministic validation of the uncertainty between the experimental116

results and the numerical models to forward propagate uncertainties at different levels of the BBA117

pyramid. The area metric quantifies the dissimilarity between the distributions of two samples,118

providing a more accurate comparison than traditional error metrics by considering the entire shape119

of the cumulative distribution function (CDF). In addition, this approach enhances the comparison120

between different types of distributions.121

Thus, the validation of a M&S approach based on the forward uncertainty propagation of the122

material properties must be conducted using a non-deterministic approach, with the area metric123

as a criterion for the validation after the deterministic validation of the nominal HFM. For this124

reason, the primary goal of this paper is to propose a non-deterministic validation methodology125

for a forward M&S approach, involving HFM, to assess the single lap shear strength. For the126

validation, a DOE is executed to capture the random results dispersion, essential for a statistical127

analysis of simulation outcomes. The statistical distribution and relevant metrics are calculated128

from experimental data for each input parameter in the HFM, following the process outlined in129

CMH-17 [11].130

Deterministically, comparisons involve examining load-displacement curves and the B-value of131

the SLS strength, calculated from both experimental tests and simulation. Non-deterministically,132

the disparity between methodologies is assessed quantitatively. Statistical tests are employed to133

qualitatively compare data distributions from the experimental testing campaign and the simulation-134

generated data. This comparison is executed across various sizes of numerical batches to determine135

the minimum size required for comparable results between numerical and experimental approaches.136

Additionally, the comparison is repeated to obtain the dispersion of the DA strength, providing dis-137

cernment about the reliability of quantification of DA by simulation compared to the experimental138

procedure.139

The paper is organized as follows: first, we present the details of the experimental test campaign.140

Subsequently, we outline the M&S approach employed for computing DA. Following that, we141

present the results of the experimental test campaign, accompanied by both deterministic and142

non-deterministic validations of the M&S approach. We also explore the impact of sampling size143

on the reliability of DA predictions. Lastly, we engage in a comprehensive discussion leading to144

the main conclusions drawn from this work.145
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2. Methodology to validate the Modeling and Simulation approach146

The methodology to validate the M&S approach to be afterwards used to obtain the DA is147

presented here. As outlined in Fig. 1, a two-step validation has been performed. First a deter-148

ministic validation of the M&S is performed, by comparing the quantity of interest (QoI) obtained149

using the HFM with the nominal values of the material card against the average experimental150

QoI. A non-deterministic validation is then followed by comparing the statistical distribution of151

the experimental data with a set of simulations forward propagating the random uncertainty on152

the material parameters.153

2.1. Deterministic Validation154

The deterministic validation of the M&S consists in running the HFMs with the average values155

for the material properties (nominal values) needed as the input parameters, to afterwards, compare156

the QoI obtained from the simulation with the experimental data. The a-priori criteria used is157

that the difference between the HFM simulation and the average of the experimental data to the158

corresponding displacement levels has to be within a predefined bound (a tolerance). Moreover,159

for a qualitatively validation, the strain contour of the HFM computed is also compared with the160

strain contour measured in the experiments using Digital Image Correlation (DIC), validating the161

suitability of the HFM within the M&S approach.162

2.2. Non-deterministic validation163

To perform a non-deterministic validation, a batch of specimens with different input values is164

generated by a Monte Carlo sampling method based on the statistical distribution of the different165

inputs parameters of the M&S approach to forward propagate the aleatory uncertainty of the ma-166

terial properties. Initially, the average QoI and the defined confidence interval range are calculated167

from the numerical simulations and are compared with the experimental data. Secondly, a com-168

parison between the distributions of the QoI for both cases (numerical and experimental results)169

is carried out.170

We propose to compare the CDF from M&S approach with the CDF from the experimental171

test campaign. From the obtained results, the empirical CDF (ECDF) is computed for both cases172

(M&S and experimental) and to be able to compare the difference between ECDF with an a-priori173

criterion for evaluation, a validation metric based on the area between the two CDFs is defined,174

using the expression175

%dArea =
100

x̄e

∫ +∞

−∞
|F (xs)− F (xe)|dx (1)
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where x̄e is the average value of the QoI for the experimental data, F (xs) is the predicted QoI176

ECDF of the M&S results and F (xe) corresponds to the ECDF from the experimental data, wherein177

smaller values signify a similarity between distributions. However, even small %dArea below the178

bound defined can not certify that the distributions compared are similar particularly at the tails179

of the distribution.180

The difference between the ECDF of the M&S approach and that of the experimental data181

can be classified into four different scenarios (see Fig. 2). Scenario ‘a’ (ideal scenario), where the182

distributions are the same, as reflected by the same length and scale. However, the probability of183

being in ‘scenario a’ is really small, specially when the available data for the QoI is limited and184

the obtained distribution is susceptible to drastic variations with any new result. Thus, there will185

be differences in shape and location between both ECDF most of the times. This circumstance186

does not allow to determine in which scenario we are simply by comparing the statistics of the187

distributions.188

Hence, it is necessary to define an interval of confidence for the validation of the similarity189

between ECDF. Hypothesis validation tests permit to compare the similarity between distributions190

by taking into consideration an interval of confidence. For this reason, hypothesis validation tests191

are the last step of this methodology –if both distributions are similar (‘scenario a’). We propose192

Kolmogorov-Smirnov (KS) [38], Anderson-Darling (AD) [39] and Cramer-Von Mises (CV) [40]193

because are appropriate for empirical comparison of CDF.194

If, with the p-value corresponding to the confidence interval a-priory defined as the criterion,195

the hypothesis validation tests do not find enough difference between ECDF, we are in ‘scenario196

a’ in Fig. 2. However, if the statistical tests are rejecting the similarity between ECDF, it does197

not necessarily mean that we are in ‘scenario d’ (worse case and not validated in this methodol-198

ogy). Two more scenarios (scenarios ‘b’ and ‘c’) are taken into consideration in this moment and,199

depending in which scenario we are, the criterion used for the DA generation could be affected.200

First of all, we propose to apply an offset equal to the distance function known as Wasserstein201

metric (Wp) in the numerical results, resulting in a similar location for those distributions that202

initially do not pass the hypothesis validation test and perform the statistical test again. For the203

case of one-dimension distributions, Wp is defined as204

Wp(µ1, µ2) =

(∫ 1

0

|F−1
1 (q)− F−1

2 (q)|pdq
)1/p

(2)

where F−1
1 (q) and F−1

2 (q) are the inverse of the CDFs from the numerical and experimental results,205

respectively, and p is related to the moment of Wp. The offset is calculated for p = 1 (W1), which206
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represents the expected value for the distance between functions.207

If after the offset application the null hypothesis is not able to be rejected, it is confirmed that208

the scale of the distribution is similar. Therefore, we are in ‘scenario b’. Taking into consideration209

that the error between average of the distribution for the M&S approach is already validated in210

the previous step, we assume the ’scenario b’ as validated and do not have more inference than211

the initially accepted tolerance defined in the average comparison, in the DA generated.212

When the null hypotheses is rejected after the offset application means that the scales of the213

distributions differ too much to be the same distribution (scenarios ‘c’ and ‘d’). Even if the averages214

of the distributions are similar (’scenario c’), multiple distributions can be generated with the same215

location generating different effects in the DA a-posterior generated. Therefore ‘scenario c’ is not216

validated and together with ‘scenario d’, the authors recommend to improve the M&S strategy217

before DA generation for these two scenarios.218

Finally, if the M&S approach is validated, it is considered credible to propagate the aleatory219

uncertainties of the material properties and calculate statistical quantities, such as the B-value.220

2.3. Influence of the batch size221

In addition to the validation of the M&S strategy, the influence of the batch size is also analysed.222

Different batch sizes have been used to validate the M&S approach, to afterwards compute the223

B-value. The Knockdown Factor (KDF) [41, 42] is used to analyze the influence of batch size224

on the reduction of allowable strength compared to the average value. It quantifies the difference225

between the average strength and the B-value for the two approaches studied in this paper (M&S226

and experimental):227

KDF =

(
B

x̄

)
(3)

where B represents the B-value obtained for each generated batch and x̄ is the average result from228

the total sample size in each studied approach in each case.229

The strategy is implemented as follows: from the initial population derived from the M&S230

approach, a large number of random selections (n) have been conducted for batch sizes. Each batch231

generated was subjected to non-deterministic validation and the B-value is extracted. Finally,232

the KDF was calculated and the average along with the 95% confidence interval of the KDFs233

were calculated for each batch size. Simultaneously, the Bootstrap method [43] is employed to234

assess result dispersion across the entire population, given the limited data available for generating235

dispersion results with the total population size.236

The use of a large number of iterations allowed for the generation of a substantial sample237

size, contributing to the study’s reliability. This approach facilitated more precise estimations238
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of population parameters, reducing random variability and enabling the identification of infre-239

quent outcomes, such as data converging into a log-normal distribution—a rarity in B-value proce-240

dures. Using the results obtained from the non-deterministic validation conducted for each batch,241

a comparative analysis of the different tests employed to validate the obtained dispersion is per-242

formed across various batch sizes. The aim is to identify the minimum batch required for the243

non-deterministic validation of the M&S approach implemented for this particular case study.244

3. Case study: Singe Lap Shear configuration245

This section extensively outlines the case study analyzed: the SLS configuration, the man-246

ufacturing procedure used to generate SLS specimens from TP-CFRP, as well as the approach247

employed to experimentally obtain the allowable shear strength.248

The SLS tests followed the AITM 1-0019 Airbus internal standard [44]. A quasi-isotropic249

panel comprising 32 plies, arranged in the stacking sequence [(0/45/90/-45)2s/(0/45/90/-45)2s]250

was manufactured through hot pressing with a thermoplastic material, resulting in a final arm251

thickness of 5.28 mm. The manufacturing process done by INEGI (Porto, Portugal) and the252

material supplier, consisted of four steps: (i) The panel was heated from the room temperature253

until 150 ºC at 5 ºC/min at 1 bar, and then the pressure increased to 10 bar until the consolidation254

temperature of 390 ºC was reached; (ii) the temperature was kept for 1 hour while maintaining255

the pressure at 10 bar for the consolidation process; (iii) the panel was cooled down at -5 ºC/min256

and 10 bar (fast crystallization) until 150 ºC, and then the pressure decreased to 1 bar and the257

panel cooled to room temperature; and (iv) the panel was inspected with a C-Scan.258

The SLS specimens were obtained by precisely machining the slots in the consolidated panel259

with a 12 mm overlap between arms and a 1.6 mm gap on each side, see Fig. 3a, and then cut260

to their final geometry, resulting in a final arm thickness of 2.64 mm with the stacking sequence261

[0/45/90/-45]2s on each arm. The overall length of the specimens was 110 mm. The width of the262

specimens was 25 mm and a 20 mm lengthwise section on each side of the specimen was utilized263

to secure the specimen with grips to the testing machine.264

3.1. Experimental methodology definition265

Tensile lap shear joint tests consist on applying a tensile load in the axial direction of the266

specimen (x-axis in Fig. 3b). During the test, the tensile loading is transferred from one arm to267

the other through the bonded region between the upper and lower arm. At a certain load, typically268

debonding starts from the gap region. The SLS strength is obtained dividing the peak load by the269

cross section bonded area (see Eq. (4)). Depending on the material properties and the laminate270
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stacking sequence, ply failure can undergo. However, the SLS specimen configuration was chosen271

to minimize the possibility of ply damage before the loss of adhesion between arms [45, 46] as can272

be seen in Fig. 3c.273

The experimental test campaign was conducted at AMADE lab facilities, following the AITM274

1-0019 standard [44]. A displacement controlled test at a speed of 0.25 mm/min was applied. The275

resulting load was recorded by a calibrated load cell and a 2D DIC technology was employed to276

record the displacement of the specimen’s edge.277

One edge of the specimens was painted with a white background and a random black speckle278

pattern in front, which allows the software Vic-2D 2009, developed by Correlated Solutions Inc.,279

to track the displacement based on pictures of this edge. The pictures were taken every half280

second with a camera with a 2/3 inch CCD sensor installed providing 14-bit grey-scale images281

of 5 megapixels. The area of interest was approximately 15 mm in length by the thickness of282

the specimen, and the pictures were taken at a distance of 500 mm of the specimen, with a283

focal length of 60 mm, and a lens aperture size of f/11 to avoid distortion in the limits of the284

lens [47]. The selection of the lens was based in the MachVis software. The software setup for285

image correlation involved a subset of 21 for the selected reference point, with 10 steps, and286

the studied area encompassed the overlap area plus an additional 20 mm on each side. In the287

analysis, the interpolation was optimized using a 4-tap method, and the low-pass filter images288

option was activated. For displacement correlation, points were selected near the edge of the289

specimen, specifically 10 mm after the gap, for both arms (blue points in Fig. 4). These points290

were strategically chosen because their displacement is barely affected by the fracture process zone,291

and the specimen’s rotation in this region is smaller than in the rest of the area of interest. To292

address potential inaccuracies due to the onset and propagation of a crack in the bonded area, the293

final displacement studied in this research is the difference in the x-axis of this 2 points, mitigating294

displacement errors related to the presence of a crack by subtracting the deformation of the fixed295

arm.296

The failure strength was defined as297

τSLS =
F

WL
, (4)

where F is the load recorded by the load cell, W is the width of the specimen and L is the length298

of the gap.299

The SLS strength allowable was defined as the B-value, which depending on the distribution of300

the existent data is obtained following the procedure defined in the CMH-17 [11]. For example, if301
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the existing data follows a normal distribution, the B-value can be calculated as302

τB = τ̄SLS +KbsSLS , (5)

where τ̄SLS and sSLS are the mean and the standard deviation, respectively, of the measured SLS303

strengths, and Kb is a parameter that depends on the number of tested specimens as defined in304

[11].305

3.2. Modeling and Simulation approach306

The M&S approach used for simulating the SLS test consists of an explicit model generated in307

Abaqus software [48]. After calibrating the model, it employs 3D reduced integration solid elements308

(C3D8R) to represent the geometry of the model, with one element through-the-thickness per ply.309

In addition, aiming to accurately simulate the behaviour of the specimen (delamination in the310

bonded area), the interface between both arms is defined with cohesive elements (CE) of 0.001311

mm of thickness (see Fig. 5). The physically based cohesive zone model developed by Turon et al.312

[49] is employed in the present work. The in-plane element size of the cohesive elements is defined313

to ensure a minimum of two elements spanning the fracture process zone [50], which is calculated314

following the procedure described by Soto et al. [51] (approximately 0.1 mm). The displacement is315

fixed in the lateral face of one arm and in the opposite side a tensile displacement, at low velocity316

to prevent kinetic effects, is applied (see Fig. 5). The model is defined by ten input material317

properties, all derived from experimental test campaigns, linking the validation of the model to318

accurate data acquisition and uncertainty quantification. The exception is the penalty stiffness319

(K ), which is calibrated to avoid influencing the compliance of the resulting behavior [50]. The320

effect of geometrical variability was not considered in this work. The variability in the geometrical321

dimensions of the specimens was measured to be very low and, therefore, was not included in the322

forward problem.323

3.3. Material card definition324

The material system is AS7/PEKK. A specific test campaign to obtain the statistical distri-325

bution of the different material properties was performed. As the SLS specimens, the specific326

specimens needed in the material characterization for each test were manufactured by INEGI and327

the material supplier. The experimental test campaigns were performed at AMADE lab. The328

elastic behaviour of this material is defined with 6 material properties: the Young’s Modulus in329

fibre and matrix direction (E11, E22 = E33), the Shear’s modulus (G12 = G13 and G23) and the330

Poison’s ratios (ν12 = ν13 and ν23). The material parameters were experimentally obtained from a331
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specific test campaign developed in our lab facilities following the appropriate standards [52–58],332

except for the transverse Poisson’s ratio (ν23) which was assumed equal to 0.45 [59, 60]. Similar333

values ν23 were experimental measured for a thermoplastic-based composite material in [61]. The334

Shear’s modulus G23 is calculated as335

G23 =
E22

2(1 + ν23)
. (6)

The six cohesive model parameters required to define the behavior in the bonded region are: the336

critical fracture toughness and failure strength under mode I (GIc, τ
0
I , respectively) and mode II337

(GIIc, τ
0
II , respectively), the B-K constant (η) and the penalty stiffness. The fracture toughness in338

mode I is obtained from the Double Cantilever Beam (DCB) test [55], while GIIc is measured from339

the End Load Split (ELS) test [56]. In both tests, the fracture toughnesses were obtained using the340

inverse method developed by Said et al. [57, 58]. This method generates a cohesive law from the341

load-displacement curves obtained from the respective tests. The value of the Benzeggagh-Kenane342

(η) was extracted from the experimental mixed-mode bending (MMB) delamination test, carried343

out following the standard [54]. Finally, the penalty stiffness used in the cohesive zone model is344

fixed as 106 N/mm3. More details about the number of specimens tested, the tests and standard345

used for the data reduction are provided in Table 1.346

347

3.3.1. Uncertainty Quantification for material card test parameters348

The aleatoric uncertainty of the data from the test campaign to obtain material properties349

required for the model was evaluated following the procedure described in [62]. The Anderson-350

Darling test [40] was performed sequentially for Weibull, normal, and log-normal distributions. If351

the observed significant level (provability that the data are actually from the distribution being352

tested) was greater than 0.05, the tested distribution is accepted as correct (with a maximum error353

of 5%). Table 1 provides the test and data reduction method, along with the statistical distribution354

for the different input material properties.355

The scale parameter of the distribution (scalar statistic parameter) was normalized with respect356

to the experimental average value of each material property due to confidentiality agreements with357

the material provider. For all the material properties studied, the mandatory initial distribution358

checked (Weibull distribution) was validated, and thus no other distribution was considered, as359

defined in [62]. For all the properties evaluated the Weibull distribution was selected.360
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4. Results361

4.1. Deterministic Validation362

To quantitatively validate the modeling and simulation methodology in a deterministic manner,363

the load-displacement curve obtained from the deterministic numerical result was compared with364

the average experimental one, defining an a-priori bound for the validation of the average results.365

Five representative values have been studied in this study. Initially, the normalized load for the366

following corresponding displacement points: u60 representing the 60% of the maximum normalized367

displacement, where the curve is still in the elastic range in which no damage is observed in the368

specimen; u80 representing the 80% of the total displacement, approximately marking the inflection369

point where the damage reduces the slope of the curve; u90 representing the 90% of the maximum370

normalized displacement, located midway between the onset of damage and the failure strength of371

the specimen; and u100 representing the maximum normalized displacement achieved (see Fig. 6).372

Finally, the last representative value compared is the normalized slope of the elastic part of the373

test.374

Note that the results presented in Fig. 6 are normalized by the mean of the maximum load or375

maximum displacement, respectively of the experimental test specimens for confidentiality agree-376

ment with the material supplier. Therefore, the slope of the elastic region computed is adimen-377

sional. A summary of the values obtained, together with the difference between the numerical and378

experimental data, is provided in Table 2.379

For the deterministic case, the difference in the normalized elastic slope and for the normalized380

load at point u60 is higher in comparison to the loads at points u80, u90 and u100 represented in381

Fig. 6. This is due to the fact that the load achieved at the beginning of the experiments is higher382

than the numerically predicted, generating a higher slope in the elastic range than in the nominal383

numerical model. This difference is finally compensated by the decay of the experimental curve,384

which starts before than in the numerical case. Despite of these differences between the HFM and385

the experimental specimens, the differences obtained are lower than the a-priori defined criterion386

of 5%.387

The strain field obtained during the fracture process with the nominal result for the HFM388

is compared with the correlated image from a experimental specimen. Logarithmic strains are389

obtained in the length direction of the specimen (x-axis) using DIC technology as illustrated in390

Fig. 7. In the examination of both numerical and experimental assessments presented in Fig. 7,391

a consistent pattern between the experimental specimen and the HFM is evident throughout all392

investigated points in this study. This observed behavior aligns with the anticipated characteristics393
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of a SLS test [63, 64]. Specifically, a preliminary trend is discernible prior to the onset of damage394

(denoted as point u60), wherein a positive strain manifests near the cohesive surface, indicative of395

the subsequent crack propagation. After to the crack initiation, strain values escalate uniformly396

across the remaining data points, maintaining a correlation between the numerical model and ex-397

perimental test outcomes. Comparing the general behaviour of both approaches it can be seen that398

the contact surface between arms act as a plane of symmetry in both cases and the delamination399

in both cases occurred in this part of the specimen. Thus, qualitatively, it is possible to validate400

that the strain contour predicted by the HFM is in good agreement with the experimental one,401

despite of the assumptions done in the HFM.402

Simultaneously, an analysis of the relationship between ratio of damage dissipated (r) in the403

cohesive elements and strain was conducted for the HFM. This examination is depicted in Fig. 8.404

r is defined by Turon et al. [49] as405

r =
Gd

Gc
, (7)

where Gc is the total energy per surface area needed to develop all the degradation of the interface406

and Gd is the current dissipated energy per surface area. By comparing the r distribution in the407

cohesive elements on Fig. 8 no element has undergone complete damage at u60. Consequently, at408

this stage of the test, the load-displacement curve continues to exhibit a steady growth. Conversely,409

at point u80, an initial set of elements becomes fully damaged, leading to an inflection point in the410

curve and subsequent smoothing. Additionally, it is observed that with the decrease in strength411

and the absence of load transfer between nodes, strains intensify in regions adjacent to the crack412

point. Then, the crack continues growing in point u90, until point u100, when the specimens fail.413

In the model, the onset of cracks occurs simultaneously at identical loads for both corners of414

the overlapped area. However, in the experimental test, the onset of cracks initiates earlier on the415

right side of the specimen (the fixed arm in the test), attributable to manufacturing defects or416

variations in the experimental setup [65], but the results are quite similar.417

4.2. Non-deterministic Validation418

For the non-deterministic validation, a random sampling of 100 specimens has been conducted419

based on the statistical distributions of the variables summarized in Table 1 and a tolerance of420

5% has been also defined as the criterion for validation. The results of the 100 simulations are421

henceforth referred to as the non-deterministic numerical results.422

For the non-deterministic quantitative validation, the average curve and the ±2σ interval for the423

non-deterministic numerical results are presented in Fig. 6. Additionally, the normalized average424

loads for the representative displacement points u60, u80, u90 and u100 and the average slope are425
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summarized as non-deterministic values in Table 2. As can be seen for the dispersion of the non-426

deterministic results (represented by the bound of ±2σ), the behavior of the non-deterministic427

results is consistent with the nominal results and they fall below the maximum allowable threshold428

of 5% defined for the comparison with the experimental data.429

The non-deterministic validation also covers the comparison between the distributions of the 2430

batches of results studied, being the maximum admissible %dArea less than 5%. Once the statistical431

parameters of τSLS distribution for each batch of results have been calculated, summarized in432

Table 3, the ECDF of the numerical and the experimental data have been calculated by the433

generation of 104 random points results based on the statistical parameters obtained, see Fig. 9,434

as described in Section 2.2.435

Following the flowchart defined in Fig. 1, the non-deterministic validation of the M&S is carried436

out using Eq. (1); in this study we used the trapezoidal rule to approximate the integral to our437

ECDFs. The %dArea obtained was 2.45% a value significantly below of 5%, the a-priori defined438

threshold. However, even with a small %dArea, our batches do not pass the hypothesis validation439

tests (see first row of Table 4), indicating that we are not in the ‘scenario a’ of Fig. 2.440

Then, an offset equal to W1 is applied in the numerical results to correct the small difference in441

location between the batches (resulting in a different scale parameter in the numerical 2-parameters442

Weibull distribution obtained in this case studied). After this correction, the p-value obtained in443

all the tests is higher than 0.05 (corresponding to 95% interval of confidence, see Table 4). Thus,444

inferring that the location of the distribution of τSLS for the M&S data, the similarity between M&S445

and experimental approaches can not be rejected for τSLS distributions with a 95% of confidence,446

confirming that we are in ‘scenario b’ of Fig. 2.447

Therefore, based on the deterministic and non-deterministic analyses conducted between the448

M&S data and the experimental results, the M&S approach described in Section 2 is considered449

as a verified and validated approach for the generation of the τSLS allowable. Then, the B-value450

is calculated for the experimental and simulated cases as can be seen in Table 3 and Fig. 9. It is451

observed that the B-value predicted with the M&S approach is higher than the obtained from the452

experimental data, due to the batch size effect.453

4.3. Batch Size effect454

Once validation has been completed for the M&S approach, we aim to explore the possibilities of455

the methodology to reduce the number of simulations required, thereby minimizing computational456

costs, and explore the influence of the batch size on the prediction of the B-value. For each sample457

sizes described in Section 2.3, 10000 different combinations of data results have been generated.458
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The area method has been applied and the dispersion of results is represented in Fig. 10. The459

results show that when the batch size increases, the %dArea is reduced between the ECDF of the460

experimental data and the ECDF of the numerical results selected. However, the reduction is not461

significant (less than 0.1%) for sizes bigger than 11 specimens. Only the dispersion is reduced but462

this is also an effect of the reduction in the possible combinations in the selection process of the463

data.464

We have also checked how many of the combinations can be validated by each test for the465

batch sampling of 18, 30 50 and 70 as can be seen in Table 5. In general terms, the 99% of the466

batch of results passed the three tests for all the sizes checked. In addition, when the batch size467

is increased, more ECDF pass the validation test, indicating that follow the same distribution as468

the experimental one.469

Then, the KDF was calculated using Equation Eq. (3)in function of each B-value generated470

as a function of the batch size and we present the results in Fig. 11. Comparing the behavior471

between sample size 6 and 11 it can be seen that the dispersion in the results affect significantly472

at the B-value obtained. The smaller dispersion of the experimental data for sampling generation473

in comparison to the M&S results affects positively to the B-value generated which has an average474

KDF higher than the numerically obtained. However, the KDF of the B-value increase with the475

sample size, and just with 18 numerical specimens the KDF is increased more than in the batch476

of 11 specimens (total experimental population). Thus, bigger batch sizes increase the KDF effect477

in the B-value. However, when the size of the sample increases enough, a plateau appears and the478

reduction in the dispersion is not even reduced.479

5. Discussion480

In the deterministic comparison the load displacement curve obtained for the M&S is aligned481

with the experimental results presented in Table 2, as it can be seen the error is small for the482

characteristic points studied. Qualitatively, the strain behaviour in both directions presents a483

similar behaviour. Being all the errors of the M&S lower than 5%, and having proved that the484

behaviour of the model is qualitatively acceptable, the M&S has been deterministically validated.485

The comparison between the ECDFs also shows a good relation between the non-deterministic486

and the experimental results, locating the distributions in the ‘scenario b’. Thus, the M&S ap-487

proach for the DA generation has been validated. With the model validated, the B-value has been488

calculated and compared between the non-deterministic results generated in the DOE and the ex-489

perimental data. The B-value obtained is similar. In addition, the size of the batch shows a large490

influence on the calculated B-value for small batch samples, where a plateau has been obtained491
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when the sample size is 50. Consequently, the validated M&S approach can be used to complement492

the experimental test in generating the DA.493

Finally, with the results obtained from the tests done to check the sampling size, it can be494

seen that 100 specimens are more than enough, for the case considered in this study. From the495

hypothesis validation it can be seen that with 50 simulated specimens, an optimal balance in the496

design allowable to computational time ratio is obtained.497

6. Conclusions498

This study successfully characterized the strength allowable of a single lap shear specimen499

manufactured with carbon fibre reinforced polymer thermoplastic-based laminate through both500

experimental testing and simulation.501

The methodology to obtain the design allowable has been presented. Firstly, the modelling502

and simulation approach involving high fidelity model is defined. Afterwards, a validation strategy503

that covers both deterministic and non-deterministic approach for scenarios with similarity and504

dissimilarity in the distribution of the results has been defined. Once the model and simulation505

approach defined is validated, it is used to obtain the design allowable. The proposed numerical506

simulation, which uses a high-fidelity model based on 3D solid elements and an interface utilizing507

3D cohesive elements, is capable of replicating the same behavior as the experimental single lap508

shear test selected in this study.509

Moreover, through statistical comparisons of the distributions obtained, the influence of the510

sample size has been analyzed. The modeling and simulation approach has been validated for511

relatively small sample size (50 simulations for the current case study in this paper), which demon-512

strates the feasibility of the approach, to determine design allowables by simulation, with reasonable513

resources.514
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Figure 1. Flow chart of the validation process, where α is the p-value of the defined confidence interval.
The scenarios are presented in Fig. 2.
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Figure 3. a) SLS specimen geometry, b) loading conditions and deformed shape of the specimen during
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Table 1. Material properties experimentally obtained for the AS7/PEKK used in the HFM. 1 Scale of each
material property is normalized by dividing it by the average value of that property across all materials

Material
Properties

Test
Data Reduction

Method
Num.

Samples
Distribution Scale 1 Shape

E11 (MPa) Longitudinal Tensile (0º) ASTM D3039 [52] 18 Weibull 1.01 (-) 86.87
E22 (MPa) Transverse Tensile (90º) ASTM D3039 [52] 6 Weibull 1.00 (-) 194.4

ν12 Longitudinal Tensile (0º) ASTM D3039 [52] 18 Weibull 1.03 (-) 15.32
G12 (MPa) In-Plane Shear ASTM D3518M [53] 12 Weibull 1.00 (-) 114.9
Gc1 (J/m2) Double Cantilever Beam ISO 15024 [55] 12 Weibull 1.01 (-) 44.27
Gc2 (J/m2) End Loaded Split ISO 15114 [56] 12 Weibull 1.05 (-) 20.67

η Mixed-mode ASTM D6671 [54] 6 Weibull 1.06 (-) 9.64
τI (MPa) Double Cantilever Beam Said et al. [57] 12 Weibull 1.05 (-) 9.82
τII (MPa) End Loaded Split Said et al. [58] 12 Weibull 1.02 (-) 21.79
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759

Table 2. Average values for normalized slope and loads at displacement points u60, u80, u90 and u100 and
error between experimental average values and numerically predicted.

Slope of elastic
region

u60 u80 u90 u100

Experimental 1.25 (-) 0.77 (-) 0.95 (-) 0.99 (-) 1.00 (-)
Deterministic nominal result 1.22 (-) 0.73 (-) 0.95 (-) 0.98 (-) 1.03 (-)

Non-deterministic average result 1.22 (-) 0.73 (-) 0.95 (-) 0.99 (-) 1.03 (-)
Err. Deterministic 2.38% 4.46% 0.99% 0.52% 2.80%

Err. Non-deterministic 2.14% 4.26% 0.56% 0.91% 2.48%
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Table 3. Metric comparison for the non-deterministic validation. 2 Results for each approach is normalized
by dividing it by the average value of the experimental data

Case Size Average 2 B-value Distribution Scale Shape

Experimental data 11 1.00 (-) 0.932 (-) Weibull 1.010 (-) 53.18
M&S results 100 1.03 (-) 0.981 (-) Weibull 1.040 (-) 45.92

Table 4. P-value from the statistical tests assessed for the experimental and non-deterministic results. 3

P-value calculation stops in 0.25 for Anderson-Dawing in Scipy [66]

Case KV AD CV
without correction 0.003 0.003 0.002

with offset W1 applied 0.962 0.2503 0.855

Table 5. Percentage of batches which their distribution passed the statistical tests KS, AD and CV.

Test
Number of specimens
18 30 50 70

KS 99.63 99.86 100 100
AD 99.69 99.93 100 100
CV 99.69 99.89 100 100

32


	Introduction
	Methodology to validate the Modeling and Simulation approach
	Deterministic Validation
	Non-deterministic validation
	Influence of the batch size

	Case study: Singe Lap Shear configuration
	Experimental methodology definition
	Modeling and Simulation approach
	Material card definition
	Uncertainty Quantification for material card test parameters


	Results
	Deterministic Validation
	Non-deterministic Validation
	Batch Size effect

	Discussion
	Conclusions

