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examinations allow for a quicker analysis, these often pres-
ent with certain pertinent drawbacks. In addition to warrant-
ing a greater degree of training and expertise, morphological 
visual assessments suffer from a higher degree of subjec-
tivity [2]. Osteometric methods, on the other hand, confer 
greater objectivity to the process of human identification, 
and thus are being increasingly preferred [3–7].

Within the human skeleton, innominate-based mark-
ers are often preferred for sex estimation [8, 9], attribut-
able to its biological association with reproduction which 
manifests as variations in rates and direction of growth of 
local areas [10], which in turn confers high accuracy for 
sexing [1, 11]. Amongst the various sex markers within the 
human pelvis, the acetabulum presents as a reliable [4, 12], 
and taphonomically resilient structure [13]. Morphoscopic 
and osteometric attributes of the acetabulum have previ-
ously been utilised for sex estimation [2–4, 12, 14–34], with 

Introduction

Sex estimation constitutes one of the fundamental analyses 
that is undertaken for human identification within bioar-
chaeological, paleodemographic, and medico-legal contexts 
[1, 2]. Sexing from the human skeleton has often been 
attempted through inspectional and/or metric examinations 
of different bony markers. While macroscopic inspectional 
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Abstract
Sex estimation is essential for human identification within bioarchaeological and medico-legal contexts. Amongst the 
sexually dimorphic skeletal elements commonly utilised for this purpose, the pelvis is usually preferred because of its 
direct relationship with reproduction. Furthermore, the posterior part of the innominate bone has proven to have better 
preservation within degraded contexts. With the aim of investigating the potential of the vertical acetabular diameter as 
a sex marker, 668 documented individuals from three different Iberian skeletal collections were randomly divided into 
training and test samples and eventually analysed using different statistical approaches. Two traditional (Discriminant 
Function Analysis and Logistic Regression Analysis) and four Machine learning methodologies (Support Vector Clas-
sification, Decision Tree Classification, k Nearest Neighbour Classification, and Neural Networks) were performed and 
compared. Amongst these statistical modalities, Machine Learning methodologies yielded better accuracy outcomes, with 
DTC garnering highest accuracy percentages of 83.59% and 89.85% with the sex-pooled and female samples, respectively. 
With males, ANN yielded highest accuracy percentage of 87.70%, when compared to other statistical approaches. Higher 
accuracy obtained with ML, along with its minimal statistical assumptions, warrant these approaches to be increasingly 
utilised for further investigations involving sex estimation and human identification. In this line, the creation of a statistical 
platform with easier user interface can render such robust statistical modalities accessible to researchers and practitioners, 
effectively maximising its practical use. Future investigations should attempt to achieve this goal, alongside examining 
the influence of factors such as age, on the obtained accuracy outcomes.
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a recent predominance of the latter. Acetabular diameters 
have already been considered as potential sexually dimor-
phic variables, in isolation [4, 12, 23]. However, previously 
undertaken multivariable investigations have demonstrated 
that the acetabular diameter is one of the least accurate sex-
ing parameters, when compared to other pelvic variables, 
within a worldwide comprehensive dry bone sample [8, 9]. 
Certain other authors, by contrast, concluded that the verti-
cal acetabular diameter was the most reliable variable out of 
the nine pelvic parameters analysed in a CT-based Spanish 
sample [35]. In addition to these differential findings, there 
also exists a certain methodological variability between 
these investigations. The former study defined the vertical 
acetabular diameter following Braüer [36], while the lat-
ter considered it differently under the definition given by 
Genovés [37]. Such contrasting methodological approaches 
and empirical findings warrant further investigations into 
the sexing accuracy associated with the vertical acetabular 
diameter, and the need for standardisation. Furthermore, 
similar investigations with acetabular dimensions on dry 
bone are currently wanting for an Iberian population.

In recent times, statistical analysis has been increas-
ingly incorporated into morphological and osteometric 
sex estimation. Such statistical integrations, in addition to 
enhancing sex prediction, aid in computing the probability 
of an individual/ skeletal remain being biologically male 
or female. A large share of sex estimation-based studies 
have often utilised Discriminant Function Analysis (DFA) 
and Logistic Regression (LR) for sexing [38–42]. Sexing 
with the acetabulum has, by and large, also been undertaken 
using DFA [2, 4, 12, 15–20, 23–25, 43, 44]. Probabilistic 
Sex Diagnosis (DSP) has also been utilised for sexing the 
innominate [8, 9, 28–31, 34]. Machine Learning Algorithms 
present as another equally viable statistical modality for sex-
ing. Machine Learning (ML) offers numerous advantages 
within the domain of forensic identification. In addition to 
circumventing the requirement for a normally distributed 
sample, ML has fewer statistical assumptions to satisfy, can 
supplement missing values, and effectively do away with 
the Measurements Statistics Controversy [27]. However, 

despite the applicability of ML approaches for sex estima-
tion, as indicated by investigations with other anatomical 
markers [45–49], its specific use for sexing the acetabulum 
is largely unexplored. Furthermore, investigations compar-
ing the accuracy percentages obtained with different statisti-
cal approaches for sexing the acetabulum, are also presently 
lacking.

In light of the lacuna associated with acetabular sexing, 
the present study was designed with the following objec-
tives: (a) establishing the sexing accuracy of the vertical 
acetabular diameter for an Iberian population, and (b) esti-
mating the highest accuracy achievable with the acetabular 
diameter for this population through the use of different sta-
tistical approaches.

Materials and methods

Sample

668 documented individuals (321 females and 347 males) 
from three modern documented skeletal collections from 
the Iberian peninsula were assessed for this study: (1) 
UVA - Valladolid collection [50], housed in the Anatomi-
cal Museum at the Faculty of Medicine of the University of 
Valladolid (Valladolid, Spain); (2) UCM - Madrid collection 
[51], housed in the School of Legal Medicine at the Fac-
ulty of Medicine of the University Complutense of Madrid 
(Madrid, Spain); and (3) MBL - Luis Lopes collection [52], 
housed in the Museo Bocage of Lisbon (National Museum 
of Natural History, Lisbon, Portugal). All these collections 
are derived from modern cemeteries and have documented 
records of birth and death. All three collections comprise 
of individuals who died in the 20th century, except for five 
specimens from the Lisbon repository. This comprehensive 
sample was chosen as it is representative of different bio-
geographical affinities of the Iberian population, their avail-
ability, and their potentially large age ranges.

Individuals with mature acetabula (completely fused) 
were selected in order to cover the entire period of acetabu-
lar maturity. For Iberian populations, the complete fusion of 
the acetabulum has been reported to transpire at 15 years in 
males and at 12 years in females [17, 53, 54]. This pattern 
is in accordance with the acetabular maturity standard inter-
vals published by Schaefer and colleagues [55] i.e., 14–18 
years for males, and 11–16 years for females. For the present 
study, considering the previous inclusion criteria, individu-
als older than 15 years with fused acetabulum were chosen 
in order to create the same age intervals in both sexes, giv-
ing an effective age range of 15 to 98 years. Table 1 dis-
plays information regarding age, sex, and collection of the 
individuals analysed in this study. The left os coxa, without 

Table 1 Descriptive parameters for each skeletal collection, grouped 
by sex (N = 668)
Collection Sex N (%) Age range 

(years)
Mean ± SD 
(years)

UVA F 49 (07.33) 37–96 73.31 ± 14.241
M 69 (10.32) 23–88 64.12 ± 14.802

UCM F 74 (11.07) 21–97 64.53 ± 19.160
M 96 (14.37) 20–94 53.03 ± 18.454

MBL F 198 (29.64) 15–98 54.13 ± 22.005
M 182 (27.24) 15–89 51.26 ± 21.529

UVA = University of Valladolid collection; UCM = University Com-
plutense of Madrid collection; MBL = Museo Bocage of Lisbon; 
M = male; F = female; SD = standard deviation
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any pathology and/or deformity that might affect the analy-
sis, was chosen for each individual. In cases where the left 
acetabulum was missing, or broken (i.e., where the position-
ing of the sliding calliper on the acetabular rim was not pos-
sible), or pathologically impacted, the right counterpart was 
analysed (16.86% of the total sample).

The final study sample comprised of 668 skel-
etal remains: 118 from the UVA collection (mean 
age ± SD = 68.79 ± 15.158 years), 170 from the UCM col-
lection (mean age ± SD = 58.00 ± 19.559 years), and 380 
from the MBL collection (mean age ± SD = 52.76 ± 21.797 
years) (Table 1). Documented age information for one 
female of the UCM collection was unavailable within the 
study sample.

Measuring the acetabular diameter

The maximum vertical diameter of the acetabulum was mea-
sured on the acetabular rim, parallel to the long axis of the 
ischial body following the definition of Taylor and DiBen-
nardo [56] (Fig. 1). The variable was measured with a stan-
dard sliding calliper up to one decimal place (centimetres).

Statistical analyses

Statistical analyses were undertaken with IBM Statisti-
cal Package for Social Sciences (SPSS) v26 and Python 3. 
Statistical tests of normality, intra-observer reliability, sex 
differences, and between group differences were assessed 
using SPSS (see below). Accuracy for sex estimation was 
established using different statistical modalities of Dis-
criminant Function Analysis, Logistic Regression Analysis, 
Support Vector Classification, Decision Tree Classification, 

k Nearest Neighbour Classification, and Neural Networks. 
While statistical models of Discriminant Function Analysis, 
Logistic Regression Analysis, Support Vector Classifica-
tion, Decision Tree Classification, and k Nearest Neighbour 
Classification were derived with Python, Neural Networks 
were developed using SPSS. This bivariate statistical 
approach was utilised because when attempts were under-
taken to derive neural networks with Python, the ‘tf. losses.
sparse_softmax_cross_entropy’ function was found to be 
deprecated, with a corresponding warning message dis-
played for the use of ‘TensorFlow’ for creating a neural net-
work. To avoid obtaining inaccurate performance measures, 
alternatively, SPSS was utilised to create neural networks 
for sex estimation. A p-value < 0.05 was considered statisti-
cally significant for all computations.

Normality of the sample was tested using the Kol-
mogorov Smirnov test. Obtained results (p < 0.05) indicated 
a non-normal distribution of the sample, and thus non-para-
metric statistical tests were utilised during further analysis.

To analyse the intra-observer reliability associated with 
this dimension, acetabular diameter data from a previous 
study [57] from the School of Legal Medicine at the Fac-
ulty of Medicine of the Complutense University of Madrid 
(Madrid, Spain) [51] was used. In order to establish the intra-
observer error, 108 left acetabular measurements (i.e. two 
sets of measurements obtained from the same documented 
skeletal remains, at an interval of three years) were utilised, 
and a two-way random intraclass correlation (ICC) was cal-
culated. Due to the data characteristics, absolute agreement 
ICC type was used and as reported by [58], single mea-
sures were employed for intra-observer reliability. Obtained 
absolute agreement ICC values were interpreted following 
the system of Koo and Li [59], i.e., ICC values < 0.5 are 
indicative of poor reliability, values between 0.5 and 0.75 
indicate moderate reliability, values between 0.75 and 0.9 
indicate good reliability, and values > 0.90 indicate excel-
lent reliability. Inter-observer analysis was not undertaken 
as the vertical acetabular diameter has already demonstrated 
acceptable levels of error between observers, in the past [8, 
29, 33, 34, 60, 61].

Sexual dimorphism associated with the acetabular diam-
eter was evaluated using the Mann-Whitney U test. Sex dif-
ferences were assessed for the overall sample, as well as 
for the three collections individually. Coefficient of corre-
lation between acetabular diameter and sex was estimated 
for the overall sample, as well as for the three individual 
collections.

Significant differences, if any, in acetabular diameter 
values between the three collections were assessed using 
the Kruskal-Wallis test. No significant differences were 
obtained between the three collections, and thus, further 
statistical analysis was undertaken with the pooled sample.Fig. 1 Vertical acetabular diameter measured on the acetabular rim, 

parallel to the long axis of the ischial body [56] by a standard calliper
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Linear, as well as Quadratic Discriminant Function Analysis 
was undertaken in the present study, so as to not presume 
a linear relationship between diameter and sex. Demark-
ing points were established by applying both Discriminant 
approaches to the training set. Accuracy percentages were 
computed for the total population, males, and females of the 
training group (N = 567) to, primarily, illustrate the sexing 
accuracy associated with the acetabular diameter for an Ibe-
rian population, as given below:

Accuracy = Number of individuals correctly sexed

/Total number of individuals

In order to enable further validation of DFA for sexing, 
accuracy percentages were estimated for the total popula-
tion, males, and females of the test set (N = 101). In addition 
to this, Receiver Operating Characteristic (ROC) curves, 
a form of graphical representation of the performance of 
binary classifier models, were also plotted. ROC curves 
were plotted using both Discriminant approaches, for the 
test group to demonstrate the discriminatory ability of these 
statistical approaches.

Logistic regression analysis (LRA)

Unlike DFA, which employs the use of the Mahalanobis 
distance to estimate sex, Logistic Regression Analysis cal-
culates the probability of an individual belonging to a spe-
cific group (male/ female) [27]. Binary Logistic Regression 
(BLR) assumes a logistic distribution of errors, and estab-
lishes a relationship between the predictors of sex and the 
probability of an individual belonging to a particular sex 
class using the following expression [63]:

ln (Psex = k) /1− (Psex = k)=c0+c1X1+c2X2+.......

where c0, c1, c2 etc. are adjustable parameters determined 
using a maximum likelihood ratio, X1, X2 etc. are the sex 
traits, and k is the sex class = 0/1 (female/ male) [63]. Logis-
tic regression analysis was first undertaken with the training 
set in the present study, and accuracy was computed for the 
total population, males, and females. Derived LRA model 
was then applied to the test set and accuracy percentages for 
both sexes and the total population were estimated. An ROC 
curve was plotted to illustrate the discriminatory ability of 
LRA with the test set.

In order to compute the sexing accuracy associated with 
the acetabular diameter for an Iberian population, the entire 
study sample of 668 individuals was divided into a train-
ing group of 567 individuals, and a test group of 101 indi-
viduals, using the “scikit. learn” function in Python in an 
85%- 15% proportion, and the “partitioning” function in 
SPSS, wherever relevant (see above section on bivariate 
approaches utilised for deriving sex estimation models). 
The training group was subjected to different statistical tests 
and was utilised to derive various sex estimation models 
(Linear Discriminant Function Analysis, Quadratic Dis-
criminant Function Analysis, Logistic Regression Analysis, 
Artificial Neural Networks, Support Vector Classifier, CRT 
Decision Tree Classifier, and k Nearest Neighbour Classi-
fier), while the test group was employed to validate these 
derived models.

Discriminant function analysis (DFA)

Discriminant Function Analysis is often used to classify an 
unknown individual into one of the known reference groups 
(sex in this present study) through computations of the 
Mahalanobis distance [62]. There are two main variants of 
DFA; Linear Discriminant Function Analysis (LDFA) and 
Quadratic Discriminant Function Analysis (QDFA).

LDFA employs a linear combination of predictor vari-
ables and assumes equality of covariance. In LDFA, classi-
fication of an individual into known reference groups (sex) 
is undertaken as follows [63]:

y = a0 +
m∑

i=1

aiXi

Where Σ is the pooled sample covariance matrix, a0 and 
ai are adjustable parameters that are calculated using lin-
ear/ multilinear log regression, and Xi is the independent 
variable.

QDFA, on the other hand, utilizes a non-linear combina-
tion of predictor variables and does not assume equal cova-
riance. Classification of an individual into known reference 
groups occurs as follows [63–65]:

dk(x)=−1/2(x− µk)
t

−1∑

k

(x − µk)−1/2 ln |Σk|+ ln Pk

where k (class) = 0/1 (female/ male), Σk is the covariance 
matrix for class k, Pk denotes the prior probabilities (prior 
probabilities are estimated as nk/n where nk are the number 
of cases for class k, and n is the total number of cases), ½ 
(x-µk) is the Mahalanobis distance between the unknown to 
the known reference group’s centroid. The above equation 
can also be re-written as [63]:
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yn[w
T (x)+b] = {≥ 0 if correct;< 0 if incorrect}

where b is the intercept and bias term of the hyperplane 
equation, (x) is the given point vector, and ||w||2 is the 
Euclidean norm for the length.

The training set was utilised to train the SVC model, 
and accuracy obtained with sexing males, females, and the 
overall population of the training set was computed. Subse-
quently, the trained model was applied to the test set, and 
accuracy measures for males, females, and the total popula-
tion were estimated for this smaller subset of 101 remains. 
An ROC curve was plotted with the test set to demonstrate 
the discriminating ability associated with SVC.

Decision tree classification (DTC)

Decision trees are non-parametric machine learning 
approaches, commonly utilised for both, classification and 
regression problems. The hierarchal tree structure compris-
ing of root nodes, branches, internal nodes, and leaf nodes 
is used to classify an individual into one of the two classes 
(sexes). Decision Tree Classification and the use of the Deci-
sion Tree Algorithm employs the use of different measures 
of impurity- Entropy and information gain, or Gini impurity 
(https://www.datascienceprophet.com/understanding-the-
mathematics-behind-the-decision-tree-algorithm-part-i/).

Entropy is the amount of information required to accu-
rately describe data. It is estimated as:

Entropy (S)= −
∑

cεC

p (c) log2p (c)

where S is the dataset, c represents the classes (i.e., sexes), 
p(c) represents the proportion of datapoints which belong 
to class c to the total number of datapoints. These entropy 
values fall between 0 and 1, and the predictor with lowest 
entropy value is utilised to split the tree. Information gain, 
which is further employed to create multiple nodes, does so 
as follows:

Information gain(S, a) =

Entropy (S)−
∑

v∈vcalues(a)

|Sv |/| S|Entropy(Sv)

where a represents the attribute or class label, |Sv|/ |S| 
denotes the proportion of values in Sv to those of S, Entropy 
(S) is the entropy of dataset S, and Entropy (Sv) is the 
entropy of dataset Sv.

Gini impurity, the other commonly employed measure of 
impurity, computes impurity in the node, as:

Gini impurity = 1−Σi(pi)
2

Neural networks

An artificial neural network (ANN) is a system of intercon-
nected neurons which mimics the human brain and classi-
fies an individual into different classes (as either male, or 
female in the present study) [63, 66, 67]. A typical neural 
network consists of three layers; an input layer, a middle-
hidden layer, and an output layer. Within every neural net-
work, the input variables are transformed into the output 
through weights, as follows [63, 67]:

sex = f(W(m+1)p+1+

p∑

i=1

W(m+1)p+iHi)

which can also be rewritten as:

Hi = f (W(i−1)(m+1)+1 +
m∑

j=1

w(i−1)(m+1)+1 jXj)

where f is the activation function of the network, m is the 
number of input nodes, p is the number of nodes in the hid-
den layer, and w denotes the weights employed for trans-
forming inputs to output.

An artificial neural network was created from the training 
set, with a single input and a standardised rescaling method 
for the sex predictor. Different hidden layers, and activation 
functions for the middle and output layers were utilised, so 
as to discern the best trained ANN model for sex estimation. 
Accuracy percentages were computed for males, females, 
and the total population of both, the training set and test 
set. ROC curves were plotted to establish the discriminatory 
power of ANN, with the test group.

Support Vector classification (SVC)

Support Vector Machines (SVM) allow for regression and 
classification through its use of the maximum marginal 
hyperplane, non-linear transformations, and no prior dis-
tributional assumptions [68–70]. SVMs are particularly 
effective for binary classification problems. Support Vector 
Classification is used to classify an individual into one of 
the different classes (sex in this present study), by finding 
and constructing a separating hyperplane which maximises 
the margin between the instances of the two sexes [46], as:

dH((x0)) = |wT((x0) + b |/| |w| |2

w∗ = argwmax[minndH((xn))]

The hyperplane is then used to classify individuals of the 
test set as:
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of the test set. An ROC curve was additionally plotted using 
the test set to illustrate the discriminatory ability of kNN 
classification between the two biological sexes.

Accuracy values obtained using different statistical 
approaches were compared in order to establish the high-
est accuracy attainable with the acetabular diameter. These 
values were subsequently also comparatively scrutinised 
against those reported within existing literature.

Results

Based on the classification mentioned in the Methods sec-
tion, good reliability was achieved during intra-observer reli-
ability test for the acetabular diameter [0.854 (p < 0.001)].

A Mann-Whitney U test yielded significant differences 
(Mann-Whitney U = 11762.000; p < 0.001) in acetabular 
diameter values between sexes for the entire collection of 
668 remains, with males having a significantly higher value 
than females. Sexual dimorphism, when evaluated for each 
of three collections, indicated significant differences as well 
(Table 2). A Spearman’s rho of 0.683 was obtained between 
sex and acetabular diameter for the entire study sample. 
Corresponding correlations of 0.672, 0.716, 0.668 were 
obtained for the UVA, UCM, and MBL collections, respec-
tively. All correlation values were statistically significant. In 
addition, amongst the three collections, highest values for 
acetabular diameter were obtained with females and males 
of the UCM collection (Table 2), but the differences with the 
other datasets were not statistically significant.

Characteristics of utilised statistical modalities

For DFA, Linear and Quadratic Discriminant Analysis, 
both, yielded a demarking point of 51.8 centimetres, and a 
coefficient of discriminant of 0.555. An intercept of -28.77 
was obtained with Linear Discriminant Function Analysis.

For ANN, highest performance measures, in compari-
son, were obtained with following conditions- one input 
layer with 46 units, standardised rescaling of the sex pre-
dictor, and sigmoid activation, one hidden layer with two 
units, sigmoid activation function with 2 units within the 
middle layer, and a hyperbolic tangent activation function 
with 2 units for the output layer. Thus, accuracy percent-
ages obtained when using these attributes, alone, have been 
reported herein.

Prior to undertaking SVC, the “matplotlib. pyplot” pack-
age within Python was utilised to generate a scatter plot for 
the training set data. Obtained plot indicated that a linear 
separation between data is possible and most apt. Thus, 
Support Vector Classification was further undertaken with a 

Based on these measures of impurity and homogeneity, the 
decision tree is split accordingly.

Decision Trees were created from the training set using 
different growing methods, and accuracy was estimated for 
males, females, and the total population. The generated tree 
was subsequently validated using the same accuracy mea-
sures (i.e., for males, females, and the total population) for 
the test set. ROC curve was plotted for the test set and dis-
criminatory power of the Decision Tree was assessed.

k nearest neighbour classification (kNN)

kNN is a non-parametric supervised Machine Learning 
classifier which classifies an individual into different classes 
(sex) based on proximity. kNN algorithm is also a part of 
the “Lazy Learning” Machine Learning models, as is does 
not undergo a characteristic training phase. As a result, com-
putation occurs when prediction is being made. In order to 
determine the points closest to the query point/ subject and 
subsequently classify it, distance metrics need to be com-
puted. Distance metrics are often estimated through Euclid-
ean distance, Manhattan distance, Minkowski distance, 
Hamming distance, amongst others. Amongst these, the 
most common is the Euclidean distance which estimates the 
distance between query point and closest points, as follows:

d (x, y) =

√√√√
n∑

i=1

(yi−xi)
2

Classification using the kNN algorithm also requires select-
ing the nearest neighbour which will be utilised for classifi-
cation. Lower k values, however, can result in high variance 
and low bias, and high k values will lead to high bias and 
low variance.

kNN classification was undertaken with the training set, 
and accuracy was computed for males, females, and the total 
population. Accuracy values were similarly estimated for 
both sexes separately, as well as for the overall population 

Table 2 Descriptive parameters for acetabular diameter for each skel-
etal collection, grouped by sex (N = 668)
Collection Sex Mean diam-

eter ± SD (cm)
Diameter 
range (cm)

Mann-
Whitney 
U

p-value

UVA F 48.57 ± 2.84 43.00–55.00 4125.000 < 0.001
M 54.43 ± 3.58 46.00–64.00

UCM F 49.22 ± 2.57 44.00–57.00 595.000 < 0.001
M 55.26 ± 3.67 46.50–67.00

MBL F 49.17 ± 2.84 40.00–58.00 361.000 < 0.001
M 54.40 ± 3.40 41.50–60.00

UVA = University of Valladolid collection; UCM = University Com-
plutense of Madrid collection; MBL = Museo Bocage of Lisbon; 
M = male; F = female; SD = standard deviation
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linear kernel, and accuracy values reported here correspond 
to those obtained when using a linear kernel.

In accordance with previous investigations, which indi-
cated no significant differences in accuracy between differ-
ent growing methods [27], a Decision tree was constructed 
using the CRT (classification and regression) growing 
method alone. Accuracy values reported here correspond to 
CRT.

kNN classification was undertaken with different k val-
ues- 5, 10, 25, 50, 75, and 100. Amongst these, k values of 
50 and 75 garnered highest accuracy percentages, and thus, 
only these have been reported here.

Accuracy for sex estimation

Accuracy percentages obtained with different sex estimation 
models are listed in Table 3. By and large, higher accuracy 
percentages were obtained for the training set with different 
statistical modalities utilised herein. The only exceptions to 
this finding were accuracy percentages obtained with QDFA 
in males, and prediction values computed using neural 
networks in females. Overall, statistically significant dif-
ferences were observed between the accuracy percentages 
computed for the training and test sets with different models 
(p < 0.05). Between the two biological sexes, higher predic-
tion percentages were observed in females using QDFA for 
the training set, LRA for the test set, neural networks for the 
test set, SVC for the test set, DTC for the training and test 
sets, and kNN for the test set. For all other computations, 
males garnered higher accuracy percentages.

Highest accuracy values were achieved using DTC in 
the pooled sample and in females and ANN in males, all of 
them in training sets, meanwhile lowest ones were found 
with LDFA, QDFA, LRA, SVC and kNN in the total popu-
lation, QDFA in females and DTC in males, all of them in 
test sets. However, accuracy values garnered for the train-
ing set indicated no statistically significant differences when 
using different statistical approaches. The same finding was 
re-enforced, with no statistically significant differences 
observed between computed accuracy values for the test set 
when using different statistical approaches. Similarly, no 
statistically significant differences were observed between 
accuracy percentages computed for males and females of 
the training set, as well as the test set, using different statisti-
cal models.

ROC curves and AUC values computed for the test 
set

Area under the curve (AUC) values associated with ROC 
curves were estimated with different statistical approaches. 
AUC curves offer a comprehensive measure of model 

Table 3 Accuracy for sexing with different statistical approaches, 
grouped by training and test cohorts
Statistical 
approach

Study set Sex Accu-
racy 
(%)

LDFA Training set 
(N = 567)

Female 79.34%
Male 86.25%
Total population 82.89%

Test set (N = 101) Female 77.77%
Male 80.35%
Total population 79.20%

QDFA Training set 
(N = 567)

Female 81.50%
Male 81.35%
Total population 81.30%

Test set (N = 101) Female 75.00%
Male 83.01%
Total population 79.20%

LRA Training set 
(N = 567)

Female 80.07%
Male 82.81%
Total population 81.30%

Test set (N = 101) Female 80.00%
Male 78.57%
Total population 79.20%

ANN Training set 
(N = 567)

Female 79.10%
Male 87.70%
Total population 83.50%

Test set (N = 101) Female 83.70%
Male 76.70%
Total population 79.60%

SVC Training set 
(N = 567)

Female 80.07%
Male 82.47%
Total population 81.30%

Test set (N = 101) Female 80.00%
Male 78.57%
Total population 79.20%

DTC Training set 
(N = 567)

Female 89.85%
Male 77.66%
Total population 83.59%

Test set (N = 101) Female 86.66%
Male 71.42%
Total population 78.21%

kNN Training set 
(N = 567)

Female 80.07%
Male 82.47%
Total population 81.30%

Test set (N = 101) Female 80.00%
Male 78.57%
Total population 79.20%

LDFA = Linear Discriminant Function Analysis; QDFA = Quadratic 
Discriminant Function Analysis; LRA = Logistic Regression Analy-
sis; ANN = Artificial Neural Network; SVC = Support Vector Clas-
sification; DTC = Decision Tree Classification; kNN = k Nearest 
Neighbour
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few skeletal markers are viable for examination. However, 
specific research on sex estimation using the acetabulum is 
currently limited in Iberian biogeographical contexts.

Statistical testing using the Mann-Whitney U test revealed 
a significant sexual dimorphism in the acetabular diameter. 
Such a finding is to be expected, given the differences in 
robusticity and the role of the pelvis, and by extension, the 
acetabulum, in childbearing [19]. Our findings pertaining to 
sexual dimorphism of the acetabulum are corroborated by 
previous investigations [2, 4, 14, 19, 23–25, 44]. Acetabular 
diameter values were observed to be higher in case of males 
for all three population groups in the present study, which 
is in agreement with previous studies [4, 12, 14, 16, 18–20, 
22–25, 44, 56, 79–81]. This can be attributed to the greater 
stress imposed by muscular development and weight bear-
ing in males [16, 82].

Different mathematical approaches for sex 
estimation

Traditional approaches

Discriminant Function Analysis is a commonly preferred 
method for sex estimation as it renders prediction and sub-
sequent identification more mathematical, objective, and 
direct [17]. However, DFA has several assumptions which 
must be, under ideal scenarios, satisfied prior to its appli-
cation. Discriminant analysis, being a parametric approach, 
assumes a normal distribution and homogeneity of the vari-
ance-covariance matrix. The method is sensitive to outliers, 
and in order to avoid overfitting requires a large enough 
sample size, i.e., at least 3–4 times the number of inde-
pendent variables [27, 62, 63]. DFA has previously been 
employed for sex estimation with different markers across 
the skeletal framework [83–89], including the acetabulum 
[2, 4, 12, 16–18, 20, 24, 25, 44, 79]. Such previous investi-
gations highlighted the vertical acetabular diameter as one 
amongst the most discriminatory sex variables [17, 19, 25, 
44, 81]. Discriminant Function Analysis in the present study 
indicates that sex can be differentiated through a demarking 
point, with males on the higher side (positive group cen-
troid value) and females on the lower side (negative pole). 
Patriquin et al. [19], Bubalo et al. [4], Steyn & Iscan [23], 
and Patriquin [44] reported similar findings for South Afri-
can, Croatian, Greek, and African populations, respectively. 
Accuracy percentages obtained with LDFA across numer-
ous studies are listed in Table 5. Accuracy obtained with 
males of the training set in the present study are comparable 
to those reported previously [2, 4, 12, 18, 19, 22, 23] while 
accuracy obtained with males of the training and test set in 
the present study are higher than those reported by Patriquin 

performance (here binary classification performance), with 
a greater AUC value denoting a higher discriminatory power 
[71]. AUC values associated with ROC curves plotted for 
the test set using different statistical modalities are shown in 
Table 4. Highest AUC value was obtained with neural net-
works, and lowest with Linear discriminant analysis. Cor-
responding ROC curves for all models are plotted in Fig. 2.

Discussion

The estimation of biological sex is a prerequisite for human 
identification, particularly within the contexts of archaeo-
logical, medico-legal, and forensic investigations, man-
dating professionals to be trained in applying updated and 
robust approaches for identification. Different bony ele-
ments across the skeletal framework have proven to be reli-
able markers of sex, as reported within literature, although 
classical methodologies remain focused on the skull and 
pelvic anatomical differences.

The pelvis, in addition to its role in parturition, is credited 
with having a higher survivability when compared to other 
elements within the skeletal framework. This, in conjunc-
tion with its established applicability for human identifica-
tion renders it an extremely reliable skeletal marker within 
diverse contexts. Within the human pelvis, the acetabulum, 
as an individual element, is known to provide meaning-
ful information regarding age-at-death [72–76], biological 
sex [2, 4, 12, 26], and even stature [77]. Furthermore, in 
agreement with the present results, previous research has 
indicated a good reliability during inter and intra-observer 
error estimations using different acetabular variables [4, 12, 
73, 78], rendering the acetabulum a complete and excellent 
anatomical evidence. In specific contexts, like past popula-
tion studies or special forensic ones (e.g. terrorist attacks, 
natural disasters, big fires, train or plain accidents…), where 
the preservation of samples is scarce, the acetabulum, may 
thus prove to be vital for profiling, more so in cases where 

Table 4 AUC values obtained with different statistical modalities for 
the test set (N = 101)
Statistical approach AUC value
LDFA 0.790
QDFA 0.792
LRA 0.792
ANN 0.901
SVC 0.792
DTC 0.792
kNN 0.792
LDFA = Linear Discriminant Function Analysis; QDFA = Quadratic 
Discriminant Function Analysis; LRA = Logistic Regression Analy-
sis; ANN = Artificial Neural Network; SVC = Support Vector Clas-
sification; DTC = Decision Tree Classification; kNN = k Nearest 
Neighbour; AUC = Area under curve
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[19], alone. With females of the test set, lowest accuracy 
percentages were obtained with the present Iberian popula-
tion when compared to previous studies [19, 78]. For the 
total population, with the training set of the Iberian popula-
tion, lowest accuracy percentages were obtained here with 
the exception of Steyn and Patriquin [24] who reported a 
marginally lower accuracy of 82.50%. For the test set/ 

for South African white males [19], and Steyn and Patriquin 
for South African and Greek populations [24]. Cross-vali-
dation accuracies reported by Macaluso for a French male 
population [78] are higher than those obtained here for an 
Iberian male test population. For females of the training 
set, however, accuracy percentages obtained herein were 
higher than those reported by Patriquin for black females 

Fig. 2 ROC curves obtained with different sta-
tistical approaches for the test set (N = 101). (a) 
LDFA; (b) QDFA; (c) LRA; (d) ANN; (e) SVC; 
(f) DTC; (g) kNN. Blue line indicates females 
and red line indicates males in (d)
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in the present study, primarily with regards to normality of 
the sample. This, too, could have resulted in the inconsisten-
cies in accuracy percentages observed with the linear and 
quadratic approach.

Logistic Regression Analysis constitutes another com-
monly utilised statistical approach for sex estimation [38, 
41, 42, 90–93]. LRA, being a semiparametric approach has 
fewer assumptions to satisfy when compared to DFA, i.e., 
primarily a large sample size is warranted. LRA is more 
flexible in comparison to DFA and does not mandate a nor-
mally distributed sample, linearly related predictor vari-
ables, homoscedasticity, and works well with both discrete, 
as well as continuous data [27]. Despite this inherent flex-
ibility, the use of LRA for sexing the acetabulum is rela-
tively unreported [12, 75, 80]. Furthermore, Nagesh et al. 
[80] employed the acetabulum-pubis index for sex estima-
tion, as opposed to just the acetabular diameter, and mea-
sured the acetabular diameter using a procedure different 
from the present study. Macaluso [78], on the other hand, 
employed the acetabular diameter and Logistic Regression 
Analysis for sex estimation and reported accuracies ranging 
from 84.10 to 89.60%, higher than those obtained herein 
with Iberian populations (Table 5).

It is, however, worth mentioning that discrepancies in 
accuracies between aforementioned research studies, and 
the present study, could also be attributed to the underly-
ing sexual dimorphism present in the population (s) under 

cross-validation, the present study reported lowest accuracy 
percentages. These differences in accuracy percentages, 
however, were not statistically significant. It is also prudent 
to mention here the lack of homogeneity with regards to 
test groups and cross-validation. While the present study 
employed a test group or holdout group of 15% of the total 
study sample, certain other investigations utilised a LOOCV 
(leave-one-out cross validation). This, too, could have con-
tributed, in part, to these observed differences, albeit non-
significant, in accuracy.

In comparison to LDFA, QDFA yielded marginally 
higher accuracy percentages for females of the training set. 
Males and the total population, however, garnered lower 
accuracy with QDFA. With males of the test set, QDFA 
gave higher accuracy percentages, whereas for females and 
the total population, LDFA yielded higher accuracy. Such 
varying patterns in accuracy call into question interven-
ing factors which can influence the association between 
acetabular diameter and sex. Future investigations should 
attempt to establish the influence of such factors, for exam-
ple age, stature or body mass index, on the accuracy of the 
acetabular diameter to estimate sex. It is highly plausible 
that when such additional factors are taken into consider-
ation, QDFA might present as the more accurate statistical 
approach, attributable to its use of a more flexible i.e., qua-
dratic decision boundary. It is also important to note here 
that all assumptions associated with DFA were not satisfied 

Table 5 Sex estimation accuracy with the acetabular diameter, reported across literature
Male Female Total population

Study Population 
affinity

Statistical 
approach

Training set Test set/ CV Training set Test set/ CV Training set Test 
set/ 
CV

Murphy [18] Polynesian LDFA - - - - 85.20–
86.20%

-

Patriquin et al. [19] South African LDFA 77.00–
89.00%

77.00–
89.00%

78.00–
86.00%

78.00–
86.00%

- -

Benazzi et al. [2] Italian LDFA - - - - 95.20% -
Steyn & Iscan [23] Greek LDFA 87.00% 87.00% 80.90% 80.90% 83.90% 83.90%
Papaloucas et al. [22] Greek LDFA - - - - 87.00% 87.00%
Steyn & Patriquin [24] South African 

& Greek
LDFA 80.50% 80.50% 84.40% 84.40% 82.50% 82.50%

Macaluso [12] French LDFA 82.60–
87.00%

- 80.60–
88.90%

- 84.10–
85.40%

-

Gómez-Valdés et al. [25]* Mexican LDFA - - - - 85.30–
86.80%

-

Bubalo et al. [4] Croatian LDFA 84.00 - 90.00% - 87.00% -
Macaluso [77]** French LDFA - 90.00% - 81.50% - 86.60%
Present study Iberian LDFA 86.25% 80.35% 79.34% 77.77% 82.89% 79.20%
Macaluso [77]** French LRA 95.00 - 81.50% - 89.60% -
Present study Iberian LRA 82.81% 78.57% 80.07% 80.00% 81.30% 79.20%
LDFA = Linear Discriminant Function analysis; LRA = Logistic Regression Analysis; CV = Cross-validation
*Reported values for multivariable analysis, one parameter out of which was the acetabular diameter
**Values have been reported only for left acetabulum to maintain continuity with the present study
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the two sexes [26]. Linear kernels are additionally advanta-
geous as they are often simpler and quicker to train. Nev-
ertheless, given the occasionally higher accuracy observed 
with QDFA, it might be beneficial to incorporate additional 
factors such as age, and investigate sexing accuracy using 
polynomial kernels within future investigations. In fact, the 
dynamic shape metamorphosis of the pelvis across adult 
human lifespan has been already noticed [101].

Decision Trees are another mode of non-parametric 
supervised Machine Learning which allow for regression 
and classification problems. Being, primarily, a non-statisti-
cal approach Decision Trees require no assumptions regard-
ing distribution, or variance. However, they do warrant 
certain non-statistical assumptions such as the discretization 
of continuous variables. Decision Trees have previously 
been utilised for sexing the pelvis [27, 63], and also the 
acetabulum [98, 102]. However, Yusuf et al. [102] reported 
cumulative accuracies (involving multiple variables pooled 
together) for sexing with Decision Trees, whereas, Cao et 
al. [98] focussed their investigation towards morphological 
sex differences of the acetabulum. Different Decision Trees 
can be constructed using specific growing methods such 
as CHAID (Chi-square Automatic Interaction Detection), 
CRT (Classification and Regression Trees), QUEST (Quick, 
Unbiased, Efficient Statistical Tool), etc. CHAID and CRT 
trees carry out splits using a chi-squared test and computa-
tions of Gini impurity, respectively. QUEST trees, on the 
other hand, split on the assumption that the target variable is 
a continuous variable. The three growing methods differ not 
only on the splitting method employed, but also the kind of 
data they can handle. While CHAID and QUEST work with 
categorical variables, CRT works equally well with cat-
egorical and continuous data. Klales et al. utilised all three 
growing methods for sexing the pelvis and reported similar 
accuracy values using all three [27]. In keeping with these 
findings, and with the data flexibility accorded by CRT, this 
method alone was employed within the present study. Accu-
racy obtained with DTC herein could not be compared with 
previous literature due to lack of similar data. Future inves-
tigations should attempt to decipher how the use of different 
growing algorithms can impact accuracy and bias associ-
ated with sexing the acetabulum, if at all.

kNN is a type of non-parametric supervised ML classi-
fication approach, and thus does not warrant satisfying any 
assumptions regarding sample distribution. Classification 
within kNN ensues on the basis of patterns observed within 
the data, as opposed to predetermined labels. k in kNN 
denotes the most similar individuals in a reference sample 
(training set), and subsequent classification is undertaken 
based on group identities of these similar individuals [27]. 
kNN algorithms have previously been utilised for sexing 
the pelvis [27, 49]. However, there is a scarcity of literature 

scrutiny. Possible sex differences between the populations 
studied in previous researches, in comparison to the present 
study sample, may be one of the factors responsible for the 
observed differences.

ROC curve plotted with the aforementioned traditional 
statistical methods demonstrated an acceptable discrimina-
tion power [71] between sexes when using this acetabular 
attribute.

Machine learning approaches

Artificial Neural Networks, a form of supervised Machine 
Learning, is being increasingly incorporated into sex esti-
mation investigations [94–97]. Unlike DFA, ML, and by 
extension ANN, does not mandate satisfying any assump-
tions regarding distribution of the sample. An extensive lit-
erature search revealed that ANN has not been employed 
for sexing the acetabulum so far. As a result, findings of 
our study could not be corroborated by previous literature. 
However, convolutional neural networks have previously 
been utilised to estimate sex from the acetabular morphol-
ogy and yielded an accuracy of 74.60% [98]. The neural 
networks used within the present research were built using 
different activation functions- hyperbolic tangent and sig-
moid within the input and hidden layers, and hyperbolic tan-
gent, sigmoid, and softmax within the output layer. Given 
that the required output is in the form of 0,1, sigmoid activa-
tion presents as the ideal choice for input and hidden layers, 
whereas softmax activation is apt for the output layer as the 
intended objective is to undertake classification of subjects 
into mutually exclusive classes. However, hyperbolic tan-
gent within the output layer yielded higher accuracy, when 
compared to the softmax function. Greater in-depth research 
into how varying activation functions can impact observed 
sex estimation accuracy, and possible reasons for this, is 
currently wanting.

Support Vector Machines, another class of supervised 
Machine Learning approaches enable both, regression, as 
well as classification. An effective application of SVC war-
rants that the data be linearly separable and this is often 
achieved through the use of kernels. An advantage of SVC 
for sexing is that it is applicable even with smaller datasets. 
While SVC has previously been utilised for sex estimation 
with different skeletal markers [46, 99, 100], its usage for 
sexing the acetabulum is presently lacking. This prevented 
a comparative evaluation of our results. Preliminary scatter 
plot evaluations of the training set data points indicated that 
a linear separation is feasible for the data at hand i.e., males 
and females occupy, by and large, different spaces which 
can be linearly separated. This finding is corroborated by 
both, centroid values obtained with DFA [4, 19, 23, 44], 
as well as the known anatomical size differences between 
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diameter will attempt to examine the effects of age on sex-
ing accuracy. Such investigations could help address queries 
raised within the present research, primarily the variable 
accuracy patterns observed between sexes. Varying patterns 
of accuracy percentages observed within the present study 
and other similar investigations could also be attributed to 
the unequal representation of the two sexes. Similar inves-
tigations should be undertaken, ensuring an equal repre-
sentation of both biological sexes, in order to corroborate/ 
validate these findings.

Applicability and future lines of research

The highest accuracy obtained with the acetabular diameter 
for sex-pooled Iberian populations using different statisti-
cal approaches, across both training and test cohorts, was 
83.59%. This is comparable to the values reported previ-
ously [12, 18, 23–25]. However, higher accuracy percent-
ages have been reported for Italian [2], Greek [22], and 
Croatian [4] populations. Highest accuracy obtained with 
Iberian females was 89.85%, comparable to those reported 
for French [12] and Croatian [4] populations, and higher 
than other investigations [19, 23, 24, 44]. Highest accuracy 
percentage obtained with Iberian males was 87.70%, which 
is comparable to the values reported previously [4, 12, 19, 
23, 24, 44]. Given the durability and taphonomic resilience 
associated with the acetabulum, along with the obtained 
accuracy values, this skeletal element presents as an effi-
cient sex/ human identification marker, more so in scenarios 
where other more accurate markers are rendered non-viable 
[110].

Nevertheless, in order to promote and employ such reli-
able, alternate markers for sex estimation, and by extension, 
human identification, standard methodological and statis-
tical approaches need to be incorporated. Regarding the 
present variable, the acetabular diameter has been defined 
and measured slightly differently across the scientific lit-
erature (Table 5). While, Djorojevic et al. [35] performed 
the Genovés’ approach [37] (vertical acetabular diameter, 
maximum, taken perpendicularly to the symphysis pubis 
width, following the general axis of the ischium body, or 
perpendicular to the ascendant pubic ramus), Macaluso 
[12, 78] followed Murphy’s approach [18] (from the point 
on the superior margin of the acetabulum where the rim 
intersects the anterior border of the ilium to the most distant 
point on the inferior margin of the acetabulum). Benazzi et 
al. [2] defined the acetabular diameter as the projection of 
the straight line passing through the anterior horn of the 
acetabular rim and the centre of the acetabular depression, 
Papaloucas et al. [22] simply defined it between its rims 
(anterior-posterior), without any original reference, and 
Murail et al. [9] used the definition of Bräuer [36] (maximum 

regarding its application for sexing the acetabulum. Since 
kNN classification relies greatly on the nearest neighbour, 
different k values can impact obtained accuracy values sig-
nificantly. Within the present study, k of 50 and 75 proved to 
be most reliable for sex estimation. Further attempts should 
be made to utilise different ‘k’ in order to better understand 
the performance of kNN classification as a result of varying 
k values.

ROC curve plotted using machine learning approaches 
garnered an excellent discrimination [71] with ANN, and 
acceptable discrimination using DFA, LRA, SVC, DTC, 
and aforementioned activation functions yielded an out-
standing discrimination [71] between the two sexes.

In the present study, DTC yielded highest accuracy per-
centages for females and the combined population, and ANN 
garnered the most accurate results for males. The improved 
performance observed with ML approaches herein, is in 
agreement with previously undertaken studies [45, 46, 100, 
103–107]. High performance measures observed with DTC 
can be attributed to the inherent pruning characteristic of 
Decision Trees which prevents overfitting of data. Fur-
thermore, the use of a single variable in the present study 
could have also contributed to the observed high accuracy 
through the creation of a simple tree with pure leaf nodes, as 
opposed to complex trees with consistently declining purity. 
Artificial Neural Networks, in turn, generate high accuracy 
by modelling heteroscedasticity much more efficiently, as 
well as its ability to predict the unseen/ unknown through 
generalization. A high AUC value for ANN ROC curves fur-
ther validates the accurate performance of Neural Networks 
(Table 4).

Males of the training set garnered higher accuracy per-
centages in comparison to females with most statistical 
approaches, with the exception of QDFA and DTC. For the 
test set, however, by and large, higher accuracy percent-
ages were observed in females. The only exceptions to this 
dictum were LDFA and QDFA, wherein males of the test 
set demonstrated higher accuracy. Previously undertaken 
investigations with LDFA and LRA have also indicated 
such variable findings, with certain studies reporting higher 
accuracy in males [12, 19, 23, 44, 78], and certain others 
illustrating higher accuracy percentages for females [4, 12, 
19, 24, 44]. It has previously been hypothesized that oppos-
ing pressures of locomotion and obstetrics result in lesser 
variability within the female pelvis [108]. Hence, in theory, 
greater accuracies should be observed with the gracile sex. 
However, the findings of the present study contradict this 
hypothesis, agreeing with the theory put forth by Kurki 
[109]. A plausible explanation for lower female accuracy, 
observed across studies, could be the effects of decreased 
hormonal expression with increasing age. As previously 
highlighted, future investigations with the acetabular 
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diameter and ML, the existing accuracy and applicability 
of this parameter as a univariable sex marker can be fur-
ther augmented. Nevertheless, the utility of multivariable 
sexing approaches cannot be overlooked. Future inves-
tigations will be targeted at incorporating a multivariable 
approach, including and not limited to additional acetabular 
parameters, and comparing multivariable sexing accuracy 
against individual univariable approaches. A present limi-
tation associated with this study is the non-estimation of 
inter-observer repeatability. Regardless, multiple investiga-
tions with Bräuer’s description of the acetabular diameter 
[36] (similar to the definition utilised here) have indicated 
good repeatability within and between observers [8, 29, 33, 
34, 60, 61, 113], demonstrating the utility of this marker for 
human identification.

Conclusion

The proven sexual dimorphism of the acetabulum along 
with its higher preservation within diverse and complex 
skeletal contexts renders this anatomical element vital for 
human identification. Findings of the present research indi-
cate that Machine Learning approaches garner better accu-
racy outcomes for sex estimation, specifically DTC in the 
sex-pooled sample and females, and ANN in males. As an 
added advantage, the assumptions that need to be fulfilled 
to utilize Machine Learning modalities for human identi-
fication are rather limited and unrestrictive. A combination 
of these advantages renders ML a field to strongly consider 
within future investigations. In order to maximize the appli-
cability of this statistical modality and make its use easier 
within field contexts, implementing a freely available soft-
ware where any practitioner, bioarcheologist or anthropolo-
gist could enter their data to quickly ascertain biological 
sex, along with the associated likelihood, should be the next 
stage.
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vertical diameter of the acetabulum, on the acetabular rim, 
as a prolongation of the longitudinal axis of the ischium), 
the most similar to the one used here [56]. Finally, Steyn and 
Iscan [23], Steyn and Patriquin [24], Gómez-Valdés et al. 
[25], Patriquin et al. [19] or Bubalo et al., [4] followed the 
description of Kelley [111], with slight modifications to the 
original description. While Patriquin et al. [19] described it 
from the middle of the ridge on the superior border of the 
acetabulum to the inferior border, Steyn and Patriquin [24] 
and Steyn and Iscan [23] defined the maximum diameter of 
the acetabulum measured in a superior to inferior direction; 
Bubalo et al. [4] or Gómez-Valdés et al. [25], on the other 
hand, added along the axis of the body of the ischium to the 
previous definition. However, despite the cited previous dif-
ferences between definitions and its potential controversy or 
impossibility to make comparisons, any acetabular diameter 
definition has been proved to achieve good levels of sexing 
reliability. Further research should examine if actual signifi-
cant differences would exist between the diverse acetabular 
diameter definitions/measurements.

In addition to this potentially needed methodological 
standardization, our study also advocates moving towards 
Machine Learning targeted approaches for data analysis. 
While accuracy and performance measures obtained with 
different ML approaches are largely comparable to those 
reported by traditional statistical practices, ML circumvents 
the issue of satisfying numerous assumptions, which are, 
more often than not, flouted during sex estimation-based 
research. Furthermore, while the Measurement Statistics 
Controversy [27, 112] argues that the focus should be on 
obtaining more accurate results, as opposed to abiding by 
numerous statistical assumptions, the use of ML can help 
do away with this issue and confusion in entirety. The pres-
ent study employed the use of three different classes of 
statistics- traditional (DFA, LRA), lazy-learning (kNN), 
and ML (ANN, DTC, SVC) to assess this impact of ille-
gal statisticizing. Between these approaches of traditional 
statistics wherein assumptions were not satisfied, lazy-
learning approaches where no characteristic training was 
undertaken, and ML techniques which required no specific 
assumptions to be fulfilled, ML yielded the best results. 
Given the absence of any significant population differences 
in sexing with the acetabular diameter [24], creating an ML 
application, which has been trained using data collected 
from around the globe, can help simplify the process of sex 
estimation for experts, as well as novice practitioners. Sex 
estimation using the acetabulum can be rendered even more 
accurate by permitting automatic detection of landmarks 
using Artificial Intelligence, evading the subjectivity associ-
ated with identifying landmarks.

The present study indicated that through the use of one 
of the standardised anatomical definitions for the acetabular 
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