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Abstract: This paper investigates the application of fractional proportional–resonant controllers
within the voltage control loop of grid-forming inverters. The use of such controllers introduces an
additional degree of freedom, enabling greater flexibility in manipulating frequency trajectories. This
flexibility can be harnessed to improve tracking error and enhance disturbance rejection, particularly
in applications requiring precise voltage regulation. The paper conducts a conceptual stability
analysis of ideal fractional proportional–resonant controllers using the Nyquist criterion. A tuning
procedure based on robustness criteria for the proposed controller is also addressed. This tuning
strategy is used to compare different controllers under the same conditions. In addition, a sensitivity
analysis is provided, comparing the performance of fractional proportional–resonant controllers
with traditional proportional–resonant controllers equipped with harmonic compensation. The
controller’s formulation and performance are validated through simulations and tested with a 20 kVA
inverter under high non-linear loads. Compared to classical control approaches, the fractional tuning
parameter enhances tracking performance, reduces phase delay, and improves disturbance rejection.
These improvements are achieved with a controller designed to minimise computational demands in
terms of memory usage and execution time.

Keywords: voltage control; fractional exponents; grid-forming inverters; resonant controllers

1. Introduction

Regulating voltage and current in voltage source converters (VSC) is a fundamental
and significant challenge. Various AC industrial applications heavily rely on effective
regulation, including motor drives, parallel active filters and high-resolution AC power
supplies. Multiple control strategies, such as hysteresis control, internal model control
(IMC), and rotating frame control, address this issue from different perspectives [1,2].

Proportional–integral (PI) controllers and proportional–resonant (PR) controllers are
commonly employed for voltage regulation. These controllers typically offer narrow band-
width control, making them highly selective to tuned frequencies [3]. Various methods have
been developed to address this limitation, such as incorporating harmonic compensators
(HCs) in parallel with PI (PIHC) or PR controllers (PRHC) [4–6]. However, these methods
increase complexity, computational demands, and the difficulty of tuning procedures,
complicating stability/robustness analysis when multiple harmonic components need to
be addressed. For example, high-frequency regulation requires phase compensation when
using PRHC controllers [7,8]. Also, the tuning of the different HCs is also an object of
optimal techniques [9].
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Fractional calculus entered the control field in the late 1990s, though the concept of
fractional order calculus (FOC) dates back to 1695 with Leibniz and l’Hôpital. FOC employs
non-integer orders, including complex values, as can be seen in the non-integer compilation
provided by [10], offering additional degrees of freedom for various objectives such as
better modelling of complex systems or new proposal of controllers [11–13]. FOC was first
applied to a PI controller in 1999 [14].

A summary table of the real order FOC formulae in different controller type adoption
can be seen in Table 1 [10,15–17]. In Table 1, the orders n, λ, µ and α of controller actions
are real numbers in the range of 0 and 2 (to ensure causality), the terms kx represent the
controller gains, and ωx are angular pulsations used for tuning purposes. The promising
advancements of FOC in control have led to efforts in robust tuning criteria [18,19] and
dynamic enhancement [20,21].

Table 1. State of the art of the main research on non-integer controllers.

Author Controller Transfer Function

A. Oustaloup [10] CRONE derivative kdsα

A. Oustaloup [10] CRONE integrator ki
1
sα

I. Poudlubny[14]
PIλ kp+ki/sλ

PIDµ kp+ki/s+kdsµ

PIλDµ kp+ki/sλ+kdsµ

M. Tenoutit [15]
(PI)n s−n(kp+ki/sλ)

(PD)n s−n(kp+kisµ)

(PID)n s−n(kp+ki/sλ+kdsµ)

Tavakoli [15] IMC-FOPID kp+ki/sα+ kdsα

γsα+1

Luo [15]
(PI)λ (kp+ki/s)λ

(PD)µ (kp+kds)λ

El-Khazali [15] Mod-FOPID kc
(1+Tisµ)2

sµ

ine F. Merrikh-Bayat [15] Non-Linear FOPID kd|Dµe(t)|βsign(Dµe(t))

+ki|Dλe(t)|γsign(Dλe(t))

D.Heredero [16] FPR kp+ki
sα

s2+ω2
0

D. Xue [15] Fractional Lead-Lag
(

1+s/ωb
1+s/ωh

)
r

In 2018, a formal translation from PR to fractional PR (FPR) controller was estab-
lished [22], following an initial presentation in 2016 [23]. The FPR was later renamed
as fractional ideal PR controller in 2021 [24]. Research [16,24] shows that FPR controller
increases control bandwidth with a lower computational burden than PRHC controllers,
though these studies primarily focus on current regulation. The study in [24] presents a
stability analysis by examining the trajectory of eigenvalues, but it is still under the current
control framework. From [22] to [24], it can be concluded that the fractional component
helps to modify the frequency trajectory, mainly in terms of phase lead-lag manipulation.

According to the aforementioned studies, when using FPR controllers, the frequency
domain response has a potential manipulation capability. This idea can be extended for
applications other than controlling the current loop of VSCs. Thus, regarding voltage regu-
lation in VSCs, several studies have explored the application of FOC to PI controllers [25,26].
For instance, the fractional use of PID in [27] demonstrates improved time response and
superior disturbance rejection. However, applying FOC to PR controllers is less widespread
in the voltage control framework. The study presented in [28] is one of the few examples of
applying FPR to voltage regulation. Although the tuning criterion employed is based on an
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optimal technique (the particle swarm optimisation (PSO) algorithm), it focuses exclusively
on minimising the system error. Thus, aspects such as stability and disturbance rejection
capability are not considered.

This paper seeks to extend the application of fractional proportional–resonant (FPR)
controllers from AC current control to AC voltage regulation. The primary contribution
is a stability analysis of ideal FPR controllers, based on the Nyquist criterion, conducted
in the continuous-time domain and applied to the capacitor voltage control of a voltage
source converter (VSC). Additionally, the paper proposes a method for determining the
controller gains for specific fractional values of the FPR controllers based on the phase
margin criterion. This controller gain tuning criterion is applied for a case study that
offers a sensitivity analysis, examining the effect of selecting different fractional values
for the FPR controller. The analysis also contrasts the results with the classical idea (no
damped) PR and PRHC controllers. This study evaluates reference tracking capability,
disturbance rejection, robustness, and the impact of modelling inaccuracies on stability
margins. The results indicate that the fractional term is critical in achieving various control
objectives. By selecting appropriate fractional terms, improvements in both tracking and
disturbance rejection can be realised. Thus, FPR controllers offer a viable solution for
high-accuracy AC voltage systems, such as AC power supplies, grid-forming converters,
or series active filters. Furthermore, the paper shows that this type of controller is well
suited for applications with computational constraints, particularly in terms of execution
time and memory usage.

The paper layout is as follows. Section 2 introduces the system and the design consid-
erations and develops the controller stability by applying the Nyquist criterion. Section 3
proposes the tuning strategy for the next sections. Section 4 presents and validates a control
analysis based on the system sensitivity and the tolerable modelling uncertainty. Section 5
shows the experimental tests. Section 6 presents a discussion the results. Finally, in Section 7
we draw the conclusions.

2. Nyquist Analysis for Ideal FPR Controller on Voltage Applications

This section presents the design control considerations, details the ideal voltage FPR
formulation and analyses its stability using the Nyquist trajectory. Although Matignon’s
theorem [29] is explicitly oriented to stability analysis of fractional order systems, it has not
been considered. Nyquist criterion exposes a wider applicability (valid for fractional and
integer systems). It also offers a more intuitive approach for feedback system stability anal-
ysis while giving insight into gain margins and phase margins. Thus, the Nyquist criterion
can detect the robustness and margins of stability more easily than Matignon’s theorem.

2.1. Initial System Considerations

The purpose of grid-forming inverters is to generate a stable and robust voltage.
Figure 1 shows the used schematic for a voltage-controlled voltage source converter

(VC-VSC). An inductive (L)–capacitive (C) output coupling filter interfaces the inverter
with the AC side. The VC-VSC control is based on two nested control loops. The inner loop
regulates the current (il) through the inductance L, and the outer loop controls the output
capacitor’s voltage (vc) using il . The capacitor includes an equivalent series resistance
(ESR), (rC). This rC only considers the parasitic resistance of the capacitor to allow a more
realistic model. Thus, the capacitor voltage is

Vc(s) =
CrCs + 1

Cs
Il(s). (1)

As an assumption, the inner current control loop is considered pre-tuned, with enough
bandwidth and adequate time response to avoid cross-coupling effects [30]. Thus, the inner
control loop is considered as a unitary gain in the following analysis.
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Figure 1. Voltage-controlledvoltage source converter (VC-VSC) schematic with inductive (L)–
capacitive (C) filter.

The FPR formulation considered in this paper follows [23]

GFPR(s) = kp + ki
ω0sα

s2 + ω2
0

. (2)

In (2), the α value is the fractional-order value {α ∈ (0, 2]; α ∈ R}, ω0 is the resonant
angular speed, and kp and ki are the proportional and integral gains, respectively. The α
value is not considered negative as the studied behaviour is moved from a fractional
derivative response to an integral one. In the same direction, values higher than two
involve non-causal controllers. Note that when α is one, (2) results in a classical ideal
PR controller.

Considering (1) and (2), the open-loop transfer function is

Gol(s) =
CrCs + 1

Cs

(
kp + ki

ω0sα

s2 + ω2
0

)
. (3)

Consequently, the closed-loop transfer function results

Gcl(s) =
Vc(s)
V∗

c (s)
=

CrCs+1
Cs

(
kp + ki

ω0sα

s2+ω2
0

)
1 + CrCs+1

Cs

(
kp + ki

ω0sα

s2+ω2
0

) (4)

where the super-index ∗ designs to the reference signal.
Once (3) and (4) are obtained, it would be interesting to gain an initial insight into

the effect of the α parameter when applied to the voltage control of the capacitor C. Thus,
for computations, and without loss of generality, it will be considered a real system with
specific parameters as a case study.

Table 2 summarises the base system parameters.

Table 2. Base plant and controller parameters.

Parameter Descriptor Value Unit

C Capacitance 75 µF
L Inductance 492 µH
rC Capacitor ESR 8 mΩ
rl Inductor ESR 50 mΩ
kp Proportional gain 0.0494
ki Integral gain 0.0363

Figure 2 and Figure 3 show the Bode diagram for Gol(s) and Gcl(s), respectively.
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(a) Magnitude (b) Phase

Figure 2. Open−loop (Gol) bode diagrams, based on Table 2.

(a) Magnitude (b) Phase

Figure 3. Close−loop (Gcl) bode diagrams, based on Table 2.

Analysing Figure 2a it can be observed that α values above 1 contribute to an Gol(s)
with higher gains outside ω0. This effect is translated to the Gcl(s) behaviour extending
the bandwidth, refer to Figure 3a. On the contrary, α values below 1 result in increased
selectivity. Furthermore, Figure 2b shows that at frequencies above ω0, it reduces faster its
phase. This is translated into a Gcl(s) with the worst tracking capability near ω0, but with
the same phase delay for higher frequencies. So, there is room for this selective behaviour
of the FPR with α values below 1 to be useful in the function of the implementation design
and its tuning procedure.

2.2. Stability Analysis Based on a Conceptual Nyquist Trajectory

It is possible to rewrite (2) in the frequency domain by using

(Iω)α = ωαe(
Iπα

2 ) (5)

obtaining

GFPR(Iω) =
kp(−ω2 + ω2

0) + kiω0ωαe(
Iπα

2 )

−ω2 + ω2
0

. (6)

Assuming that the valid α range is (0, 2] (causal order controllers), it can be deduced
that there are three significant frequencies on the Nyquist diagram expressed in (3) and
(6); the starting point of the trajectory (ω = 0), the behaviour in the neighbourhood of the
resonant frequency (ω = ω0), and the ending point (ω = ∞). The study of these significant
frequency values, their vicinity limits and the real-axis potential cross points provides a
close idea of how to depict the Nyquist trajectory conceptually. Thus, the stability can
be deduced.

To facilitate the Nyquist trajectory analysis, the real and imaginary parts of (3) are
decoupled as R{Gol(Iω)} by

kiω0ωα
(
−Cωcos(πα

2 )− sin(πα
2 )
)
+ kprcC(ω3 − ωω2

0)

ωC(ω2 − ω2
0)

(7)
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and the I{Gol(Iω)} by

kiω0ωα
(
−ωrCCsin(πα

2 ) + cos(πα
2 )
)
+ kp(−ω2 + ω2

0)

ωC(ω2 − ω2
0)

, (8)

respectively. In this sense, the analysis shown in (7) and (8) drives to:

2.2.1. ω = 0 (Starting Point)

∀ α, the starting point is (rckp,−∞I) in the complex Nyquist’s plane. It can also be
deduced that the limit of ω to the positive vicinity (ω → 0+) suits the starting point.

2.2.2. ω = ω0 (Resonance Point)

This value is critical to understanding how the Nyquist trajectory evolves. At ω = ω0
an indeterminate form of the type 0/0 can be found. Analysing the slope at this point, it
corresponds to the ratio I{Gol(Iω)}

R{Gol(Iω)} , yielding to

−cos(πα
2 )− ω0rCCsin(πα

2 )

sin(πα
2 )− ω0rCCcos(πα

2 )
. (9)

From (9), obtaining specific values for specific α proposals is possible. Thus, the slope
is reduced to ω0rCC for the case α = 1, while for the extreme range values (0 and 2) the
slope responds to −1/(ω0rCC).

2.2.3. ω = ∞ (End Point)

The Nyquist trajectory always ends in the real axis being null and the imaginary part
∀ α being in the analysed interval. However, the real part, R{Gol(Iω)}|ω=+∞, has different
ending values depending on α,{

rCkp ∀α ∈ [0, 2)
rC
(
kiω0 + kp

)
for α = 2.

(10)

2.2.4. Crosspoints with Real Axis

The possible crossing points with the real axis are required to obtain the stability from
the Nyquist criterion (detect number of encirclements of (−1,0I)). For integer α values, it is
possible to obtain exact crossing points.

• For α = 0, the crossing point with the real axis takes place at (0,0I) when the ω is

±
√

kpω0(kpω0+ki)

kp
.

• For α = 1, the crossing point takes place at ( r2
CC2kpω2

0+rCCkiω0+kp

rCC2ω2
0

,0I) when the ω is

±
√

(rCCkiω0+kp)kpω0
rCCkiω0+kp

.

• For α = 2, the crossing point takes place at (0,0I) when the ω is ±
√

(ω0ki+kp)kpω0
ω0ki+kp

.

The other crossing points for α ∈ (0, 2)\{1} values are not analytically possible due to
the roots from (8) as a function of the ω requires the resolution of a transcendental equation.
Thus, the exact values of the crossing points for all the other intermediate values of α
require the setting of the parameters (kp, ki, rC, C and ω0). It has been proposed to analyse
numerically possible crossing points for ω0 equal to 100π rad/s (50 Hz), kp ∈ [0, 100],
ki ∈ [0, 10, 000], rC ∈ [0, 100] mΩ, C ∈ [0, 1] mF and α ∈ (0, 2)\{1}. The frequency of 50 Hz
is selected as it corresponds to the typical AC rated frequency for Europe, Asia, Africa, and
Australia. The same qualitative results arise if 60 Hz is used instead. All previous intervals
are split into 100 points except for the α, which is split into 10 values. Then, 1010 different
cases were numerically evaluated, concluding that for intermediate α, only one crossing
point is present for ω ∈ (0, ∞).
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2.2.5. Nyquist Curve Drawing Considerations

This section describes the assumptions or considerations made for all the non-analytically
attainable results from previous sections.

• In terms of the slope near the resonance frequency. Thus, assuming reasonable rC and
C values, i.e., rCC ≈ 10−6 − 10−9, it can be analysed that from α = 0 to 1, the slope
starts from being huge and negative, to decrease its slope until the negative vicinity
side of α = 1. There is a discontinuity at that point, and the slope abruptly goes from
negative to ω0rCC. From α = 1 to 2, the slopes increase again to the extreme case (α = 2)
where another discontinuity goes to −1/(ω0rCC).

• In terms of crossing points. When α moves from 0 to 1 (not included), the cross
point is moving from (0,0I) to (−x,0I), with x being the exact real part of the crossing
point. Then, at α equal to 1, there is an abrupt change, and the cross-point is positive

and equal to ( r2
CC2kpω2

0+rCCkiω0+kp

rCC2ω2
0

,0I). Now, from α equal to 1 to 2 (not included),

the cross-point is (x,0I), where x reduced its value until 0 when α equals exactly 2.

2.2.6. Analysis

The following sections collect all previous results (Sections 2.2.1–2.2.5) for the case
of using the FPR controller for voltage applications. It should be noted that the analysis
is valid when the voltage loop is not affected by any inner loop and the controller is
implemented in the continuous-time domain.

The conceptual Nyquist trajectories are illustrated in Figure 4. In this figure, the solid
lines represent the conceptual trajectory of the Nyquist curve. In contrast, the dashed lines
serve merely as supporting elements to aid in understanding the asymptotic behaviour of
the resonance when the frequency ω approaches ω0.

-1 ℜ

ℑ

Start point End point Cross point

α↑ 0,Cprk

α =1 α =21<α<2

rC ki0 kp,0

kpC,

(a) α ∈ [1, 2]

‐1
ℜ

ℑ

Start point End point Cross point

α↓ 

α↓ 

α =1 α =00<α<1

 0,Cp rk

(k p rC ,-∞)

(b) α ∈ [0, 1]

Figure 4. Conceptual Nyquist trajectories for α ∈ [0, 2] (solid lines define the Nyquist trajectory,
and dashed lines describe asymptotic behaviours).

It can be seen that the stability is potentially ensured independently of the controller
gains for any α value above 1. This is because no encirclement of (−1,0I) is present, and (3)
does not have poles with positive real parts. On the contrary, below 1, there is a point
where the system becomes unstable. In other words, according to the selected α and system
parameters (controllers gains and system values), the system stability is compromised.
In fact, small α values will tend to create a crossing point at the right of (−1,0I), yielding to
two clockwise encirclements of (−1,0I). But, if the α is big enough but still lower than 1,
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the crosspoint will be moved to the left of (−1,0I). This fact supposes one clockwise and
one anti-clockwise encirclement of (−1,0I). The result is a stable system.

Regarding stability margins, it is complicated to provide a qualitative analysis due
to the intrinsic asymptotic behaviour of the FPR controller. Thus, it will be treated in the
following sections.

3. Tuning the Voltage FPR

This section aims to propose a tuning procedure for the voltage FPR. A procedure was
proposed in [16] based on a standard PR controller tuned with time domain specifications.
Thus, ref. [16] relies in different Bode diagrams considering different α values. So, the fi-
nal decision turns to the frequency domain curves. In [28], the tuning criterion uses an
optimal technique (the particle swarm optimisation (PSO) algorithm) to obtain the gains
for a specific pre-selected α value. This paper proposes an alternative method to face the
system’s robustness.

3.1. Tuning Method Based on Phase Margin Selection

This procedure is based on choosing the controller in the function of phase margin
specifications. Thus, it builds on robustness criteria. All the possible controllers (consider-
ing different α values) will have the same bandwidth at a specified design frequency. So,
the proposed steps to tune the controller are:

Step 1. Select the system specifications. It is used to choose the desired phase margin
value, ϕm, for the controller at a specified gain-crossover frequency, ωc.

Step 2. Tune a set of different proportional and integral kp-ki gains for a desired ϕm
and different α values from 0 to 2. In [31] ϕm at ωc can be defined as

GC(Iωc)G(Iωc) = e−I(π−ϕm) = −cos(ϕm)− I sin(ϕm) (11)

where GC(Iωc) and G(Iωc) are the isochronous transfer functions of the controller and the
plant, respectively. Applying (1) and (2) to (11), the ki gain is

C(sin(ϕm)rC C ωc + cos(ϕm))
(
ω2

c − ω2
0
)
ω−α

c(
C2r2

Cω2
c + 1

)
ω0 cos

(
πα
2
) (12)

and the kp gain results

−Cωc
(
(cos(ϕm)rC C ωc − sin(ϕm))cos

(
πα
2
)
+ (sin(ϕm)rC C ωc + cos(ϕm))sin

(
πα
2
))(

C2r2
Cω2

c + 1
)
cos
(

πα
2
) (13)

Step 3. Decision stage. Depict the different Bode plots for the different α values.
As all the plots have the same ϕm, choose the more suitable one for the system application
regarding excitation region, bandwidth or delay at some strategic frequency tones.

3.2. Implementation and Validation

After applying a tuning method, the designer will have at least one set of kp, ki and α
variables to evaluate.

Step 4. Look for an accurate approximation to the sα term that makes the controller’s
non-integer part implementable. Various authors study this problem, proposing different
approaches [32–34]. In [16], a comparison is applied to FPR controllers, determining that
Charef’s approximation proposed in [32] is one of the best alternatives.

Step 5. Check the Step 4 validity. A comparison of robustness and sensibility should
be conducted.

Step 6. Check the correct tracking response by simulations, paying special attention to
voltage tracking and disturbance rejection capability.
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3.3. Applying of the Tuning Procedure

This section illustrates the tuning procedure that was previously detailed. It will
be considered as ω0 set at 100π rad/s (50 Hz). The inner control loop is assumed to
have a bandwidth of 3000 Hz. Thus, the different steps are detailed in the following
Sections 3.1 and 3.2.

Step 1. For robustness purposes, it is recommended a phase margin, ϕm, value of 60º.
This ϕm will be set at ωc = 500 Hz (this fact allows to avoid cross-coupling between inner
and outer control loops).

Step 2. Table 3 shows the obtained set of values for α ∈ [0.5, 1.5] applying (12) and (13).
Step 3. This step allows for comparing the different ideal open-loop Bode diagrams to

make a decision (no approximation used for the term sα).

Table 3. Controller gains values, obtained from (12) and (13), considering ϕm = 60º and ωc = 500 Hz.

α kp ki α kp ki

0.5 0.4507 215.71 1.25 0.2172 0.3057
0.75 0.3540 20.273 1.5 0.1204 0.0490

1 0.2856 2.2999

In Figure 5, it can be seen how the ϕm is 60º at 500 Hz ∀α. This is also reflected in
the close loop Bode diagram in Figure 6. Due to this tuning procedure, the α exponent is
relegated to be selected for a better gain or phase delay tracking enhancement. It should be
noted that when this criterion is applied α values below 1 offer an overall better tracking
response. The opposite conclusion was obtained compared with Figure 3. In Figure 3,
the gains are kept equal between the compared controllers. Thus, stability margins are
delegated to this decision.

(a) Magnitude diagram. (b) Phase diagram.

Figure 5. Open−loop bode diagrams for ideal FPR controller, based on Table 3.

(a) Magnitude diagram. (b) Phase diagram.

Figure 6. Close−loop bode diagrams for ideal FPR controller, based on Table 3.

Step 4. Following Charef’s approximation described in [16], it is required to set the
corresponding Charef’s approximation parameters. For clarity and ease of comparison with
PR and PRHC, only s0.75 and s1.5 are approximated. Thus, for both α cases, the Charef’s
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parameter pT is set to 1 (filter coefficient). The other Charef’s parameters are set to y = 3.5 dB
(maximum deviation between ideal and approximated curve) and n = 2 (approximation
order) to approximate s0.75t, and y = 4 dB and n = 3 to approximate s1.5.

Step 5 and 6. The detailed analysis of the robustness and stability is addressed in
Section 4.

4. Control Analysis Based on Sensitivity

A sensitivity analysis is performed in this section. This paper is focused on the
sensitivity, S(s), the complementary sensitivity, T(s), and the input sensitivity, Si(s), for the
reference tracking, disturbance rejection, and robustness study. Note that S(s) is defined as

1
1 + GC(s)G(s)

, (14)

T(s) as
GC(s)G(s)

1 + GC(s)G(s)
, (15)

and Si(s) as
G(s)

1 + GC(s)G(s)
. (16)

For simplicity purposes, the analysis compares four different controllers: (i) FPR with
α = 0.75; (ii) FPR with α = 1.5; (iii) FPR with α = 1 (PR controller); and finally (iv) PRHC based
on (iii) with a third and fifth HC. The plant parameters are listed in Table 2. The controllers
gains have been presented in Section 3. The HC gains are obtained by the fundamental
integral gain scaling it by the harmonic component.

4.1. Reference Tracking

S(s) can be used to assess the reference tracking performance quantitatively. The error
dynamic behaviour, ε(s), in the absence of any other input rather than the reference R(s),
can be defined as

ε(s) = R(s)− Y(s) = · · · = S(s)R(s) (17)

where Y(s) designates the transfer function of the time-dependent output magnitude
defined by y(t). Unfortunately, the final value theorem used to analyse the steady-state error
from S(0) is not feasible. This is due to the pure imaginary poles of a sinus signal reference.

The error tracking study is then delegated to the complementary sensitivity, T(s),
i.e., to the close-loop response. Figure 7 compares the close-loop bode diagram for PR,
PRHC (with third and fifth harmonic compensators) and FPR controllers. In this figure,
the green line illustrates the current inner loop bode diagram, denoting that it has enough
bandwidth to avoid relevant cross-coupling effects between control loops. It can also be
seen that all three controllers present close design ϕm at ωc although the sα term has been
approximated according to Section 3-step 4. Also, in Figure 7a, it can be observed that the α
value modifies the behaviour of the gain tracking, being the controller with α = 0.75 the
worst one (wider excitation region) and α = 1.5 the best one. However, Figure 7b shows
that α = 0.75 results in better phase tracking. Paying attention to the PRHC case, it can be
concluded that it is better at tuning harmonic components, but it produces a cross-coupling
effect, and the excitation regions are extended.
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(a) Magnitude diagram. (b) Phase diagram.

Figure 7. Close−loop bode (T(s)) diagrams for the controller selection comparison.

4.2. Input Disturbance Rejection

The open-loop transfer function, Gol, and the close-loop transfer function, Gcl, are
related by the sensitivity transfer function as

Ycl(s) = S(s)Yol(s). (18)

Thus, (18) is valid when any entry except the main reference produces the excitation.
This means that S(s) provides information about the attenuation offered by the feedback
inclusion. However, the input sensitivity, Si(s), explicitly analyses the disturbance effect of
an input disturbance on the system’s output variable.

Figure 8 depicts the bode diagram for Si(s), concluding that the controller with α value
of 0.75 better rejects the disturbances with frequencies in the vicinity of ω0. On the contrary,
α = 1.5 has the worst rejection capabilities.

(a) Magnitude diagram. (b) Phase diagram.

Figure 8. Input sensitivity (Si(s)) bode diagrams for the controller selection comparison.

4.3. Robustness

The stability and robustness are analysed using the Nyquist trajectory defined as

L(Iω) = GC(Iω)G(Iω) (19)

where ω is the pulsation. Furthermore, adding 1 to (19) yields to S(Iω)−1. Hence, it can be
deduced that the stability is closely related to the sensitivity transfer function, S(s). In fact,
the minimum distance from the point (−1,0I) to the Nyquist trajectory, αs, matches the
inverse of the maximum level of sensitivity defined as [35]

Ms = max
ω

|S(Iω)| = 1
αs

, (20)
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to consider the system as robust, a Ms value below 2 p.u. is recommended by [36]. Further-
more, (20) provides more conservative but also more concise information about stability
than GM and PM [37]. This yields to

GM∗ =
1

1 − αs

PM∗ = 2 arcsin
(αs

2

) (21)

where the superscript ∗ denotes an alternative to GM or PM.
Figure 9 outlines the ending part of the Nyquist trajectory for the case under study.

Figure 9. Nyquist of L(Iω) ending trajectory. Grey line defines the unitary circle for discrete−time
systems.

From Figure 9, it is possible to obtain Table 4. Note that fMs represents that fre-
quency where Ms occurs. Evaluating the results, both PR and FPR options present similar
robustness, but the PRHC exhibits worse values.

Table 4. Tuned stability parameters, based on controller gains from Table 3.

α fMs (Hz) Ms (dB) Ms αs GM PM (◦) GM ∗ PM ∗ (◦)

PRHC 987.7 3.375 1.475 0.678 17.67 40.097 3.11 39.634
0.75 3009.9 2.231 1.293 0.773 18.96 54.719 4.41 45.504
1 2798.6 1.979 1.256 0.796 19.71 55.997 4.91 46.922
1.5 1965.6 2.071 1.269 0.788 18.42 56.247 4.71 43.99

Superscript ∗ denotes alternative gain and phase margin defined by (21).

4.4. Inaccuracies on Modelling

Modelling inaccuracies can result in instability problems. For this purpose, the additive
uncertainty, ∆G(s), and the multiplicative uncertainty, δG(s), are usually considered. Thus,
part of the robust stability problem can be applied:

|∆G(s)|
| G(s)| = |δG(s)| < 1

|T(s)| . (22)

Conducting a similar analysis as the one in Section 4.3, it is possible to define the
maximum tolerable uncertainty as

Mt = max
ω

|T(Iω)| = max
ω

C(Iω)G(Iω)

1 + C(Iω)G(Iω)
. (23)



Appl. Sci. 2024, 14, 10259 13 of 21

In this case, (23) concerns the complementary sensitivity function T(s) instead of
S(s). For this reason, the controller plays a relevant role in the stability and robustness of
the system.

Table 5 summarises, in the system’s worst case, the maximum admissible pure varia-
tion at the plant G(s) in terms of gain, ∆GMt, and in terms of phase, ∆PMt. The results show
that FPRs with α values above 1 are better in terms of ∆GMt and ∆PMt than a standard
PR controller.

Table 5. Tuned uncertainty parameters, based on Table 3.

α Mt (dB) Mt ∆GMt (%) ∆PMt (◦)

PRHC 4.61 1.7 21.7 12.45
0.75 4.19 1.62 23.9 13.71
1 2.71 1.366 36.9 21.26
1.5 1.78 1.227 56.2 32.63

Figure 10 represents the gain bode diagram’s superior limit for the multiplicative (∆G)
and additive (δG) uncertainties, respectively. The figure shows the upper limits of ∆G and
δG, concluding that up to 350 Hz, all options are similar. Still, from 350 Hz, the controller
with the best plant variation tolerance is the FPR with α = 1.5, either in terms of ∆GMt and
∆PMt, and the PRHC is the one with the worst tolerance.

(a) G(s)/T(s) (related with additive uncertainty ∆G) (b) 1/T(s) (related with multiplicative uncertainty δG)

Figure 10. Uncertainties’ superior thresholds.

4.5. Validation

A set of simulations are performed to validate the previous analysis. Two config-
urations are considered. Firstly, an open-circuit configuration is evaluated to analyse
the controller’s performance in optimal conditions. Secondly, the controlled voltage is
disturbed by different harmonic current components.

Figures 11 and 12 show the error time evolution under different voltage references
with no load. This voltage reference is set to be vc(t) = 1sin(h100πt) considering different
harmonics components (with h being the corresponding first, second, third, and eleventh
harmonic component). It can be deduced that PRHC is better at regulating the harmonic
frequencies designed for (third and fifth); refer to Figure 12b. Out of these specific tones,
the FPR with α below 1 is the best option.

Figure 13a–d show the regulated voltage time response when a current disturbance at
different frequencies (first, second, third, and eleventh harmonics component) is applied.
No feedforward is considered for the disturbance rejection analysis, and the disturbance is
set to 1 A peak. Any controllers under consideration can reject the disturbance significantly,
but the FPR with α = 0.75 is faster and responds to the option that excites the disturbance the
least. Thus, in terms of comparison, the FPR with α below 1 is the best option for rejection.
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(a) v∗L = sin(ω0t) (b) Error tracking v∗L = sin(ω0t)

(c) v∗L = sin(2ω0t) (d) Error tracking v∗L = sin(2ω0t)

Figure 11. Time−response comparison when different references are present, being ω0 = 100π rad/s
(50 Hz). Harmonics 1 and 2.

(a) v∗L = sin(3ω0t) (b) Error tracking v∗L = sin(3ω0t)

(c) v∗L = sin(11ω0t) (d) Error tracking v∗L = sin(11ω0t)

Figure 12. Time−response comparison when different references are present, being ω0 = 100π rad/s
(50 Hz). Harmonics 3 and 11.
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(a) Disturbance i∗L = sin(ω0t) (b) Disturbance i∗L = sin(2ω0t)

(c) Disturbance i∗L = sin(3ω0t) (d) Disturbance i∗L = sin(11ω0t)

Figure 13. Time−response comparison when different harmonic disturbances are present, being
ω0 = 100π rad/s (50 Hz).

5. Experimental Results

This section presents the different controllers’ implementation in Section 4. They have
been implemented in a DSP F28M36 from Texas Instruments (headquartered in Dallas, TX,
USA) at 30 kHz. The inverter used is a full SiC 20 kVA device.

It can be seen in Figure 14. The experimental parameters are the same as in Table 2.
The experimental plots’ data have been captured with a DL9040 Yokogawa oscilloscope
(headquartered in Tokyo, Japan) at 1.25 MHz and depicted by Matlab v.2024a (headquar-
tered in Natick, MA, USA). Two different scenarios are considered, being consistent with
the study cases in Section 4.5: open-circuit configuration and operation under non-linear
load. For implementation purposes, the system proposed in (1) is discretised by the zero-
order hold method. Then, each controller approximation obtained by Charef in Section 3 is
moved to the discrete-time domain using the Tustin transformation, as suggested in [16].

Figure 14. VSVC power converter.

5.1. Open-Circuit Configuration

The open-circuit configuration case validates the simulation results obtained in
Figures 11 and 12. A multi-harmonic reference voltage is added to a 325 V at the 50 Hz
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setpoint. The setpoint considers 16 V at 150 Hz, 11 V at 250 Hz, 6 V at 350 Hz and 2 V for
450 and 550 Hz.

Figure 15 shows the results. Figure 15a,b show the transient and error time response
when the setpoint changes to the specified multi-harmonic voltage. The Fast Fourier
Transform (FFT) is also computed for both the setpoint reference and the error.

(a) Voltage tracking (b) Voltage tracking error

Figure 15. Tracking voltage time response. The orange line in the right figure depicts the voltage
reference on the tracking error plot.

Table 6 provides specific values and highlights the best option for each component.

Table 6. Multi-harmonic setpoint response for all four controllers.

Controller V150Hz (V/V) V250Hz (V/AV) V350Hz (V/V) V450Hz (V/V) V550Hz (V/V)

PR 1.393 1.389 1.396 1.189 1.060
PRHC 1 1 1.270 1.673 2.254
α = 0.75 1.067 1.197 1.372 1.546 1.929
α = 1.5 1.128 1.278 1.322 1.213 1.004

Bold values indicate the best option.

From Figure 16 and Table 6, it can be concluded that PRHC is better at its tuned
frequencies (third and fifth), but the FPR starts to improve or to be equivalent from the
fifth harmonic onwards according to the selected α value. The same result is derived from
Section 4.5.

(a) Spectrum of tracking signal (b) Spectrum of tracking error

Figure 16. FFT for the tracking voltage time response in Figure 15.

5.2. Non-Linear Load (Disturbance)

A single-phase non-linear load is connected to the VC-VSC, consisting of a series
resistor of 1 Ω followed by a diode bridge with a 22 Ω resistor and a 2.2 mF capacitor in
parallel (based on IEC-62040-3 Annex E [38]. The load current total harmonic distortion
(THD) is 101.5%. For this case, the controllers include a feedforward compensator.

The results of the disturbance rejection are depicted in Figure 17. Due to the nature
of the non-linear load proposed, the voltage control loop needs to respond fast every half
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period of the voltage fundamental component reference. This is reflected in Figure 17
where the PRHC controller and FPR with α equal to 0.75 show the best time evolution.

(a) Voltage tracking (b) Voltage tracking error at steady−state

Figure 17. Disturbance rejection time response. The orange line in the right figure depicts the
disturbance on the tracking error plot.

Table 7 provides specific values and highlights the best option for each component.
The voltage tracking transient and the error response are depicted when the non-linear
load is connected.

Table 7. Multi-harmonic disturbance response and total voltage THD content for all four controllers.

Controller V150Hz (V/A) V250Hz (V/A) V350Hz (V/A) V450Hz (V/A) V550Hz (V/A) THD (%)

PR 0.035 0.0127 0.290 0.433 0.402 0.95
PRHC 0 0 0.092 0.265 0.443 0.71
α = 0.75 0.010 0.052 0.133 0.280 0.372 0.71
α = 1.5 0.0130 0.125 0.294 0.456 0.424 0.97

Bold values indicate the best option.

The FFT for the disturbance and the voltage error are computed; see Figure 18.
The FFTs show the FPR with α = 0.75 starts to be better at high frequencies.

(a) Spectrum of disturbance signal (b) Spectrum of disturbance error

Figure 18. FFT for steady-state disturbance rejection in Figure 17.

5.3. DSP Implementation Comparison

This section compares the controllers used across the experimental implementation
regarding computation burdens. The two following criteria are used: execution time and
program memory.

Table 8 collects the obtained results. From Section 3 it should be noted that the FPR
controller approximation for α = 0.75 uses an order approximation of 2, while when α is set
to 1.5, it uses order 3.
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Table 8. Controller type comparison. Execution time and program memory data.

Controller Type Execution Time (µs) Program Memory (Bytes)

PR 0.321 85
PRHC (3 HC) 0.788 141
FPR (α = 0.75) 0.802 116
FPR (α = 1.5) 0.913 134

From Table 8, it can be seen that the FPR arises as one outstanding controller for
covering a wide bandwidth of controlled frequencies and improving the rejection capability
over other classical options such as PR or PRHC. Therefore, any advanced low-order
controller, like the proposed FPR controller for voltage-controlled applications, can reduce
execution time, allowing the saved time to be allocated to other critical tasks, such as
generating real-time alarms.

6. Discussion

This section summarises the results from previous sections.
The application addressed by the FPR controller is framed considering a VC-VSC

with an output LC coupling filter. The control scheme is then based on two nested control
loops, assuming the inner loop is negligible for the stability analysis. The defined range
of the fractal component is α ∈ (0, 2], considering only causal implementation forms of
the controller.

Firstly, using classical techniques such as the Nyquist criterion allows to face the
stability challenge. The Nyquist trajectories analysis concludes that α values above 1 hold
system stability. On the contrary, decreasing α under 1 must be cautiously performed to
avoid instabilities. This permits us to deduce that the FPR controller on voltage-controlled
application can be valid if α is well selected.

Secondly, considering a tuning procedure to obtain a specific gain margin allows to
compare different controllers with the FPR controller for voltage applications. Under this
assumption, the sensitivity analysis conclusion is that FPRs with α values below 1 present
a better phase delay tracking and disturbance rejection. This statement should be con-
sidered valid when the same phase margin at a specific frequency is used as a tuning
criterion. On the contrary, α values above 1 result in the opposite but present lower unde-
sired amplification gains and accomplish better robustness and stability margins. Thirdly,
compared to traditional control methods such as PR controllers, fractional tuning of certain
parameters can enhance tracking accuracy, decrease phase delay, and improve disturbance
rejection. However, fractional-order proportional (FPR) controllers add extra parameters
due to their fractional-order elements, increasing the complexity of the tuning process.
Optimally selecting these fractional parameters can be challenging, particularly when
balancing performance with stability and robustness. In this direction, implementing the
FPR on a processor will require analysis of the discretisation procedure to ensure a proper
correspondence between the continuous and the discrete-time domain, paying special
attention to the sampling time and discretisation strategy used.

Finally, ideal PRHC controllers (no damping or phase margin compensation) could
have better tracking capabilities for individual tones. However, it is at the cost of potentially
worsening the interharmonic control, lessening the stability and robustness margins, and in-
creasing computational burdens when a wide range of frequencies want to be controlled.

The spider diagram depicted in Figure 19 helps to rapidly compare the proposed FPR
with the PR or PRHC alternatives according to the relevant points studied: execution time,
stability, disturbance rejection, controllability and complexity.
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Figure 19. Controller type comparison (the closer to the peak, the better the result).

7. Conclusions

This paper proposes to use fractional proportional–resonant (FPR) controllers for AC
voltage regulation.

The paper analyses the stability through the Nyquist trajectory conceptualisation
applied to the continuous-time domain. This stability study concludes that if the stability
of the fractional term in the range α ∈ [1, 2] is not compromised, while if α is lower than 1,
it could be according to the selected fractional term and the system parameters.

The paper proposes a methodology to obtain the FPR controllers’ gains. The method-
ology derives analytical expressions that can be used to set a specific gain margin at a
specific frequency.

An in-depth analysis of the proposed formulation when using the tuning proposal
was conducted, focusing on the challenges of sensitivity and robustness. This analysis
was performed by comparing FPR controllers with classical proportional–resonant (PR)
controllers that include harmonic compensators (HC). A consistent tuning method was
applied as a common criterion alongside sensitivity analysis to establish a comparable
framework for evaluating the controllers’ performance. The findings indicate that the
FPR controller maintains validity without significant negative impacts on sensitivity and
robustness. This approach was validated through simulations and experimental tests,
which demonstrate that the FPR controller can be effectively designed to enhance various
control objectives, including frequency tracking of AC voltage references and increased
system stability and robustness against inaccuracies.

Therefore, the FPR controller emerges as a good alternative to multi-harmonic pro-
portional resonant controllers with a contained implementation. Furthermore, the FPR
controller stands out above for applications in which controlling the AC voltage and reject-
ing load disturbances is a key factor, such as grid-forming converters or AC power supplies.
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