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Abstract: In this paper, we present a novel approach for the optimal camera selection in video
games. The new approach explores the use of information theoretic metrics f-divergences, to measure
the correlation between the objects as viewed in camera frustum and the ideal or target view. The
f-divergences considered are the Kullback–Leibler divergence or relative entropy, the total variation
and the χ2 divergence. Shannon entropy is also used for comparison purposes. The visibility is
measured using the differential form factors from the camera to objects and is computed by casting
rays with importance sampling Monte Carlo. Our method allows a very fast dynamic selection of the
best viewpoints, which can take into account changes in the scene, in the ideal or target view, and in
the objectives of the game. Our prototype is implemented in Unity engine, and our results show an
efficient selection of the camera and an improved visual quality. The most discriminating results are
obtained with the use of Kullback–Leibler divergence.

Keywords: viewpoint selection; video games; Kullback–Leibler divergence; χ2 divergence; total variation

1. Introduction

In the context of 3D virtual scenes in video games, the selection of the best camera
position and orientation has not yet received enough attention. Considering the critical
importance of visual perception in the development of the game storyline, it is fundamental
to develop methods for selecting optimal views that emphasize the most important scene
information for the player.

Information theory measures, mainly Shannon entropy, have been widely used in
viewpoint selection in robotics, computer graphics and visualization [1,2]. A drawback of
these measures is the high associated cost due to their computation with projections.

In this paper we propose the use of f-divergences, exploring the Kullback–Leibler, the
total variation, and the χ2 divergence to compute the best viewpoint or camera position in
a Unity [3] environment and compare it with the Shannon entropy.

The Kullback–Leibler (K-L) divergence [4] has been introduced as a measure of the
best viewpoint of an object in [5,6] and we extend it here to select the best camera in 3D
scenes. To measure the visibility of an object, we introduce the camera frustum form
factor, extending the work in [7,8]. The form factors of all objects plus the background
form factor is a probability distribution that is compared using the K-L divergence with
a target distribution, which can be the distribution of relative areas or be weighted with
importance values. We also extend the viewpoint entropy to frustum entropy too and show
that viewpoint frustum entropy happens when all objects are given importance inversely
proportional to their area.

We use the Unity game engine as a development tool because it is one of the most
popular and widely used and widely used game engines in the industry, and it of-
fers out-of-the-box ray casting that allows us to compute the form factors in a fast and
efficient way.

In this paper we advance on the state of the art along the following novelties:
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• We use the f-divergences, and in particular Kullback–Leibler divergence, total varia-
tion, and χ2-divergence as a measure of viewpoint in a scene consisting of 3D objects,
extending from the use of K-L divergence as a viewpoint measure [5].

• We define the frustum form-factor as a measure of the visibility of an object from a
camera, extending the classic form-factor concept used in radiative heat transfer [9],
radiosity and global illumination [10–12].

• We compute the frustum form factor with a Monte Carlo technique using the built-in
ray tracing Unity routines. This allows for smooth computing and integrating the
view-point measures in run-time.

• We define a target distribution that can be fine-tuned according to the importance
assigned to each object and is extended with a wildcard, the background value which
allows to regulate how much background should be visible from the camera.

• The frustum form-factor distribution is then compared, using the f-divergences, with
the target distribution.

The rest of the paper is organized as follows. In Section 2 we review the state of the
art on viewpoint measures used in robotics and computer graphics and visualization, as
well as f-divergences. In Section 3 we present our framework together with the viewpoint
divergence measures. Section 4 contains an evaluation of our framework, in Section 5 we
discuss the results and in Section 6 we present our conclusions, limitations of our method
and future work.

2. State of the Art
2.1. Viewpoint Selection

The selection of the best point of view in 3D models has been widely investigated in
the scientific literature. Plemenos et al. [13] proposed to use projected area and number of
polygons seen as the best viewpoint measure. Vazquez et al. [14] proposed the concept of
the best viewpoint as the one that maximizes the entropy. The viewpoint entropy measure
has proven to be effective in the selection of optimal viewpoints in several applications
dealing with 3D environments [15], including robotics [16], and in volumetric data [17].

Bonaventura et al. [6] have proposed a comprehensive classification of attributes,
such as area, silhouette, depth, stability and surface curvature to evaluate the quality of
a point of view in polygonal models. Some measures included in this category are the
number of visible triangles [13], projected area, visibility ratio, viewpoint entropy and
Kullback–Leibler viewpoint measure [5]. Silhouette attributes focus on the shape and
structure of the object visible from the point of view. Related measures are the length
of the silhouette [18], the entropy of the silhouette, the curvature of the silhouette and
the extreme of the curvature of the silhouette [19]. Depth attributes focus on the depth
of information. Measures in this category are the measure of Stoev and Straßer [20], the
maximum depth and the depth distribution. Surface curvature attributes are based on the
analysis of the curvature of the surface of the visible object. The stability of the viewpoint is
another important aspect to consider when selecting the best viewpoint. Stability attributes
evaluate the consistency and continuity between nearby viewpoints. Related measures are
instability [21], which is based on the Jensen–Shannon divergence between the projected
area distributions and the areas, and visual stability based on depth [22], which uses the
normalized compression distance between the depth images of viewpoints.

An important aspect pointed out by Zeng et al. [16] in viewpoint evaluation is the
influence of factors such as the occlusion between objects, the different lighting configu-
rations, materials, and textures. These factors can significantly affect the quality of the
information collected and, therefore, the choice of the best point of view. Although we
acknowledge that this information can be very valuable in gaming contexts, in this paper
we currently consider only visibility, colors or textures will be incorporated in the future
for a more comprehensive viewpoint evaluation.
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In relation to the evaluation of the gain of information in the selection of the point of
view, Delmerico et al. [23] propose a comparison of volumetric information metrics for
the active reconstruction of 3D objects. Its approach is based on the emission of rays in
the 3D space of voxels and the entropy calculation to evaluate the information gain of a
particular view.

Zhang and Fei [24] classify viewpoint selection methods into three main categories.
The methods based on geometrical information such as the one by Vazquez et al. [14]
consider measures such as the area, the projected area, the silhouette and other character-
istics of the viewpoint, but they can overlook the structural information of the 3D model.
Methods based on visual characteristics focus on visual attributes such as silhouette, curva-
ture [25], and mesh importance [26]. Although these methods are efficient for measuring
visual characteristics, they can omit important geometric information in the scene. Finally,
the methods based on semantics as proposed in [27,28] evaluate the point of view through
the use of semantic segmentation, which considers semantic components of the scene
and artificial labels. However, automatic segmentation can be challenging and require
manual intervention.

Kullback–Leibler divergence has been used in visualization and computer graphics
areas before. Bordoloi et al. [17] have introduced a method for enhancing the effectiveness
of volume rendering by guiding users towards informative viewpoints obtained with
viewpoint entropy. Kullback–Leibler divergence is employed as a measure of dissimilarity
between probability distributions associated with viewpoints. Ruiz et al. [29] introduced a
framework for obtaining transfer functions for the volumetric data based on user-provided
target distributions. The transfer functions are derived by minimizing the Kullback–Leibler
distance between visibility distribution from viewpoints and user-selected target distribu-
tions. Lan et al. [30] built a robotic photography system to find the optimal viewpoint of
a scene. The system assesses aesthetic composition by comparing, with Kullback–Leibler
divergence, the distribution of a current composition with a model or target composi-
tion. Smaller Kullback–Leibler divergence values indicate a more aesthetically pleasing
composition. Furthermore, Yokomatsu et al. [31] introduce an autonomous indoor drone
photographer that searches for a viewpoint in 3D space employing a Gaussian mixture
model to represent subjects on its camera screen. Using variational Bayes clustering for
four or more subjects, it evaluates the composition through Kullback–Leibler divergence
against a user-defined reference based on user-set composition rules. To the best of our
knowledge, although K-L divergence has been used for various applications, it has not
been used for viewpoint selection in open environments and multi-object scenes, neither
total variation nor χ2-divergence have been used in viewpoint selection, in general.

In the field of video games, the selection of the best viewpoint for virtual scenes
has received less attention compared to robotics. There are few studies that specifically
address this topic in video games, especially those that work with virtual scenes in real time.
An example of this is the work conducted by Galvane [32], where he proposes a system
based on the Reynolds steering behavior model to control and coordinate a collection of
autonomous camera agents that move in dynamic 3D environments with the objective of
filming events of multiple scales. In addition, Galvane proposes an approach based on the
importance of cinematographic reproduction in games, taking advantage of the narrative
and geometric information to automatically calculate the trajectories and the planning of
the camera in interactive time. The best camera viewpoints are selected based on a function
that takes into account symbolic projection, narrative importance, narrative relevance, and
visual quality. Virtual camera rails are then created to guide camera movements throughout
the scene, and camera movements are calculated, optimizing the trajectory to achieve
smooth transitions.
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Another approach proposed by Lino and Christie [33] is the use of a theoretical surface
model that efficiently generates a variety of viewpoints corresponding to the exact on-screen
composition of two or three objectives. These approaches, based on algebraic models, offer
fast and efficient solutions for the automatic calculation of points of view, although they
tend to be limited to a small number of objectives and may not address cinematographic
problems such as obstruction or occlusion.

The use of neural networks has also been proposed for the selection of viewpoints
in 3D environments. Zhang et al. [34] presented an optimization strategy for computing
high-quality virtual viewpoints for aesthetic images by combining a multi-branch CNN
and a viewpoint correction method, integrating visual perception with the calculation of
geometric information. Furthermore, deep learning has been utilized to reconstruct the
3D pose from the image obtained in the video by Kiciroglu et al. [35]. An algorithm was
created that, based on the camera position, calculates the uncertainty and generates a set of
future camera positions, taking into account that the scene is unknown. The authors have
then used neural networks to return the 3D human pose from monocular images.

Hartwig et al. [36] introduced a neural view quality measure aligned with human
preferences. The study demonstrated that this measure generalized not only to models
unseen during training but also to unseen model categories.

2.2. f-Divergences

f-divergences generalize the Kullback–Leibler divergence between two distributions [37–39].
Given p, q distributions {pi}n

i=1, {qi}n
i=1, ∀i : pi, qi ≥ 0, f-divergence D f (p, q) is defined as:

D f (p, q) =
n

∑
i=1

qi f (pi/qi),

where f (x) is a real-valued convex function such that f (1) = 0. By definition 0 f (0/0) = 0,
and for a > 0, 0 f (a/0) = limt+→0 t f ( a

t ).
D f (p, q) holds the properties:

• D f (p, q) ≥ 0, and p ≡ q =⇒ D f (p, q) = 0 (D f (p, q) = 0 =⇒ p ≡ q for f (x)
strictly convex).

• D f (p, q) is convex in both p and q.
• D f (p, q) ≡ D f (x)+c(x−1)(p, q).
• Given a transform T, D f (p, q) ≥ D f (pT, qT) = 0 (data processing inequality-DPI). In

particular, T can be any clustering of indexes.

Well known examples of f-divergences are K-L divergence or relative entropy, with
f (x) = x log x, K-L(p, q) = ∑n

i=1 pi log pi
qi

, total variation, with f (x) = 1/2|x − 1|,
TV(p, q) = 1

2 ∑n
i=1 |pi − qi|, and which is the only f-divergence that is also a Euclidian dis-

tance, squared-Hellinger distance, with f (x) = (
√

x − 1)2, H2(p, q) = ∑n
i=1(

√
pi −

√
qi)

2

and χ2-divergence, with f (x) = (x − 1)2, χ2(p, q) = ∑n
i=1

(pi−qi)
2

qi
. Another example is the

one-parameter family of f-divergences, the Tsallis divergences, with α > 0,

Tα(p, q) =
1

1 − α

( n

∑
i=1

pα
i

qα−1
i

− 1
)
,

which includes for α = 2 the χ2 divergence, for α = 1/2 the squared Hellinger distance,
and for α = 1 by continuity the K-L divergence [40].

Observe that Shannon entropy, H(p) = −∑n
i=1 pi log pi is related to the Kullback–

Leibler divergence when q distribution is uniform, i.e., when q = { 1
n}n

i=1,

K-L(p, {1/n}) =
n

∑
i=1

pi log
pi

1/n
= log n

n

∑
i=1

pi −
n

∑
i=1

pi log pi = log n − H(p).
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3. Proposed Method

The intuition behind our method is to measure the visibility of the objects from the
camera and compare the distribution of visibility to the distribution of the areas using
f-divergences. In this aspect, the more informative view would be when each object is
visible proportionally to its area. The lower the divergence value, the more proportional
are visibility and relative area distributions.

3.1. Visibility

In the field of computer graphics and video game development, two fundamental
concepts related to visual perception and projection are the Field of View (FOV) and the
Frustum. The Field of View refers to the angular range of the observable scene or the visual
range of a camera in a three-dimensional environment. A wider FOV provides a more
extensive peripheral vision, while a narrower FOV focuses on a smaller area with greater
detail. On the other hand, the Frustum represents the shape of a truncated pyramid.

In previous work by Rigau et al. [41], the visibility of a point in a 3D scene was studied
based on information theoretic criteria. This work proposed to use the Kullback–Leibler
divergence between the solid angles projected by the objects and the unoccluded projections
as a measure of the viewpoint. Also, Sbert et al. [5] proposed as a viewpoint measure of an
object the K-L divergence between the projected areas of the triangles of the object mesh
and the true areas. We extend these ideas to consider the visibility measured by the form
factors from the viewpoint [7,8], constrained to the camera frustum, and we consider two
additional divergence measures in addition to K-L divergence.

Given a scene S ⊂ R3, and O the set of objects {oi} in the scene. We define Ai as
the area of object oi, AT as the total area of the objects in the scene plus background area,
and ai =

Ai
AT

as the relative area of object oi. Given the position x ∈ S of the camera, we
consider dAx in the normal plane to the camera direction. Given a point y in the surface
of an object in O, dAy is in the tangent plane at y, θy is the angle between the normal to
dAy with the line that joins x and y, θx is the angle with the normal at dAx, and d(x, y) the
distance between x and y (see Figure 1).

Figure 1. Notation used for differential form-factor, x is the camera position, dAx is on the camera
plane, y is a point on the surface of object oi at distance d(x, y) from x, dAy is on the tangent plane at
y, θx and θy are the angles between the normals at x and y and the line joining x and y respectively.



Entropy 2024, 26, 464 6 of 22

3.2. Hemisphere Form-Factors

F(dAx, dAy) is the differential form factor (or measure of the visibility) between
differential areas dAx, dAy at point x. It forms a continuous probability distribution, i.e.,∫

y∈O
F(dAx, dAy)dAy = 1,

where:

F(dAx, dAy)dAy =
cos θx cos θy

πd(x, y)2 v(x, dAy)dAy, (1)

and v(x, dAy) is a binary visibility function (equal to 1 if x and y are mutually visible and 0
otherwise). If dω is the area subtended by dAy,

F(dAx, dAy)dω =
1
π

v(x, dAy) cos θxdω, (2)

taking into account that dω =
cos θx cos θy

d(x,y)2 dAy, and the π factor is the normalization constant

as the integral over the hemisphere is
∫

Ω/2 cos θxdω = π. The form factor for object i
around the hemisphere centered in dAx is then defined as

F(dAx, oi) =
∫

Ω/2

1
π

v(x, oi(ω)) cos θxdω =
∫

Ωi

1
π

cos θxdω, (3)

where v(x, oi(ω)) is 1 or 0 depending on whether object oi is visible or not from direction
ω, and Ωi is the solid angle over the hemisphere around dAx from which the object i is
visible. If Ωb = Ω/2 − ∑i Ωi is the solid angle projected by the background, we can write
as only one object (or the background) is visible in a given direction ω∫

Ω/2

1
π

cos θxdω = 1 = ∑
i

∫
Ωi

1
π

cos θxdω +
∫

Ωb

1
π

cos θxdω (4)

= ∑
i

F(dAx, oi) + F(dAx, ob),

where F(dAx, ob) is the background form-factor. However, the whole hemisphere is not
visible through a virtual camera, thus in the next section, we restrict the visibility to the
camera frustum.

3.3. Frustum Form-Factors and f-Divergence Frustum Viewpoint Measures

Let us consider the visibility restricted to a frustum f r that subtends a solid angle Ω f r
around dAx. The normalization constant k f r for f r form-factors would be

k f r =
∫

Ω f r

cos θxdω

and can be computed by importance sampling Monte Carlo integration [42]. We can use
for instance N rays distributed around the hemisphere with probability density function
(pdf) p(ω) = 1/π cos θxdω, in which case k f r ≈ πN f r/N, where N f r is the number of rays
crossing the frustum. We define the frustum form factor as

F(dAx, oi) =
∫

Ωi∩Ω f r

1/k f r cos θxdω, (5)

Equation (5) can be computed efficiently by Monte Carlo by casting rays distributed
according to p(ω) = 1/π cos θxi and simply counting the fraction of rays within the
frustum and hitting the object oi (see Appendix A). This can be conducted for all objects
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{oi} at the same time. Let a background object be ob, for instance, a background hemisphere,
then we have that

n

∑
i=1

F(dAx, oi) + F(dAx, ob) = 1.

Let us now consider the fraction of the total area corresponding to each object, say ai.
For the background hemisphere, we have ab. Indeed

n

∑
i=1

ai + ab = 1.

Then we can consider the f-divergence measures between the form-factor distribution and
the relative area distribution.

3.3.1. Kullback–Leibler Divergence

We will consider first the Kullback–Leibler divergence between the two distributions,

K-L(dAx, {oi}) =
n

∑
i=1

F(dAx, oi) log
F(dAx, oi)

ai
+ F(dAx, ob) log

F(dAx, ob)

ab
, (6)

where if, for some i, F(dAx, oi) = 0, we take continuity F(dAx, oi) log F(dAx ,oi)
ai

= 0. And
using the hit count, where Ni is the number of hits on object i, and Nb on the background,
the frustum form factor is approximated by

F(dAx, oi) ≈
Ni

N f r
, (7)

and thus the Kullback–Leibler divergence is approximated by

K-L(dAx, {oi}) ≈
n

∑
i=1

Ni
N f r

log

Ni
N f r

ai
+

Nb
N f r

log

Nb
N f r

ab
. (8)

Observe that ai = Ai/(AT + Ab), and ab = Ab/(AT + Ab), and AT = ∑i Ai.
Now, taking the Kullback–Leibler divergence as a viewpoint measure has one problem: it
does not penalize not-seen objects, on the contrary, the corresponding term in the sum is 0.
Let us then consider two alternatives.

3.3.2. Total Variation and χ2-Divergence Frustum Viewpoint Measures

Now, using the total deviation as a frustum viewpoint measure, we obtain

TV(dAx, {oi}) ≈ 1/2
( n

∑
i=1

| Ni
N f r

− ai|+ | Nb
N f r

− ab|
)
. (9)

And using χ2-divergence,

χ2(dAx, {oi}) ≈
n

∑
i=1

( Ni
N f r

− ai)
2

ai
+

( Nb
N f r

− ab)
2

ab
. (10)

Observe that in both measures an object oi non-visible adds the same amount ai. This
is the main difference with respect to the K-L measure, where the race of a non-visible
object disappears.

Another approach, proposed by Lino and Christie [33], is the use of a theoretical
surface model that efficiently generates a variety of viewpoints corresponding to the exact
on-screen composition of two or three objectives. These approaches based on algebraic
models offer fast and efficient solutions for the automatic calculation of points of view,
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although they tend to be limited to a small number of objectives and may not address
cinematographic problems such as obstruction or occlusion.

3.4. Background Issues and Importance

Suppose we are in an open scene with no background surface(s) to consider. How
do we deal with this case? On the one hand, we consider the rays missing the objects
{oi} as hitting the background, and we count them as Nb. Now, instead of considering
some fictitious background surface as a hemisphere enveloping the objects we can decide
a priori how much background we want to see in our frustum, and simply set ab as a
proportion of ∑n

i=1 ai. A small ab
∑i ai

value means that our viewpoint measure will favor a
small background proportion of the frustum, while a big one will mean the reverse. This
can be extended to any object in {oi}. It can be formalized, in a similar way to [21], by
defining importance non zero values {pi} for objects and background pb and considering
the new pseudo-area distribution a′i =

ai pi
∑k ak pk+ab pb

, a′b = ab pb
∑k ak pk+ab pb

.

3.5. Total Surface vs. Visible Surface

We have considered in the previous sections {ai} as the relative surface area of objects
{oi}. But for each object, we could have considered the visible area {a′i}, where evidently
∀i, a′i ≤ ai. This would make sense if objects have an important share of hidden parts. The
{a′i} could be computed in a preprocess, using for instance global uniformly distributed
lines [8]. A similar discussion between visible and total areas can be found in [21].

3.6. Particular Cases with Kullback–Leibler Divergence

Let us suppose that only a single object oi is visible through a particular frustum.
Then, Ni/N f r = 1, and the K-L divergence would be − log ai. Observe that this value is
independent of how near the object is, as far as it covers the whole frustum. For instance,
suppose ai = 1/32, then the K-L divergence would be equal to 5. The same would happen
if only the background is visible, the K-L value would be − log ab. For instance, giving low
importance to the background, say ab = 1/64, the K-L value would be equal to 6, while
giving it much higher importance, say ab = 1/2, the K-L value would be equal to 1.

3.7. K-L-Divergence Frustum Viewpoint Measure versus Frustum Viewpoint Entropy

Analog to the classic viewpoint entropy [14], we define frustum viewpoint entropy as

VE(dAx, {oi}) = −(
n

∑
i=1

F(dAx, oi) log F(dAx, oi) + F(dAx, ob) log F(dAx, ob)), (11)

with n as the number of objects {oi}. The best view according to this measure would be the
one with the highest value, which corresponds to all objects and backgrounds seen equally,
all form factors are equal, independent of their relative areas.

Observe that if we take the K-L divergence frustum viewpoint for all objects including
background having the same relative area, or identically if we take the importance of each
object including a background as inversely proportional to their area, the relative area for
all objects and background is now 1

n+1 , thus we have

K-L(dAx, {oi}) =
n

∑
i=1

F(dAx, oi) log
F(dAx, oi)

1
n+1

+ F(dAx, ob) log
F(dAx, ob)

1
n+1

=
n

∑
i=1

F(dAx, oi) log F(dAx, oi) + F(dAx, ob) log F(dAx, ob)

+ log(n + 1)(
n

∑
i=1

F(dAx, oi) + F(dAx, ob))

= −VE(dAx, {oi}) + log(n + 1). (12)
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This is, in that particular case one can indistinctly use K-L divergence or entropy
measure, just now, the best views with K-L measure would be the ones with the lowest
value, and for entropy the ones with the highest value.

3.8. TV Changes Smoothly

The fact that TV is a Euclidean distance allows us to bound the increment of TV
measure when we consider another frustum or when we change the relative areas (for
instance background area). Suppose we change from a frustum with form-factors {Fi}
to another frustum with form-factors {F′

i } (or the same frustum but objects have moved
position). Suppose also that we change areas from {ai} to {a′i} (for instance, changing
background area). Then, we can bound the change in TV measure. Effectively, using the
symmetric and triangular inequality properties of a Euclidean distance we can state the
following inequalities,

TV(F, a′) ≥ TV(F, a)− TV(a, a′),

TV(F, a′) ≤ TV(F, a) + TV(a, a′),

TV(F′, a) ≥ TV(F, a)− TV(F, F′),

TV(F′, a) ≤ TV(F, a) + TV(F, F′).

Observe that these bounds imply that a small change in the form factors or in the area
implies a small change in the TV viewpoint measure, i.e., it changes smoothly. This is not
always the case with K-L and χ2 measures.

3.9. Rays vs. Projection

Projection has been used in the past to compute viewpoint measures of a 3D object or
to simplify its mesh based on a viewpoint measure. Could we equally use in the context of
this paper projection instead of casting rays to compute the f-divergence frustum viewpoint
measure? Let us remember first that we base our viewpoint measure on the form factor
measuring the visibility. Before switching to ray casting, form factors were computed via
projecting on the five faces of a hemicube [43], where the pixels of the faces had unequal
weights. This gave an approximation to the actual value of the form factor. Implementing
hemicube in a game engine would be tricky. Sillion and Puech [44] computed form factors
by substituting the five projections with a single projection, but objects near the horizon
were missed. On the other hand, ray casting can compute the actual values, up to the
statistical error, and also each ray can be computed independently, as the Monte Carlo
method is by nature parallelizable. In addition, it is very simple to program and game
engines support it in real time.

3.10. Implementation

The proposed method has been implemented in the Unity game engine making use of
its ray-casting routines.

4. Evaluation

To check the correct computation of the form factor, we devised a configuration where
the form factor can be computed analytically, see Figure 2. The results are shown in
Table 1. As a form-factor Fi computed with random rays corresponds to a binary hit or miss
distribution, its variance or expected quadratic error is Fi(1−Fi)

Nrays
, and thus the expected error

is
√

Fi(1−Fi)
Nrays

, which is compared in the table with the experimental error.
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Figure 2. To check the correct distribution of cast lines, we compare the experimental result with
the analytically computed form factor corresponding to a disk (in orange color) with radius R at
distance D from the camera and orthogonal to its plane. The form factor corresponds to the area of the
projected circle, πr2, divided by the area of the disk with radius 1, π, this is πr2

π = r2. By similarity of
the triangles, k = d

r = D
R . As d2 + r2 = 1, we can easily find that r2 = 1

k2+1 , and thus the form factor
is 1

k2+1 .

Table 1. Form factor computation validation, see Figure 2. The frustum covers the whole hemisphere.

The expected error
√

Fi(1 − Fi)/Nrays when form-factor = 0.2 and for 10,000 rays is 0.004, for 100,000
rays is 0.00126. For form-factor = 0.1, for 10,000 rays is 0.003, for 100,000 rays is 0.000948.

Values: R = 0.5, D = 2, k = 4. Analytical Form-Factor = 0.2

Total Rays Hit Disc Rays Form-Factor Abs. Error Expected Error

10,000 2017 0.2017 0.0017 0.004
10,000 2024 0.2024 0.0024 0.004
10,000 2008 0.2008 0.0008 0.004

100,000 19,771 0.19771 0.00229 0.00126
100,000 19,825 0.19825 0.00175 0.00126
100,000 19,835 0.19835 0.00165 0.00126

Values: R = 1, D = 3, k = 3. Analytical form-factor = 0.1

Total rays Hit disc rays Form-factor Abs. Error Expected error

10,000 975 0.0975 0.0025 0.003
10,000 982 0.0982 0.0018 0.003
10,000 1020 0.1020 0.0020 0.003

100,000 9736 0.09736 0.00264 0.000948
100,000 9851 0.09851 0.00149 0.000948
100,000 9925 0.09925 0.00075 0.000948

To study the error in the three viewpoint measures considered we compute them for
Figure 3 with varying number of rays. As we can see in Table 2, by casting 100,000 rays the
change in the results between the different iterations is less than 0.01, thus a difference of
0.02 will be considered significant to compare two viewpoints.
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Figure 3. Scene used for the measurements in Table 2.

Table 2. Values of the measures for Figure 3 for different number of rays.

Total Rays K-L TV χ2

10,000 0.3466502 0.331814 0.4405105
10,000 0.3530622 0.3346139 0.4405105
10,000 0.2731511 0.3346139 0.3538287
10,000 0.2862652 0.304014 0.369765
10,000 0.3157122 0.3179139 0.4044647
100,000 0.3179567 0.3190739 0.4072793
100,000 0.3164447 0.318334 0.4054418
100,000 0.3170037 0.318584 0.4060861
100,000 0.321581 0.320724 0.4115101
100,000 0.3169065 0.318514 0.4059337

Then, given that the background area was added as a variable due to the fact that
the background has no area in Unity, different tests were carried out to evaluate if there
is a suitable background area percentage in general. The first scene considered was a
single cube, rotated to obtain three different views of it, see Figure 4, and considering the
background area values of 1%, 25%, 50%, 75% and 99% of the total area.

K-L TV χ2

1%: 5.560 0.671 80.9
25%: 1.426 0.496 2.33
50%: 0.537 0.3015 0.646
75%: 0.12 0.1195 0.135
99%: 0.185 0.0625 0.699

K-L TV χ2

1%: 5.395 0.6585 77.857
25%: 1.332 0.481 2.194
50%: 0.488 0.2895 0.596
75%: 0.09 0.1055 0.105

99%: 0.244 0.075 1.008

K-L TV χ2

1%: 5.377 0.657 77.54
25%: 1.289 0.474 2.13
50%: 0.472 0.2855 0.579
75%: 0.078 0.099 0.093
99%: 0.299 0.086 1.331

Figure 4. Comparison of measures (TV: Total Variation, K-L: Kullback–Leibler, and χ2) by rotat-
ing a single cube, and computed with 100,000 rays. Percentages are the relative area assigned
to background.
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We note that if we assign to the background a relative area equal to its experimental
form factor for each view, the measures would give the same result while seeing the objects
from far or near. Thus, to avoid this, the relative area of the background should be kept
fixed at a relative percentage of the total area.

We observe that for background areas of 1%, 25%, 50%, and 75%, the value of the
three measures decreases as the number of visible faces of the cube increases. The only
case where the measure increases when the number of visible faces of the cube increases
corresponds to the background 99% of the total area, which makes sense considering that
increasing the number of visible faces decreases the area occupied by the background.

Then, a scene composed of a cube, a cylinder and a sphere, Figure 5, is analyzed, placed
in the center of the scene and zoomed in and out, and for values of the background area of
1%, 50%, and 99% of the total area. We also compute viewpoint entropy. When analyzing
the values assigned to the background, we notice that by assigning to it a low value (1%),
the lowest measure values will be when the more percentage of the FOV of the camera is
occupied by objects, while zooming in the lowest value will be the ones in Figure 5 upper
left image for all the measures. Analyzing the case where the background value is 99%, the
measurements will decrease by zooming out the camera, thus, the measurement is minimal
in Figure 5 lower right. Concerning the viewpoint entropy measure, remember that its
behavior is inverse to the one of the K-L measures; the higher value would correspond to
a better view. It decreases when zooming out, and increases with zooming in, which is
correct. However, in Figure 5 upper left, when we zoom in on the cylinder object, entropy
is still growing, which is not the expected behavior for a good view, as it is clearly a worse
view than Figure 5 upper center. On the other hand, by assigning to the background an area
of 50% of the total area, K-L and χ2 measures achieve a minimum in Figure 5 upper center,
which we consider to be the best view. The TV measure decreases too when zooming in,
but its minimum is not achieved in Figure 5 upper center but in Figure 5 upper left.

As a third example, as seen in Figure 6, the camera was rotated around a vertical axis
obtaining different views of a scene composed of a cube, a cylinder and a sphere. For a 1%
background value as well as for 50%, the lowest value for the three divergences happened
when the three objects were visible, while for a background value of 99% the lowest value
for the divergences happened when no object was visible. For Shannon entropy, the highest
value is found when all objects are visible while the lowest value is when no object is
visible. Observe that the behavior of the entropy measure is inverse to the one of the
K-L divergence. Remember that entropy does not take into account the area of objects
and background, and behaves inversely as the K-L divergence when all objects, including
background, have the same relative area, thus background value does not play any role
in the entropy measure computation. In this example, the entropy measure gives results
coherent with our expectation of a good view.

From our results, we infer that assigning the background importance of 50% gives
good results.

To test the measures in the presence of occlusion, we employed a scene composed of a
cylinder, a sphere, and a cube. The scene was observed from lateral (Figure 7 left), diagonal
(Figure 7 center), and frontal (Figure 7 right) views while maintaining a constant distance
to the cylinder (Figure 7). The results show that K-L identifies as the best viewpoint the
diagonal view, where a larger area is visible and there is minimal occlusion between objects.
Additionally, it designates the lateral view as the least favorable, where greater occlusion
among objects is present. Similarly, χ2 and Shannon entropy perform well; TV, while
identifying the diagonal view as the best, does not distinguish between the lateral and
frontal ones.

Finally, in Figure 8 we find two scenes with five objects each, the scenes only differ in
the rotation of one cube. While K-L divergence clearly appreciates an improvement in the
second view (Figure 8 right), TV (see Section 3.8) and χ2 divergences and Shannon Entropy
improvement falls within the threshold we established of 0.02.
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1%: K-L=2.72,TV=0.5, χ2=25.57 1%: K-L=4.22,TV=0.735, χ2=54.79 1%: K-L=5.43,TV=0.88, χ2=78.46
50%: K-L=0.32,TV=0.22, χ2=0.38 50%: K-L=0.26,TV=0.245, χ2=0.29 50%: K-L=0.52,TV=0.39, χ2=0.61

99%: K-L=2.55,TV=0.475, χ2=41.58 99%: K-L=1.02,TV=0.25, χ2=9.6 99%: K-L=0.29,TV=0.105, χ2=1.45
Entropy: 1.1635 Entropy: 0.9618 Entropy: 0.6997

1%: K-L=5.87,TV=0.93, χ2=86.66 1%: K-L=6.26,TV=0.96, χ2=93.56 1%: K-L=6.44,TV=0.975, χ2=96.55
50%: K-L=0.66,TV=0.435, χ2=0.76 50%: K-L=0.82,TV=0.475, χ2=0.9 50%: K-L=0.88,TV=0.485, χ2=0.93
99%: K-L=0.1,TV=0.05, χ2=0.34 99%: K-L=0.02,TV=0.02, χ2=0.03 99%: K-L=0.004,TV=0.01, χ2=0.007

Entropy: 0.4518 Entropy: 0.3405 Entropy: 0.1939

Figure 5. Comparison of measures (TV: Total Variation, K-L: Kullback–Leibler, χ2 and Shannon
entropy) when zooming out the camera, and computed with 100,000 rays. Percentages are the relative
area assigned to background.

1%: K-L=6.65,TV=0.99, χ2=99.46 1%: K-L=6.48,TV=0.975, χ2=96.59 1%: K-L=5.66,TV=0.9, χ2=81.89
50%: K-L=1.0003,TV=0.5001, χ2=1.0005 50%: K-L=0.92,TV=0.485, χ2=0.94 50%: K-L=0.64,TV=0.415, χ2=0.7

99%: K-L=0.02,TV=0.01, χ2=0.01 99%: K-L=0.04,TV=0.015, χ2=0.11 99%: K-L=0.24,TV=0.085, χ2=1.2
Entropy: 0 Entropy: 0.1364 Entropy: 0.5193

Figure 6. Cont.
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1%: K-L=5.45,TV=0.38, χ2=78.82 1%: K-L=5.64,TV=0.9, χ2=82.02 1%: K-L=6.41,TV=0.97, χ2=95.62
50%: K-L=0.52,TV=0.395, χ2=0.62 50%: K-L=0.59,TV=0.405, χ2=0.67 50%: K-L=0.9,TV=0.485, χ2=0.93
99%: K-L=0.26,TV=0.1, χ2=1.25 99%: K-L=0.22,TV=0.085, χ2=1.03 99%: K-L=0.04,TV=0.015, χ2=0.08

Entropy: 0.697 Entropy: 0.5759 Entropy: 0.1786

Figure 6. Comparison of measures (TV: Total Variation, K-L: Kullback–Leibler, χ2 and Shannon en-
tropy) when rotating the camera around a vertical axis, and computed with 100,000 rays. Percentages
are the relative area assigned to background.

K-L=0.5285,TV=0.3603, χ2 =0.5624 K-L=0.3525 ,TV=0.3289, χ2=0.4388 K-L=0.4358 ,TV=0.3672, χ2=0.5397
Entropy=0.6754 Entropy=0.895 Entropy=0.7617

Figure 7. Comparison of measures (TV: Total Variation, K-L: Kullback–Leibler, and χ2) for occlusion,
and computed with 100,000 rays. Background area = 50%.

50%: K-L=0.2969,TV=0.2742, χ2=0.3413 50%: K-L= 0.2744,TV=0.2681, χ2=0.323
Entropy= 0.8607 Entropy= 0.8702

Figure 8. Comparison of measures (Entropy, TV: Total Variation, K-L: Kullback–Leibler and χ2) when
rotating one single object, and computed with 100,000 rays. Percentages are the relative area assigned
to background.

4.1. Validation in a Video Game Environment

To validate the implementation in a video game, we tested the method in the John
Lemmon Unity game [45]. The first two evaluated scenes, depicted in Figures 9 and 10,
consist of the main character (a yellow-headed kitty), six enemies (three grey gargoyles
holding a red lantern in their hand and three grey ghosts with a purple hat), and the
background. Similar to the analysis in Figure 5, we initially examined what happens when
the camera is zoomed in and out of the scene for background area values of 1%, 50%, and
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99% of the total area. As before, assigning a low value (1%) to the background area results
in lower measurement values when a higher percentage of the camera’s field of view is
occupied by objects. In this case, it corresponds to the upper-right image in Figure 9, while
the highest value occurs when the background occupies the largest percentage, as seen in
the lower-right image in Figure 9. Analyzing the case where the background value is 99%,
the measurements decrease as the camera moves away from the objects. Consequently, the
measurements are minimal in the lower-right image in Figure 9. In this scenario, entropy
selects the upper-right image in Figure 9 as the best view, likely because the object areas are
similar. This view also emerges as the optimal one when the background area comprises
50% of the total area for all three studied measurements. As for Figure 10, the best view
is the central right one by giving the background 1% and 50% of the total area, a view
that also coincides with the best one for entropy. On the other hand, when giving the
background an area of 99% of the total area, the best view is the top left where no objects
are observed. These results are consistent with the previous results, highlighting that views
can be considered good when the background area represents 50% of the total area. With
this in mind, we analyze the following example.

1%: K-L=5.547,TV=0.888, χ2=79.72 1%: K-L=4.77,TV=0.796, χ2=63.965
50%: K-L=0.575,TV=0.398, χ2=0.649 50%: K-L=0.42,TV=0.32, χ2=0.455
99%: K-L=0.273,TV=0.093, χ2=1.765 99%: K-L=0.705,TV=0.182, χ2=7.123

Entropy: 0.69 Entropy: 1.08

1%: K-L=5.55,TV=0.888, χ2=79.72 1%: K-L=5.87,TV=0.92, χ2=85.83
50%: K-L=0.575,TV=0.398, χ2=0.649 50%: K-L=0.673,TV=0.431, χ2=0.751
99%: K-L=0.273,TV=0.093, χ2=1.765 99%: K-L=0.143,TV=0.059, χ2=0.714

Entropy: 0.69 Entropy: 0.5

Figure 9. Comparison of measures (TV: Total Variation, K-L: Kullback–Leibler, χ2 and Shannon
entropy) when zooming out the camera in a videogame scene, and computed with 100,000 rays.
The main character is a kitty with a yellow color head, enemies are grey color ghosts and grey color
gargoyles with a red torch. Percentages are the relative area assigned to the background.
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1%: K-L=6.64,TV=0.99, χ2=99.46 1%: K-L=6.4,TV=0.97, χ2=95.07
50%: K-L=1,TV=0.5, χ2=1 50%: K-L=0.89,TV=0.48, χ2=0.93

99%: K-L=0.015,TV=0.01, χ2=0.01 99%: K-L=0.04,TV=0.017, χ2=0.099
Entropy: 0 Entropy: 0.16

1%: K-L=6.15,TV=0.95, χ2=90.94 1%: K-L=5.1,TV=0.84, χ2=70.93
50%: K-L=0.776,TV=0.459, χ2=0.84 50%: K-L=0.46,TV=0.346, χ2=0.519
99%: K-L=0.067,TV=0.035, χ2=0.199 99%: K-L=0.486,TV=0.14, χ2=3.92

Entropy: 0.33 Entropy: 0.93

1%: K-L=5.44,TV=0.866, χ2=75.85 1%: K-L=5.69,TV=0.89, χ2=80.76
50%: K-L=0.62,TV=0.378, χ2=0.62 50%: K-L=0.69,TV=0.4, χ2=0.7
99%: K-L=0.44,TV=0.12, χ2=3.85 99%: K-L=0.33,TV=0.09, χ2=2.86

Entropy: 0.697 Entropy: 0.56

Figure 10. Comparison of measures (TV: Total Variation, K-L: Kullback–Leibler, χ2 and Shannon
entropy) when rotating the camera around a vertical axis in a video game scene, and computed with
100,000 rays. Main character is a kitty with yellow color head, enemies are grey color ghosts and grey
color gargoyles with a red torch. Percentages are the relative area assigned to background.
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The third evaluated scene is composed of the main character and five enemies, and
the rest of the scene is considered as background, see Figure 11. The main character is a
kitty with a yellow color head, enemies are grey color ghosts and grey color gargoyles with
a red torch. We see two different pairs of rear views, Figure 11 left and Figure 11 right.
Figure 11 bottom is zoomed out of Figure 11 top. In Figure 11 left, we cannot appreciate the
closest enemy behind the main character, while it is clearly visible in Figure 11 left. Thus,
we consider better views than the ones in Figure 11 right.

50%: K-L=0.8157,TV=0.4526, χ2=0.8396 50%: K-L=0.7314,TV=0.448, χ2=0.807
Entropy: 0.2579 Entropy: 0.32

50%: K-L=0.9149,TV=0.488, χ2=0.9532 50%: K-L=0.9066,TV=0.4877, χ2=0.9514
Entropy: 0.098 Entropy: 0.1059

Figure 11. Comparison of measures in a video game (TV: Total Variation, K-L: Kullback–Leibler, χ2

and Shannon entropy, percentages are the relative area assigned to background), and computed with
100,000 rays. The main character is a kitty with a yellow color head, enemies are grey color ghosts
and grey color gargoyles with a red torch. In the left images, the gargoyle behind main character is
not visible.

As another innovative aspect of the implemented method, we consider the importance
{pi} of different entities, as described in Section 3.4. Let us envision a scenario in a game
with an isometric view positioned behind the main character, featuring a scene populated
by eight enemies, four gargoyles and four ghosts. Our objective is to recommend to the
player a viewpoint that detects the highest risk. In this case, we deem gargoyles as more
offensive than ghosts. Consequently, we assign greater importance to gargoyles. Figure 12
compares two camera views where in Figure 12 left there are three ghosts and one gargoyle,
while in Figure 12 right there are three gargoyles and one ghost. Although, at first glance,
the view in Figure 12 left might appear preferable due to the enemies being slightly closer,
which is reflected in the lower values of the three measures considered, this view contains
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more ghost-type enemies, which are less aggressive to the player. Therefore, our interest
lies in detecting that the most dangerous area is the one in the view in Figure 12 right.
However, if we assign greater importance to gargoyles (2, 5, 10 and 20, respectively) while
ghosts are given importance 1, we observe that as the gargoyles’ importance increases
over ghosts one, K-L and χ2 measures will gradually identify the view in Figure 12 right
as superior.

No imp: K-L=0.4201, TV=0.2567, χ2 =0.4344 No imp: K-L=0.4461, TV=0.267, χ2=0.4491
imp 2: K-L=0.573, TV=0.2893, χ2=0.7169 imp 2: K-L=0.3785, TV=0.2436, χ2=0.3491
imp 5: K-L=0.8483, TV=0.352, χ2=1.6111 imp 5: K-L=0.363, TV=0.2387, χ2=0.3605
imp 10: K-L=1.0918, TV=0.3823, χ2=3.117 imp 10: K-L=0.3879 ,TV=0.2412, χ2=0.4832

imp 20: K-L=1.3519, TV=0.3992, χ2=6.1346 imp 20: K-L=0.4299, TV=0.2426, χ2=0.7675

Figure 12. Comparison of measures with importances in a video game (TV: Total Variation, K-L:
Kullback–Leibler, and χ2), computed with 100,000 rays. Background area = 50%. Results in top row
are given without importance, while in the second, third, fourth, and fifth row importance values of 2,
5, 10 and 20 are, respectively, assigned to gargoyles and importance 1 to ghosts. There are three ghosts
and one gargoyle visible in the left image, while three gargoyles and one ghost in the right image.

4.2. Computation Time

The computation time, obtained from the Time function provided by Unity, comprises
a preprocessing time, where areas are calculated and rays are generated, and the time
for finding the first hit for each ray and computing the form factors and the measures.
The rays are stored and reused for each viewpoint, as the intersections are computed in
camera coordinates. With a PC running Windows 10 Pro 64-bit, equipped with an Intel
Core i7-6700K CPU @ 4.00 GHz, 16.0 GB RAM, and an NVIDIA GeForce GTX 1080 graphics
card using Unity version 2020.3.30f1, the preprocessing time for 100,000 rays is of the order
of half a second. In Figure 13 we show the computation time for finding the first hits and
computing the measures for different numbers of rays. Time increases proportionally with
the number of rays, as expected. The increased cost in the scene in Figure 13 right with
respect to the one in Figure 13 left is due to its increased complexity.

The consistency in results suggests that our implementation is robust and scalable,
rendering it suitable for real-time applications and interactive environments.
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Rays Time (msec.)
1000 0

10,000 4
100,000 43

1,000,000 434

Rays Time (msec.)
1000 0

10,000 8
100,000 54

1,000,000 505

Figure 13. Computing time cost (in msec.) in two scenes and with different numbers of rays. The
time corresponds to finding first hit for rays and computing the measures. The computation of areas
and generation of rays is conducted only once in a preprocessing step, being the cost for 1,000,000
rays being around half a second.

5. Discussion

The Kullback–Leibler divergence is known for its sensitivity to differences in the
probability distribution between two sets of data. This makes it especially useful for
detecting significant changes in game scenes, as seen for instances in Figure 8, where K-L
divergence detects a significant difference between the two scenes while the difference
of the values for TV and χ-square divergences and Entropy are within the experimental
error threshold. However, K-L divergence can be expensive in terms of calculations in
complex scenes.

χ2 metric stands out for its simplicity and cheaper calculation, which makes it suitable
for real-time applications. It is useful to detect differences when areas seen are clearly
different, such as in Figures 5 and 6. However, it tends to be less sensitive to subtle
differences between distributions compared to K-L as shown in Figure 8.

As for the Total Variation, this is a standardized metric that should facilitate the
comparison and interpretation of values in different contexts. This metric, as well as the χ2

one and different from the K-L one, takes into account the objects that are not seen from the
camera, although the possible advantage of TV and χ2 divergences on K-L divergence is
counterbalanced by the use of a background area.

Entropy behaves well in most of our examples, except in Figure 5 upper left, where
zooming in on an object increases the entropy and Figure 8 where no improvements are
detected. Remember too that the entropy measure considers all objects of equal area
and thus the best measure (maximum entropy) would be to see all of them (including
background) with an equal form factor, independent of their relative area. On the other
hand, divergence measures have the advantage of taking into account the area of the object,
and the flexibility of being able to assign importance to them.

All in all, if computation is not an issue and discrimination between measures is a
must, K-L divergence can be recommended. If standardization is a must TV divergence can
be used, taking care of zooming in on objects. χ2 divergence represents a balance between
good discrimination and cheap computation.

6. Conclusions and Future Work

We have presented in this paper a framework for camera selection in video games that
uses information theoretic f-divergences to give the correlation between the visibility from
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the camera and the objective or target distribution. The visibility is measured by differential
area-to-area form factors that are efficiently computed by casting rays using importance
sampling Monte Carlo integration. The target by default is the area of the objects but can
be modified by assigning importance to them. Thus our approach allows us to take into
account the relative importance and preferences of each element in the game. For instance,
we can assign higher weights to main characters or key objects to assure higher visual
attention for them, in the function of the scene, player characteristics, and game objectives.
This can improve the aesthetics of the game and player immersion and experience. The
results show the correctness of our approach and seem to favor the K-L divergence as
the most discriminating one. We have also shown that the Shannon viewpoint entropy
measure is a particular case of K-L divergence when importances are proportional to the
inverse of the area.

Currently, our method does not take into account colors or textures for selecting the
best view. As part of future work, we plan to include color, illumination and textures, using
for instance the importance mechanism. We will also consider the inclusion of the narrative
of the game in the camera selection process, as well as more complex game environments,
with several kinds of objects and levels of complexity, and evaluate the impact in the
improvement of user experience in the different environments.

Another line of work will be to improve the computation time of measures. Using
coroutines, or leveraging Unity’s job system with the burst compiler to parallelize tasks
such as raycasting, can significantly improve performance and responsiveness in complex
game environments. Coroutines allow heavy computations to be spread over multiple
frames, which reduces frame rate drops and maintains smooth gameplay. Furthermore,
the job system and the burst compiler offer a more structured and efficient approach to
parallel computing, taking full advantage of multicore processors. Improved computational
efficiency is important as we plan to integrate more complex physical properties and
narrative elements into the camera selection process, ensuring that these advanced features
enhance the gameplay experience.

Reinforcement learning combined with a multi-agent system will be considered too.
A machine-learning agent would interact with the game environment, making decisions
on camera position and obtaining rewards according to improved visual quality. This
approach could contribute to a more customized and narrative-oriented camera selection.

We will also investigate the weighted combination of measures and dynamically adjust
the weights according to the kind of objects in the game. This approach could benefit from
a multi-agent system, that according to the kind of objects (foes, key elements in the plot or
main characters) computes the optimal weights for each metric.

Finally, an extension to 2d games will be considered [46].

Author Contributions: Conceptualization, M.Y.M. and M.S.; Methodology, M.S. and M.C.; Software,
M.Y.M.; Validation, M.Y.M., M.S. and M.C.; Resources, M.C.; Data curation, M.Y.M.; Writing—original
draft, M.Y.M., M.S. and M.C.; Writing—review & editing, M.Y.M. and M.S.; Visualization, M.Y.M.;
Supervision, M.S. and M.C.; Project administration, M.C.; Funding acquisition, M.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research has been funded by projects CIAICO/2021/037, CIACIF Predoctoral 2023
from Generalitat Valenciana and PDC2021-120997-C31/AEI/10.13039/501100011033 founded by
State Investigation Agency from Spanish Government.

Data Availability Statement: The original contributions presented in the study are included in the
article/supplementary material, further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Monte Carlo Computation of Form-Factors

Suppose first, the frustum covers the whole hemisphere. To solve the form-factor
hemisphere integral by Monte Carlo integration with importance sampling [7,8,42], let
us first consider that ω direction is given by the pair (θ, ϕ), and that dω = sin θdθdϕ.
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Then considering as pdf f (θ, ϕ, x) = cos θ sin ϕ
π , and taking N random directions {ωk =

(θk, ϕk)}N
k=1 according to (θ, ϕ) = (arccos

√
R1, 2πR2), where R1 and R2 are random values

from a uniform distribution in the interval [0,1], the value of F(dAx, oi) can be estimated as

F(dAx, oi) ≈ 1
N

N

∑
k=1

(
1
π

)
v(x, oi(ωk)) cos θk sin θk

f (θk, ϕk, xk)

=
1
N

N

∑
k=1

(
1
π

)
v(x, oi(ωk)) cos θk sin θk

cos θk sin θk
π

=
1
N

N

∑
k=1

v(x, oi(ωk)) =
Ni
N

,

where v(x, oi(ωk)) is a boolean that tells us whether object i is visible from x in direction
ωk = (θk, ϕk) and Ni is the number of hits on object i.

Consider now that we restrict the counting of hits on object oi to the ones that also hit
frustum Ω f r. Ni is now the number of rays that hit the frustum and object oi and N f r is the
total number of rays out of the original N cast that hit the frustum. As we only count the
first hit, ∑i Ni = N f r. The form-factors F(dAx, oi) have to be normalized, thus

F(dAx, oi) ≈
Ni

N f r
.
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