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Abstract: Batch heterogeneous catalytic ozonation experiments were performed using commercial
and synthesized nanoparticles as catalysts in aqueous ozone. The transferred ozone dose (TOD)
ranged from 0 to 150 µM, and nanoparticles were added in concentrations between 0 and 1.5 g L−1,
with all experiments conducted at 20 ◦C and a total volume of 240 mL. A Ce-doped TiO2 catalyst (1%
molar ratio of Ce/Ti) was synthesized via the sol–gel method. Response surface methodology (RSM)
was applied to identify the most significant factors affecting the removal of selected pharmaceuticals,
with TOD emerging as the most critical variable. Higher TOD resulted in greater removal efficiencies.
Furthermore, it was found that the commercially available metal oxides α-Al2O3, Mn2O3, TiO2, and
CeO2, as well as the synthesized CeTiOx, did not increase the catalytic activity of ozone during the
degradation of ibuprofen (IBF) and para-chlorobenzoic acid (pCBA). Carbamazepine (CBZ) and
diclofenac (DCF) are compounds susceptible to ozone oxidation, thus their complete degradation
at 150 µM transferred ozone dose was attained. The limited catalytic effect was attributed to the
rapid consumption of ozone within the first minute of reaction, as well as the saturation of catalyst
active sites by water molecules, which inhibited effective ozone adsorption and subsequent hydroxyl
radical generation (•OH).

Keywords: heterogeneous catalytic ozonation; pharmaceuticals; hydroxyl radicals; response sur-
face methodology

1. Introduction

Organic micropollutants (OMPs), also referred to as contaminants of emerging concern
(CECs), cover a wide range of substances, including pharmaceuticals, personal care prod-
ucts, detergents, and pesticides. These compounds are frequently detected in wastewater
streams at very low concentrations (µg L−1 or ng L−1). When inadequately treated in both
household and industrial wastewater, OMPs pose a significant risk to aquatic ecosystems,
with far-reaching implications for human health [1]. As water covers 70% of our planet’s
surface, freshwater bodies are especially vulnerable to these compounds, which exist in
both soluble and insoluble forms.

Wastewater contains a mixture of organic and inorganic constituents, either dissolved
or in suspension. The fate of these pollutants depends largely on the self-cleaning capacity
of the receiving water bodies, where natural biodegradation can play an essential role.
However, when the influx of pollutants exceeds this capacity, contamination occurs, leading
to water quality degradation [2]. This problem is intensified by the widespread use of
chemicals in various human activities and industries, which ultimately end up in water
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bodies, altering their physical, chemical, and biological characteristics [3]. To mitigate these
effects and protect the environment, wastewater must undergo thorough treatment before
its release.

Conventional wastewater treatment plants (WWTPs), combining physicochemical and
biological processes, are designed to reduce nutrient and organic matter loads in compliance
with environmental regulations, such as the EU Water Framework Directive 2000/60/EC [4].
These processes help control eutrophication and excessive oxygen consumption in water
bodies when reclaimed water is disposed into them. However, numerous studies have
shown that even high-performance WWTPs struggle to fully eliminate OMPs due to
their recalcitrant nature [5,6]. In particular, it is well-documented that recalcitrant OMPs,
including antibiotics, corrosion inhibitors, artificial sweeteners, chelating agents, and
perfluorinated compounds, among others, exhibit significant resistance to conventional
treatment processes [7].

One promising solution for the removal of these persistent compounds is ozone-
based treatment systems. Ozone (O3), a strong oxidant, has shown significant potential in
degrading OMPs, achieving both direct oxidation and the generation of hydroxyl radicals
(•OH) that can mineralize complex organic structures [8,9]. For example, ozone can directly
degrade OMPs, often achieving mineralization depending on factors like ozone contact
time and concentration. Alternatively, O3 oxidation generates highly effective radicals that
facilitate chemical oxidation, effectively breaking down a broad spectrum of compounds,
including pharmaceuticals and antibiotics [9–11].

Its application has grown over the past two decades, especially in industrial wastewa-
ter treatment, gradually replacing traditional chlorine-based processes due to its superior
disinfection capacity and lower energy requirements. It is also a predominant oxidation
technology, praised for its cost-effectiveness and energy efficiency compared to other ad-
vanced oxidation techniques, such as UV disinfection [12,13]. In particular, the catalytic
ozonation process—where ozone interacts with metal oxide catalysts—enhances the re-
moval efficiency of recalcitrant OMPs, as the catalysts promote the formation of reactive
oxygen species, such as hydroxyl radicals (•OH), and improve overall degradation kinetics.

Heterogeneous catalytic ozonation represents a particularly promising advanced
oxidation process (AOP). By using solid-phase catalysts, such as metal oxides, the pro-
cess can achieve significant pollutant mineralization at ambient temperature [14], while
preventing catalyst degradation. This method has shown substantial improvements in
organic matter oxidation compared to conventional ozonation [15–17]. Moreover, by com-
bining catalytic ozonation with response surface methodology (RSM), it is possible to
optimize the process conditions for the removal of pharmaceuticals. The chosen model
compounds are carbamazepine (CBZ), diclofenac (DCF), and ibuprofen (IBP), which are
often found in wastewater streams and are notoriously resistant to traditional treatment
methods [18]. Para-chlorobenzoic acid (pCBA) was also used in the study as an O3/•OH
probe compound [19]. While previous studies have explored catalytic ozonation systems
for AOPs [20–24], few have applied RSM to heterogeneous catalytic ozonation, which forms
the novelty of this work.

In this study, we explore the potential of heterogeneous catalytic ozonation as an
effective strategy for the removal of recalcitrant OMPs from wastewater, offering insights
into its mechanisms and application. The nanoparticles α-Al2O3, Mn2O3, TiO2 (P25),
CeO2, and CeTiOx were selected as catalysts for their demonstrated ability to enhance
the degradation of OMPs, including pharmaceuticals and recalcitrant compounds. These
metal oxides have been shown to facilitate the decomposition of O3 and promote •OH
generation, leading to enhanced OMPs degradation. For instance, aloumina has been
found to facilitate pCBA [24] and diethyl phthalate [25] degradation. Manganese oxides
have been found to significantly improved the removal of oxalic acid [26], ibuprofen [27],
and toluene [28]. Furthermore, titania oxides in ozonation systems, have demonstrated
efficacy in the oxidation of carbamazepine [29], aspartame [30], and parabens [31]. CeO2
and CeTiOx, with their redox-active surfaces, further enhance ozone activation, leading to
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improved degradation of bisphenol [32], DEET [33], and ciprofloxacin [34]. These catalysts,
when used in catalytic ozonation systems, offer a robust approach for removing recalcitrant
pollutants from wastewater. The RSM was ultimately used to determine the optimum
parameters for the catalytic ozonation of the selected OMPs and the interaction between
the studied parameters.

2. Materials and Methods
2.1. Chemicals and Materials

Carbamazepine (CBZ, 99.8%, C15H12N2O, CAS: 298-46-4), ibuprofen (IBP, 98.9%
C13H18O2, CAS: 15687-27-1;), diclofenac sodium salt (DCF, 98%, C14H10Cl2NNaO2, CAS:
15307-79-6), and para-chlorobenzoic acid (pCBA, 99%, C7H5ClO2, CAS: 74-11-3). CBZ,
IBP, and DCF were purchased from Sigma-Aldrich (St. Louis, MO, USA), whereas the
pCBA was purchased from ACROS Organics (Waltham, MA, USA). Table 1 summarizes the
characteristics of those compounds. Sodium bicarbonate (NaHCO3, CAS: 144-55-8) used as
a buffer was obtained from Sigma-Aldrich. All commercial metal oxides or nanoparticles
(NPs), alpha-aluminum oxide (α-Al2O3, 78 nm, CAS: 1344-28-1), manganese oxide (Mn2O3,
28 nm, CAS: 1317-34-6), and ceria oxide (CeO2, 8–28 nm, CAS:1306-38-3) were purchased
by Nanografi (Nanografi Nanotechnology, Ankara, Turkey). Titanium oxide (TiO2, P25,
CAS: 13463-67-7) was purchased from Sigma-Aldrich. For the synthesis of the ceria doped
titania (CeTiOx), the following chemicals were used: Potassium indigotrisulfonate (indigo,
C16H7K3N2O11S3, CAS: 67627-18-3) was purchased from Sigma Aldrich and was used to
determine ozone concentration. Acetonitrile gradient grade for liquid chromatography
(ACN, C2H3N, CAS: 75-05-8) was obtained from Merck Millipore (Burlington, MA, USA).

Table 1. Physiochemical characteristics of model organic micropollutants.

Micropollutant Molecular Structure Molar Mass
[g mol−1] * Log Kow * pKa *

Carbamazepine
(CBZ)
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2.2. Synthesis of CeTiOx Nanoparticles

The ceria-doped titania (CeTiOx) nanoparticles were synthesized using the sol–gel
method [35]. To prepare the precursor solution, metal nitrate salt (CeN3O9·6H2O) and
titania isopropoxide 97% (C12H28O4Ti) were dissolved in a mixture of isopropanol, acety-
lacetone, and nitric acid. The Ce to Ti molar ratio was 1% [33]. The solution was stirred
overnight, then coated onto glass plates and placed in the oven at 80 ◦C for 9 h. Subse-
quently, the temperature was raised to 120 ◦C, and the solution was left in the oven for
an additional 6 h. After the aging and drying process, the samples were brought to room
temperature and introduced into a furnace to eliminate impurities and facilitate crystal
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powder formation. The furnace was set to 450 ◦C for 2 h. Finally, the resulting solids were
collected in a mortar and pulverized into a fine powder using a pestle. A detailed scheme
is provided in the Supplementary Material (Figure S1).

2.3. Characterization of the Nanoparticles

The electrical charge on the particles’ surface in a liquid medium, the zeta potential,
was determined with a Zetasizer Ultra (Malvern Panalytical, Malvern, UK). A mass of 0.1 g
of the sample was suspended in 100 mL of deionized water and subjected to ultrasonication
for 20 min. The pH of the suspension was adjusted to between 2 and 12 using either HCl
or NaOH (0.1 mol L−1). Before each measurement, the suspensions were ultrasonically
treated for 30 s. The pH values of the solutions were determined using a digital pH meter
from Mettler Toledo (Columbus, OH, USA).

The ASAP 2000 instrument (Micromeritics Corporation in Norcross, GA, USA) was
used to determine the BET-specific surface area, pore volume, and pore size distribution
based on nitrogen adsorption and desorption isotherms data. Before analysis, samples
were degassed at 120 ◦C for 10 h until a vacuum of 50 µm Hg was reached to remove all
physically adsorbed substances. Samples were placed in tubes with a 10 cm3 bulb and
a 1/2′′ stem. Data were collected in the range of 0 to 1 relative pressure (p/p0). A total
of 40 adsorption/desorption points were collected after each equilibration interval of 5 s.
The Barret–Joyner–Halenda model was used to calculate the pore size distribution of the
sample using data from the adsorption and desorption branches of the nitrogen isotherms.
The BET surface area was calculated using five points in the range of p/p0 from 0.05 to 0.24.

The characterization of the commercially available nanoparticles is presented in Table
S1 (Supplementary Material) as provided by the manufacturer. On the other hand, the
elemental analysis of CeTiOx was carried out using the powder X-ray diffraction method
(PXRD) with a Shimadzu XRD 6000. PXRD patterns were generated using a D8 Advance
X-ray diffractometer (Bruker, Billerica, MA, USA). The X-ray diffractometer utilized Cu
Kα radiation with an acceleration voltage of 30 kV and a current of 30 mA, following the
Bragg–Brentano focusing geometry. The analysis was conducted in a step-scan mode with a
0.02◦ 2θ step size, covering a 2θ range of 10–80◦, with a counting time of 0.6 s. The analysis
of the PXRD diffractogram was executed using the HighScore Plus software (Malvern
Panalytical, Malvern, UK) package.

Additionally, the Fourier transform infrared spectroscopy (FTIR) analysis of the
synthesized CeTiOx sample was performed using a spectrometer (IRSpirit, Shimadzu,
Tokyo, Japan) equipped with an ATR (Attenuated Total Reflectance) accessory. The energy-
dispersive X-ray microscopy spectrum (EDS) of the CeTiOx sample was collected using
the Nano Esprit 2 detector (Bruker, Billerica, MA, USA) at 10 kV and 15 mm working
distance at 1000 magnification within the Vega Easyprobe 3 electron microscope (Tescan,
Brno, Czech Republic).

2.4. Response Surface Methodology

The surface response graphs for evaluating the different treatments were generated
using the Design Expert software “Version 13.0.0” (Stat-Ease, Inc., Minneapolis, MN, USA).
The Design of Experiments (DoE) approach was used to create an empirical mathematical
model that can forecast the result of a dependent variable in relation to a set of independent
variables. The outcomes from the degradation experiments were acquired by employing a
mixed-level factorial design, wherein three independent variables (factors) were system-
atically adjusted across multiple levels (as detailed in Table 2). A total of 80 experiments
were carried out using a randomized design to ensure unbiased results. These experiments
covered all possible combinations of the selected variables: transferred ozone dose (TOD),
nanoparticle’s type, and nanoparticle dose (NPs), allowing for a thorough exploration of
the parameter space. The randomized approach also minimized experimental errors and
provided robust data for response surface methodology (RSM) analysis. The percentage
(%) removal of each of the four model compounds was used as the response variable.
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Table 2. Selected factors and response variable.

Factors Class Levels

x1: Transferred Ozone
dose [µM] Numerical 0 50 100 150

x2: Nanoparticles
concentration [g L−1] Numerical 0 0.5 1 1.5

x3: Nanoparticles type Categorical α-Al2O3 CeO2 Mn2O3 TiO2 CeTiOx
y: % removal for CBZ,
DCF, IBP, and pCBA Response

The analysis of significance was conducted using the Analysis of Variance (ANOVA)
method, employing a significance threshold of 5%, a threshold commonly used to classify
the statistical significance of the evaluated statistical properties of the model. Regres-
sion models were calculated and graphically represented through response surface plots,
estimating the regression coefficients.

2.5. Batch Experiments with Nanoparticles

Batch experiments were performed in amber bottles of 240 mL working volume
with different doses of nanoparticles and aqueous ozone (O3(aq)). The matrix consisted
of demineralized water and bicarbonate buffer at 1 mM to keep pH stable at 7.4–7.6. All
experiments were conducted at room temperature using a laboratory-scale ozone reactor
(ANSEROS, COM-AD-04, Tübingen, Germany). Ozone gas was continuously injected into a
3 L glass bottle filled with deionized water (in-house production) to achieve a concentrated
stock solution of dissolved ozone (approx. 45 mg L−1). The initial concentration of the
micropollutants was 10 µM. The transferred ozone doses (TOD) ranged from 0, 50, 100,
and 150 µM (0−7.2 mg L−1). The O3(l) stock solution concentration was determined
spectrophotometrically at 260 nm (Shimadzu UV-1800, Shimadzu Corporation, Kyoto,
Japan), and the corresponding volume was added to each reaction bottle to achieve the
required TOD. The catalytic activity of the α-Al2O3, Mn2O3, CeO2, TiO2, and CeTiOx with
different particle sizes was examined using three different concentrations: 0, 0.5, 1.0, and
1.5 mg L−1. The 240 mL bottles were left to react at ambient temperature for four hours
after ozone addition (Figure 1). Samples were collected, filtrated through a 0.22 µM nylon
filters (Whatman, Merck, Darmstadt, Germany), quenched with thiosulfate (Na2S2O3) [36],
and finally analyzed in the HPLC.
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2.6. Ozone Degradation Studies

To examine the ozone decomposition in different matrices, batch experiments similar
to batch experiments with nanoparticles were performed (see Section 2.5). The ozonation
procedure was kept the same, but different components were added to the amber bottles.
The highest ozone dose (150 µM) was used to quantify the ozone residual concentration
over time. Two different OMPs’ concentrations of 2 µM and 10 µM and the presence or
absence of 1 g L−1 CeTiOx were examined. In addition, the effect of the bicarbonate on
ozone depletion was investigated by adding or not the buffer in the treated matrix. The
residual ozone concentration was determined by the indigo method [37], adding 4 mL
of the sampling volume into the volumetric flask containing the 0.5 M phosphate buffer
and the 1 mM indigo solution. The sampling points were set to every half minute for the
first 3 min and then every five minutes until 20 min, ending with samplings at 40 min
and 60 min. Indigo solution absorbance was spectrophotometrically measured at 600 nm.
An indigo Vs ozone calibration curve (Figure S2) was constructed, and the absorption
values were converted into concentrations. Figure S3 depicts the calibration curves for the
model compounds.

2.7. Analytical Methods

The model micropollutants were identified and quantified by high-performance liquid
chromatography (HPLC) in reversed-phase using a liquid chromatography instrument
(HPLC-UV Agilent 1200) coupled to a quaternary pump and equipped with an ultraviolet-
visible detector and an autosampler (both from Agilent Technologies, Santa Clara, CA,
USA). Chromatographic separation was performed using a C18 column (Microsorb-MV
100-5 250 × 4.6 mm) at a working temperature of 30 ◦C and flow of 0.8 mL L−1. The
samples were directly injected through the autosampler with an injection volume of 200 µL.
The effluent was a combination of ACN, milli-Q water, and 0.3% of formic acid with 10%
of ACN. The gradient varied over time (40 min), and more information regarding the
analytical method is provided in the Supplementary Material (Section 4). The lower limit
of quantification for all OMPs was 0.25 ± 0.16 µM (54.69 ± 32.80 µg L−1).

3. Results and Discussion

The catalytic activity of different metal oxides/nanoparticles (NPs), commercial and
synthesized, towards ozone was examined by comparing the degradation of recalcitrant
to ozone compounds, such as ibuprofen and pCBA, during different treatments. The
nanoparticles used in the catalytic ozonation experiments were the commercial α-Al2O3,
Mn2O3, CeO2, TiO2, and the synthesized CeTiOx. The characterization techniques used
to identify their catalytic potential properties, as well as the degradation graphs, are
listed below.

3.1. Characterization of the Nanoparticles

In catalysis, the zeta potential of nanoparticles can influence their catalytic activity. For
example, specific reactions may be facilitated or hindered by the surface charge of catalyst
nanoparticles. Studying the zeta potential can help identify which nanoparticles are more
suitable for specific catalytic applications. The zeta potential analysis presented in Figure 2
offers significant insights into the surface properties of the five NPs. The graph illustrates
how the zeta potential of the selected nanoparticles varies with changes in pH. This is a
critical aspect of nanoparticle behavior, as it influences their interactions with reactants and,
thus, their catalytic performance.
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TiO2, Mn2O3, and CeO2 exhibit similar pH-dependent trends, all starting as positively
charged in acidic pH and transitioning to negatively charged in basic environments. This
similarity suggests they may share similar surface chemistry or reactivity under certain
conditions. However, Mn2O3 showed a less positive charge than TiO2 and CeO2. This
implies that Mn2O3 may not attract negatively charged molecules as strongly. The point of
zero charge (PZC) for TiO2, Mn2O3, and CeO2 is 7.7, 7.2, and 6.9, respectively, suggesting
that the surface of the particles was slightly negative to neutral under the experimental
conditions. Due to the addition of bicarbonate as a buffer, the pH of the working solutions
was maintained stable at 7.6–7.8.

α-Al2O3 also displays a pH-dependent charge, with a positive charge until pH 8.
However, it is noted as being less positively charged and less negatively charged in acidic
and basic pH, respectively, compared to all other nanoparticles. This difference implies
that it has a milder or less intense surface charge, suggesting not very strong electrostatic
repulsion or attraction forces with other particles or molecules, and that it is more likely
to aggregate or flocculate. Exhibiting the higher PZC at pH 8.6, it is the only nanoparticle
that remains positively charged in the working solution. On the other hand, CeTiOx
(synthesized nanoparticle) stands out as having a consistently negatively charged surface
across a wide pH range, from 3 to 12. Notably, CeTiOx showcases a zeta potential value
that tends to repel each other more strongly, leading to better colloidal stability. This
distinctive behavior suggests CeTiOx has unique catalytic characteristics, especially when
other nanoparticles might be positively charged. Similar to Lee et al. [33], CeTiOx exhibited
good catalytic performance under ozonation for the degradation of DEET: 80% removal
after 10 min.

At the working pH, the state of the metal oxides was positive for α-Al2O3 and TiO2
and negative for Mn2O3, CeO2, and the synthesized CeTiOx. This can be explained by
the relation of the PZC to pH (Equations (1)–(3)). The catalyst’s surface becomes posi-
tively charged when the PZC exceeds the solution’s pH. Lower solution pH strengthens
protonation, reducing the nucleophilicity of the hydroxyl groups on the catalyst’s surface.
Subsequently, this hinders their interaction with ozone, resulting in decreased catalytic
activity. On the other hand, when the PZC is lower than the pH of the solution, the catalyst’s
surface becomes negatively charged, attracting O3 binding and radical •OH generation. In
some cases, though it was reported that the catalyst sites were more active, reaching the
maximum of their catalytic activity when the catalyst was uncharged, neither protonated
nor deprotonated [24,38,39].

pH < pHPZC : M − OH + H+ ↔ M − OH2
+(positivelycharged) (1)

pH = pHPZC : M − OH + H2O(neutral) (2)
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pH > pHPZC : M − OH + OH− ↔ M − O− + H2O(negativelycharged) (3)

Furthermore, understanding the pore size distribution of a catalyst is crucial in var-
ious chemical and catalytic processes, especially in the field of heterogeneous catalysis.
Pores in catalyst materials play a significant role in determining their performance and
efficiency. A well-known technique used for assessing the pore characteristics of catalysts
is BET (Brunauer–Emmett–Teller). The tested nanoparticles were analyzed, and the nitro-
gen adsorption–desorption isotherms, as well as the pore size distribution graphs, were
constructed (Figure 3).
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The data show that α-Al2O3 exhibited the highest values regarding the specific area
(m2 g−1) and pore volume (cm3 g−1). In addition, the isotherms are one order of magnitude
higher than the rest of the nanoparticles (the second y-axis indicates the values for α-
Al2O3). On the other hand, the Mn2O3 specific area was significantly lower than the
other NPs. Regarding the specific area, the nanoparticles can be classified as α-Al2O3 >
TiO2 > CeO2 > Mn2O3 > CeTiOx, and regarding pore volume as α-Al2O3 > TiO2 > CeO2
> CeTiOx > Mn2O3. This suggests that α-Al2O3 has more active sites for catalysis and
is a good candidate for catalytic ozonation. Its disadvantage, however, lies in the fact
that α-Al2O3 is mostly a macropore material (<50 nm). Macroporous materials may be
advantageous if the catalytic ozonation process involves larger reactant molecules or if
mass transfer limitations are a significant consideration. It is well-documented, however,
that mesoporous materials (2–50 nm) have shown good performance in catalytic ozonation
due to their structure [16,40,41]. They often have high surface areas, providing a large
number of active sites for catalytic reactions [15,40].

According to the pore size distribution data (Table 3 and Figure 3b), CeTiOx could be
characterized as a mesoporous material, with most pores smaller than 10 nm. There is a
certain amount of micropores, but not large enough to show a significant volume of micro-
pores. According to the new IUPAC classification [42], there are eight types of isotherms,
six of which were identified in the 1985 IUPAC Manual on Reporting Physisorption Data
for Gas/Solid Systems. The type IV (a) isotherm is characteristic of mesoporous materials,
and this is consistent with all materials (α-Al2O3, Mn2O3, TiO2, CeO2, and CeTiOx). The
presence of adsorption hysteresis in type IV (a) isotherms (Figure 3a) is expected and is
related to capillary condensation and evaporation in the mesopores. In addition, the shape
of the adsorption hysteresis loop correlates with the pore size distribution, pore geometry,
and pore connectivity.
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Table 3. Data from BET analysis for each tested nanoparticle.

Parameter Symbol, Unit α-Al2O3 Mn2O3 TiO2 CeO2 CeTiOx

Specific surface SBET, m2 g−1 147.8 18.6 49 41.3 36.4
Pore volume Vpores, cm3 g−1 0.902 0.059 0.169 0.157 0.043

Micropore Volume
(<2 nm) Vmicropores, cm3 g−1 0.002 0.0007 - 0.0005 -

Mean pore diameter dpore, nm 22.9 11.2 8.3 14.1 4.5
Mean particle size dpatricle, nm 78 28 28 28 -

Additionally, the H3 hysteresis loop shown for the α-Al2O3, Mn2O3, TiO2, and CeO2
samples is observed in materials with a pore network consisting of macropores that are
not entirely filled with pore condensate. Also, the pore size distribution of all samples
showed the presence of macropores, i.e., pores larger than 50 nm. On the other hand, the
H2(a) hysteresis loop obtained for the CeTiOx sample displays the presence of bottlenecks
in the pore shape. Therefore, the desorption branch of the isotherm can be attributed to the
blocking/percolation due to the narrow bottlenecks.

The decrease in surface area, pore volume, and pore size distribution observed in
CeTiOx compared to the other nanoparticles, as shown in Table 3, can be attributed to
the structural changes caused by the incorporation of Ce ions into the TiO2. Ce-doping
is known to modify the surface characteristics and crystal structure of TiO2, potentially
leading to a reduction in surface area due to particle agglomeration and changes in pore
structure. Specifically, CeTiOx exhibited a relatively lower specific surface area (36.4 m2 g−1)
compared to pure TiO2 (49 m2 g−1), and its mean pore diameter was also smaller (4.5 nm).
These changes suggest that Ce-doping may have led to the formation of narrower pores
(bottlenecks), as indicated by the H2(a) hysteresis loop (Figure 3a), which is characteristic
of materials with pore-blocking or percolation mechanisms. This structural alteration can
hinder gas diffusion into the deeper layers of the material, reducing the number of active
sites available for catalytic reactions.

Furthermore, the lower pore volume (0.043 cm3 g−1) of CeTiOx compared to TiO2
(0.169 cm3 g−1) might also indicate a decrease in porosity due to Ce incorporation. This
observation aligns with the reduced catalytic performance of CeTiOx in some experiments,
as its limited surface area and pore structure may restrict the adsorption and activation
of ozone and pollutants during catalytic ozonation. Despite these limitations, the CeTiOx
sample retains mesoporous characteristics with most pores smaller than 10 nm, which is
beneficial for specific catalytic processes, though these material property changes impact
its efficiency in this specific context.

The observed reduction in CeTiOx characteristics is further supported by its crystalline
structure. These textural changes often accompany modifications in the material’s crys-
tallinity, which can be examined through X-ray diffraction analysis. The powder X-ray
diffraction (PXRD) pattern of CeTiOx synthesized at 450 ◦C, represented in Figure 4a,
provides further insight into how the Ce doping affected the crystalline phase of TiO2.
The sample exhibited seven distinguished diffraction peaks at 25◦, 38◦, 48◦, 54◦, 63◦, and
70◦. According to the XRD spectra, all diffraction peaks of the synthesized material corre-
sponded to TiO2 anatase (ICSD 01-89-4921). In addition, no impurity peaks were observed,
indicating that the Ce ions were effectively doped without causing any changes to the
crystal structure of TiO2 [33]. For the calculations of crystal size, the spherical shape of
crystallite was assumed [43], and the peaks in the diffractogram were fitted using the
Lorentzian function. The average crystal size of the CeTiOx was calculated at 10.3 ± 1.0 nm,
and a similar size was reported by Lee and his collaborators [33]. The calculations were
based on the Scherrer formula below [44].

D =
K λ

FWHM cosθ
(4)
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where D is the mean size of the crystallite; K is a shape constant (0.89); λ is the X-ray
wavelength at 0.154 nm; FWHM is the full width at half-maximum of the diffraction peak;
and θ is the Bragg angle.
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To further confirm the successful incorporation of the Ce into the unit cell of TiO2
structure (interstitial doping), energy-dispersive spectroscopy (EDS) was used. In Figure 4b,
it can be clearly seen that the elements Ti, Ce, and O were present in the CeTiOx sample.
Moreover, the FTIR spectrum of the synthesized TiO2 (Figure 4c) showed distinct Ti-OH
vibrational stretches around 1500 and 1600 cm−1, alongside asymmetric and symmetric
–OH stretches near 2900 cm−1, which are likely due to adsorbed water. A notable O-Ce-
O vibration is also detected at 415 cm−1. These findings align well with the previously
reported literature [45,46].

Additionally, in recent research conducted by one of our co-authors [34], it was demon-
strated that small amounts of Ce (up to 0.08 wt.%) can be successfully incorporated into
the TiO2 lattice through wet chemistry synthesis. This method promoted a homogeneous
pre-crystalline network, facilitating the substitutional doping of Ce4+ ions (with a crystal
radius of 0.092 nm) in place of Ti4+ ions (0.065 nm) within the TiO2 unit cell. This doping
alters the unit cell parameters, as confirmed by XRD analysis. Beyond a certain threshold,
excess Ce remains outside the lattice, forming separate cerium oxide phases. Our synthesis
procedure followed the same methodology, ensuring the successful incorporation of Ce in
the TiO2 lattice, consistent with the literature [33,34], and is further supported by our XRD
measurements.

3.2. Effect of Matrix on Ozone Depletion

The ozone depletion in different matrices was examined to understand better the
exposure time of the OMPs to ozone and how the presence of bicarbonate (HCO3

–) and
catalyst affect ozone decomposition. All tests were performed at room temperature, and
a theoretical TOD of 100 µM of ozone was used. Figure 5a displays the degradation of
ozone (mole L−1) over time (s). The ozone was present for at least 20 min after its addition
to the solutions containing only (i) 1 mM NaHCO3, (ii) 1 mM NaHCO3 and catalyst (1 g
L−1 CeTiOx), and (iii) the lowest concentration of OMPs, i.e., 2 µM in demineralized water.
On the other hand, the rest of the tested matrices immediately reacted with ozone, and a
sudden drop in its concentration was observed within the first 30 s. In the Supplementary
Material (Figure S4), it is apparent that lower OMP concentration slightly lessened the
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ozone decomposition; 20% of the initial ozone dose was present after 1 min. In the other
cases, less than 5% of the initial ozone was present after 1 min of reaction.
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The working concentration of OMPs at 10 µM in the presence of bicarbonate decreased
the ozone concentration quickly, implying that the exposure of the OMPs’ mixture to
ozone was limited to the first minute of the reaction. Similarly, the 10 µM OMP solution
in demineralized water decreased ozone immediately. Thus, it can be concluded that the
bicarbonate effect on ozone decomposition is negligible when the organic load is high
(Figure S4b) as organic compounds intensify the ozone depletion. However, when the
organic load is low (2 µM), the presence of bicarbonate leads to faster decomposition
(Figure S4a), and this can be supported by the fact that bicarbonate is competing for hy-
droxyl radicals (•OH) produced by ozone decomposition. It is reported that bicarbonate
has a scavenging effect towards •OH, producing bicarbonate radicals (HCO3

•–) and inter-
mediates that quench the radical chain carrier [47,48]. Moreover, it can be observed that
the presence of a catalyst when only bicarbonate is present (Figure S4e) can slow ozone
decomposition almost to half the speed; double the time is required to reach the same
residual concentration. This indicates that the catalyst, specifically the synthesized CeTiOx,
does not facilitate ozone decomposition, allowing more time for the ozone to react in the
solution. This can be explained by the ability of the catalyst to provide alternative reaction
pathways or by adsorbing ozone molecules, effectively reducing their decomposition rate.
As a result, more ozone molecules are retained in the solution, leading to a higher residual
concentration. It can be concluded that the presence of a catalyst can alter the kinetics of
ozone decomposition and reaction with bicarbonate, leading to a slower overall reaction
rate and allowing more ozone to persist in the solution. A similar trend is observed when
the bicarbonate is combined with the 2 µM OMP concentration.

The ozone degradation results were explained using the second-order model (Figure 5b).
The first-order model was also applied to the data; however, the goodness-of-fit parameter
(R2) was lower than 0.96. In the first-order model, the degradation rate is primarily influenced
by changes in ozone concentration. Conversely, the second-order model indicates that factors
beyond ozone concentration, such as bicarbonate and OMPs, also impact its degradation rate.
In this case, the R2 was found to be higher, indicating that the model describes the degradation
of ozone more precisely. Evaluating the goodness-of-fit parameters for each model helps
to determine which one better describes the process and thereby provides insight into the
reaction mechanism. The experimental second-order kinetic constants of ozone for the three
matrices were as follows: kO3,NaHCO3 = 135.40 M−1 s−1, kO3,2µM OMPs = 63.38 M−1 s−1, and
kO3,NaHCO3+1g/L CeTiOx = 62.72 M−1 s−1. The constants were determined from the slope of the
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plot of (1/C -1/Co) against reaction time. Findings for second-order fitting align with the
research of Panda and Mathe [49] as well as Yershov and his collaborators [50].

To better explain the decomposition of ozone in water, the different reactions occur-
ring [50–52] are given below. The presence of hydroxyl ions (OH–) primarily catalyzes the
ozone decomposition, and for the production of a hydroxyl radical (•OH), two molecules
of O3 need to be consumed. The series of reactions leading to ozone decomposition is initi-
ated by the involvement of hydroxyl (•OH), hydroperoxyl (HO2

•), and superoxide (O2
•–)

radicals. This sequence ends when these radicals recombine, and the chain reaction stops.

O3 + OH− → HO2
− + O2, k = 70 M−1s−1 (5)

O3 + HO2
− → OH• + O2

•− + O2, k = 2.8 × 106 M−1s−1 (6)

O3 + OH• → HO2
• + O2, k = 1.1 × 108 M−1s−1 (7)

HO2
• ↔ O2

•− + H+, pKa = 4.8 (8)

O3 + O2
•− → O3

•− + O2, k = 1.6 × 109 M−1s−1 (9)

O3
•− + H+ → HO3

•, k = 5.2 × 1010 M−1s−1 (10)

HO3
• → OH• + O2, k = 1.1 × 105 M−1s−1 (11)

O3 + HO2
• → OH• + 2O2, k = 1.0 × 104 M−1s−1 (12)

O2
•− + HO2

• → HO2
− + O2, k = 1.0 × 109 M−1s−1 (13)

HO2
− + H+ → H2O2 (14)

In addition to direct decomposition, •OH can be produced through the decomposition
of O3 on the catalyst surface. The exact mechanism of •OH formation can vary depending
on the type of catalyst and reaction conditions; however, the most possible mechanism is
the adsorption of ozone onto the catalyst surface, followed by its dissociation into reactive
oxygen species. Adsorption occurs through a weak chemical interaction, such as Van der
Waals and electrostatic, between the aqueous or gaseous O3 molecules and the catalyst’s
surface. The catalyst can facilitate the O3 decomposition by providing active sites on its
surface where the adsorbed water (H2O) molecules can form •OH. These reactive species
can subsequently react with organic pollutants either adsorbed on the catalyst surface or in
the surrounding solution. It is important to note that the catalyst itself does not directly
produce •OH. Instead, it acts as a facilitator, providing a favorable environment for O3
decomposition to •OH. The following reactions can describe the reaction mechanism when
the catalyst (M) is present [53–55]:

M + H2O → M − OH− + H+ (15)

M − OH− + O3 → M − OH• + O3
• (16)

M − OH− + O3 → M − HO2
• + O2 (17)

M − OH• + pollutant → M + product (18)

M − HO2
• + pollutant → M + product (19)

Nevertheless, the reaction mechanism when gaseous O3 is applied differs. Many studies
have revealed the effectiveness of gaseous ozone in accelerating the generation of free radicals
by catalyst [25,39,56]. When O3 is applied in wet environments, the presence of water
molecules can influence catalyst deactivation during ozone decomposition [17,54]. Studies
have shown a significant decrease in MnOx activity under such conditions, with observations
of Mn oxidation and structural changes in the catalyst due to water molecules [54,57,58].
A proposed reaction pathway involves water molecules forming surface -OH2

+ groups
that interact with ozone, leading to catalyst deactivation. One possible explanation is that
the absorbed water molecules resist desorbing and accumulate over time, reducing ozone
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decomposition rates since active sites are already occupied. However, conflicting views
exist regarding the inhibition of ozone molecule adsorption by water molecules. Zhu et al.
(2017) proposed that water molecules can form a complex with O3 and release HO3

• that
can react and give •OH. Given the practical conditions, encountering humidity in such
processes is unavoidable. Consequently, addressing the issue of deactivation in humid
environments remains imperative, necessitating further exploration of strategies to enhance
the water resistance of the catalysts or to innovate new materials with superior water resistance
properties.

3.3. Surface Response Methodology for Pharmaceutical Degradation

A mixture of micropollutants consisting of three pharmaceuticals (carbamazepine,
diclofenac, and ibuprofen) and the pCBA as O3/•OH probe was used to evaluate the
efficiency of the potential catalysts/nanoparticles. The initial concentration of each model
compound was 10 µM, and their removal efficiency (% of removal) was plotted in relation
to ozone and catalyst dose. A response surface methodology (RSM) was applied to reveal
the important variables of their degradation. For the RSM, 80 experiments were performed
(five nanoparticles, four ozone doses, and four nanoparticle doses). Before constructing
the models, the data were examined to confirm the normality of the externally studentized
residuals using the normal probability plot. In Figure 6, it can be observed that residuals
from all tested compounds were normally distributed, suggesting the adequacy of the
predicted models.
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An ANOVA analysis was conducted to assess the models’ validity and adequacy as
well as the significant effects and potential interactions among variables. ANOVA is a
statistical method used to test hypotheses based on model parameters. The results of the
analysis are presented in the Supplementary Material. The factors A, B, and C represent O3
dose, NP concentration, and NP type, respectively. There were no interactions between
variables such as ozone and nanoparticle dose or type. Furthermore, NP type was not a
significant factor in the IBP model, whereas for the other three compounds, the different
catalysts only altered the intercept (b0) of the equation. The F-values for CBZ, DCF, IBP,
and pCBA were 1073.35, 807.47, 491.22, and 333.73 respectively. The p-values were all
<0.0001, an indicator that the polynomial models were highly significant for removing the
compounds during catalytic ozonation. According to the results, the factors that influenced
the degradation of the four compounds the most were the O3 dose and the NP concentration
at a lower level.

To depict the mechanism of CBZ, DCF, IBP, and pCBA degradation under heteroge-
neous catalytic ozonation, polynomial linear regression models were constructed using the
degradation outcomes, specifically the percentage (%) of removal in each experimen-
tal condition. By examining the coefficients of the resulting equation, formulated in
terms of coded factors (x1 = A: O3 dose; x2 = B: NP concentration) through the equa-
tions (Equations (20)–(23)), one can determine the relative influence of the factors on the
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removal of each compound. The statistical analysis and model fitting demonstrated good
predictability and accuracy, since the correlation coefficients (R2) were higher than 0.950.

CBZ%removal = b0 + 1.17x1 − 0.00345x1
2, R2 = 0.988 (20)

DCF%removal = b0 + 1.24x1 − 11.8x2 − 0.00382x1
2 − 27.5x2

2 − 13.5x2
3, R2 = 0.988 (21)

IBP%removal = b0 + 0.498x1 − 21.6x2 + 50.6x2
2 − 26.3x2

3, R2 = 0.959 (22)

pCBA%removal = b0 + 0.541x1 − 10.0x2 − 0.000604x1
2 + 27.4x2

2 − 14.9x2
3, R2 = 0.970 (23)

Table 4 illustrates the different intercept values (b0) for the models affected by the
NP type. The results of the correlation analysis suggest that OMPs degradation is mainly
explained by the O3 dose with CBZ and DCF being the most affected (higher coefficients).
CBZ was the only compound that NP concentration (x2) did not have a significant role in
its degradation; however, the other compounds were negatively affected by that factor.

Table 4. Intercept values (b0) for the models affected by the type of nanoparticles used in catalytic
ozonation experiments.

Model
Intercept Nanoparticles Type

b0 α-Al2O3 Mn2O3 CeO2 TiO2 CeTiOx

CBZ 0.345 −1.95 1.43 1.30 −1.51
DCF 0.327 −1.62 1.58 1.06 −1.52
IBP * 1.79 1.79 1.79 1.79 1.79

pCBA 0.314 −2.22 1.97 1.38 1.004
* All offset values are identical for IBP because no significant influence for the catalyst was evidenced in the
statistical analysis.

The effects of the independent variables (O3 dose and NP concentration) on the
response variable, i.e., the removal of pharmaceuticals and pCBA, were presented in three-
dimensional (3D) surface plots (Figure 7). In these experiments, the ozone dose was added
at the beginning of the experiment. It was left to react for 4 h before measuring the residual
concentration of the OMPs, and the time allowed for the complete depletion of ozone and
the inactivation of the radical chain pathway. Even though contact time plays a crucial
role in the effective and efficient removal of OMPs, especially in wastewater treatment, the
study tried to elucidate the catalyst’s behavior under low and high ozone doses. It could
not predict the optimum NP concentration for the effective degradation of each compound,
and it was obvious that the higher the O3 dose, the higher the removal.

CBZ and DCF are compounds that can quickly degrade by ozone (kO3/CBZ = 3.00 ×
105 M−1 s−1, kO3/DCF = 6.85 × 105 M−1 s−1) because they contain functional groups that
are susceptible to attack by ozone, such as double bonds, aromatic rings, and heteroatoms
(e.g., nitrogen and oxygen). This is the main reason behind the complete elimination of
those two compounds in high ozone doses (150 µM). The addition of the nanoparticle in
the oxidation process has not increased the degradation rates, and these findings were also
supported by Lara-Ramos et al. [59] and Fan et al. [60]. Their studies found that ozone dose
was the most significant effective parameter for DCF and thymol degradation, respectively.
Interestingly, increasing the catalyst load was found to reduce the degradation percentages
of DCF.

On the other hand, IBP and pCBA are molecules recalcitrant to ozone oxidation due to
their low reactivity with ozone (kO3/IBP = 9.6 M−1 s−1, kO3/pCBA < 0.15 M−1 s−1). Still, they
react with hydroxyl radicals, and their incomplete degradation in high ozone doses implies
the inability of the system to produce high •OH concentrations. From the surface plots, it
can be concluded that when the catalyst concentration was at 1.5 g L−1, the removal was
lower than the 1.0 g L−1. This finding suggests that an excess amount of catalyst can hinder
the ozone decomposition to •OH. Based on previous studies, catalysts’ performance was
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negatively affected under humid environments [54]. Active sites on the catalyst surface
could be saturated with water molecules. Another explanation is that the available O3
immediately reacted with CBZ and DCF, thus reducing its concentration and, subsequently,
•OH generation.
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The application of RSM in this study enabled a thorough evaluation of the influence
of multiple variables on the degradation of pharmaceuticals during heterogeneous cat-
alytic ozonation. RSM identified the transferred ozone dose (TOD) as the most significant
factor, emphasizing the critical role of ozone availability in driving pharmaceutical degra-
dation. Remarkably, RSM demonstrated that, under the tested conditions, the effect of
TOD outweighed any catalytic enhancement provided by the nanoparticles, reinforcing
the importance of ozone concentration. This method offered technical advantages by sim-
plifying the experimental design and reducing the number of experiments required while
providing statistically robust results. Through RSM, optimal operating conditions were
identified, and the interaction effects between ozone concentration and nanoparticle dosage
were clarified. Ultimately, RSM proved to be an efficient tool for process optimization,
allowing a deeper understanding of the catalytic ozonation process and the limited role of
the catalysts in the studied system.

3.4. Degradation of Pharmaceuticals

Carbamazepine, diclofenac, and ibuprofen are considered recalcitrant compounds
because they resist degradation in natural environments. Ozone treatment effectively breaks
down these persistent compounds into less harmful by-products, facilitating their removal
from water or wastewater [61–63]. Therefore, the degradation of those pharmaceuticals
in the presence of pCBA, an •OH scavenger, in a heterogeneous catalytic system was
studied. Figures 8–10 display the normalized degradation of the tested OMPs in three NPs
concentrations, 0.5, 1.0, and 1.5 g L−1, respectively. Theoretical ozone doses varied from
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0–150 µM. However, the experimental concentrations deviated; standard errors for the x
and z axes are noted with a grey color on the ozonation alone treatment.
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Four commercially available nanoparticles, α-Al2O3, Mn2O3, TiO2, and CeO2, were
employed to investigate their potential catalytic effect on the degradation of selected phar-
maceuticals during the ozonation process. Additionally, we synthesized Ce-doped TiO2
(CeTiOx) using the sol–gel method at a 1% molar ratio of Ce to Ti. The synthesized CeTiOx
was included based on previous studies, such as Lee et al. (2021) [33], which demonstrated
its promising performance in advanced oxidation processes (AOPs). Specifically, in batch
ozonation experiments with higher ozone doses (5 mg L−1), CeTiOx significantly enhanced
the degradation of DEET, with negligible adsorption effects, suggesting its potential to
improve catalytic ozonation.

Notably, in Figure 8, CBZ and DCF data follow similar trends due to their affinity
towards ozonation. At the same time, IBP and pCBA demonstrate a different trend with
lower degradation rates. It is apparent that the higher the ozone dose, the higher the
degradation for all compounds independently of the nanoparticle used. There is evidence
that the presence of α-Al2O3, Mn2O3, TiO2, CeO2, and CeTiOx did not accelerate the
removal of the compounds, especially the ones that do not directly react with ozone
(IBP and pCBA). The interaction plots (Figure S5) derived from the RSM analysis also
support that there is no effect present, and the response mean (% of removal) is the same
across all factor levels (NP type). These results reflect those of Pocostales et al. [64] who
also found that among other pharmaceuticals, DCF was quickly removed by ozonation
and the presence of the commercial γ-Al2O3 or the synthesized Co3O4/Al2O3. However,
these catalysts impacted the mineralization of the pharmaceutical compounds used. For
evaluating the performance of catalytic ozonation on each pharmaceutical compound, it
would be better to test each separately. Nevertheless, this situation would not represent the
actual conditions when a mixture of compounds is present in wastewater.

From the adsorption experiments, the mixture of micropollutants was left for equi-
librium with NPs for one hour before the addition of ozone. No significant difference
was found in all micropollutant concentrations. Less than 1% of the compounds were
adsorbed on the surface of the catalysts, suggesting that there was not an actual collision
phenomenon occurring between the material and the organic molecules. Similar findings
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were reported by Lee and his collaborators when using their synthesized CeTiOx material
to degrade DEET. This could be again explained by the adsorption competition phenomena
occurring on the catalyst’s active sites. Chen and colleagues [65] showed that the catalyst’s
active sites were consistently taken up by water molecules that were unable to be des-
orbed, consequently diminishing its catalytic activity. Likewise, Liu et al. [17] found that
water vapor generated during the catalytic ozonation process progressively accumulated
on the catalyst surface, thus affecting the ability of the catalyst to further degrade the
formaldehyde.

To further evaluate the effect of the NPs, individual graphs of each compound with
different concentrations of the catalysts were generated (Figure S6a). Comparing the
different treatments regarding OMPs’ removal was visually easier from those data. It can
be seen that Mn2O3 has a low performance at the highest dose, 1.5 g L−1. The catalyst
dose giving slightly better degradation at 100 µM TOD was 1.0 g L−1 for almost all NPs.
However, no substantial difference was observed. Interestingly, in Figure 10c,d, ozonation
itself gave better degradation results than when the NPs were present. The higher catalyst
dose (1.5 g L−1) declined the degradation efficiency of the compounds, and this can be
attributed to the increased turbidity of the solution [66].

Optimizing the concentration of catalysts in heterogeneous catalytic ozonation proved
essential, with 1 g L−1 offering efficient pharmaceutical degradation at reduced costs by
minimizing turbidity and active site saturation. The enhanced degradation of compounds
like CBZ and DCF highlights the process’s suitability for pollutants with high ozone
reactivity. Moreover, our findings point to the potential of heterogeneous catalytic ozonation
to provide additional benefits beyond micropollutant removal, including a reduction in
membrane fouling and possible flux improvements when applied in hybrid systems. Future
work should explore catalyst reusability and integration with continuous-flow systems to
maximize process’s practical application in large-scale treatment.

It is also well-documented that the combination of noble metal oxides is more effective
when ozonation is applied as they offer oxygen vacancies for adsorption or/and promote
the dissociation of intermediate species to further mineralize OMPs [14,16,17]. It was
expected that the synthesized nanoparticle, CeTiOx, would exhibit high catalytic activity
due to its attractive characteristics, such as mesoporous structure, negative charge, and
the coexistence of the redox couples Ti3+/Ti4+ and Ce3+/Ce4+ [16,33]. Exhibiting good
performance when used for DEET degradation [33], it was believed that it would perform
the same in the degradation of IBP and pCBA. It is important, though, to understand in
what kind of environments the catalyst is applied. When gaseous O3 is applied, it is more
likely to favor the O3 molecule adsorption, facilitating more reaction pathways, such as the
generation of more •OH (Equations (6), (10)–(12)).

3.5. Catalyst-Pharmaceutical Interactions: Challenges and Future Directions

Undeniably, the catalysts’ characteristics are crucial in catalytic ozonation [67,68]. The
efficiency of ozone activation and subsequent targeted pollutant degradation is closely
related to the nanoparticles’ physicochemical properties. The specific surface area, pore
size distribution, and zeta potential significantly determine the catalytic performance. In
this study, α-Al2O3, with its high specific surface area and pore volume, offers many
active sites for catalysis. However, its macroporous structure limits its interaction with
smaller molecules like pharmaceuticals, reducing its effectiveness in generating hydroxyl
radicals. In contrast, CeTiOx, with a predominantly mesoporous structure (pores < 10
nm), facilitates better mass transfer and more efficient interactions between ozone and
pollutants. In addition, the H2(a) hysteresis loop in CeTiOx indicates the presence of
bottlenecks in its pores, which enhances the trapping and reaction of ozone, improving
pollutant degradation efficiency.

Additionally, the XRD analysis confirmed that CeTiOx retained the anatase phase of
TiO2, known for its high catalytic activity, which, combined with favorable pore charac-
teristics, enhances its performance in catalytic ozonation. Zeta potential measurements
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also support this, as surface charge influences the interaction between nanoparticles and
ozone. In this study, NaHCO3 was used to maintain a pH of 7.6–7.8, replicating typical
conditions in a wastewater treatment plant. Under these conditions, the catalysts exhibited
distinct surface charges due to their varying points of zero charge (PZC). Specifically, Al2O3
(PZC = 8.6) was positively charged, Mn2O3 (PZC = 7.2) was slightly positive, CeO2 (PZC
= 6.9) and CeTiOx (PZC = 3.7) were negatively charged, and TiO2 (PZC = 7.7) remained
neutral. The different charge states play a role in their interactions with both ozone and
pharmaceutical compounds. The four model OMPs used also present various charges and
behaviors under the study’s pH conditions, with CBZ being protonated (pKa > pH) and
the other three compounds (DCF, IBU, and pCBA) deprotonated (pKa < pH). This charge
variation affects each compound’s electron-donating or -accepting tendencies, influencing
their interactions with charged catalysts during ozonation. Deprotonated compounds, be-
ing electron-rich, are likely to act as electron donors, while the protonated carbamazepine,
electron-poor in this pH, acts as an electron acceptor. Furthermore, studies like those of
Lee et al. [33] and Ćurković et al. [34] have shown that CeTiOx, with a 1% mol Ce to Ti
ratio, improves degradation efficiency compared to other ratios. Overall, CeTiOx’s meso-
porous structure and stable crystal form make it a strong candidate for enhancing catalytic
ozonation, especially when targeting micropollutants like pharmaceuticals.

However, while CeTiOx showed promising structural and surface characteristics, its
performance in catalytic ozonation was not significantly better than other nanoparticles,
likely due to the challenges posed by using ozone in the liquid phase. In catalytic ozonation,
effective ozone activation requires sustained interaction between ozone and the catalyst
surface to generate reactive oxygen species like hydroxyl radicals. The liquid-phase ozone
may have limited contact time with the catalyst’s active sites, especially when nanoparticles
like CeTiOx are involved, leading to minimal ozone activation efficiency. This could explain
why the expected enhancement in degradation efficiency was not observed in this study.
Furthermore, while CeTiOx’s mesoporous structure and moderate specific surface area
should theoretically promote better ozone interaction and degradation, the rapid depletion
of ozone and the liquid–solid interface limitations hindered this potential. In several cases,
ozonation alone outperformed catalytic ozonation, which suggests that the catalysts were
not effectively decomposing ozone into hydroxyl radicals as hypothesized.

It is important to note that the metal nanoparticle size distributions, as reported in
Table 3, did not show a direct correlation with the degradation of pharmaceuticals in
Figure 10. Despite the smaller particle sizes of Mn2O3 and CeO2 (28 nm), their performance
was not significantly better than α-Al2O3, which had a much larger particle size of 78 nm.
This suggests that other factors, such as surface chemistry, the ability to adsorb and activate
ozone molecules, and pore structure, play a more critical role in catalytic performance.
In aqueous ozone systems, the limited contact time and the potential saturation of active
sites with water molecules may also reduce the influence of particle size on degradation.
Therefore, while nanoparticle size is an important parameter, the overall physicochemical
properties of the nanoparticles must be considered when evaluating their catalytic efficiency
in pharmaceutical removal.

Building on these findings, it becomes evident that while CeTiOx and other nanopar-
ticles exhibit promising physical characteristics, their efficiency in activating ozone and
enhancing pollutant degradation in a liquid phase remains limited. The key challenge
lies in the insufficient interaction between the liquid-phase ozone and the catalyst surface,
reducing the formation of reactive oxygen species necessary for effective degradation. In
some instances, ozonation alone provided better degradation results than catalytic ozona-
tion, underscoring the need to revisit the application of heterogeneous catalysts under
these conditions.

Therefore, future studies should focus on optimizing the interaction between catalysts
and ozone, either by modifying the catalyst preparation process or by exploring alternative
operational strategies. Subsequent experiments can focus on longer reaction times and
the use of continuous flow systems where ozone is introduced consistently, allowing for
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sustained contact with the catalysts in a different type of reactor. Additionally, the ozone
flow rate and the method of ozone introduction (gaseous or dissolved) can be optimized to
maximize the interaction between ozone and the catalyst surface. In this context, employing
gaseous ozone might extend the interaction time by preventing the rapid dissolution and
subsequent saturation of ozone in the aqueous phase

In addition to exploring gaseous ozone, optimizing the catalyst structure and surface
properties to reduce water adsorption could be another strategy to overcome this inhibition.
For example, hydrophobic modifications to the catalyst surface by calcination before use
could minimize water saturation and allow for more efficient ozone adsorption and radical
generation. This approach has been investigated in other catalytic processes [69] and
could be adapted for heterogeneous catalytic ozonation. Moreover, one potential approach
could be to optimize the synthesis of catalysts with improved redox properties, such as
incorporating transition metals or mixed metal oxides [70,71] that promote higher radical
production. Additionally, advanced catalyst modifications, including surface functionaliza-
tion or doping with heteroatoms, may increase the selectivity towards hydroxyl radical
formation, thus broadening the scope of micropollutants that can be effectively degraded.

Finally, there was an attempt to calculate the Rct values, i.e., the exposure of the
compounds to both O3 and •OH [19]. However, the high organic micropollutant (OMP)
load caused ozone to be consumed too quickly, preventing a reasonable estimation of the
generated •OH. To better evaluate the effect of catalytic ozonation on the degradation of
pharmaceuticals or other OMPs, it is recommended to apply ozone in its gaseous form and
focus on one compound at a time. This approach would allow the experiment to concentrate
on the mechanistic pathways of degradation and the activation of the catalyst, potentially
offering more precise insights into the catalyst’s performance and the efficiency of the
overall process, especially when working with secondary effluents from urban wastewater,
where the matrix is far more complex. Understanding the characteristics of the matrix can
also help identify the optimum conditions for degradation, which are the most harmful
ones, effectively and efficiently.

4. Conclusions

The main conclusions derived from this study are:

• CeTiOx was successfully synthesized using the sol–gel method. This catalyst, prepared
with a 1% molar ratio of Ce/Ti, exhibited promising structural properties, though its
catalytic efficacy in this study was limited.

• Response surface methodology (RSM) proved to be an effective tool for optimizing the
removal of pharmaceuticals by identifying the most significant variables influencing
the ozonation process. The transferred ozone dose (TOD) was the most impactful
among the tested variables.

• Ozone decomposition kinetics were found to vary significantly based on organic
load. In low organic load conditions (with bicarbonate present), the decomposition
of aqueous ozone followed second-order kinetics. However, under high organic
load, ozone was consumed too rapidly for second-order kinetics to apply, pointing to
instantaneous ozone demand.

• The short contact time of aqueous ozone with the nanoparticles (NPs) resulted in
limited catalytic activity. In this study, catalytic ozonation did not provide a significant
advantage over ozonation alone, mainly due to the rapid depletion of aqueous ozone
in the matrix. The catalytic effect was negligible because ozone had insufficient time
to interact with the catalyst surface, with only around 20% of the ozone dose being
converted into hydroxyl radicals (•OH).

• The rapid depletion of aqueous ozone in the matrix rendered Rct calculations infeasible.
These findings suggest that catalytic ozonation may not be necessary or effective in
systems where ozone reacts quickly with the matrix and that direct ozonation may
suffice in such cases. However, catalytic ozonation could benefit systems where ozone
persists longer, allowing for more substantial interaction with the catalyst.
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• The efficacy of catalytic ozonation can be hindered by aqueous ozone due to the saturation
of catalyst surface sites with water molecules. Gaseous ozone applications, in contrast,
may enhance catalytic efficiency by promoting better ozone–catalyst interaction.

• While batch processes are valuable for preliminary studies and offer controlled environ-
ments for investigating catalyst behavior, they do not always replicate the conditions
of large-scale, continuous-flow systems typically used in wastewater treatment plants

• Finally, a detailed understanding of the ozone-catalyst interaction mechanism in
heterogeneous catalysis is essential for optimizing catalytic processes. This knowledge
enables selecting and designing more effective catalysts, particularly in systems where
maximizing ozone conversion into hydroxyl radicals is crucial for degradation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano14211747/s1, Figure S1. Scheme for the preparation of the
CeTiOx nanoparticles; Table S1. Technical properties of the commercially available nanoparticles;
Figure S2. Ozone-treated indigo solutions with the addition of different volumes (on the left) and
the ozone calibration curve using the indigo method (on the right); Table S2. HPLC-UV mobile
phase; Table S3. Retention times, wavelengths, LoQ, and LoD for each tested compound; Figure S3.
Calibration curves for the model compounds (a) amoxicillin, (b) carbamazepine, (c) para-chlorobenzoic
acid, (d) diclofenac sodium, and (e) ibuprofen.; Figure S4. Degradation of ozone over time (in
seconds) in different matrices for exploring the effects of OMPs’ concentration, bicarbonate, and
catalyst presence (TOD = 100 µM, 240 mL treated volume, [NaHCO3] = 1 mM, [OMPs] = 2 or
10 µM, catalyst concentration = 1 g−1); Figure S5. Interaction plots of the tested variables (NPs
concentration, NPs type, and ozone dose) for CBZ, DCF, and pCBA; Table S4. ANOVA analysis;
Figure S6a. Degradation of CBZ, DCF, IBP, and pCBA (starting from left to right) under three different
ozone doses (50–150 µM) in the presence of metal oxides; α-Al2O3, Mn2O3, TiO2, CeO2, and CeTiOx
(starting from top to bottom) at different concentrations; 0.5 (green), 1.0 (blue), and 1.5 (red) g L−1.;
Figure S6b. Degradation of CBZ (green), DCF (blue), IBP (orange), and pCBA (red) under different
ozone doses (0–150 µM).
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