
RESEARCH ARTICLE

SegX-Net: A novel image segmentation

approach for contrail detection using deep

learning

S. M. Nuruzzaman NobelID
1, Md. Ashraful HossainID

1, Md. Mohsin KabirID
2, M.

F. MridhaID
3, Sultan Alfarhood4, Mejdl SafranID

4*

1 Department of Computer Science and Engineering, Bangladesh University of Business and Technology,

Dhaka Bangladesh, 2 Superior Polytechnic School, University of Girona, Girona, Spain, 3 Department of

Computer Science, American International University-Bangladesh, Dhaka, Bangladesh, 4 Department of

Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi

Arabia

* mejdl@ksu.edu.sa

Abstract

Contrails are line-shaped clouds formed in the exhaust of aircraft engines that significantly

contribute to global warming. This paper confidently proposes integrating advanced image

segmentation techniques to identify and monitor aircraft contrails to address the challenges

associated with climate change. We propose the SegX-Net architecture, a highly efficient

and lightweight model that combines the DeepLabV3+, upgraded, and ResNet-101 archi-

tectures to achieve superior segmentation accuracy. We evaluated the performance of our

model on a comprehensive dataset from Google research and rigorously measured its effi-

cacy with metrics such as IoU, F1 score, Sensitivity and Dice Coefficient. Our results dem-

onstrate that our enhancements have significantly improved the efficacy of the SegX-Net

model, with an outstanding IoU score of 98.86% and an impressive F1 score of 99.47%.

These results unequivocally demonstrate the potential of image segmentation methods to

effectively address and mitigate the impact of air conflict on global warming. Using our pro-

posed SegX-Net architecture, stakeholders in the aviation industry can confidently monitor

and mitigate the impact of aircraft shrinkage on the environment, significantly contributing to

the global fight against climate change.

1 Introduction

The skies above are dynamic ecosystems that react to different natural and artificial influences

rather than just being empty canvases for atmospheric occurrences. Aircraft engines are

among the latter and have drawn interest because of how they affect the atmosphere. More

than half of all aviation’s climate-related emissions come from contrails, which exacerbate the

effects of global warming [1]. High-altitude aircraft engines produce exhaust gases that may

condense into contrails, observable trails. In the setting of climate change and environmental

study, these long, wispy structures have drawn much attention. Contrails are complicated
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objects with wide-ranging effects; they are not merely ephemeral traces in the sky. On the one

hand, they support the Earth’s atmosphere’s radiative forcing, which has a cooling and warm-

ing impact. They may deflect sunlight and retain emitted longwave radiation due to their

microphysical characteristics and the ice crystals they contain, which can change the planet’s

energy balance. Contrails are crucial in affecting climate dynamics, much like their natural

counterparts, normal clouds. Contrails also have conflicting impacts, so how they affect the cli-

mate must be clarified. In Fig 1, an illustration showcases key components of high-altitude ice

cloud formation: engine-emitted water vapor and soot condensing on pre-existing aerosols,

resulting in the presence of frozen droplets and contrail ice particles. Due to the existence of

ice crystals, they may simultaneously strengthen the greenhouse effect, which traps heat while

reflecting sunlight and having cooling effects. Underscoring the complex connection between

contrails and climate, research on how these opposing factors balance out is still underway.

Scientists are attempting to determine how and to what degree engine designs, various fuels,

and atmospheric conditions contribute to climate change in light of the increased air traffic

causing a rise in aircraft emissions of contrails during the last two decades [2]. Despite efforts

to curb emissions, the stability of these figures over the last decade emphasizes the pressing

need for immediate and effective action [3]. Our research is driven by the urgent need to

address the environmental consequences of aircraft contrails and their association with emis-

sions. We recognized the need for an innovative approach that transcends conventional meth-

ods and harnesses the power of artificial intelligence to achieve exceptional results. Enter

SegX-Net, a segmentation architecture tailored for contrail analysis. Unlike traditional

approaches, SegX-Net capitalizes on a unique fusion of deep learning techniques. The basis of

our research is a crucial environmental concern: the influence of aircraft contrails on climate

change. Due to a substantial increase in air traffic, contrails significantly contribute to emis-

sions and global warming. Conventional approaches must be more comprehensive in dealing

with the complexities of identifying contrails from satellite images. Therefore, our primary

objective is to propose a groundbreaking solution. We selected to modify DeeplabV3+, incor-

porating ResNet-101 as the backbone. The choice is based on the exceptional capability of

ResNet-101 to extract delicate characteristics, which are crucial for deciphering the compli-

cated patterns of contrails in satellite photos. Along with the acclaimed DeeplabV3+, we thor-

oughly compare well-known models like U-Net, U-Net++, Attention U-Net, Trans U-Net, Res

Fig 1. Our research study observed that high-altitude ice cloud formation is facilitated by the condensation of water droplets on aircraft engine

soot and other aerosols.

https://doi.org/10.1371/journal.pone.0298160.g001
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U-Net, and Uc Trans U-Net. The dataset used in this research paper focuses on aircraft con-

trails, which are clouds of ice crystals formed in aircraft engine exhaust and contribute to

global warming by trapping heat in the atmosphere.

The main contributions of the paper include:

• Introduced the SegX-Net architecture, a modified version of DeepLabV3+ with ResNet-101

integration, by customizing the encoder part of the network and leveraging transfer learning,

leading to highly accurate and detailed contrail segmentation.

• The research emphasizes the significance of accurate aircraft contrail detection. By providing

an advanced image segmentation solution, SegX-Net contributes to the understanding and

mitigating contrail-induced environmental impact.

• Through extensive experimentation and evaluation, the study demonstrated that SegX-Net

outperforms traditional DeepLabV3+ models with VGG16, VGG19, VIT, Xception, Mobile-

NetV2, ResNet-18, ResNet34, and ResNet101 backbones. Our proposed architecture got

exceptional F1-scores and Intersection over Union (IoU) values, indicating its precision,

recall, and segmentation quality.

Our research paper contributes to understanding aircraft contrails’ environmental impact

and proposes an enhanced architecture for accurate contrail identification through image seg-

mentation. By integrating SegX-Net, we tried to fill a crucial research gap in accurately identi-

fying and analyzing aircraft contrails.

The remainder of the paper is organized as follows. In Section 2, we explore the body of lit-

erature in-depth, looking at several image segmentation techniques and their uses. Section 3

describes the dataset description, preprocessing procedures, SegX-Net design, and contrail for-

mation. Analysis of efficiency, insights into parameters, and comparison experiments about

assessment measures are discussed in Section 4. Section 5 gives an in-depth discussion of the

interpreted findings, including the implications for contrail detection and image recognition

of the climate. Finally, Section 6 summarizes our contributions, highlights the importance of

SegX-Net, and suggests possibilities for further study.

2 Related works

The foundation of any scientific endeavor lies in building upon the existing body of knowl-

edge. In contrail detection using image segmentation, a thorough exploration of related studies

is essential to position our work within the broader landscape. This section presents a compre-

hensive overview of the relevant literature, from image segmentation techniques to the intri-

cate relationship between contrails and climate impact. By delving into these studies, we gain

valuable insights that contribute to the foundation of our novel approach, SegX-Net, designed

to transform contrail detection through advanced deep learning techniques. Global warming

arises from a mix of natural and human-emitted gases that trap heat, causing the Earth’s tem-

perature to increase. These greenhouse gases, like carbon dioxide and methane, obstruct the

average energy radiation balance. In the realm of air transport’s environmental effects, aside

from emissions and noise, the impact of contrails on the Earth’s radiation balance is a concern-

ing area that needs more comprehensive understanding and precise data [4]. Previous studies

have explored various strategies, such as operational changes in air traffic control, to mitigate

contrail-induced greenhouse effects. While some investigations focus on the potential benefits

of altering cruise flight levels, others acknowledge the complexity and uncertainty surrounding

contrail formation and climate impact, underscoring the ongoing need for comprehensive

research in this domain [5]. Identifying contrails in aerial images is a difficult task since they
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closely resemble natural cirrus clouds and undergo form variations over time [6]. Paoli et al.

[7] discovered that in an aircraft regime, at lower temperatures and greater humidity, contrails

begin to develop near the engine’s edge. While successful in predicting contrail formation,

challenges persist in predicting persistence due to humidity uncertainties. The study delves

into predicting contrail formation, persistence, and radiative forcing through aviation weather

forecasts. Notably, the paper suggests considering the ambient atmosphere’s dynamics to pre-

dict strong contrails. This work contributes vital insights into mitigating aviation’s climate

impact and underscores the need for refining contrail prediction methods to combat climate

change [8]. An instrumental tool in this endeavor is image segmentation applied to satellite

and aerial imagery, enabling the identification of critical climate change contributors like

deforestation, urban heat islands, and melting glaciers. Precise segmentation of these regions

empowers targeted interventions to mitigate the effects of global warming [9]. U Schumann

et al. [10] investigated strategies to mitigate aviation’s climate impact through optimized flight

routes considering contrail formation and fuel consumption. It introduces climate-optimized

routing using the Contrail Cirrus Simulation Prediction tool (CoCiP) and discusses its poten-

tial to reduce global warming effects. The study addresses the radiative forcing of the contrail-

induced cirrus cover and highlights the need for further validation and refinement of the

CoCiP model for accurate contrail prediction. This research aligns with the broader discourse

on aviation’s environmental consequences and emphasizes the significance of route optimiza-

tion for climate protection. In another case, the paper of [11] comprehensively reviews climate

change mitigation strategies, encompassing conventional efforts, negative emissions technolo-

gies, and radiative forcing geoengineering. It underscores the insufficiency of conventional

mitigation to achieve Paris Agreement targets and explores alternative routes. The study high-

lights the importance of practical solutions like biogenic-based sequestration techniques,

which require policy support, carbon pricing mechanisms, and increased research funding for

effective implementation. Also, the study of K Segl et al. [12] introduces a novel approach for

detecting small objects in high-resolution satellite imagery by combining supervised shape

classification with unsupervised image segmentation iteratively. It emphasizes the significance

of shape contrast and object size for accurate detection and discusses potential enhancements

through multispectral or hyperspectral imagery. This approach holds practical implications for

applications like urban monitoring and vegetation analysis, addressing the challenge of object

detection in high-resolution panchromatic satellite images. A pioneering study by JP Hoffman

et al. [13] introduces an innovative application of Convolutional Neural Networks (CNNs) in

contrail detection within satellite imagery. Repurposing the U-Net architecture, initially devel-

oped for detecting sea ice leads, this approach accurately identifies contrails through image

segmentation. Furthermore, a cooperative strategy utilizing Fuzzy C-means and Self-Organiz-

ing Maps attains high accuracy in segmenting satellite images [14]. Researching global cloud

and aerosol properties, radiative energy balance, 3D cloud morphology, and infectious disease

risk due to climate fluctuations highlighted the importance of studying contrails’ effects on

radiative balance and cloud formation in various contexts. The proposed multistep protocol

for contrail detection and segmentation in AVHRR images shows promise in identifying con-

trail properties yet acknowledges challenges in detecting certain types and improving algo-

rithm precision [15]. The study also revealed that converting the RGB color space to HSV

enhanced segmenting satellite images, indicating the practical utility of color space transfor-

mations in this context [16]. The paper by Andre L. Barbieri et al. [17]presents an entropy-

based image segmentation method for color images from Google Earth, enabling automated

monitoring of ecological and geographical changes. It underscores the significance of color

information for precise segmentation and highlights applications in disaster mapping, climate

change monitoring, and ecological studies. The approach’s potential for improvement via
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window size adjustments and complementary statistical measures is also emphasized. An auto-

matic algorithm combining watershed segmentation and region merging demonstrates prom-

ising performance on Google Earth images [18]. Studies revealed that mathematical

morphology and watershed transformation algorithms offer segmentation benefits, yet they

grapple with challenges such as over-segmentation and computational complexity [19]. B

Dezso et al. [20] presents a comprehensive review of graph-based image segmentation meth-

ods applied to satellite image classification. It evaluates four algorithms and discusses their the-

oretical foundations, implementation details, and potential improvements. The study

highlights the significance of image segmentation in remote sensing for land cover identifica-

tion and suggests avenues for future research to enhance algorithm performance and practical

application. Leveraging geostationary satellite imagery, weather data and air traffic informa-

tion, these studies offer insights into contrail evolution and climate impact. Deep learning

techniques like instance segmentation are explored for efficient detection. Integration of mul-

tiple observation methods and identification of contrail-producing aircraft contribute to

advancing contrail research for climate validation and modeling improvement [21]. Recently,

there has been a significant increase in research efforts to improve image segmentation meth-

ods by using deep learning techniques. This is due to the impressive performance of deep

learning models in visual tasks [22, 23].

Advancements in image processing have led to the emergence of image segmentation tech-

niques, prominently in medical and satellite imagery domains. This paper introduces and eval-

uates three methods for satellite image segmentation: K-means Clustering, Thresholding

Technique, and Active contour. By assessing their performance using parameters like Segmen-

tation Accuracy and Correlation Ratio, the study aids in identifying practical options for satel-

lite image analysis. The proposed Active Contours technique exhibits promising results,

highlighting its potential for real-world implementation [24]. In the context of advancing

semantic segmentation techniques, this study of [25] introduces an innovative algorithm

addressing accuracy and object boundary segmentation challenges. The algorithm demon-

strates improved performance in segmenting high-resolution images by leveraging multi-level

cascading residual structures and multiple loss function constraints. While the experimental

results on Cityscapes and CamVid datasets are promising, comprehensive analysis of its appli-

cability, comparative assessments, and real-world implications remain avenues for future

exploration. Recently, McCloskey et al. [26] conducted research and provided a restricted set

of human-labeled Landsat photographs for the scientific community. In another recent study

by Ng et al. [27], a comprehensive effort was made to create an open dataset for contrails

observed over the United States. This was achieved by utilizing satellite footage from the

GOES-16 satellite.

The subsequent unveiling of SegX-Net’s architecture, training process, and evaluation met-

rics in this paper is a significant step towards comprehending and mitigating contrail impacts

on global warming, revolutionizing climate research. This paper critically reviews image seg-

mentation methods to identify the most suitable techniques for contrail identification. Thus,

we propose using an innovative AI-driven technique called SegX-Net for accurate contrail

identification. Through this approach, we aim to revolutionize climate research by providing a

powerful tool for monitoring and mitigating the effects of aircraft contrails on our

environment.

3 Methodology

The research methodology is organized into interconnected phases, illustrated in Fig 2, to

enhance contrail detection efficiency through the innovative SegX-Net architecture. It begins
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with meticulous data preprocessing and splitting into training and validation subsets. The

dataset is split into training and valid subsets, enabling unbiased SegX-Net assessment. Crucial

backbone network models, including VGG16 [28], VGG19 [29], VIT [30], Xception [31],

ResNet18 [32], ResNet34 [33], ResNet101 [34] and MobileNetv2 [35], establish the foundation

for SegX-Net.

Simultaneously, the architecture and backbones analyze the training subset, refining image

segmentation precision. The subsequent phase involves comprehensive performance evalua-

tion, leading to a succinct comparison table showcasing the contrail detection prowess of each

backbone under SegX-Net. This methodical progression harnesses SegX-Net’s power to rede-

fine contrail detection precision, contributing to advancements in this vital field. UNet and

DeepLab are top-rated models in the field of aerial photography due to their exceptional per-

formance in image segmentation tasks and their ability to effectively include both global and

local information [6]. We used the DeepLabV3+ architecture as our segmentation network

during this study. An improvement on the Deeplabv3 architecture, Deeplabv3+ has a more

streamlined and effective decoding module for improving semantic segmentation perfor-

mance and refining feature information [36]. When it comes to segmentation, Deeplabv3

+ outperforms the previous Deeplab-series networks [37]. DeepLabV3+ is a state-of-the-art

model for image segmentation tasks that has demonstrated excellent performance and accu-

racy in segmenting images. This architecture incorporates a powerful encoder-decoder struc-

ture, atrous convolutions, and skip connections to capture multi-scale contextual information

Fig 2. Illustration of the systematic framework employed in this study that visually represents the step-by-step process of the proposed approach.

https://doi.org/10.1371/journal.pone.0298160.g002
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and achieve precise segmentation results. By leveraging DeepLabV3+, we aimed to enhance

the accuracy and effectiveness of our image segmentation tasks and achieve high-quality seg-

mentation outputs, thus using a different architecture named SegX-Net. The network details

are illustrated in Fig 5. The input images used in the present study are high-resolution satellite

photographs that depict real-world circumstances, including prominent aircraft contrails. Seg-

mentation aims to accurately detect and analyze these contrails in the photos, enabling a thor-

ough investigation of their distribution and contributing to a full comprehension of their

environmental influence, particularly in climate change.

3.1 Dataset description

In this study, we used a dataset obtained from Kaggle [38]. From there, we took 18000 images,

which were divided into two subsets: a training set and a validation set. These images were

sourced from the GOES-16 Advanced Baseline Imager (ABI) [39], and access to the original

data was facilitated through Google Cloud Storage. The technical specifications of the ABI sen-

sor, including resolution and spectral bands, are explicitly detailed to offer readers comprehen-

sive insights into the data source. To adapt the full-disk images, bilinear resampling was

applied, resulting in localized scene images. The training set comprised 14,400 images,

accounting for 80 percent of the entire dataset, while the validation set contained 3,600 images,

making up the remaining 20 percent. This division was crucial to ensure the effectiveness and

generalizability of our model’s performance. The training set played a vital role in training our

model, enabling it to learn and extract meaningful features from a diverse range of images. We

also tested our model on 1000 new images that were not used during training and validation.

This helps ensure the reliability and generalization capability of our model. In the dataset sec-

tion, we present a diverse set of input images that play a pivotal role in our research on contrail

detection, is shown in Fig 3. These images encompass various elements, including false color

representations, ground truth contrail masks, and overlays of contrail masks on false color

images. The false color images provide unique visual insights, showcasing essential spectral

information for our analysis. Meanwhile, the ground truth contrail masks offer precise outlines

of contrail regions, serving as valuable reference data for model evaluation and training. We

comprehensively understand contrail distribution and spatial relationships within the original

scenes by superimposing contrail masks on false color images. By utilizing such a substantial

portion of the dataset for training, we optimized the model’s parameters and refined its seg-

mentation predictions, ultimately enhancing its accuracy and performance. On the other

hand, the valid set served as an independent and unseen dataset, used explicitly to evaluate our

trained model’s generalization capabilities.

Fig 3. Sample input images from the dataset are showcased, providing an overview of the data variety and

content.

https://doi.org/10.1371/journal.pone.0298160.g003
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By assessing the model’s performance on this valid set, we obtained an unbiased estimation

of its effectiveness in segmenting new, previously unseen images. The distribution of images in

our training dataset shown in Fig 4 holds significant insights into the prevalence of contrail

and non-contrail images. The first pie chart reveals a nuanced balance, with approximately

45.8% of images portraying contrails and 54.2% depicting scenes without contrails. This equi-

librium underscores the diverse nature of our dataset, ensuring a comprehensive representa-

tion of real-world scenarios. Moreover, the second pie chart further illuminates this

distribution, highlighting 29.4% percent contrail images and 70.6% percent non-contrail

images. These proportions emphasize the prominence of non-contrail instances and reinforce

the complexity of our task, as the model must discern and accurately segment contrails within

a predominantly non-contrail context.

3.2 Data pre-processing

The image data underwent several crucial preprocessing steps in the initial training and valida-

tion preparation stages. Firstly, the images were converted into an array format with dimen-

sions of 256x256, taking into account the presence of 3 color channels. The dataset was

partitioned to ensure an unbiased evaluation, with 80% of the data being used for training and

the remaining 20% for validation. One of the most essential steps in the preprocessing pipeline

was image normalization, which aimed to establish consistency in pixel values across the data-

set. The standard methods used included scaling the pixel values to a specific range, such as

dividing them by the maximum value or applying a zero-mean normalization technique by

subtracting the mean and dividing by the standard deviation. Implementing these preprocess-

ing steps significantly improved the model’s resilience and adaptability, allowing it to handle

various inputs and perform effectively on unseen data. It was crucial to consistently apply the

same preprocessing techniques to both the training and validation sets to ensure fairness in

evaluation and accurate performance assessment.

3.3 Proposed architecture

In this work, we proposed an enhanced architecture by integrating ResNet-101 as the back-

bone network into the DeepLabV3+ model [31]. The decision to incorporate ResNet-101

Fig 4. Illustration of the contrail and non-contrail distribution in the training and valid dataset split.

https://doi.org/10.1371/journal.pone.0298160.g004
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into our model is crucial for enhancing segmentation performance in our particular environ-

ment. The deep architecture and skip connections of ResNet-101 are crucial for effectively

analyzing the delicate features in satellite photos and understanding the complicated patterns

of contrails. Our model’s properties enable it to accurately record and transmit detailed

information, which is particularly important for identifying and describing the unique and

often subtle aspects of aircraft contrails in the images. The architecture’s profound and

sophisticated feature extraction processes make it a prudent choice specifically designed to

meet the requirements of our contrail detection assignment, thereby improving the model’s

ability to segment objects accurately. Our proposed architecture is shown in Fig 5. Our

research’s encoder component of DeepLabV3+ utilizes ResNet-101 as the backbone network.

By incorporating ResNet-101, our model can leverage its capabilities to extract high-level

abstract information from the input image [40]. The input image is passed through convolu-

tional blocks in ResNet-101, which perform successive convolutions and pooling operations

to extract hierarchical features at different levels of abstraction. The convolutional layers cap-

ture local patterns and spatial information, while the pooling layers downsample the feature

maps while retaining important features. The decoding part of DeepLabV3+ focuses on

refining and enhancing the features obtained from the encoder. The shallow features from

Fig 5. The diagram presents the architectural structure of SegX-Net, the novel model introduced in our research, delineating its key components

and their interconnections.

https://doi.org/10.1371/journal.pone.0298160.g005
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the encoder are merged with the upsampled deep features, and convolutional operations are

applied to refine the feature details. This refinement process aims to improve the segmenta-

tion predictions by enhancing the feature representation. Finally, the refined features’ resolu-

tion is restored through bilinear upsampling, resulting in the final segmentation map. Fig 5

visually represents the intricate structure of the network model described in this article. The

figure highlights distinct elements, with the blue and yellow sections signifying 1x1 convolu-

tions and 3x3 convolutions, respectively. Additionally, the figure demonstrates the utiliza-

tion of maximum pooling and up-sampling techniques. During the encoding phase, the

network performs through a series of operations, including 1x1 convolutions, which has

channels of 64, three sets of 3x3 convolutions, which have 128 channels rate 6, 256 channels

rate 12, 256 channels rate 18 respectively, and also maximum pooling. These operations col-

lectively enable the network to extract and capture meaningful features from the input data.

In the decoding phase, a single set of 1x1 convolutions is employed to restore the original

size of the feature map. Following this, a combination of up-sampling and 3x3 convolutions

is employed to generate the final prediction image, accomplishing the image segmentation

task. The figure includes annotations that specify the layer names, output feature map sizes,

and the corresponding operations involved, such as Conv for convolution, image pooling for

maximum pooling, and upsample for up-sampling.

3.4 Residual module block

The Deep Residual Network, proposed by [41], introduced the concept of residual learning.

The residual refers to the discrepancy between the observed and estimated values. Assuming

the input to the network is denoted as x and the expected mapping as M(x), the network map-

ping can be reformulated as the residual, represented by F(x), as shown in Eq (1).

MðxÞ ¼ FðxÞ þ x ð1Þ

Here, x represents the characteristic mapping of the upper layer network, F(x) denotes the

residual of the current layer and M(x) represents the observed value at that layer, forming the

relationship depicted in Eq (2).

xNþ1 ¼ xN þ FðxNÞ ð2Þ

xN ¼ xi þ
XN� 1

i¼1

FðxiÞ ð3Þ

Although both M(x) and F(x) + x yield the same effect, optimizing F(x) is simpler compared

to optimizing M(x). By considering the relationships between different layers, expressed in Eqs

(3) and (4), the residual F(xN) is added to the previous layer’s output xN to obtain the output of

the current layer, xN + 1.

@Loss
@Ip

¼
@Loss
@Iq

þ
@Loss
@Iq

∗
@

@Ip

XN� 1

i¼1

F � ðxiÞ ð4Þ

To ensure optimal network performance, it is crucial to strike a balance in terms of network

depth. While a certain depth may lead to the best model performance and lowest loss, further

increasing the network depth could potentially result in network degradation. To address this,

the concept of the residual network is introduced, enabling the residual F(x) to approach zero

and maintaining the network in an optimal state.
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3.5 ResNet-101 encoder

In the SegX-Net architecture, ResNet-101 serves as an essential encoder, contributing to the

network’s ability to capture intricate features from input images effectively shown in Fig 6.

ResNet-101, introduced by [42], is a deep convolutional neural network that introduces a

novel approach to addressing the vanishing gradient problem in deep neural networks.

ResNet-101, a variant comprising 101 layers, employs residual blocks that facilitate extracting

meaningful features. Notably, in the SegX-Net framework, ResNet-101 is not a feature extrac-

tor but an integral component for enhancing the network’s segmentation capability. ResNet-

101’s architecture is characterized by its depth and structure, involving stacked residual blocks.

Each residual block incorporates convolutional layers and shortcut connections bypassing cer-

tain layers. This design allows the network to adjust input features directly and learn more

abstract features through subsequent layers. The architecture also integrates bottleneck struc-

tures to optimize computational efficiency by reducing convolutional layer complexities.

These bottlenecks employ 1x1, 3x3, and 1x1 convolutional layers to selectively decrease input

and output channels. Additionally, ResNet-101 includes global average pooling and fully con-

nected layers at the end, culminating in a final classification or segmentation output. Although

not used for feature extraction in SegX-Net, ResNet-101’s depth and shortcut connections con-

tribute to its proficiency as an encoder in the network’s image segmentation process.

3.6 Architectural framework and comparative backbone models

During this study, we harnessed the power of transfer learning to enhance the performance of

our image segmentation model. After a thorough evaluation of VGG16, VGG19, VIT, Xcep-

tion, MobileNet_V2, ResNet18, ResNet34, and ResNet101, we found that ResNet101 exhibited

superior performance and accuracy, prompting its seamless integration as an encoder into our

segmentation architecture. Fine-tuning the model on our dataset allowed it to adapt to our

requirements while retaining essential learned features. Adopting transfer learning addressed

data limitations and expedited training, leading to improved results and heightened accuracy

in our image segmentation. This integration empowered our model to capture meaningful pat-

terns effectively, making it a pivotal element in elevating our image segmentation research’s

overall performance and effectiveness. This adaptation aimed to balance capturing detailed

features and maintaining computational efficiency. By integrating ResNet-101 into SegX-Net,

we harnessed the enhanced capabilities of ResNet-101 while preserving the efficient encoding-

decoding architecture of DeepLabV3+. This integration successfully improved segmentation

accuracy, as evidenced by our experimental results. In summary, the integration of ResNet-

101 into SegX-Net represents a strategic enhancement to the original architecture of Dee-

pLabV3+. This integration allowed us to leverage cutting-edge techniques, resulting in supe-

rior segmentation performance.

Fig 6. This illustration provides a visual representation of the ResNet-101 architecture, shedding light on its

intricate design and layer connectivity.

https://doi.org/10.1371/journal.pone.0298160.g006
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In this research, we benchmarked the performance of SegX-Net against several top image

segmentation architectures to conduct a thorough comparison analysis. This comprised well-

known models, including DeeplabV3+, Attention U-Net, Trans U-Net, Res U-Net, U-Net++,

and U-Net. We sought to identify SegX-Net’s advantages relative to these well-known architec-

tures by comparing these models across many essential performance measures, including IoU

and F1 scores. By comparing SegX-Net with cutting-edge segmentation frameworks, this com-

parative method shows the exceptional contributions of SegX-Net and offers insightful infor-

mation about how well it detects contrails.

3.7 Enhanced SegX-Net model

In this work, we proposed an enhanced version of the DeepLabV3+ model by modifying its

encoder part with ResNet-101 shown in Fig 7. Specifically, we focused on improving the initial

process by changing the first two blocks out of the original five blocks. In the first block, we

replaced the 1x1 convolution followed by 256-neuron ReLU activation with a 1x1 convolution

followed by 64-neuron ReLU activation–this modification aimed to reduce the dimensionality

of the feature maps while preserving the relevant information. Similarly, in the second block,

we replaced the 3x3 convolution followed by 256-neuron ReLU activation with a 3x3 convolu-

tion followed by 128-neuron ReLU activation, maintaining the same atrous rate of 6. This

adjustment allowed for a more fine-grained feature representation at the atrous rate. We

observed that these modifications in the encoder part yielded improved results compared to

Fig 7. Clear visual comparison of modified and original architecture segments, showcasing enhancements in our

model.

https://doi.org/10.1371/journal.pone.0298160.g007
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the original DeepLabV3+ model. The enhanced model exhibited enhanced segmentation accu-

racy and detail preservation, improving overall performance. Fig 7 compares the original Dee-

pLabV3+ encoder part and our modified version. The figure highlights the changes made in

the first two blocks, illustrating the altered architecture and visually representing the improved

process. We conducted comprehensive evaluation experiments to quantify the performance

improvement using various evaluation metrics, including IoU and F1 scores. The results dem-

onstrate that our enhanced model outperforms the original DeepLabV3+ model, achieving

higher accuracy and better segmentation results. These findings highlight the efficacy of the

proposed modifications in the encoder part of DeepLabV3+ with ResNet-101 and their posi-

tive impact on the model’s overall performance. The following section presents a detailed anal-

ysis and comparison of the performance between the original DeepLabV3+ model and our

enhanced version, further substantiating the superiority of the modified architecture.

4 Experimental results

In this research, we presented the results of our experiments evaluating the performance of the

SegX-Net model for image segmentation in addressing contrail detection challenges. The data-

set focused on contrails, obtained from NOAA GOES-16, was preprocessed by transforming

images into 256x256 arrays with 3 color channels. Evaluation metrics included Intersection

over Union (IoU), F1 score and Dice Loss as the loss function during training.

4.1 Evaluation metrics

To evaluate the performance of each model and effectively assess its learning capabilities, this

experiment employed multiple control parameter variables for evaluation. The primary evalu-

ation metrics included the F1 score and Intersection over Union (IoU).

4.1.1 IoU. When it comes to measuring the accuracy of image segmentation, the Intersec-

tion over Union (IoU) is widely regarded as a representative evaluation metric.

IoU ¼
TP

TP þ FP þ FN
ð5Þ

IoU quantifies the overlap between the predicted values generated by the model and the

true values represented by the sample labels. It provides a measure of the alignment and agree-

ment between the predicted and ground truth segmentation masks, reflecting the accuracy

and quality of the segmentation results.

4.1.2 F1 score. Additionally, the F1 score provides a balanced measure of precision and

recall, considering both the true positives and false positives in the segmentation predictions.

Together, the F1 score and IoU offer comprehensive insights into the model’s performance

and effectiveness in image segmentation tasks.

F1Score ¼ 2 ∗
recall ∗ precision
recall þ precision

ð6Þ

4.1.3 Dice loss. The Dice Loss was used in during the research as a loss function during

the training of our image segmentation model. Its utilization served two primary purposes: to

guide the model’s optimization process and to align the predicted segmentation masks with
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the ground truth masks.

DiceLoss ¼ 1 �
2
Pk

i¼1
xi ∗ yi

Pk
i¼1

xi þ
Pk

i¼1
yi

ð7Þ

The Dice Loss was an integral part of our research, serving as a key component in optimiz-

ing the model’s performance and enhancing the accuracy and quality of our image segmenta-

tion results. Its usage helped align our model’s predictions with the ground truth, ultimately

leading to improved segmentation accuracy and precise delineation of objects in the resulting

segmentation masks. In the equation. Xi indicates the predicted target category and yi indi-

cates the actual target category.

4.1.4 Dice coefficient. Within the realm of image segmentation, where computers manip-

ulate pixels and reality wields the brush, the Dice coefficient arises as a reliable measure of pre-

cision. It functions as a measurement tool to assess the degree of overlap between a predicted

area, such as a tumor or a contrail, and the actual region. The correlation between the Dice

score and the fit is directly proportional, indicating a stronger alignment between prediction

and reality as the Dice score increases.

DiceCoef f icient ¼
2TP

2TP þ FN þ FP
ð8Þ

4.1.5 Sensitivity analysis. Sensitivity in image segmentation, measures the algorithm’s

ability to correctly identify positive instances, crucial in applications like medical imaging. A

sensitivity value close to 1 indicates effective detection of relevant regions, while lower values

suggest potential misses. Sensitivity analysis involves varying parameters to understand how

the algorithm responds to changes, aiding optimization for specific applications.

Sensitivity ¼
TP

TP þ FN
ð9Þ

4.2 Efficiency analysis and comparison

An essential aspect of evaluating the SegX-Net architecture’s effectiveness is assessing its

computational efficiency in contrast to existing models. This analysis sheds light on the archi-

tectural optimizations that SegX-Net introduces. Notably, a comparative examination of

parameter sizes between SegX-Net and the default DeepLabV3+ model with ResNet-101 show-

cases SegX-Net’s streamlined design, boasting a parameter count of 33,815,745 as opposed to

the default model’s 35,278,721. This reduction in parameter count signifies SegX-Net’s poten-

tial for optimized memory usage, as evident by its memory size of 129 MB compared to Dee-

pLabV3+ with ResNet101’s 135 MB. Furthermore, when considering time complexity,

SegX-Net demonstrates its efficiency by achieving an average processing time of 694ms per

iteration, iterated ten times on average, while the default DeepLabV3+ with ResNet-101

requires 901ms. This rigorous analysis underscores SegX-Net’s computational superiority,

making it a promising solution for enhancing contrail detection efficiency and outperforming

existing models in terms of both memory utilization and processing speed.

4.3 Parameter analysis

For evaluating the model, we employ key metrics such as Intersection over Union (IoU),

F1-score and Dice Loss, Dice Coefficient and sensitivity analysis. The results are presented
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through insightful line plots, illustrating the Dice Loss, IoU and F1-score, Dice Coefficient and

sensitivity analysis for both the training and valid sets over epochs. We have showcased the

quantitative results obtained from the training and valid sets.

Fig 8 presents the F1 score plot, which balances precision and recall, reflecting the model’s

segmentation performance.

Fig 9, displays the IoU plot, highlighting the model’s accuracy in capturing object bound-

aries and overall segmentation quality.

Fig 10, illustrates the Dice Loss plot, providing insights into the model’s optimization pro-

cess and alignment with ground truth masks.

The effectiveness of SegX-Net is shown in Fig 11 the use of dice coefficient performance

assessment.

The results of the sensitivity study shown in Fig 12 revealed that SegX-Net had an extraordi-

nary true positive detection rate and a low number of false negatives, which confirmed its

effectiveness in picture segmentation work.

Fig 8. Illustration of F1-score visualization, demonstrating its utility in quantifying the performance of SegX-Net.

https://doi.org/10.1371/journal.pone.0298160.g008

Fig 9. Visualization of SegX-Net performance using Intersection over Union (IOU) metric, showcasing the

effectiveness of the model.

https://doi.org/10.1371/journal.pone.0298160.g009

PLOS ONE SegX-Net

PLOS ONE | https://doi.org/10.1371/journal.pone.0298160 March 5, 2024 15 / 23

https://doi.org/10.1371/journal.pone.0298160.g008
https://doi.org/10.1371/journal.pone.0298160.g009
https://doi.org/10.1371/journal.pone.0298160


Fig 10. Illustrating the performance evaluation of SegX-Net through the utilization of Dice loss, providing

insights into the model’s efficacy.

https://doi.org/10.1371/journal.pone.0298160.g010

Fig 11. Illustrating SegX-Net’s efficacy through Dice coefficient performance evaluation.

https://doi.org/10.1371/journal.pone.0298160.g011

Fig 12. Upon sensitivity analysis, SegX-Net demonstrated exceptional true positive detection and minimal false

negatives, confirming its efficacy in image segmentation.

https://doi.org/10.1371/journal.pone.0298160.g012
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4.4 Comparative experiment

In the results section, our experiments with the SegX-Net model unveil remarkable out-

comes, showcasing an exceptional F1 score of 99.47% (Table 1) and an impressive IoU score

of 98.86% and (Table 2). These scores, complemented by the Dice Loss plot (Fig 10) offering

insights into the model’s optimization, the captivating IoU plot (Fig 8) demonstrating its

unprecedented accuracy and the striking F1 score plot (Fig 9), collectively attest to the revo-

lutionary capabilities of SegX-Net. Additionally, we have introduced Dice Coefficient (Fig

11) and Sensitivity Analysis (Fig 12), further solidifying the model’s exceptional segmenta-

tion performance. These extraordinary achievements establish SegX-Net as a pioneering

solution, advancing contrail detection through cutting-edge artificial intelligence. The

remarkable sensitivity, notably during training with 98.82%, shown in (Table 2), that the

model can recognize most contrails in images. As we balance sensitivity and accuracy, we

must consider environmental monitoring’s contrail detection goals. Although our SegX-Net

achieves a slightly lower Dice Coefficient score on the training set compared to VGG16

(71.79% vs. 72.61%), it is crucial to take into account the larger context. Our model exhibits

improved performance compared to VGG16, as shown by a Dice Coefficient score of 73.55%

on the validation set. The validation set serves as a crucial indicator of generalization. This

review highlights the strong and flexible nature of SegX-Net in accurately capturing the com-

plex patterns of contrails. Although training performance is important, the validation results

emphasize the model’s effectiveness in real-world situations, confirming its status as an

advanced solution for contrail identification.

Table 1. Comparison results of model’s backbone with different architectures based on IoU scores and dice coefficient.

Model Backbone Train (IoU) Val (IoU) Train (Dice) Val (Dice)

VGG16 [28] 82.97% 72.11% 72.61% 56.62%

VIT [30] 97.56% 86.45% 59.50% 56.62%

VGG19 [29] 85.21% 82.92% 67.84% 51.23%

Xception [31] 88.87% 92.51% 42.72% 40.54%

ResNet 18 [32] 89.62% 99.28% 45.95% 35.83%

ResNet 34 [33] 92.47% 96.88% 60.45% 61.65%

ResNet 101 [34] 96.97% 96.13% 59.53% 54.48%

MobileNet_V2 [35] 95.72% 94.88% 68.48% 70.19%

SegX-Net 98.86% 99.54% 71.79% 73.55%

https://doi.org/10.1371/journal.pone.0298160.t001

Table 2. Comparison results of models backbone with different architectures based on F1-scores and sensitivity.

Model Backbone Train(F1) Val(F1) Train(Sensitivity) Val(Sensitivity)

VGG16 [28] 88.85% 80.00% 85.87% 88.68%

VGG19 [29] 91.44% 86.57% 88.21% 79.39%

VIT [30] 96.56% 87.67% 76.56% 66.91%

Xception [31] 94.82% 92.98% 80.72% 82.99%

ResNet18 [32] 96.25% 94.93% 87.95% 85.27%

ResNet34 [33] 97.58% 96.29% 96.59% 91.82%

MobileNet_V2 [35] 97.71% 97.92% 95.68% 93.91%

ResNet101 [34] 97.45% 96.21% 91.70% 92.58%

SegX-Net 99.47% 99.77% 98.82% 96.97%

https://doi.org/10.1371/journal.pone.0298160.t002
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Here, we have shown a comprehensive analysis of the performance metrics for each model

on both Intersection over Union (IoU), Dice-Coefficient in Table 1 and F1-score, Sensitivity

Score in Table 2.

Table 1 provides an in-depth comparison of the IoU scores obtained by the different models

on both the training and valid sets. The results clearly illustrate the exceptional segmentation

accuracy achieved by SegX-Net, with an outstanding IoU score of 98.86% on the training set

and an impressive 99.54% on the valid set. This demonstrates the model’s ability to accurately

capture object boundaries and produce high-quality segmentations, outperforming all other

models, including DeepLabV3+ with VGG16, VGG19, VIT, Xception, MobileNet_V2,

ResNet18, ResNet34 and ResNet101.

In Table 2, we delve into the F1-scores of each model on the training and valid sets, shed-

ding light on their segmentation performance in finer detail. The results reveal the exceptional

capabilities of SegX-Net, achieving a remarkable F1-score of 99.47% on the training set and an

extraordinary 99.77% on the valid set. These scores surpass the performance of DeepLabV3

+ with VGG16, VGG19, VIT, Xception, MobileNet_V2, ResNet18, ResNet34 and ResNet101

by a substantial margin. Such exceptional F1-scores indicate the model’s precision and recall

capabilities, affirming its ability to achieve superior segmentation results.

Our SegX-Net model significantly outperforms these models in terms of Intersection over

Union (IoU) scores when compared to a group of cutting-edge competitors shown in Table 3,

including U-Net, U-Net++, Attention U-Net, Trans U-Net, Res U-Net, Uc Trans U-Net, and

DeeplabV3+. The results demonstrate our proposed SegX-Net’s better accuracy and efficiency

in separating contrail clouds. In climate research, aviation studies, and environmental moni-

toring, where the precision of contrail cloud identification is crucial, SegX-Net demonstrates a

greater capacity to properly identify contrail areas with a higher IoU score. As a result, it is a

useful tool in these fields.

In parallel evaluations of the same models, we focus on F1 scores, a statistic that balances

accuracy and recall in contrail cloud segmentation. SegX-Net is the clear winner once again as

shown in Table 4, outperforming U-Net, U-Net++, Attention U-Net, Trans U-Net, Res U-Net,

Uc Trans U-Net, and DeeplabV3+. SegX-Net’s superior F1 scores highlight its remarkable

accuracy and recall skills in recognizing contrail clouds. These findings highlight the resilience

of our proposed model, establishing it as a top option for accurate contrail cloud segmentation

tasks, while its strong F1 scores indicate its use in aviation, and environmental impact

assessments.

These comparative results are a testament to the revolutionary advancements achieved by

SegX-Net in image segmentation for contrail detection. Our model has achieved outstanding

performance with a remarkable IoU score of 97.90%, an F1 score of 99.51%, a Dice coefficient

of 71.79%, and an impressive sensitivity of 98.41% from the testing set. These results are a

Table 3. Comparison results of models with different architectures based on IoU scores and dice coefficient.

Model Train (IoU) Val (IoU) Train (Dice) Val (Dice)

U-Net [43] 96.48% 90.25% 49.96% 39.12%

U-Net++ [44] 95.95% 92.45% 41.84% 35.83%

Attention U-Net [45] 96.72% 88.51% 47.98% 44.88%

Trans U-Net [31] 96.62% 91.38% 57.77% 51.92%

Res U-Net [46] 96.88% 95.93% 75.34% 59.11%

Uc Trans U-Net [47] 97.09% 95.74% 60.63% 55.89%

DeeplabV3+ [48] 97.48% 97.68% 70.12% 56.94%

SegX-Net 98.86% 99.54% 71.79% 73.55%

https://doi.org/10.1371/journal.pone.0298160.t003
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testament to the reliability and accuracy of our model. The model’s extraordinary performance

and accuracy set new standards in artificial intelligence and contribute significantly to address-

ing the challenges of climate change. The combination of state-of-the-art techniques and inno-

vative methodologies within SegX-Net positions it as a leading solution for climate researchers

and environmentalists seeking accurate and reliable image segmentation results. We present

compelling prediction images from our test set, as illustrated in Fig 13. These images include

Ash color, Ground truth, Prediction, and Contrail mask on Ash color. The false-color repre-

sentations vividly capture essential spectral information, enhancing our analysis. The ground

truth contrail masks offer precise outlines for rigorous model evaluation, serving as crucial ref-

erence data. These prediction images vividly demonstrate our contrail detection methods’

exceptional performance and accuracy, emphasizing our dedication to addressing challenges

through innovative and unconventional AI approaches.

The false colour images offer vivid visual representations, capturing essential spectral infor-

mation relevant to our analysis. The ground truth contrail masks serve as crucial reference

data, providing precise outlines of contrail regions for rigorous model evaluation and valida-

tion.Furthermore, by superimposing the contrail masks on false colour images, we gain valu-

able insights into the spatial distribution and correlations of contrails within their original

scenes. These prediction images showcase the remarkable performance and accuracy of our

contrail detection methods, underscoring our commitment to addressing challenges through

innovative and non-typical AI approaches.

5 Discussion

Results of our experiment emphasize the influence of enhanced segmentation methods in

identifying contrails. The SegX-Net model, carefully developed and evaluated, exhibited excep-

tional performance metrics, attaining an IoU score of 98.86% and 99.54% and an F1-Score of

99.47% and 99.77% on the training and validation sets, respectively. The Dice Coefficient and

Sensitivity scores serve to highlight the model’s reliability, in addition to the aforementioned

measures. Our model has exceptional segmentation accuracy and sensitivity to complex con-

trail patterns, as seen by its Dice Coefficient scores of 71.79% on training and 73.55% on vali-

dation, along with a Sensitivity score of 98.82% on training.

When comparing SegX-Net to well-known models like U-Net, U-Net++, Attention U-Net,

Trans U-Net, Res U-Net, Uc Trans U-Net, and DeeplabV3+, SegX-Net demonstrates superior-

ity. Our algorithm frequently surpassed these standards, showcasing superior accuracy in con-

trail segmentation. This comparison confirms the effectiveness of SegX-Net and offers

valuable insights into the model’s competitive advantage. SegX-Net stands out among contrail

Table 4. Comparison results of models with different architectures based on F1-scores and sensitivity.

Model Train(F1) Val(F1) Train(Sensitivity) Val(Sensitivity)

U-Net [43] 88.62% 90.95% 97.67% 96.02%

U-Net++ [44] 92.92% 93.52% 90.22% 87.82%

Attention U-Net [45] 89.75% 92.59% 91.55% 95.47%

Trans U-Net [31] 95.88% 92.48% 82.79% 76.22%

Res U-Net [46] 96.75% 86.65% 96.89% 94.65%

UC Trans U-Net [47] 95.56% 90.11% 87.09% 89.18%

DeeplabV3+ [48] 97.58% 94.93% 94.22% 92.41%

SegX-Net 99.47% 99.77% 98.82% 96.97%

https://doi.org/10.1371/journal.pone.0298160.t004
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identification technologies because of its exceptional ability to identify subtle characteristics in

contrails and its outstanding accuracy metrics.

In the future, it would be beneficial to investigate the scalability and generalizability of

SegX-Net. Expanding the dataset to include a broader range of geographical regions and

weather conditions could strengthen the model’s resilience. Moreover, the incorporation of

sophisticated metrics and the investigation of adversarial training methods, such as Generative

Adversarial Networks (GANs), show potential for enhancing the precision of the model. These

considerations broaden the range of situations where SegX-Net can be used and contribute to

the ongoing discussion on advanced methods for detecting contrails, which has significant

consequences for environmental preservation.

Fig 13. Visualization of prediction results on our dataset showcasing prediction images generated by our model

on the dataset.

https://doi.org/10.1371/journal.pone.0298160.g013
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6 Conclusions

In conclusion, this research paper has explored the integration of image segmentation tech-

niques, specifically the SegX-Net architecture, to address climate change challenges related to

aircraft contrails. By leveraging the DeepLabV3+ model as the baseline and integrating

ResNet101 as the backbone network, we have demonstrated the effectiveness of the enhanced

model in accurately identifying and segmenting contrails. The proposed modifications in the

encoder part, along with transfer learning and data preprocessing techniques, have resulted in

improved segmentation accuracy and detail preservation. The evaluation metrics, including

IoU and F1 score, validate the superior performance of the SegX-Net architecture compared to

the original DeepLabV3+ model. Overall, this research highlights the potential of image seg-

mentation techniques in understanding and mitigating the environmental impact of aircraft

contrails, contributing to the broader goal of combating climate change. Future work can

focus on further refining the SegX-Net architecture and exploring additional applications of

image segmentation in addressing climate change challenges.
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