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Abstract
Global illumination computation in real time has been an objective for Computer Graphics since its inception. Unfortunately,
its implementation has challenged up to now the most advanced hardware and software solutions. We propose a real-time voxel-
based global illumination solution for a single light bounce that handles static and dynamic objects with diffuse materials under
a dynamic light source. The combination of ray tracing and voxelization on the GPU offers scalability and performance. Our
divide-and-win approach, which ray traces separately static and dynamic objects, reduces the re-computation load with updates
of any number of dynamic objects. Our results demonstrate the effectiveness of our approach, allowing the real-time display of
global illumination effects, including colour bleeding and indirect shadows, for complex scenes containing millions of polygons.
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1. Introduction

Offline rendering can nowadays deliver among themost realistic im-
ages for cinema and architecture. Its achievements are often directly
linked to its ability to generate visual effects involving ubiquitous
global illumination. However, its real-time implementation poses
several challenges that led to much progress over the years. Among
the main significant approaches, let us mention the use of simpli-
fied light transport [DS05, NSW09, DS06], hybrid offline/online
approaches such as light probes [SL17] and pre-computed irradi-
ance [GSHG98] and targeted rendering approaches [KLM*19].

Despite all these great efforts, accurate global illumination in real
time remains elusive. There are several reasons for this, but the main
ones are the stark contrast with the computational power of mod-
ern hardware, no matter how impressive it could be, and the com-
putations required for global illumination, initially revealed by the
rendering equation [Kaj86]. In particular, visibility computations
and light exchanges account for most of this complexity, with the
former being often ignored in favour of the latter [DS05, NSW09,
DS06]. Solutions trying to tackle both challenges simultaneously
are scarce [AP22], requiring cumbersome and often bloated pre-
computed data structures without any real-time update possibilities.

Allowing for dynamic geometry and moving light sources exacer-
bates this situation.

In this paper, we set out to solve the global illumination exchange
between surfaces in real time, also considering dynamic geometry
and moving light sources. In particular, our contributions are as fol-
lows:

• A real-time single-bounce global illumination algorithm with
higher quality and better temporal stability than state-of-the-art
techniques from academic and commercial game engines. Our al-
gorithm achieves those results by adopting a voxelized approach
and performing a lazy and hybrid irradiance evaluation through
ray tracing (only for voxels directly visible from the camera). It
reduces the cost of ray tracing by following a divide-and-win ap-
proach. It also implements data structures that scale linearly and
seamlessly with the number of voxels, allowing a better voxel
structure utilization. It is capable of updating the visibility of ob-
jects in complex scenes, including dynamic objects, leading to
renderings that closely resemble ground truth with better irradi-
ance gathering and temporal stability.

• An efficient algorithm capable of higher quality and perfor-
mance with a lower memory footprint and voxel resolution than
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Figure 1: Two frames (clipped, to the right) from a Full HD animation (one frame on the left). They are computed with our real-time global
illumination algorithm. The images show a large dragon moving through a static city. We can observe changes in the colour bleeding from
the nearby geometry on the dragon, and on the darker (respectively brighter) buildings from the street corner when the dragon is closer to
(respectively further from) the back gate in shadow.

academic techniques like Voxel Cone Tracing using a Sparse
Voxel Octree implementation.

• An improvement for voxel-based global illumination techniques
preventing light leaks from dynamic objects onto static ones by
storing irradiance in separate textures. Our work also allows for
an efficient main rendering pass, where each fragment is evalu-
ated only once and requires a small, fixed number of three texture
samples for irradiance computation.

Traditional and state-of-the-art techniques in the video game in-
dustry cannot achieve our higher levels of quality, including higher
frequencies unless they use a brute force approach requiringmassive
resources. Our solutions form the first steps in a flexible system that
we hope to generalize to full global illumination, including multiple
light sources, multiple light bounces and arbitrary materials.

The paper is organized as follows. After reviewing significant re-
lated work in Section 2, we give an overview of our technique in
Section 3, before going into its many details in Section 4. Then, we
followwith an analysis of its results in Section 5 and comparisons of
key features with other solutions, with support for potential exten-
sions in Section 6. We also cover our current limitations and point
to solutions in Section 7. Finally, we revisit our contributions and
conclude in Section 8.

2. Previous Work

Over the years, many efforts have been devoted to the development
of real-time global illumination techniques. Although many suc-

cessful ideas have been investigated, the final goal of real-time, dy-
namic global illumination remains elusive because of its high com-
putational burden and existing graphics computing hardware limi-
tations.

Among the first proposals, Virtual Point Lights (VPLs) have had
a significant impact. The original work of Keller [Kel97] proposes
to use shadow maps to compute the visibility from VPLs at the light
source position. Graphics hardware renders an image with shad-
ows for each particle used as a VPL source, and the resulting im-
age is composited in an accumulation buffer. This line of research
has continued with the work by Greger et al. [GSHG98], intro-
ducing Irradiance Volumes, a technique that pre-computes irradi-
ance in a two-level grid, later used in real-time calculations. Sloan
et al. [SKS02] develop a technique called Pre-computed Radiance
Transfer (PRT), that, after a preprocessing stage, produces shadows,
inter-reflections and diffuse-to-glossy materials for dynamic envi-
ronments. Dachsbacher and Stamminger [DS05] create reflective
shadow maps (RSMs), that allow indirect illumination effects with-
out taking into account occlusions to achieve a cheaper and more
scalable technique. Dachsbacher et al. [DSDD07] circumvent these
occlusions with anti-radiance, a technique that shoots negative ir-
radiance into the scene to remove the effect of dynamic occluders
since a last update. Kaplanyan and Dachsbacher [KD10] extend the
original Irradiance Volumes with Light Propagation Volumes,
where spherical harmonics store the spatial and angular distribution
of light in the scene. Their main advantages are that they do not
require any pre-computation and that accounting for occlusion and
participating media are included.
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Screen-space techniques havemore recently offered a popular av-
enue for real-time global illumination. Nalbach et al. [NRS14] build
a surfel-based representation of the scene, and then splat light sam-
ples onto a multi-resolution framebuffer, allowing one-bounce in-
direct illumination for dynamic scenes. Mara et al. [MMNL16] use
G-buffers from deferred-shading techniques to perform depth peel-
ing combined with multi-bounce global illumination, distributed
over multiple frames to generate global illumination effects. Kol
et al. [KBLE18] propose to render the scene multiple times with
a combined scene-and-view hierarchical representation. Concur-
rently traversing this data structure, combined with sharing render-
ings among views, allows for sublinear performance for scene com-
plexity and the number of scene views. Majercik et al. [MGNM19]
extend Irradiance Volumes by computing global illumination for
dynamic scenes with different materials. Other techniques, such as
PRT, add new insights into efficient storage systems for this kind
of illumination. For instance, Currius et al. [CDAS20] use convolu-
tional neural networks to estimate light-field values through spher-
ical Gaussians, but only for static scenes. Also, techniques such as
light probes [MMNL17, MGNM19], as used in Unreal Engine’s
RTXGI [MMSM21], are efficient irradiance-field-with-visibility
representations, which are quite popular in current video game pro-
duction environments. More recently, Wright et al. [WNK22] have
implemented Lumen, which has become state-of-the-art for global
illumination in the video game industry.

Voxelization of scene geometry is central to our approach, and
it has been supported by several contributions. Wang and Kauf-
man [WK93] are the first to propose an efficient 3D voxelization al-
gorithm. Through an analytical 3D anti-aliasing technique, it gener-
ates gap-free voxel models. Beckhaus et al. [BWS02] adapt it to the
GPU, and Zhang et al. [ZCEP07] add GPU-conservative voxeliza-
tion to improve performance and memory footprint. The efficient
and robust algorithm for GPU voxelization by Schwarz and Sei-
del [SS10] allows for thinner gap-free surfaces. The seminal work
of Crassin and Green [CG12] builds a Sparse Voxel Octree from
a voxelized volume, providing acceleration structures built and en-
tirely exploited on the GPU. Heitz and Neyret [HN12] use an en-
riched voxel representation of detailed surfaces to improve smooth
transitions between levels of detail, local illumination, occlusion
and anti-aliasing. Vicini et al. [VJK21] use voxels to represent both
opaque and unstructured geometric aggregates for volumetric scene
representations; they can generate approximate higher-quality lev-
els of detail.

In general, for global illumination, long pre-computation times
have always been a major drawback [JKG16, SL17, KTHS06].
Voxel-based techniques, however efficient in their calculations for
global illumination, are no exception. For instance, the work by
Crassin et al. [CNS*11] requires complex GPU data structures,
in combination with mipmapping, to reduce costs of the irradi-
ance computations. In another example, the fast voxel path tracer
of Thiedemann et al. [THGM11] within a voxelized volume suf-
fers from back projecting the hit points into a RSM [DS05] for ir-
radiance computations. These techniques need to build additional
data structures from the voxelized scene, including costly scene
post-processing techniques. As examples of extensions to the pre-
viously mentioned papers, Sugihara et al. [SRS14] extend Voxel
Cone Tracing (VCT) using voxel information just for visibility

estimation, back-projecting into layered RSMs, but with the limi-
tation of one RSM per light source. Chen and Chien [CC16] im-
prove on both techniques by considering only the set of lit vox-
els in a scene for the irradiance computations. This precludes the
need for one RSM per light source, which may scale poorly in
terms of performance and memory but can simultaneously solve the
many-light problem for the voxel-based global illumination tech-
niques. Papaioannou [Pap11] also combines Irradiance Volumes
and voxel approaches, where RSMs approximate irradiance values
through spherical harmonics in a uniform grid, considerably in-
creasing performance by avoiding shadow construction. Recently,
Ayerbe and Patow [AP22] also use a voxel-based technique to com-
pute global illumination, but their use of complex-to-update data
structures precludes any use of dynamic geometry and lighting. We
note that the technique that we present in this paper can achieve
higher levels of quality, including higher frequencies, than can tra-
ditional techniques such as VCT and light probe-based techniques,
unless they resort to a brute-force approach that would require mas-
sive resources.

ReSTIR and its family of related techniques form one of the most
promising approaches for the objective of real-time global illumina-
tion. Briefly, ReSTIR [BWP*20] is a technique devised to help ren-
der scenes with many light sources but making the rendering much
less noisy than basic path tracing algorithms. This results from con-
tinuously finding and updating themost contributing light for a pixel
based on its neighbour pixels and its illumination computed in previ-
ous (temporal) frames. Ouyang et al. [OLK*21] extend this concept
with an effective path-sampling algorithm for indirect illumination,
re-sampling multi-bounce indirect light paths obtained by path trac-
ing. Their technique has been generalized [LKB*22] to introduce re-
sampled importance sampling (GRIS), allowing RIS on correlated
samples, with unknown PDFs taken from various domains, provid-
ing practical guidelines for algorithms, and enabling advanced path
re-use between pixels via complex shift mappings. Recent work ex-
tends ReSTIR to world-space sample re-use [Boi21, BJW21].

Our technique falls within the family of Irradiance Volume tech-
niques, as we voxelize the scene and consider each generated voxel
as a small ‘cubemap’, computing irradiance by casting 128 rays
from each voxel face. This avoids any manual scene setup of light
probes as required in general by techniques from this family, and de-
couples the camera viewpoint from the scene geometry and screen
resolution. Our technique supports a dynamic light source and any
number of dynamic scene objects, achieving a lower ray-tracing cost
through a divide-and-win approach, where we update each voxel
face’s visibility by casting rays through only dynamic scene objects.

3. Overview

Our technique consists of several steps, executed in sequence. First,
two initial steps are performed only once per scene:

Voxelization of static scene geometry: This first voxelization
builds basic structures that will not change and that are used
to cache and compute irradiance for static scene objects. See
Figure 2(a,b).

Static voxel visibility: We cast 128 rays per face of static vox-
els through only the static geometry, caching information
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Figure 2: Pipeline followed in our technique: (a, b) voxelization
of the static geometry, (c) per-static-voxel ray-tracing visibility
caching for the static geometry, (d, e) voxelization of the dynamic
geometry, (f) direct illumination to all voxels, (g) per-static-voxel
ray-tracing visibility caching for the dynamic geometry, (h) static
voxel irradiance gathering from lit static and dynamic voxels (bright
blue), (i) dynamic voxel irradiance gathering from lit static and dy-
namic voxels (bright green).

for each ray from the intersections to further accelerate light
bounce computations, contributing to improving irradiance
gathering and performance. The reflectance of each static
voxel is stored in a 3D texture. See Figure 2(c).

Then, the next steps are performed sequentially at each scene up-
date:

Voxelization of dynamic scene geometry: This step is equivalent to
the first voxelization step on static scene geometry but applied
only to the dynamic geometry. It includes the creation of a 3D
texture to store reflectance. See Figure 2(d,e). We perform a
visibility test for each voxel (static or dynamic), flagging the
voxels visible from a light source. See Figure 2(f).

Compute camera visible voxels: We generate a G-Buffer of the
scene geometry and compute pixel-perfect ray-traced shad-
ows. We determine from the G-Buffer all voxels visible in
the camera. Processing only a subset of voxels allows a
much higher performance, as focusing on this subset enables
our technique to improve each voxel’s visibility information,
leading to higher-quality results. We also consider a 53 neigh-
bourhood around each dynamic voxel for irradiance compu-
tations, allowing our work to achieve high temporal stability.

Update static voxel visibility: For each static voxel visible in the
camera, we cast 128 rays per voxel face through only the dy-
namic geometry to update its visibility. We use the same 128
directions as in the initial stage. For each ray direction, we
save whether the closest geometry is the initial static one or a
new one due to dynamic scene objects. See Figure 2(g). This
divide-and-conquer approach contributes to an increased per-

formance, while our compact data structures allow a lower
memory footprint.

Light bounce for static voxels: We first process static voxels, gath-
ering irradiance at the level of a voxel face. We only need to
know, for each voxel face and ray direction, whether to pick
the static or dynamic visible geometry information computed
in the previous step. See Figure 2(h).

Light bounce for dynamic voxels: We follow the same approach as
for the light bounce of static voxels, but with dynamic voxels.
See Figure 2(i). By storing irradiance in separate 3D textures
in the last two steps, we avoid light leaks from dynamic onto
static objects, which is an improvement in voxel-based tech-
niques.

Smoothing irradiance and padding: After all light bounce compu-
tations, we perform filtering for both the static and the dy-
namic voxel computed irradiances. Then, we compute the
average irradiance value stored as ‘padding’ for all empty
voxels having at least one neighbouring static voxel to avoid
shadow leaks.

Main rendering step: Finally, we use the G-buffer information to
perform the final pass, sampling from up to three of the six
3D textures where we have stored irradiance, making our ap-
proach view-independent. This highly efficient main render-
ing pass represents a contribution compared to other voxel-
based techniques.

4. Method

4.1. Voxelization and static visibility

We perform boundary voxelization with the method by
Takeshige [Tak15]. Each primitive (e.g. a triangle) from each
static object in the scene is rendered with depth test and face culling
deactivated, with an orthographic camera aligned to one of the
main axis directions (x, y or z), selecting the one that maximizes
the primitive’s face area. This choice prevents the primitive from
being drawn with a steep slope when viewed from the viewport;
this is the main reason for gaps in the voxelized results.

A voxelV of indices (Vx,Vy,Vz) in a grid of resolutionN × N × N
is uniquely encoded in 1D as

Encode(V ) = N2Vx + NVy +Vz. (1)

Figure 3 illustrates the relations between our different buffers.

We store in the static voxel buffer only the voxels generated from
the voxelization of the static geometry, i.e. the static voxels. For each
static voxel, we write its index encoded from Equation (1). We write
the index in anN3 3D texture where each static voxel has been stored
in the static voxel buffer, allowing fast access to the voxel informa-
tion. Afterward, we compute and cache visibility for each generated
static voxel in the static voxel buffer, storing the results in a separate
buffer (the static visibility buffer).

For each static voxel face, we cast 128 rays from the face cen-
tre towards the static scene geometry. This set of rays is always
the same, where each ray direction has been slightly jittered. The
set of rays is transformed in the local frame of reference for each
voxel face. Then, for each intersection of a ray with the static scene
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Figure 3: Voxel visibility caching data structures. After voxeliza-
tion of the static geometry, we store only the static voxels generated
(here, three voxels Vi with i in {0, 1, 2}) in the static voxel buffer,
encoding the indices of each voxel using Equation (1) as E(Vi). We
store in an N3 3D texture the 1D index where each static voxel has
been stored (here, three voxels IVi ) in the static voxel buffer for quick
access to the information of a specific voxel. Each static voxel has
visibility information for static and dynamic geometry in the per-
voxel face visibility buffers, storing distances to each intersection
in the static (here, distances d1 and d5 for rays of face−x at indices
1 and 5) and dynamic geometry (here, d2, d4 for rays of face −x at
indices 2 and 4), caching for each voxel face (±x, ±y, ±z) the re-
sults of initially casting 128 rays through the static geometry and
the same 128 rays for each scene update, but only for the dynamic
geometry.

geometry, we store the distance from the ray origin in scene coordi-
nates with 16-bit precision (2 bytes) and the x and y coordinates of
the normal at the intersection with 7-bit precision, plus one bit for
the sign of the local normal z (2 bytes in total). Thus, each voxel re-
quires a total of 6 faces× 128 rays× 4 bytes= 3KB. Asmentioned,
this compact data structure enables our work to have a low memory
footprint, enabling us to perform fast visibility updates of each static
voxel by ray tracing only dynamic scene objects (as explained later),
achieving a high-quality irradiance gathering and increased perfor-
mance.

We also store the reflectance of the static voxels in an N3 3D tex-
ture, following the implementation of Crassin et al. [CNS*11]. The
average reflectance value of the contributions of all fragments gen-
erated at a specific voxel is computed with a spin-lock at the shader
level. Our technique proceeds, at the byte level, to test whether a
specific static voxel is empty or occupied. For this purpose, a byte
is set in a small buffer, at the index given by encoding the static
voxel 3D indices using Equation (1). A 1283 voxelized scene only
requires a buffer of size 1283 = 2 MB to map all possible values.

4.2. Dynamic objects

In the presence of dynamic parts in a 3D scene, we follow several
steps to update the global illumination. As we did for static voxels,
we follow the method by Takeshige [Tak15] to perform a boundary

voxelization of each dynamic object, avoiding voxel gaps in the re-
sult. For each generated dynamic voxel, we store its reflectance in
a 3D texture, and its encoded index (using Equation 1) in a voxel
buffer (the dynamic voxel buffer), separate from the one used for
the static objects. We also set a byte in a small buffer at the same
index as the encoded value of the dynamic voxel coordinates, to test
whether specific voxel coordinates are empty or occupied by a dy-
namic voxel.

4.3. Lit voxels

As part of the light bounce information required, we need to de-
termine whether each voxel is visible (i.e. lit) from a light source.
For each voxel, because it forms a volume, we consider a grid of 23

points inside the voxel volume. For each point, a ray query toward a
light source is performed against the scene geometry. If the number
of visible points is above a threshold value of four (four was experi-
mentally determined to give the best visual results), we consider the
voxel as being lit. We work with a buffer at the byte level to store
information on whether each voxel is lit. We flag with value 1 a byte
at the index given by encoding the coordinates of the voxel, using
Equation (1). With this information, our technique avoids casting
shadow rays when performing light bounce computations, which
contributes to achieving higher performance.

4.4. Camera visible voxels

We follow a deferred shading approach to rendering the scene,
storing reflectance, world position and normal direction during a
G-buffer pass. We also implement pixel-perfect shadows through
ray-tracing queries against the scene geometry, storing the result of
the shadow ray in a free channel in the G-buffer. We compute light
bounce information only for static and dynamic voxels visible from
the camera. As already mentioned, processing only a reduced num-
ber of voxels greatly increases performance and allows our tech-
nique to spend more computations on each processed voxel. This
enriches the per-voxel visibility information, allowing high-quality
results with fewer voxels. For this purpose, we work at the byte level
with two buffers of size equal to the total number of voxels in the
voxelization. One buffer flags static voxels visible from the camera,
and the other flags dynamic voxels. During the shadow computation
process, for each shadow ray query against the scene geometry,
we compute the voxel coordinates of the ray origin obtained from
the G-buffer and flag the byte at the index given by encoding the
voxel coordinates (using Equation 1) in the corresponding buffer,
depending on whether it belongs to a static or a dynamic object.
For this reason, a voxel can be flagged as both static and dynamic.

To guarantee that our technique offers correct irradiance values
for any dynamic object regardless of its shape and trajectory, in-
cluding instant translations, we flag as visible all 53 voxels in the
neighbourhood of each dynamic voxel, regardless of whether other
dynamic objects are detected. This approach represents one of the
contributions from our technique, achieving temporal stability for
dynamic objects, as it ensures that irradiance values will be ready
for linear interpolation for those fragments generated from the ge-
ometry of dynamic scene objects, without the risk of introducing
darker values during interpolation caused by neighbouring voxel
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Figure 4: Left: During a scene update, dynamic scene geometry
(bright green triangles) is voxelized, generating a set of dynamic
voxels (in green). We add a layer of voxels around each dynamic
voxel thus generated to maintain more uniform irradiance interpo-
lation values (light brown) for those fragments closer to the bor-
der of the generated initial dynamic voxels. Given that the geome-
try does not always generate voxels due to primitives not covering
the centre of each voxel (green geometry in light brown voxels), an
extra layer of padding is added (dark brown). Right: After the ini-
tial static geometry, visibility caching per voxel face, the voxel in
a bright blue comes across intersection points P0, P1 and P2 with
static scene geometry. When tracing rays in the same directions only
through dynamic scene geometry during a scene update, updating
visibility, P2 is discarded in favour of P3, which is closer to the ray
origin, while point P1 is kept for being closer.

irradiances not being computed and having a value of 0.0. See
Figure 4 (left) for an example. This incurs an extra cost when com-
puting irradiance for dynamic scene objects, later on, but it has
proven to be the best option to reduce temporal aliasing for dy-
namic scene objects. In our experience, a 33 neighbourhood works
correctly for most scenes. Also, note that this process only adds an
extra N2 complexity for an N3 voxelization resolution (for simplic-
ity in this text, we use the same resolution in all three dimensions)
since the criteria to flag new dynamic voxels for irradiance computa-
tion happen at the level of surfaces, not volumes. See Figure 4 (left).
We store the light bounce irradiance results in 3D textures, interpo-
lating between voxels to compute irradiance arriving at a fragment.
Due to the use of linear interpolation, fragments closer to the bor-
der of a static voxel will sample darker irradiance values. To reduce
this artefact, for each empty voxel, we compute the average irradi-
ance of all occupied neighbouring static voxels. We further improve
memory access with a tiled approach of 23 voxels into a tile, instead
of processing voxels one by one. In this step, we flag each occupied
static voxel, and every tile around it (more details in Section 4.7).
We also follow a tiled approach for irradiance filtering, flagging each
tile having at least one static occupied voxel. Finally, in a compute
step after the camera ray dispatch (described at the beginning of this
section), the flagged static and dynamic voxels are stored in sepa-
rate buffers, as well as the indices of the flagged tiles for padding
and irradiance filtering for later processing.

4.5. Voxel visibility update

Before we perform light bounce computations for the camera’s vis-
ible static and dynamic voxels, we need to update their visibility. In

the case of static voxels, for each voxel face, we cast 128 rays in the
same directions as in the initial static visibility step (Section 4.1).
However, we cast the rays only through the dynamic scene geome-
try, allowing faster computations than if done with the whole scene
geometry. This divide-and-conquer approach allows our technique
to achieve a better performance, while using ray tracing enables a
better irradiance gathering, leading to higher quality results. If there
is a ray intersection with dynamic geometry and the dynamic voxel
at the coordinates of the intersection is lit, we check whether there
was a cached static voxel intersection for that same ray direction. In
case there was, we compare the distances traversed by the two rays
in scene coordinates, and if the intersection with the dynamic geom-
etry is closer, we consider that the ray sees a dynamic scene object.
Otherwise, the ray sees the same initial static object. See Figure 4
(right). We store a bitmask for each ray of a voxel face to specify
whether to select the dynamic or the static voxel for the subsequent
stage of light bounce computations. We also keep the initial cached
static voxel visibility information in case a dynamic object moves
away from a ray direction, at the expense of a reasonable memory
footprint. For dynamic voxels, we cast 128 rays for each voxel face
in an acceleration structure containing the whole scene geometry
with both static and dynamic objects. The information of the inter-
section is stored in a visibility buffer (the dynamic visibility buffer).

4.6. Light bounce

From Section 4.4, we have a buffer with the camera’s visible static
voxels and another buffer with the camera’s visible dynamic vox-
els. The next step in our pipeline is to compute irradiance arriv-
ing at each voxel face of each camera visible voxel. By default, our
technique computes irradiances for all six voxel faces to guarantee
they can be correctly interpolated for voxels containing complex
geometries. It works well also for simpler geometries when nor-
mal directions differ greatly from the geometrical normals. We start
performing light bounce computations for static voxels, where for
each voxel face, we dispatch a workgroup of 128 threads, with each
thread processing a direction from the initial 128 directions. We use
a bitmask from the Section 4.5 to retrieve the correct voxel infor-
mation (the dynamic visible voxel closer than the initially visible
static voxel or the visible static voxel itself). If the voxel analysed is
lit, we compute the irradiance arriving from the light source to that
voxel, and the irradiance coming from that voxel to the one being
processed using the differential area form-factor formula [Sri16].
This allows static voxels to compute irradiance from other voxels
generated from both static and dynamic geometries. The irradiance
computed by each thread is added following a parallel reduction ap-
proach. We follow the same approach to compute irradiance for the
camera’s visible dynamic voxels.

We described in Section 4.5 how updates of the dynamic voxel
visibility trace rays in an acceleration structure containing all the
scene objects. This allows dynamic voxels to compute irradiance
from other voxels generated from static and dynamic geometries.
In both cases, the thread number 0 of each workgroup stores the
accumulated irradiance in the corresponding texture. In our exper-
iments, we have identified several incompatibilities when merging
the static and dynamic irradiance information linked to the same
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voxel, mostly due to the simplified operations used to compute dy-
namic irradiance in the main rendering step. For that reason, we use
two separate sets of six 3D textures with 16-bit precision to store
each type of voxel irradiance (static or dynamic), storing in each
texture the irradiance gathered per voxel face (six faces per voxel,
and so six 3D textures).

Light leaks are a common issue in voxel-based global illumina-
tion techniques. Our technique effectively adds a new contribution
to this family of techniques by avoiding leaks from dynamic onto
static objects because we split irradiance for both kind of scene
objects. Due to the small number of samples used per voxel face,
we apply a simple temporal filter at each frame update to increase
the stability of irradiance computations. We follow Refs. [NSL*07,
PSK*16] with Et = αEt + (1− α)Et−1, where Et is the current up-
date irradiance and Et−1 is the accumulated irradiance from previ-
ous updates. We use α = 0.03. To guarantee that irradiance values
in dynamic voxels are updated in case no dynamic scene objects in-
tersect with them, we keep a cool-down factor for each voxel, fading
completely its irradiance value after 0.3 s from the last update.

4.7. Smoothing irradiance and padding

The last step of the light bounce computations consists of filtering
both the static and dynamic voxel irradiances and then computing
the average irradiance value stored as ‘padding’ for all empty vox-
els having at least one neighbouring static voxel. As mentioned in
Section 4.4, to minimize texture access, we divide the voxelization
volume in tiles of two voxels per dimension, leading for each tile
to a total of 23 voxels. We build one buffer for filtering with the in-
dex of each tile that has static voxels. We build another buffer for
padding, with the index of each tile that contains empty voxels with
at least one static voxel as a neighbour. A tile index is computed in
the same way as a voxel index.

For filtering computations, for each tile, we dispatch six work-
groups (one per voxel face), each made of eight threads. First, each
thread tests which voxels in the tile are occupied by a static voxel.
Then, the threads store in a shared variable the coordinates of the
voxels from which they need to load irradiance, to perform filtering.
We apply a 33 Gaussian filter to each voxel, with each tile loading
up to 43 = 64 values. In the worst performance case of a per-voxel
approach, all eight voxels in a tile and all 26 neighbouring voxels
would be occupied, meaning there would be 33 × 8 = 216 texture
loads. Our tiled approach reduces that number to 43 = 64, thanks
to sharing the loaded values between the voxels in the tile, saving
216− 64 = 152 texture load operations, accounting for 70% of the
total operations. This approach is another factor that allows ourwork
to achieve a higher performance.

The padding process is similar, where the texture load operations
are done for each empty voxel in the tile with any neighbour oc-
cupied by a static voxel, storing the average irradiance value in the
originally empty voxel. See Figure 5 for a 2D illustration of the tiled
filtering and padding computations. We do not perform padding for
the dynamic voxels as we compute the irradiance of all neighbouring
voxels of any occupied dynamic voxel, as mentioned in Section 4.4
and shown in Figure 4 (left). The Gaussian filtering of dynamic vox-
els also has a kernel of size 33.

Figure 5: Left: For irradiance Gaussian filtering, we mark the tiles
that have at least one static voxel (bright orange and green squares
on the left and central columns). We use a 33 kernel. As can be
seen in the tile being processed (green) and its surroundings (dot-
ted green), for each occupied static voxel, we load the irradiance of
all neighbouring static voxels (red arrows). In this 2D example, the
top left tile needs to load irradiance from six texture coordinates,
four of which are re-used by the bottom left static voxel. Right: The
padding process is similar. We mark the tiles with empty voxels hav-
ing at least one neighbouring static voxel (bright orange and green
squares in the central and right columns). For each empty voxel in
the tile being processed (green), we load the irradiance of all neigh-
bouring static voxels (red arrows) found in the tile and its surround-
ings (dotted green), to compute the average value. The top right tile
voxel in 2D needs to load three irradiance values, two of them re-
used later by the bottom right tile voxel.

4.8. Main rendering

In the main rendering step of the scene, we sample from the corre-
sponding irradiance texture set depending on whether we are draw-
ing a static or a dynamic scene object, interpolating between the per-
voxel face irradiance textures to match the contribution for the frag-
ment’s normal. Our technique supports normal mapping and only
needs three texture samples with no mipmap interpolation per pixel,
plus one sample for the fragment’s material reflectance in a post-
processing pass, which re-uses the information from the G-buffer.
As noted, this simple and efficient main rendering pass represents
a substantial contribution to voxel-based global illumination tech-
niques. The padding added for the static voxels guarantees that the
geometry closer to voxel boundaries will not appear darker when
using linear interpolation for the sampling from irradiance textures.
As mentioned in Section 4.4 and shown in Figure 4 (left), comput-
ing irradiance for all neighbours of each dynamic voxel allows for
a smoother transition for dynamic geometries, decoupling from the
geometry position within the voxel. This offers a smoother transi-
tion of computed irradiance as dynamic geometries move between
voxels, greatly reducing temporal aliasing. See Figure 6 and the ac-
companying video material. The irradiance for any voxel is always
computed at its geometric centre. The last step before displaying on
screen is FXAA anti-aliasing.

5. Results

We developed our technique in our own C++ framework using the
Vulkan API for graphics, compute and ray-tracing shaders. All mea-
surements were done with an NVIDIA GeForce RTX 2060 GPU
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Figure 6: Details from a different viewpoint for the Rocks scene
with a voxelization resolution of 1283. Left: Using a 53 neighbour-
hood for dynamic voxels, running at 124 fps with 721 dynamic
visible voxels. Centre: Scene without any neighbourhood for dy-
namic voxels, running at 137 fps with 61 dynamic visible voxels.
Right: Difference image between the two images using NVIDIA’s
FLIP [ANAM*20] tool.

with 6GB of VRAM on a computer with a Ryzen 7 3800XT AMD
CPU and 16GB of RAM. When measuring performance, we took
five different captures for each scene and voxelization resolution
with NVIDIA NSight, recording the time required by each GPU
task in the frame and computing the average and standard deviation
values. We did all our tests at full HD resolution (1920× 1080).

Upon acceptance, the complete source code of our technique
will be available for download on GitHub at https://github.com/
AlejandroC1983/dvbgi.

5.1. Dynamic update

We show in Table 1 the numbers of visible static and dynamic vox-
els (top) and the breakdown of timings in milliseconds (bottom) for
the different steps that our technique requires to perform a scene
update for the scenes Rocks and Factory. Currently, an update in-
volves changes in either the position or direction of a light source
or a transformation of a dynamic scene object, performing the same
type of computations in both cases. We can see how the timings for
dynamic scenes range from 6.8 to 19.6 ms. If we account only for
the steps related to the update (i.e. the steps for the first four rows of
timings in Table 1), our technique’s computations range from 3.0 ms
for Rocks and 2.3 ms for Factory, both at a voxelization resolution
of 323; up to 9.7 ms for Rocks and 14.9 ms for Factory at a vox-
elization resolution of 1283. The timings for the stepMain scene +
FXAA include the main rendering step, which has a maximum value
of 0.38 ms for the Rocks scene and a maximum value of 0.4 ms for
the Factory scene. These results illustrate our contribution to a fast
main rendering step, which only requires three texture samples for
irradiance computation.

In the Factory scene, when the voxelization resolution is doubled
in all three dimensions, the total number of static and dynamic vox-
els processed increases by an approximate average factor of 3.6×
and 2.3×, respectively, with computation times increasing with an
average factor of about 1.5×. As the voxelization resolution in-
creases, the Static voxel update (i.e. static visibility update, light
bounce, Gaussian filtering and padding) and Dynamic voxel update
steps (i.e. dynamic visibility update, light bounce and Gaussian fil-
tering) take up most of the time in most of the cases. For the scene
Rocks, the average cost to process static voxels is 0.000927 ms,
while the average cost to process dynamic voxels is 0.001626 ms.
For the scene Factory, the average cost to process static voxels is
0.000481 ms, while the average cost to process dynamic voxels is
0.000821 ms, the ray-tracing visibility update step being the main
reason for the extra cost, computed against the whole scene geome-
try instead of only the dynamic scene geometry, as shown in Table 2.

Our technique is dependent on the number of voxels to process.
We see how lower voxelization resolutions allow for a lower quality

Table 1: Average and standard deviation values of static and dynamic visible voxels processed, and breakdown of timings (in milliseconds) of the different
steps followed during each scene update. Evaluations were done for two scenes with dynamic objects and a light source, for three voxelization resolutions. The
scene Rocks (1.1M triangles) used for measurement is taken from a similar viewpoint as in Figure 7, with a dynamic vehicle and a skinned mesh character. The
scene Factory (2.3M triangles) is from a viewpoint as in Figure 8, with two large dynamic objects and eight skinned mesh characters. Samples of each scene at
each voxelization resolution can be found in the video sequences in the accompanying material.

Scene Rocks Factory

Voxelization resolution 323 643 1283 323 643 1283

Visible static voxels 404 ± 2 1562 ± 4 5797 ± 14 976 ± 19 3241 ± 51 11183 ± 186
Visible dynamic voxels 567 ± 27 1017 ± 22 2229 ± 116 1475 ± 56 3644 ± 60 9981 ± 60
Lit voxels 0.1 ± 0.0 0.2 ± 0.0 0.5 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.4 ± 0.01
Camera visible voxels 0.8 ± 0.0 0.9 ± 0.0 1.3 ± 0.03 0.6 ± 0.0 0.6 ± 0.0 0.9 ± 0.01
Static voxel update 0.9 ± 0.04 1.8 ± 0.11 4.5 ± 0.23 0.6 ± 0.02 1.6 ± 0.07 5.2 ± 0.21
Dynamic voxel update 1.2 ± 0.10 1.6 ± 0.04 3.4 ± 0.19 1.0 ± 0.02 3.0 ± 0.08 8.4 ± 0.43
Ray-traced shadows 2.3 ± 0.01 2.0 ± 0.20 1.5 ± 0.01 0.8 ± 0.07 0.8 ± 0.06 1.0 ± 0.15
Main scene + FXAA 2.3 ± 0.13 2.4 ± 0.01 2.5 ± 0.16 3.7 ± 0.01 3.8 ± 0.16 3.7 ± 0.01
Total 7.6 ± 0.19 8.9 ± 0.24 13.7 ± 0.34 6.8 ± 0.07 10.0 ± 0.19 19.6 ± 0.50
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Table 2: Average and standard deviation timings (in milliseconds) for the static voxel visibility update for three voxelization resolutions and two scenes,
performing ray tracing only through the dynamic geometry, or through all the static and dynamic geometries. The scenes are as described in the caption of
Table 1.

Scene Rocks Factory

Voxelization resolution 323 643 1283 323 643 1283

Dynamic geometry 0.5 ± 0.04 0.7 ± 0.04 1.4 ± 0.05 0.3 ± 0.02 0.7 ± 0.01 2.2 ± 0.18
Full scene geometry 1.9 ± 0.16 2.4 ± 0.01 8.2 ± 0.11 0.8 ± 0.12 2.9 ± 0.11 11.5 ± 0.14

Table 3: Breakdown of average and standard deviation timings (in milliseconds) of the update times for static and dynamic voxels for three voxelization
resolutions and two scenes. Half of the static objects are randomly set as dynamic during loading, in addition to the already existing dynamic objects. The
scenes are as described in the caption of Table 1.

Scene Rocks Factory

Voxelization resolution 323 643 1283 323 643 1283

Visible static voxels 257 ± 1 866 ± 1 2972 ± 1 521 ± 4 1546 ± 38 5198 ± 88
Visible dynamic voxels 1355 ± 6 4329 ± 25 14182 ± 70 3280 ± 12 10947 ± 178 36016 ± 254
Static voxel update 0.9 ± 0.1 2.0 ± 0.3 3.9 ± 0.3 1.1 ± 0.09 2.5 ± 0.17 6.2 ± 0.38
Dynamic voxel update 3.9 ± 0.21 10.2 ± 0.29 31.1 ± 1.46 7.7 ± 0.16 26.5 ± 0.98 53.2 ± 2.59
Other 5.5 ± 0.12 5.9 ± 0.54 6.7 ± 0.27 5.9 ± 0.29 6.7 ± 0.38 7.3 ± 0.48
Total 10.3 ± 0.26 18.1 ± 0.68 41.7 ± 1.51 14.7 ± 0.34 35.7 ± 1.06 66.7 ± 2.66

global illumination at a lower cost. In comparison, higher voxeliza-
tion resolutions allow for higher quality global illumination with
better-defined indirect shadows, at a cost that grows, however, at a
lower rate than the number of voxels processed.

Table 2 shows how the timings required to ray trace the full scene
geometry when performing the static voxel visibility update (within
the Static voxel processmentioned in Table 1), range between 2.7×
and 5.9× longer than the time needed to ray trace only the dynamic
scene geometry (e.g. 8.2 vs. 1.4 ms for 1283 for scene Rocks), com-
pensating for the extra memory required to initially store the static
voxel visibility for each static voxel face.

We show in Table 3 measurements when randomly setting half
of the static objects as dynamic at loading, in addition to the origi-
nal dynamic objects. By doing so, we force the dynamic voxeliza-
tion and dynamic voxel processing steps to carry a larger weight of
the global illumination updates. To simplify the comparison with
Table 1, we group all non-relevant steps (Lit voxels, Camera visible
voxels, Ray-traced shadows andMain scene+ FXAA) from Table 1
in theOther row of Table 3, since their values are similar to those in
Table 1.We can see that as the number of dynamic objects increases,
the total number of dynamic voxels to process grows. Except for
scene Rocks at voxelization resolution 323, the cost to process each
static voxel is always lower than the cost to process each dynamic
voxel, with an average value of 0.0016 ms per static voxel versus
0.0022 ms per dynamic voxel for scene Rocks, and 0.0013 ms per
static voxel versus 0.0017 ms per dynamic voxel for scene Factory.
We observe a similar cost as in Table 1, where only a few scene ob-
jects are dynamic, showing how our method scales proportionally
as the number of dynamic objects increases.

Table 4: Ray-tracing budget breakdown per frame in million rays for static
voxel visibility update, dynamic voxel visibility update and lit voxels com-
putations for three voxelization resolutions and two scenes as described
in Table 1, and the cost per pixel for different rendering resolutions: 1K
(1920 × 1080), 2K (3840 × 2160) and 4K (7680 × 4320).

Scene Rocks Factory

Voxelization resolution 323 643 1283 323 643 1283

Visible static voxels 404 1562 5797 976 3241 11,183
Visible dynamic voxels 567 1017 2229 1475 3644 9981
Static voxel update 0.4 1.2 4.7 0.8 2.5 8.6
Dynamic voxel update 0.5 1.0 2.1 1.3 3.3 9.5
Lit voxels 0.03 0.1 0.6 0.02 0.1 0.5
Total 0.93 2.3 7.4 2.12 5.9 18.6
Rays per pixel at 1K 0.4 1.1 3.6 1.0 2.8 9.0
Rays per pixel at 2K 0.1 0.3 0.9 0.3 0.7 2.2
Rays per pixel at 4K 0.03 0.07 0.2 0.06 0.2 0.6

5.2. Ray-tracing budget

Table 4 shows the total cost to update the static voxel visibility,
dynamic voxel visibility and lit voxel computations for the scenes
in Table 1. We observe how the ray-tracing budget varies between
0.93M rays for the Rocks scene at a voxelization resolution of 323,
to 18.6M rays for the Factory scene at a voxelization resolution of
1283. It is worth noting that, due to our divide-and-win approach in
ray tracing, only dynamic scene objects update static voxel visibil-
ity, so the ray-tracing cost in milliseconds for the Static voxel update

© 2024 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Table 5: Memory usage for three voxelization resolutions and two scenes
(see Table 1). We include the total number of static voxels in each case and
adapt the size of the buffers used to store dynamic voxel information to an
upper-bound estimate for dynamic voxels.

Scene Rocks Factory

Voxelization res. 323 643 1283 323 643 1283

Static voxels 3779 16,122 70,512 2648 14,866 61,972
Buffer (MB) 32.3 108.6 456.9 28.3 112.4 441.6
Texture (MB) 2.0 16.0 128.0 2.0 16.0 128.0
Total (MB) 34.3 124.6 584.9 30.3 128.4 569.6

case is much lower than ray tracing the whole scene, as can be seen
in Table 1. In our technique, the ray-tracing budget ranges between
0.4 and 9.0 rays per pixel for a 1K resolution, between 0.1 and 2.2
rays per pixel for a 2K resolution, and between 0.03 and 0.6 rays per
pixel for a 4K resolution. This shows how our technique is not af-
fected by rendering image resolutions due to our view-independent
approach to storing irradiance at scene voxels.

5.3. Memory

Table 5 shows the memory usage for the Rocks (1.1M triangles)
and Factory (2.3M triangles) scenes. We can see in this case how
the number of static voxels grows with an approximate factor of
4.6× each time the voxelization resolution is doubled in all three
dimensions (8×), while the memory usage grows with a propor-
tionality factor of 4.2×, approximately. As the scene voxels are pre-
dominantly static, most of the allocated memory stores static voxel-
related information. We adapt the size of the buffers to store dy-
namic voxel information to an upper-bound estimate of the dynamic
voxels needed in each case.

5.4. Large dynamic objects

We present in Table 6 measurements (in milliseconds) of each step
followed in a scene update, for three different voxelization reso-

lutions, and for each one of the three different scenes shown in
Figure 1. With timings for scene updates ranging from 11.4 to 22.2
ms, the times required by our technique (steps from the first four
rows on timings presented in Table 6) range from 2.9 ms at a vox-
elization resolution of 323, to 12.6 ms at a voxelization resolution
of 1283. We observe a similar behaviour as in Section 5.1, with a
total number of static and dynamic voxels processed increasing by
approximate average factors of 3.3× and 2.5×, respectively, as vox-
elization resolution is doubled in all three dimensions. In contrast,
computation times increase at an average factor of 1.35×. Static and
dynamic voxel updates takemost of the time, with the cost to process
dynamic voxels increasing faster due to the extra cost of performing
ray tracing on the whole scene geometry. Our technique shows how
large dynamic objects have an update cost that grows proportionally
to the number of dynamic voxels processed, with a cost to process
dynamic voxels ranging between 0.0021 and 0.0026 ms.

5.5. Dynamic voxel neighbourhood

As discussed in Section 4.4, when computing irradiance, we sur-
round each dynamic voxel with a 53 neighbourhood, which guaran-
tees irradiance values will be present when interpolating irradiance
for fragments generated by the geometry of dynamic scene objects,
avoiding any possible darkened values as a result of the interpola-
tion. See Figure 4 (left). As a consequence, dynamic scene objects
have temporal stability, avoiding flickering. There is a trade-off be-
tween quality and performance in this regard. In Figure 6, we show
an animated character in the scene Rocks, with a voxelization reso-
lution of 1283 when using a 53 neighbourhood in the leftmost part,
running at 124 fps with 721 dynamic voxels. We show the same
animated character and pose without using a neighbourhood in the
central part of the figure, running at 137 fps with 61 dynamic vox-
els. The differences in lighting between both cases are shown in
the rightmost part using NVIDIA’s FLIP [ANAM*20] tool. These
differences, although small when comparing static images, are the
source of noticeable flickering, which can be better appreciated in
the video sequences from the accompanying material.

Table 7 shows the number of visible dynamic voxels processed
and FPS for two scenes: Rocks, with the same viewpoint as in

Table 6: Average number of visible static and dynamic voxels processed (top) and average timings breakdown inmilliseconds (bottom) with a standard deviation
of the different steps followed during each scene update, for three different voxelizations for each scene shown in Figure 1. We used a 1.7M triangle version
of Amazon’s Bistro where distant invisible geometries were removed, adding a large dynamic object made of 41K triangles. The measurements from the same
viewpoint as in Figure 1 were recorded at five different times for each case, taking GPU task timing values from an NVIDIA NSight capture.

Scene Bistro white dragon Bistro red dragon Bistro blue dragon

Voxelization resolution 323 643 1283 323 643 1283 323 643 1283

Visible static voxels 215 ± 4 672 ± 11 2335 ± 37 216 ± 5 696 ± 17 2397 ± 43 223 ± 2 687 ± 19 2330 ± 85
Visible dynamic voxels 523 ± 17 1231 ± 16 3414 ± 36 517 ± 15 1234 ± 23 3443 ± 62 441 ± 27 936 ± 17 2584 ± 61
Lit voxels 0.2 ± 0.0 0.3 ± 0.0 1.0 ± 0.15 0.2 ± 0.0 0.3 ± 0.0 1.0 ± 0.14 0.2 ± 0.0 0.3 ± 0.0 0.9 ± 0.09
Camera visible voxels 0.6 ± 0.0 0.7 ± 0.01 1.1 ± 0.11 0.6 ± 0.0 0.7 ± 0.0 1.2 ± 0.12 0.6 ± 0.0 0.7 ± 0.0 1.0 ± 0.08
Static voxel update 0.9 ± 0.09 1.4 ± 0.15 2.2 ± 0.12 1.0 ± 0.11 1.5 ± 0.08 2.2 ± 0.05 0.7 ± 0.07 1.2 ± 0.14 2.0 ± 0.08
Dynamic voxel update 1.2 ± 0.09 2.9 ± 0.03 8.3 ± 0.76 1.1 ± 0.03 3.3 ± 0.39 8.2 ± 1.08 0.9 ± 0.05 2.2 ± 0.34 6.8 ± 0.82
Ray-traced shadows 4.8 ± 0.32 5.3 ± 0.52 5.1 ± 0.65 4.3 ± 0.12 5.6 ± 0.17 4.8 ± 0.22 4.5 ± 0.34 4.9 ± 0.44 4.7 ± 0.13
Main scene + FXAA 4.2 ± 0.17 4.1 ± 0.02 4.5 ± 0.42 4.6 ± 0.73 4.2 ± 0.28 4.3 ± 0.36 4.5 ± 0.60 4.5 ± 0.67 4.5 ± 0.64
Total 11.9 ± 0.38 14.7 ± 0.54 22.2 ± 1.11 11.8 ± 0.75 15.6 ± 0.52 21.7 ± 1.18 11.4 ± 0.70 13.8 ± 0.88 19.9 ± 1.06
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Table 7: Average and standard deviation values of visible dynamic voxels processed and FPS for three different voxel neighbourhood sizes for the scenesRocks
(1.1M triangles), with a similar viewpoint as in Figure 7 with a vehicle and a skinned mesh character as dynamic objects, and Factory (2.3M triangles), with a
similar viewpoint as in Figure 8, where eight skinned mesh characters and two ships are dynamic objects.

Scene Rocks Factory

Voxelization resolution 323 643 1283 323 643 1283

Visible dynamic voxels (53 voxel neighbourhood) 567 ± 27 1017 ± 22 2229 ± 116 1475 ± 56 3644 ± 60 9981 ± 60
Visible dynamic voxels (33 voxel neighbourhood) 176 ± 22 378 ± 45 1015 ± 50 606 ± 17 1615 ± 8 4602 ± 68
Visible dynamic voxels (no voxel neighbourhood) 27 ± 8 62 ± 18 202 ± 46 106 ± 2 314 ± 5 1001 ± 23
FPS (53 voxel neighbourhood) 131 ± 3 112 ± 3 73 ± 2 147 ± 1 100 ± 2 51 ± 1
FPS (33 voxel neighbourhood) 143 ± 2 127 ± 4 84 ± 2 164 ± 2 121 ± 3 69 ± 1
FPS (no voxel neighbourhood) 151 ± 2 134 ± 2 93 ± 1 173 ± 3 144 ± 2 89 ± 2

Figure 7, with a vehicle and a skinned mesh character as dynamic
objects, and Factory, with the same viewpoint as in Figure 8 and
where two large ships and eight skinned mesh characters are dy-
namic objects. As we can see, as the size of the voxel neighbour-
hood decreases from our initial configuration with 53 voxels to 0,
the number of visible dynamic voxels processed decreases to a range
between 0.5% and 1% of the original numbers for the scenes Rocks
at voxelization resolution 323 and Factory at voxelization resolu-
tion 1283, respectively, while FPS increase between 15% and 74%
for the same scenes.

6. Discussion

Even as an academic prototype, our technique achieves higher qual-
ity and performance than global illumination techniques currently
used in the state-of-the-art video game industry (e.g. Light Propa-
gation Volumes, RTXGI, and Lumen). Although performance re-
mains a crucial point for us, we prioritize quality over performance
when compared with other techniques. We tested it on medium and
large dynamic scenes built with assets common in current video
games (from the Quixel [Epi] asset library), with light interactions
from one light source between complex static and dynamic scene
objects. To facilitate comparison between different rendering tech-
niques that do not produce the same results due to different im-
plementations, we propose to use the Enhanced Image Colour
Transfer method [JR21] with the same parameter values in each
case. We also provide the original unaffected sets of images in
Figures 9 and 10. As an extra caution, we removed as many stages as
possible from the rendering pipelines when measuring other render-
ing techniques (Unreal Engine and Godot) to maximize their per-
formance for a more fair comparison. Even though, it is important
to mention that our timings of those rendering engines may include
other features and improvements not present in our technique.

Figure 7 on page 14 shows a large scene (Rocks, 1.1M triangles)
comparison between our technique at voxelization resolution 1283

at 73 fps (b), voxelization resolution 643 at 112 fps (c), and vox-
elization resolution 323 at 132 fps (d), and the best global illumina-
tion techniques currently used in video games: Lumen at 74 fps (e),
Voxel Cone Tracing at 137 fps (f), Light Propagation Volumes
at 250 fps (g) and RTXGI at 68 fps (h). As can be seen when com-
paring the leftmost zoomed-in image at the bottom row for each

detail image with the ground truth (a), our technique can reproduce
the green, blue and red reflections on the concrete slab observed
in the ground truth better than any other technique. LPV and VCT
offer results with a much lower quality than any other technique,
with the coloured reflections missing. As can be observed, the im-
age fromLumen suffers from small artefacts (like the white light be-
hind the animated character). RTXGI suffers from noise and shows
a flatter and dimmer reflection when compared to our technique.
Only our technique at voxelization resolutions of 1283 and 643 and
RTXGI show a green tone on the animated character, with the other
techniques showing uniform (flat) or white tones. Regarding the an-
imated car details in the rightmost zoomed-in image at the bottom
row of each image, our technique shows brighter results, while no
technique is capable of achieving close similarities with the ground
truth. RTXGI and LPV present the most similar outcomes, while
Lumen suffers from some artefacts. For the zoomed-in image at the
top row for each image, we can see how our technique conveys the
blue/red/green tones from lit areas about 10–15 m away, while all
remaining techniques fall into a flat, i.e. more uniform, result. VCT
has a better performance than ours, at a cost of much lower quality at
any voxelization resolution, displaying completely flat results. LPV
has also better performance than our technique, but shows much
lower quality results than ours at voxelization resolutions 1283 and
643, while also showing temporal instability, with some light flick-
ering as the car moves. This can be seen in the video sequences from
the accompanying material.

We use a different, larger and open-world scene Factory (2.3M
triangles) in Figure 8 for comparison between our technique at vox-
elization resolution 1283 at 53 fps (b), voxelization resolution 643 at
100 fps (c) and voxelization resolution 323 at 147 fps (d) and the top-
tier Global illumination techniques currently used in video games:
Lumen at 54 fps (e), Voxel Cone Tracing at 11 fps (f), Light Prop-
agation Volumes at 190 fps (g) and RTXGI at 55 fps (h), with a
ground truth rendered with Blender Cycles with 4096 samples per
pixel (a).

When comparing details from the leftmost zoomed-in image at
the top row for each rendering technique (blue ship moving through
the scene), we can see that LPV and VCT show flatter results, while
our technique at voxelization resolutions 643 and 323, Lumen, and
RTXGI achieve results closer to the ground truth. However, we can
observe lighting artefacts for Lumen (the darker right part of the
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12 of 23 A. Cosin Ayerbe et al. / Dynamic Voxel-Based Global Illumination

Figure 7: Comparison of rendering techniques on the scene Rocks (1.1M triangles), built with assets from the Quixel [Epi] asset library. In
the rightmost column, we show the difference with the ground-truth rendering using NVIDIA’s FLIP [ANAM*20] tool.
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A. Cosin Ayerbe et al. / Dynamic Voxel-Based Global Illumination 13 of 23

Figure 8: Comparison of rendering techniques on the scene Factory (2.3M triangles), built with assets from the Quixel [Epi] asset library.
The rightmost column shows the difference with the ground-truth rendering using NVIDIA’s FLIP [ANAM*20] tool.
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14 of 23 A. Cosin Ayerbe et al. / Dynamic Voxel-Based Global Illumination

Figure 9: Original images from Figure 7 not using the Enhanced Image Colour Transfermethod [JR21]. In the rightmost column, we show
the difference with the ground-truth rendering using NVIDIA’s FLIP [ANAM*20] tool.
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A. Cosin Ayerbe et al. / Dynamic Voxel-Based Global Illumination 15 of 23

Figure 10: Original images from Figure 8 not using the Enhanced Image Colour Transfer method [JR21]. The rightmost column shows
the difference with the ground-truth rendering using NVIDIA’s FLIP [ANAM*20] tool.
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ship).When it comes to temporal stability (this can be seen in the ac-
companying material video sequences), our technique offers stable
results, while LPV and RTXGI show artefacts and sudden changes
in lighting as the ship moves, especially with RTXGI. Lumen of-
fers better temporal stability than LPV and RTXGI, but it is still
not correct, as we can observe flickering on the right side of the
ship as it moves. We can see how Godot’s VCT shows a low per-
formance (11 fps) with this scene, especially noticeable when com-
pared with its performance in our previous test scene Rocks. This is
due to the poorly performing implementation of VCT by Godot. We
believe future implementations of VCT in this engine will achieve
better performance and stability across different scenes. For a com-
parison between our work and a fully optimized version of VCT,
please refer to the academic comparison with VCT in the last part
of this section. If we compare the details from the leftmost zoomed-
in image at the bottom row for each rendering technique (four an-
imated characters) with the ground truth, we can see how only our
technique at voxelization resolution 1283 and RTXGI are capable
of reproducing a green tone on the animated characters, although
RTXGI shows much brighter results on the vehicle in the back. Lu-
men achieves more intense but flatter results, similar to our tech-
nique at voxelization resolution 643, while the remaining techniques
and our technique at voxelization resolution 323 show mostly flat
results. Regarding temporal stability, all techniques produce correct
results. We can see how, as the characters move away from the green
container, the received green irradiance fades away. In the case of
Lumen, the fading barely changes when compared with other tech-
niques. When we compare the details from the rightmost zoomed-
in image at the top row for each rendering technique (rock forma-
tion) with the ground truth, we can see how our technique at all
voxelization resolutions, especially at 643 and 1283, resembles the
ground-truth results. Lumen can achieve a better occlusion but fails
to match the quality of our technique, offering results more similar
to RTXGI. VCT and LPV differ from the ground truth. Lastly, if
we compare the details from the rightmost zoomed-in image at the
bottom row for each rendering technique (building corner and roof)
with the ground truth, our technique at voxelization resolutions 643

and 1283 achieves occlusion in the corner and a green tone similar
to the ground truth. VCT, LPV and our technique at voxelization
resolution 323 offer mostly flat results. RTXGI reproduces a green
tone but fails regarding occlusion with flat results. Lumen shows
good occlusion and green tone but suffers from some bright areas
on the columns and next to the entrance, as well as some artefacts on
the roof. In this scene, our technique at voxelization resolutions 643

and 1283 offers better quality and temporal stability than any other
technique analysed, with the case of 643 performing better than Lu-
men (100 vs. 54 fps). For a better evaluation of our technique we
show in Figure 11 the voxel grid for the scenes Rocks and Factory at
voxelization resolutions of 323, 643 and 1283. These results provide
another example of how our work reaches better quality and tempo-
ral stability than state-of-the-art techniques from commercial game
engines.

Voxel Cone Tracing (VCT) is considered the reference in voxel-
based global illumination. In Figure 12, we show a compari-
son with the scene Sponza Atrium between VCT with a Sparse
Voxel Octree implementation [CNS*11], using material courtesy
of Crassin [Cra21], with our technique using a configuration as sim-
ilar as possible to the one provided. We also applied the Enhanced

Table 8: Memory usage forVoxel Cone Tracing (VCT) following aSparse
Voxel Octree implementation, and for our technique (ours) at five different
voxelization resolutions for a static scene Sponza Atrium, with the camera
and light setup as in Figure 12. We include the total number of static voxels
in each case, the main factor being related to memory usage. Information for
our technique at voxelization resolutions 2563 and 5123 are approximated
based on the average values of the ratio between values at voxelization reso-
lutions 643 and 323, and the ratio between values at voxelization resolutions
1283 and 643.

Scene Sponza Atrium

Voxelization 323 643 1283 2563 5123

VCT: Memory (MB) 1.2 6.5 34.1 164.9 813.2
Ours: Memory (MB) 35.5 158.1 751.9 3462.1 15941.2
VCT: FPS N/A N/A 275 N/A N/A
Ours: FPS 307 286 214 179 150

±0.03 ±0.02 ±0.09
Ours: Static voxels 5201 23,975 109,241 0.5M 2.3M

Image Colour Transfermethod [JR21] to the images in Figure 12,
to facilitate comparison, applying the same parameter values for all
images except for the ground-truth rendering, whichwas used as ref-
erence. Our ground-truth rendering has over 1200 samples per pixel
and is done withLuxCore in Blender. By using different path trac-
ing reference algorithms for ground-truth renderings, we broaden
our comparison spectrum, while LuxCore also offers better inter-
nal adjustments for this scene. We provide the original unchanged
images in Figure 13. As can be seen in the top, leftmost zoomed-in
image in Figure 12 (hanging blue fabric) when comparing with the
ground truth, our work at all voxelization resolutions shows a correct
shade behind the fabric, while both VCT samples show clear light
leaks. When comparing the bottom, leftmost zoomed-in image from
Figure 12 (coloured curtains) with the ground truth, we can see how
VCT displays colour bleeding on the arches above each curtain, with
our work at voxelization resolutions 643 and 1283 displaying colour
bleeding as well, with a lower intensity. If we compare the right-
most zoomed-in image (floor tiles in shade) from Figure 12 with the
ground truth, we can see how our work at voxelization resolutions
643 and 1283 displays clear bluish and reddish colour bleeding from
light bouncing off the curtains, thanks to a better irradiance gather-
ing. VCT only achieves colour bleeding for voxelization resolution
5123 which, when compared with the ground truth, quickly fades
away and has a dim bluish colour bleeding, while VCT for voxeliza-
tion resolution 1283 shows flat results. These results show how our
work at voxelization resolution 643 achieves an overall better quality
than VCT at voxelization resolution 1283. Table 8 shows the mem-
ory usage of our technique and the Sparse Voxel Octree imple-
mentation used in VCT, for different voxelization resolutions for the
scene Sponza Atrium in Figure 12. Crassin [Cra21] also provided a
value of 613 fps at a voxelization resolution of 1283 on an RTX 3090
GPU for this scene, which is around 275 fps on the GPU that we
used for testing (an RTX 2060). As mentioned at the beginning of
this section, we prioritize quality over performance when compar-
ing our work with other techniques. As discussed in the zoomed-in
images from Sponza in Figure 12, our work generates at voxeliza-
tion resolution 643 higher quality results and also higher FPS than
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Figure 11: Voxel grids for the scenes Rocks and Factory at voxelization resolutions 323, 643 and 1283, showing static (red) and dynamic
voxels (green).

VCT at a higher voxelization resolution of 1283 (286 vs. 275 fps).
Regarding memory consumption, VCT needs at least voxelization
resolution 2563 to achieve colour bleeding on the floor tiles and to
match or improve our results at voxelization resolution 643. This
requires from VCT significantly more memory than our work at a
much smaller voxelization resolution of 643 (158.1 vs. 164.9 MB).
These results show how our work offers better quality and perfor-
mance, and a lower memory consumption than VCT, representing
another contribution to the voxel-based global illumination field.

Among other academic techniques, Light Propagation Volumes
by Kaplanyan and Dachsbacher [KD10] have been analysed on our
test scenes Rocks and Factory in Figures 7 and 8. Following our
criteria to prioritize quality over performance when comparing with
other techniques, we can see how performance is higher in LPV than
in our work, but at the expense of a much lower quality, showing
in several cases mostly flat results, with also temporal instability
in both scenes. Other techniques not included in our comparison
are RSMs from Dachsbacher and Stamminger [DS05], which we

estimate would have a better performance but lower quality than our
work since it does not take into account occlusion; and PRT by Sloan
et al. [SKS02], which we estimate would have a better quality than
our work but would not fully support dynamic scenes since the only
possible interaction with dynamic objects consists in projecting the
pre-computed results from static objects onto dynamic objects and
using pre-stored animations that require many pre-computations.

Our technique follows an irradiance volume approach, generat-
ing a grid of voxels where irradiance is stored per face of each
voxel, not requiring any probe edition. We achieve great quality re-
sults for large, dynamic, complex scenes similar to offline global
illumination renderers. At the ray tracing level, we follow a divide-
and-conquer approach considering only dynamic scene objects, typ-
ically a smaller subset of all scene objects. As discussed in this sec-
tion and shown in Figure 12 and Table 8, our technique offers better
performance and quality with a lower memory consumption than
academic techniques such as Sparse Voxel Octree-based Voxel
Cone Tracing. By storing irradiance on two separate texture sets,
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Figure 12: Comparison of rendering techniques on the scene Sponza Atrium.
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Figure 13: Original images from Figure 12 not using the Enhanced Image Colour Transfer method [JR21].
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we avoid light leaks from dynamic onto static objects as can be seen
in all our test scenes including dynamic scene objects (Figures 1, 7
and 8). Traditional voxel-based global illumination techniques re-
quire casting several diffuse cones per fragment. We achieve a low-
cost final rendering using a simple post-processing pass that requires
a fixed number of three texture samples at the same mipmap level
for irradiance computations.

7. Limitations

As with other global illumination techniques, ours has also its short-
comings.We summarize them in this section with possible improve-
ments.

Even though our technique does not require large voxelization
resolutions to achieve good results, the amount of memory required
per voxel face remains important concerning memory growth. To
store visibility information, we use four bytes for each one of the
128 ray directions per-voxel face. We need two visibility sets for
static voxels (one to cache static voxel visibility and one to store up-
dated dynamic visibility) and one set for dynamic voxels. We could
ignore the direction of the normal at the intersected geometry, stor-
ing only the distance from the ray origin, allowing us to re-construct
the intersection information. In this case, only half of the memory
would be required for both static and dynamic voxels.

In our technique, voxels generated due to dynamic scene objects
require computing a large set of neighbouring voxels to avoid flick-
ering, as mentioned in Figure 4 (left). This approach guarantees that
irradiance values will be ready for interpolation, without resulting in
darkened values for any fragment generated by the dynamic objects.
In most cases, a 33 neighbourhood is enough, while in others com-
puting a 53 neighbourhood provides the correct results. As the den-
sity of dynamic scene objects grows, irradiance computations for
some of those voxels can be shared among nearby dynamic scene
objects, but in general, the number of dynamic voxels to process
can grow considerably as the number of dynamic scene objects in-
creases, as can be seen in Table 3. Although the computations grow
proportionally with the number of voxels to process, asmentioned in
Section 5.1, the direct consequence is a higher cost for the dynamic
voxel update, which is generally more expensive due to casting rays
in an acceleration structure containing all the scene objects. Caching
static visibility for each dynamic voxel that needs to be computed,
requiring only to update visibility in a less expensive acceleration
structure with only the dynamic scene objects, and keeping its in-
formation in a memory pool until it is no longer needed could con-
tribute to improving performance.

In Table 4, we expose the ray-tracing budget required by our im-
plementation. To achieve good results, which generally requires us-
ing at least voxelization resolution 643, involves a cost of 1.1–2.8
rays per pixel, above the limit of those devices with poor ray-tracing
performance such as the XBox X|S and PS5 (0.25 to 0.5 rays per
pixel). By splitting the voxel visibility updates for each voxel face
through four frames, casting only a subset of 32 rays from the total
128 ray directions considered per voxel face, we could reduce those
numbers below 0.7 rays per pixel at full HD resolution.

Our system handles a single light source. In our implementation,
adding support for more light sources is straightforward. We just

Figure 14: Detail from the Bistro scene from a different viewpoint.
A dim reddish tone is visible on the left part of the metal rails holding
the red awnings, due to light leakage through the thin geometry of
the awnings.

consider a small extra buffer per light source to store per-voxel-lit
information at the level of a voxel, doing the computation only once
for any number of times the voxel-lit information is needed later in
the light bounce step.

We currently implemented a single light bounce. Performing ex-
tra bounces involves updating irradiance for an extended set of vox-
els. To do so, we start with the set of voxels visible from the cam-
era. We need to add, for each camera visible voxel, all static and
dynamic visible voxels from its visibility information. Some can
fall outside the view of the camera. Since this can represent a large
number of voxels to process, to reduce the impact on performance,
some strategies could be followed, such as discarding those voxels
that are beyond a distance threshold from the voxels visible to the
camera. These light bounces would take information from previous
bounces from the irradiance textures. We leave this as an avenue for
further research.

Our technique renders diffuse materials. Adding support for
glossymaterials could be done with two small changes. First, a post-
processing pass in the G-buffer would detect all intersected scene
objects covered with a glossy material. Each intersection would cast
a new ray in the reflected direction along the surface normal (sim-
ulating a specular material). If the new ray intersects any scene ge-
ometry, we would add its corresponding static or dynamic voxel to
the list of voxels for which we need to compute a light bounce. The
second change would involve informing in the main rendering step
which voxel is needed to perform the glossy material computations.
We would need to store the coordinates of the voxel intersected by
the new ray for each pixel of themain rendering step, with amemory
increase similar to adding a 24-bit render target.

Regarding thin geometries, voxel-related techniques can suffer
from light leakage and extra-darkening. Thanks to the irradiance
filtering computations, extra-darkening is generally avoided, while
computing visibility per voxel face through ray tracing contributes
to minimizing light leakage. We could also detect some cases where
thin geometries are present, as in Figure 14. The process of irra-
diance filtering for dynamic voxels involves acquiring irradiance
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Figure 15: Irradiance filtering can lead to light leaks in certain sit-
uations on dynamic objects, as shown in these details from theBistro
scene. Left: A blue tint is visible on the dragon’s body and slightly
on the back of its head due to irradiance filtering from neighbouring
voxels that have visibility to geometry from the dragon’s blue body
part, shown in Figure 1. Right: Disabling irradiance filtering avoids
this issue but may lead in some cases to some extra-darkening.

from neighbouring voxels. If those neighbouring voxels have visi-
bility of scene objects with irradiance values that largely differ from
the voxel’s irradiance, light leaks may eventually be generated, as
shown in Figure 15.

Our technique relies on minimal ray tracing, compute and
bandwidth capabilities, benefiting from our implementation in the
Vulkan API, which maximizes GPU usability. The viability of
our technique on low-end GPUs, such as integrated GPUs and
bandwidth-limited GPUs used on mobile devices, remains to be
analysed, requiring a re-design of the most computationally de-
manding workloads.

8. Conclusions

We presented a new technique belonging to the Irradiance Vol-
umes family for the real-time display of diffuse global illumination.
We store irradiance per voxel face, computing visibility through ray
tracing. We follow a divide-and-win approach, casting each ray in a
representation of the scene containing only dynamic scene objects,
to lower the cost of ray tracing, even if dynamic scene objects repre-
sent the majority of the scene objects. By using voxels as locations
where to compute irradiance for both static and dynamic scene ob-
jects, we do not require any manual scene edition. Our technique
achieves a higher quality, temporal stability and performance than
the techniques used in the industrial state of the art for global illu-
mination in video games (Voxel Cone Tracing, Light Propagation
Volumes, RTXGI and Lumen) in large and complex scenes with
modern assets, animated characters and dynamic scene objects and
light sources. As future options, we consider implementing glossy
and specular materials and participating media while optimizing all
areas of our implementation (memory usage, dynamic and static
voxel updates and ray-tracing budget).
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