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Abstract.

Growing electrical demand on the electric system along with the rising use of
renewable energy sources is highlighting the importance of energy flexibility man-
agement on the electric grid. The Electric System Operators at both transmission
(TSO) and distribution level (DSO) are responsible to ensure the security of supply
and efficiency of the grid under strict balancing conditions (demand equals sup-
ply at every time instant). Acting on both generation and demand to maintain this
equilibrium considering the technical constraints of the grid is known as flexibility
management and it requires accurate generation and demand forecasting to predict
possible critical events and react accordingly. The objective of this paper is to ana-
lyze the performance of different forecasting methods for predicting demand at the
substation level. Substation level data is the result of aggregating the consumption
and generation data of multiple points on the grid. Results show that current state of
the art algorithms, such as deep learning models, perform better than simpler meth-
ods, such as random forests, specially when datasets do not present clearly repeti-
tive profiles. Deep learning models manage to reduce forecasting error by 16% on
average compared to random forest models on next day load forecasting, whereas
the forecasting error reduction on next hour load forecasting is 5%.
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1. Introduction

The investment in Renewable Energy Sources (RESs) has helped decarbonize the energy
system in Europe [1]. However, the installation of these RESs along the distribution grid,
combined with increasing electricity demand as well as electrification of the heating and
transport sectors [2], has reached a point where the distributed RESs are exerting stress
on transmission and distribution networks. This fact has highlighted the importance of
not only generation management but also demand side management for a proper oper-
ation of electrical grids [3]. Energy flexibility is the ability to manage variations in de-
mand or generation, which is essential in ensuring the stability and efficiency of the grid
[4]. The Distribution System Operator (DSO) requires reliable electricity demand fore-
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casts in order to, first, properly determine the occurrence of critical events (i.e. conges-
tion or voltage variations) and, second, manage this flexibility (changes on generation or
demand) to maintain the grid operating under safe conditions to guarantee the supply.

Forecasting demand, generation, and flexibility (capability to change demand, or
generation) is essential for the DSO to operate and manage electric power networks [5].
Energy forecast is also necessary to cope with risk management and to prevent potential
congestion problems on the grid. To achieve this, several artificial intelligence (AI) meth-
ods are used [6]. They can be divided into three main categories which are: statistical
models [7,8], machine learning (ML) models [9,10,11] and deep learning (DL) models
[12,13,14].

1.1. Literature review

With the development of information technology, Al methods have replaced mathemat-
ical models due to their abilities of learning features and processing data. Consequently,
numerous studies and reviews on Al forecasting techniques have been conducted in the
literature [15].

In [16], a comparison between conventional models and more recent Al models is
made. Conventional models encompass time-series models (derived from auto-regressive
and moving average models), regression models (linear, non-linear, logistic models), and
gray models. For more recent ML and DL models, they consider Artificial Neural Net-
work (ANN), Support Vector Regression (SVR), and Random Forest (RF). The conclu-
sion drawn is that for daily and hourly energy consumption forecasting, more recent ML
and DL-based models are more accurate than conventional models.

A ML-prediction oriented review [17] exposes the superiority of eXtreme Gradient
Boosting (XGB) methods compared to Multiple Linear Regression (MLR), ELastic Net
(ELN), RF, Gradient Boosting Machines (GBM), or SVR. Additionally, the performance
and accuracy of Deep Neural Network (DNN) models are also praised in this research
work.

DL (considered as a subgroup of ML methods) has proven its ability to forecast
time-series. In particular, these models can be used to highlight inherent abstract char-
acteristics and invariant structures in the data. [18] provides a review of different DL
methods such as Auto-encoder, DNN, Convolution Neural Network (CNN), and Recur-
rent Neural Network (RNN). The article highlights the interest of these models for fea-
ture extraction in demand forecasting, achieving good results with CNN for short-term
forecasting.

Other articles are more focused on refining the results of a single method. This is
the case of [19], which aims to optimize the performance of CNN, widely used in time-
series forecasting. The conclusion drawn is that smoothed CNN (a combination of an
exponential smoothing with CNN) outperforms other tested methods.

Other methods studied in the literature include Long Short-Term Memory (LSTM)
methods. [20] demonstrates the potential of using LSTM, attention-based LSTM, and
Seq2Seq LSTM for multi-step prediction. Another major area of research in the field of
electricity consumption prediction concerns the creation of multiple models.

1.1.1. Short-term forecasting

Short-term usually includes forecasts up to seventy-two hours ahead, while medium and
long-term start from one-week, months to year(s). Several studies on day-ahead electric-
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ity forecasting point to the great capabilities of ML models for short, medium and long-
term electricity forecasting [21]. Most research is conducted on short-term forecasting.
It is more precise and accurate than the medium and long-term [21].

There is, however, strengths and limitations to each particular machine learning al-
gorithm. A RF model is an example of ensemble learning while CNN and LSTM fall
under the DL approach. Both DL methods are relatively not easy to use and take long to
train. CNN requires large amounts of training set in the building field to yield efficient
forecasting performance, while the LSTM is prone to overfitting during the learning pro-
cess and has an extremely large number of parameters in the network. Other gradient-
boosting algorithms besides RF were also tested, such as CatBoost and LightGBM (Light
Gradient-Boosting Machine). Despite the small differences between algorithms, RF has
been maintained as reference for comparison with DL in this work.

In this paper, performance of prediction algorithms for forecasting electricity de-
mand at the substation level is assessed. Substations refer to the location of power trans-
formers in the grid. Power transformers together with lines and cables are expensive
physical devices which replacement requires planning and large investments. Thus, flex-
ibility management is a convenient alternative to avoid occasional events and deferring
investment. Data has been obtained as the aggregation of consumption and generation
data from customers downstream of these transformers resulting in time-series records
with hourly frequency. The paper evaluates the performance of several machine learning
algorithm (i.e. RF, CNN and LSTM) in two different scenarios. Data has been gathered
by new instruments deployed in the grid with the objective of flexibility management.
Thus, main interest is to identify suitable forecasting strategies capable to lever flexibility
management.

The rest of the paper is organized as follows: Section 2 reviews the data and the
methodology used. In section 3 we present and discuss the results of the machine learning
algorithms. Finally, the relevant conclusions and insights are provided in section 4.

2. Materials and methods
2.1. Data description

Data has been gathered in substations of a German grid (Table 1) and it was collected in
the period of five years (from January 2018 to December 2022) with one hour sampling
rate. This data was collected during FEVER, an European Research & Innovation project.
FEVER’s objective is to promote optimal management of the power grids in the future
energy system based on renewable sources. The dataset is not publicly available.

2.2. Forecasting algorithms

The study covers the comparison between a ML algorithm, RF, and DL algorithms, CNN
and LSTM, when predicting energy consumption in an electrical grid.

The ML algorithm, RF, can be used to solve both classification and regression as-
signments. In this work, a regression assignment (e.g. forecasting substation energy con-
sumption), the final output of a RF model is the mean of the outputs from all trees.
The selection of hyperparameters and the input features are important factors to increase
forecasting performance. Selection process for both was performed in this study.
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Table 1. Description of substations consumption in kWh

Substation mean std min max Ist Qu. 2nd Qu. 3rd Qu.
1 35.640  20.454  0.000 100.0410  19.045 26.469 52.778
2 75200 20.3084  0.000 159.8430  59.253 74.895 89.750
3 33.269 11.330  0.000  97.5440 24.305 31.758 39.950
4 18.462 8.209 0.000 62.832 11.730 16.838 23.632
5 35317  20.121 0.000 121.086 18.796 29.554 48.455
6 13.163 7.596 0.000 50.326 7.069 10.345 18.297
7 34.622 14.550  0.000 98.100 22.66 31.523 44.605
8 3.690 3.290 0.000 24.613 0.000 3.247 5.606

With respect to the DL methods, we focus our study on the use of two DL methods,
namely: CNN and LSTM. These methods are known for their ability to extract char-
acteristics and learn patterns, and they were considered ideal candidates for forecasting
electricity consumption.

CNN is a popular technique for forecasting time-series. CNNs are initially known
for their efficiency on image processing tasks. Thus, in the same way as for an image,
we consider time-series as a 1-dimension input vector that can be read and processed
by the CNN model. CNNs have the ability to filter noise and extract local features from
temporal data, such as seasonal patterns or trends. They also generally enable faster
training compared to other models using MLP, RNN, or Attention modules, by reducing
the number of parameters [18].

RNN’s process a time-series step by step, maintaining an internal state from one time
step to the next. The main idea of RNNSs is to keep a memory of the past in hidden
layers. In recurrent models, the previous state of a hidden layer influence the current state
which is not the case in feed-forward neural networks. To avoid vanishing gradient and to
enable long-term dependencies, we use a special RNN technology: LSTM. Due to their
architecture composed of forget gates and input gates, LSTM are especially well suited
for time-series forecasting. However, these models generally require a large amount of
data in order to not overfit and also extract relevant features.

Table 2 shows the architectures of the DL models that were used to obtain the results
presented in the next section.

Table 2. Deep learning model settings

H Task Model Specific Layers Prediction Layers H
Real time CNN 64 filters, kernel size =2 Dense 8 units ; Dense 1 unit
Real time LSTM 128 LSTM units Dense 100 units ; Dense 1 unit

Non-real time CNN 256 filters, kernel size=2  Dense 200 units ; Dense 24 unit
512 filters, kernel size=2
Non-real time LSTM 1024 LSTM units Dense 400 units ; Dense 24 unit

Lastly, the results are evaluated based on Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE). MAE is generally used for regression problems and
measures errors between paired observations expressing the same phenomenon while
MAPE is used due to its very intuitive interpretation in terms of relative error. To find
optimum parameters of the NNs, the optimization algorithm used was Adaptive Moment
Estimation (ADAM) as in [22].
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2.3. Feature selection

To improve the performance of algorithms, it is essential to extract relevant character-
istics. We used temporal features such as hour of the day, since the frequency of data
is hourly, and day of the week. However, it was found that the standard approach with
discrete values (a value from 1 to 24 for the hours of the day) is not optimal for training
models. For this reason, a sine/cosine transformation to these characteristics was applied
to enhance the performance of the forecasting models [23]. We then obtain two periodic
and continuous functions for the hour of the day and also two functions for the day of
the week.

To further improve the results of the models we extract characteristics related to the
seasonality and modes of the data. To do this, three functions were used. The first is
obtained by averaging consumption over the last 7 days at the time we wish to predict.
This highlights the recent trend at a specific time of day. Then, the second characteristic
corresponds to the trend in consumption over the medium term. The value of this charac-
teristic on day n at time ¢ will be equal to the difference between the consumption value
at time ¢ on day n-/ and the consumption value at time #-/ on day n-1. This allows the
model to see more clearly the trend in consumption on the previous day at the same time.
The last characteristic corresponds to the very short-term trend, and is an average of the
last five consumption values. To select these characteristics, we test their importance by
carrying out a mixture test. To do so, we calculate the accuracy of our model with a
characteristic on a test sample. Then, we recalculate this accuracy after mixing the val-
ues of this characteristic. By taking the difference between the two Mean Squared Error
(MSE) values, we obtain an importance value for the characteristic. The more negative
the value, the more the model has been degraded by this mixture, which means that the
feature is important. A value close to 0 indicates that the model does not use this charac-
teristic and that it is therefore useless. Finally, a positive value indicates that the model
has obtained better results with the mixed characteristic, this feature should therefore be
removed. This is how the three features were selected.

2.4. Comparative analysis settings

Aggregated consumption data at the substation level with an hourly frequency is analyzed
in this paper. There are two very different but clear scenarios:

* Non real-time scenario day ahead: This is the case we worked with in the men-
tioned FEVER project. We received substation consumption data on a daily basis
excluding data of the previous day due to pilot’s constraints. This non real-time
forecasting included prediction values for the whole entire next day.

* Real-time scenario hour ahead: This is the ideal case where we have substation
consumption data on a real-time basis and we forecast the next hour using the past
week of consumption.

We are analyzing the impact on performance on the forecast models between these
two scenarios using RF, CNN and LSTM models.
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3. Results and comparative analysis
3.1. Analysis of substation level data

Figure 1 shows consumption for substation 1 grouped by day of the week. In this sub-
station we appreciate distinct consumption patterns depending on the day of the week.
However, in other substations this pattern is not so clear (Figure 2).

1 Consumption (kWh)
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Figure 1. Substation 1: Consumption by day of the week

Furthermore, it is interesting to see how consumption patterns change each month
throughout the year (Figure 3). We see how the consumption is lower during the warmer
months of the year, this could be attributed to a lower use of Heating, Ventilation and Air
Conditioning (HVAC) systems.

3.2. Results

The results obtained with the different forecasting methods are grouped in Table 3. We
can see the accuracy values of the RF, CNN and LSTM models according to the MAE
and MAPE for our two case studies: real-time and non-real-time. The values in bold
represent the most accurate method for each substation.

It can be inferred that in real-time forecasting, the consumption observed immedi-
ately before the forecast will express the future consumption accurately. Thus, real-time
scenario is going to have more accurate forecasting than non real-time forecasting.

Results obtained with the three methods are fairly similar in terms of MAE and
MAPE in both scenarios. Of special consideration is substation 5 showing higher fore-
casting errors than the rest. This can be due to the higher unpredictability of substation 5
when compared to other substations.
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Figure 2. Substation 3: Consumption by day of the week
0:00 1:00 200 3:00 4:00 500 600 7:00 800 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00
January ] MmN 0|
February |
March | 1
April 1 I
May ] |
June T (]
July I (]
August (]
September (]
October [ I
November [ _( [
December — il | L] [ | i
0o 0o o o o0 0 0O ©0O ©0O ©0 0 0 0 0 0 0o 0 0

0 0 0
Electricity Demand (kwh) —

l S

a0 60

Figure 3. Substation 1: Hourly consumption by month

For the real-time scenario, the results are fairly similar between the three different
methods. However, for all the substations except substation 5, the model using CNNss is
more accurate than RF and LSTM. Substation 5 is the only substation obtaining better
results with LSTM model, which is more complex and uses more parameters.

For non real-time prediction, there is an improvement in results with the use of DL,
on all the nodes. DL models outperform traditional ML models especially on tasks that
involve complex patterns and relationships. Thus, better results obtained in non real-time
scenario by DL models can be attributed to this fact.

If we take substation 2, for example, with a MAE of 3.499 in the non real-time
scenario, the model based on CNNs provides an improvement of over 20% compared
with the RF model (MAE = 4.436). In the non real-time scenario it is harder to make
accurate predictions, since we cannot use data from the previous day we want to forecast.
This fact has increased the differences in results between the models in said scenario.

CNNs appear to be the most accurate model for substations 1, 2, 3, 4 and 7 in non
real-time scenario. However, for substations 5, 6 and 8, LSTMs outperformed the other
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Table 3. Comparative analysis between algorithms in both scenarios

Substation Algorithm Real-time Non real-time
MAE MAPE MAE MAPE

Random Forest | 3.930  0.054 5.683  0.079

1 CNN 3.796  0.051 5.090 0.070
LSTM 3.829  0.052 5372  0.074

Random Forest | 2.316  0.076 4436 0.150

2 CNN 2.200 0.075 3499 0.123
LSTM 2.280 0.075 3769  0.133

Random Forest | 2.576  0.081 4912  0.159

3 CNN 2419 0.072 4.178 0.127
LSTM 2.55 0.077 4.549  0.142

Random Forest | 2.116  0.112 3.812 0.210

4 CNN 2110 0.111 3.240 0.184
LSTM 2.164 0.114 3.668  0.203

Random Forest | 8.692  0.305 9.484  0.340

5 CNN 8.460  0.290 9.523  0.340
LSTM 8.220 0.270 9.039  0.309

Random Forest | 1.524  0.117 2.375  0.190

6 CNN 1.520 0.116 2.304  0.187
LSTM 1.530 0.117 2.216 0.181

Random Forest | 3.314  0.115 6.651 0.253

7 CNN 2.990 0.099 5.093 0.183
LSTM 3.130 0.108 5.478  0.200

Random Forest | 0.807  0.168 1.182  0.263

8 CNN 0.807 0.168 1.171  0.257
LSTM 0.809  0.170 1.127  0.254

methods. When we compare the MAPE errors, we can observe that the models based
on LSTMs seem to be better suited to the most difficult substations to predict. This
is the case for substations 5 and 8, which have a large error on average that the rest
of substations. CNN models seem to be better suited to substations that are simpler to
predict. Finally, RF does not perform as well as the DL algorithms but it competes in the
subsets of data with the least error.

3.3. Discussion

As we have seen in the literature review, DL methods have a number of drawbacks such
as having many parameters and a high complexity. However, despite their drawbacks,
they have the ability to capture the complicated interactions of substations load profiles.

Other studies using ML and DL algorithms, for example, [14] compared the perfor-
mance of DL methods and SVM with respect to forecasting the energy consumption in
institutional buildings. The experimental results indicate that the forecasting accuracy of
DL methods is better than SVM. In our case study, results also indicate that the use of
DL gives better forecasting accuracy compared to simpler ML methods.

In [24], the best performing method is not so clear but ANN has the least perfor-
mance in terms of prediction accuracy, while the SVM method has a steady behaviour
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with low accuracy deviations. In our study, RF manages to achieve similar results to the
DL methods in some particular substations, specially in the real-time scenario.

4. Conclusions

Accurate forecasting methods will be essential as DSOs need to ensure the security of
grid supply in scenarios with higher RESs integration and electrification of heating and
transport sectors. This paper presents a comparative analysis of electrical demand fore-
casting at DSO substation level between different machine learning methods. Two fore-
casting scenarios are studied depending on the availability of data: real-time hour ahead ,
which forecasts the next hour with the entire past week of consumption and non real-time
day ahead, which forecasts the entire next day with the past week of consumption data
excluding the previous day. Besides using consumption data, we propose using other fea-
tures such as day of the week or month of the year, and using holidays information such
as country festivities or local holidays.

The performance of the forecasts is extremely related to the characteristics of our
data. However, DL methods achieve better results compared to simpler ML methods such
as RF. Additionally, LSTM performs better on substations with higher MAE and MAPE
values. Using the LSTM algorithm we managed to improve by approximately 3% the
results of the forecast in the worst performing substation.

Real-time forecasting is between 3% and 8% more accurate than non real-time fore-
casting, depending on substation. DSOs ability to manage the grid is extremely depen-
dant on the forecasting performance. Therefore, it is clear that DSOs ability to manage
the electrical grid would improve with the transition from non real-time to real-time.

In addition, we believe that by adding extra information to the prediction models,
such as outside temperature, could increase the overall accuracy achieved so far.
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