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Abstract
Context The field of chemistry has significantly evolved, with catalysis playing a crucial role in transforming chemical 
processes. From Valerius’ use of sulfuric acid in the sixteenth century to modern advancements, catalysis has driven inno-
vations across various industries. The introduction of gold as a catalyst marked a pivotal shift, expanding its applications 
beyond ornamentation to homogeneous catalysis. Gold’s unique properties, such as its electrophilic nature and flexibility, 
have enabled its use in synthesizing complex molecules, including those in nanomedicine and sustainable chemical processes. 
The development of gold-based complexes, particularly in hydroalkoxylation and hydroamination reactions, showcases their 
efficiency in forming carbon–oxygen bonds under mild conditions. Recent studies on dual gold catalysis and heterobimetallic 
complexes further highlight gold’s versatility in achieving high turnover rates and selectivity. This evolution underscores 
the potential of gold catalysis in advancing environmentally sustainable methodologies and enhancing the scope of modern 
synthetic chemistry. The debate about the nature of monogold and dual-gold catalysis is open.
Methods DFT calculations have played a key role in promoting the activation of alkynes, in particular the hydrophenoxyla-
tion of alkynes by metal-based catalysts. They not only help identify the most efficient and selective catalysts but also aid in 
screening for those capable of performing a dual metal catalytic mechanism. The most commonly used functionals are BP86 
and B3LYP, with the SVP and 6-31G(d) basis sets employed for geometry optimizations, and M06 with TZVP or 6-311G(d,p) 
basis sets used for single-point energy calculations in a solvent. Grimme dispersion correction has been explicitly added 
either in the solvent single point energy calculations or in the gas phase geometry optimizations or in both. To point out that 
M06 implicitly includes part of this dispersion scheme.
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Introduction

Over time, the field of chemistry has continually evolved, 
seeking deeper insights into chemical transformations 
to achieve better control over them. In the sixteenth cen-
tury, Valerius utilized sulfuric acid to catalyze the conver-
sion of alcohol into ether and amylase. By 1833, sulfuric 
acid was also recognized as a catalyst for the formation of 
starch sugar. A few years later, Berzelius introduced the 
term catalysis, formalizing a field dedicated to enhancing 

reaction rates through the use of specific species, now known 
as catalysts [1].

The use of metals in catalysis developed concurrently 
with advancements in heterogeneous catalysis. An early 
example is the oxidation of alcohol to acetic acid on plati-
num when exposed to air [2]. Subsequent studies explored 
other metals such as molybdenum, nickel, and silver. The 
nineteenth century saw significant progress in catalysis, 
culminating in the modern chemical and petrochemical 
industries, highlighted by Eugene Jules Houdry’s catalytic 
cracking process. Additionally, the invention of “celluloid” 
in 1860 marked the emergence of the first synthetic plastic-
like polymer, addressing the shortage of natural materials 
such as ivory and tortoiseshell [3].

Nowadays, the majority of materials are produced through 
catalysis, which enables the creation of essential goods such 
as medicines and much more. This process forms one of the 
pillars supporting today’s society. Plastics, or more broadly, 
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polymers, are crucial products that replace natural materi-
als. However, with the well-being of the Earth at stake, it is 
necessary to develop processes and explore ways to make 
these materials less harmful to the environment. Gold, once 
primarily known for its ornamental value, has evolved sig-
nificantly over the past half-century [4]. It has become a key 
player in homogenous catalysis [5–9], expanding its appli-
cations in both reactivity [10, 11] and sustainability [12], 
and additional ones are anticipated to reach the industrial 
market [13].

Catalysis in gold chemistry

The dawn of gold catalysis emerged when Bond et al. pro-
vided experimental evidence of a bulk gold catalyst per-
forming olefin hydrogenation [14]. This discovery ignited a 
surge of research aimed at understanding and enhancing the 
potential of gold chemistry, once regarded as an inert metal 
due to its stability [15]. Today, gold’s applications extend 
beyond catalysis. Its remarkable flexibility makes it valu-
able for constructing nanoparticles used in nanomedicine 
[16], particularly in cancer treatment, due to its strong and 
tuneable optical properties [17]. Additionally, gold’s role 
in heterogeneous catalysis remains a significant focus for 
chemists and materials scientists [18].

Equally notable is the efficiency and richness of gold 
in homogeneous catalysis. The initial phase of using gold 
in this area involved cationic linear species of gold(I) with 
phosphine ligands [19] and gold(III) salts [20]. In 1998, 
Teles et al. proposed using cationic phosphinegold(I) instead 

of zinc silicates [21] or the toxic mercury(II) salts for the 
addition of alcohols to alkynes [22]. This reaction success-
fully activates molecules with unsaturated systems, achiev-
ing affordable and competitive conversion rates with high 
turnover numbers (TONs) and turnover frequencies (TOFs). 
However, it requires substantial amounts of strong acid rela-
tive to the catalyst loading. Teles et al. also proposed a gold-
alkyne activation mechanism supported by ab initio calcula-
tions (Fig. 1).

Among the various capabilities of gold(I) complexes, the 
activation of alkynes stands out as particularly significant 
[23–27]. This is primarily due to gold’s soft metal nature 
and its electrophilic character, which makes it a remarkable 
electropositive metal with a notable ability to accept elec-
trons. When gold activates alkynes, it makes them highly 
susceptible to nucleophilic attacks, even from moderately 
weak nucleophiles, because the alkyne’s LUMO, which typi-
cally has low energy, becomes even more accessible [28].

As illustrated in Fig. 2, the interaction between gold(I) 
and alkynes involves four main contributions based 
on the orbital symmetries for a  d10-gold complex. The 
σ-contribution accounts for more than half of the total bond-
ing interaction, making it the most significant factor. The 
in-plane π|| back donation is the second most important con-
tribution. In contrast, the orthogonal π⊥ and δ overlapping 
symmetry terms contribute weakly. Consequently, alkynes 
act as strong two-electron σ donors but are less inclined to 
accept π electrons from gold(I), although some degree of 
back donation does occur [29].

The addition of alcohols to alkynes, known as hydroalkox-
ylation reactions, has garnered significant interest in the field 

Fig. 1  Proposed catalytic cycle for vinyl ether synthesis with methanol and propyne by phosphinegold(I) catalyst, including four possible sce-
narios of the protodeauration step
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of gold catalysis [31]. This type of reaction is particularly 
intriguing due to gold’s unique ability to activate alkynes, 
facilitating the formation of carbon–oxygen bonds with high 
efficiency and selectivity. Actually, hydroalkoxylation reac-
tions catalyzed by gold offer several advantages. They often 
proceed under mild conditions, reducing the need for harsh 
reagents or high temperatures, and typically exhibit excel-
lent functional group tolerance, allowing for the synthesis 
of complex molecules with high precision. Moreover, these 
reactions can be highly regio- and stereoselective, making 
them valuable tools in the synthesis of fine chemicals, phar-
maceuticals, and natural products. In recent years, research 
has focused on optimizing gold catalysts to improve their 
activity and selectivity in hydroalkoxylation reactions. This 
includes the development of various ligand systems that can 
enhance the catalytic performance of gold complexes. Addi-
tionally, mechanistic studies have provided deeper insights 
into how gold activates alkynes and facilitates the addition 
of alcohols, paving the way for the design of more efficient 
catalytic systems.

Overall, the exploration of hydroalkoxylation reactions 
in gold catalysis continues to be a vibrant area of research, 
offering promising prospects for the advancement of organic 
synthesis and the development of new methodologies for 
constructing valuable molecular architectures.

Hydroalkoxylation and hydration of alkynes

In general, homogeneous gold(I) catalysis involves com-
plexes with two open sites in the coordination sphere. 
Typically, one of these sites is occupied by a labile ligand, 

while the other is occupied by a stable ligand that is 
strongly bonded to the metal [32]. Historically, this stable 
ligand has predominantly been phosphine-based. In 2008, 
Nolan and coworkers introduced a gold-based complex 
with N-heterocyclic carbene (NHC) ligands, such as IPr 
(1,3-bis(2,6-diphenylmethyl)imidazol-2-ylidene). This com-
plex facilitated the gold(I) hydration reaction under mild 
conditions and with low catalyst loading, marking a sig-
nificant improvement in catalytic activity [33]. Additionally, 
concurrent reports highlighted the crucial role of silver(I) 
salts in activating gold catalysts for both di- and monogold 
complexes (Eq. 1) [34–36]. These studies also underscored 
the importance of the counter-ion in stabilizing intermedi-
ates [37], a topic on which Belanzoni, Zucaccia, and their 
coworkers have made substantial contributions [38–40].

It has been observed in hydroalkoxylation reactions medi-
ated by gold catalysts that the bulkiness of the ligand is cru-
cial for achieving long catalyst lifetimes [41]. Consequently, 
complexes bearing NHC-ligands are of significant interest 
in the field of gold(I) catalysis. These ligands allow for the 
modulation and adaptation of not only the steric [42], but 
also the electronic properties of the metal complex, directly 
affecting the catalyst’s reactivity and stability [43]. Various 
research groups have made substantial efforts to accurately 
model the bonding of these species and optimize the ligand 
effects [44, 45]. The interaction of NHC-gold(I) catalysts 
with alkynes forms π-complexes with a high electrophilic 
character, capable of readily reacting with alcohols or 

(1)L − Au ⋅ CI
AgX
����������������→ AgCI + L − Au − X

X=NTf−
2
,OTf−,OCl−

4
BF−

4
,PF−

6
,SbF−

6

Fig. 2  Qualitative contributions 
between  AuI and alkynes. Low 
lying LUMO of alkynes inter-
acts with d-orbitals of metal 
(gold) to result in π-bond [30]
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amines to produce vinyl ethers or amines [46]. However, it 
has been shown that large NHC-gold(I) complexes generally 
have lower efficiency in the hydroalkoxylation of propargylic 
alcohol [47]. Additionally, the activation of these complexes 
does not require the application of silver(I) salts, making 
them a valuable synthetic tool (Fig. 3).

Hydroalkoxylation and hydration reactions have been 
successfully applied in synthesis to construct C-O bonds 
from olefins [49], allenes [50], and alkynes, producing vinyl 
ethers and other products [51]. The intermolecular hydro-
phenoxylation of internal alkynes to synthesize vinyl ethers 
has long been a topic of interest [52]. Notably, Hashmi and 
coworkers have reported excellent turnover numbers (TONs) 
in gold(I)-catalyzed hydroalkoxylation of activated alkynes 
[41, 53]. Despite being known as entropically unfavorable 
reactions, significant efforts have been made to advance 
this field. Kuram et al. reported the hydrophenoxylation of 
symmetrical and non-symmetrical alkynes using a gold(III) 
catalyst in the presence of a mild or strong base [54].

To support the concept of gold activation, in silico pre-
dictions have been crucial in complementing experimental 
results [9, 55–57], and even more when calculations antici-
pate selective experiments [42, 58]. To explore the rate-
determining step (rds) in the reaction, Pernpointner and 
coworkers conducted computational studies on the mech-
anism of phenol addition to alkenes catalyzed by phos-
phine-gold(I) [59], previously investigated by Ujaque and 
coworkers [60]. These studies indicated an active role of 
water and phenol in the process. Determining the precise 
mechanics of the RDS was challenging, with uncertainty 
surrounding the final protonation that releases the product 

[57]. Additionally, how this final step proceeds is under 
debate, leading to the suggestion of four possible scenar-
ios for the protodeauration step (Fig. 1): (1) direct proton 
transfer, (2) proton transfer assisted by the counter-ion, (3) 
proton transfer assisted by phenol, and (4) proton transfer 
assisted by water. It was found that the pathway promoted 
by either water or phenol proceeds in a concerted manner, 
while the other two scenarios were unfeasible due to their 
higher energy barriers (61.1 and 49.6 kcal/mol, respec-
tively, compared to pathways 1 and 2).

Is it possible to move beyond the monometal 
approach?

Despite extensive computational efforts to understand dual 
metal catalysis in hydrophenoxylation reactions, as will 
be detailed below, there remains a need for a qualitative 
description of the mechanism of C-O bond formation, 
in particular the interaction between the metal and the 
ligand/s [61]. Most studies to date focus on single gold 
catalysis. Notably, various investigations have explored 
both the thermodynamics and kinetics of these processes 
[62]. In 2004, Nemcsok, Meyer, and colleagues examined 
the interactions between NHC ligands and group 11 metals 
[63, 64], shedding light on the importance and nature of 
these interactions. More recently, a study provided insights 
into the hydroamination reaction, specifically analyzing 
the C-N bond formation between an alkyne and an amine 
catalyzed by rhodium [65, 66] and gold [67–69].

Fig. 3  Precursor of [Au(IPr)]
[BF4] stable electrophile and 
some of the reaction routes that 
require the alkyne activation 
[48]
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Dual gold catalysis

In 2008, Houk and Toste and coworkers shed light into 
gold catalysis, providing the experience of two gold centers 
forming a diaurated complex synergistically cooperating to 
make a reaction of cycloisomerization [70]. In that report, 
the authors explained the mechanism to proceed through the 
activation of an in situ–formed phosphinegold(I) acetylide 
by cationic phosphinegold(I). One year later, Gagosz’s group 
studied a similar reactivity for the phosphinegold(I) catalyst 
highlighting its unusual dual character as nucleophile (C-H 
activation) and electrophile (alkyne activation) [71]. These 
first discoveries of cyclization reactions with allenyne and 
dyines molecules, which contain C–C triple bond, enabled 
gold to form the later called σ,π-digold-acetylide complex 
[72–74], which marks the beginning of this new special syn-
thesis together with the stable gem-diaurated species (Fig. 4), 
even with applications as anticancer agents [75].

Gem-diaurated species were first reported in 2003 by 
synthesizing thiophenes with the reaction of monogold 
organometallic compounds and stoichiometric amounts of 
a cationic phosphine-gold complex [77]. The synthesis of 
complexes with two gold centers located next to each other 

is highly efficient and allows the activation of the reagents; 
however, despite the relevance of the discovery, these spe-
cies were only considered a catalyst reservoir not involved 
in the product-yielding steps [78]. Even if so, Nolan and 
coworkers have made relevant discoveries on these species 
trying to realize the real importance of gem-hydroxide and 
how it could be key to the catalysis of gold (I) [48, 79]. 
Finally, the exploration of the hydroalkoxylation mechanism 
by Roithová and coworkers proved that these species-medi-
ated the addition of alcohols to alkynes [80, 81]. Another 
matter of fact is the extra-marked metallophilic behavior or 
aurophilicity in multi-gold compounds which adds stability 
for a large quantity of gold-based novel structures [82, 83].

On the other hand, σ,π-digold-acetilyde species suggest 
assistance and cooperation from two equal gold atoms but 
different in their chemical behavior, whose formation is 
highly favored in the presence of alkynes [34, 73]. Further-
more, C(sp3)-H activated by gold may easily suffer cycliza-
tion through C-H insertion that involves the production of 
rather common gold vinylidene and gold allenyl molecules 
(Fig. 5) [84–86].

Dual gold complexes were rapidly seen very useful for the 
formation of C–C bonds involving aromatic systems and mul-
tiple C–C bonds [9, 88]. Additionally, C-N bond construction 

Fig. 4  Usual precursor in dual gold activation catalysis [{Au(NHC)}2(μ-OH)](gem-digold hydroxide) ([Au] = Au(NHC)) [76]

Fig. 5  Formation step of usual intermediates from gold intramolecular transformations [87]
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by hydroamination has been also thoroughly studied through 
new and energizing propositions for dual gold catalysis mech-
anisms [89–91], addressing important facts that help to under-
stand the gold(I) chemistry and elucidate the role of these 
diaurated species in organometallic catalysis [92–95].

Cooperative hydrophenoxylation of alkynes 
by gem‑digold hydroxide catalyst

Regarding this recently discovered chemistry, gem-digold 
hydroxide specimens display the important role of highly 
efficient pre-catalysts in hydroalkoxylation of alkynes [48]. 

In this synthesis of (Z)-vinyl ethers, Nolan et al. studied 
the effective catalysis of bifunctional gold that forms the 
intermolecular C-O bond between an alkyne and an alcohol. 
In this way, they obtained TON and TOF up to 35000 and 
2188  h−1, respectively [96, 97].

In the presence of an alkyne, gem-digold hydroxides 
split into two separated fragments to perform a nucleo-
philic (combined) reaction. Herein cationic gold fragment 
acts as Lewis acid [98] and gold hydroxide acts as a Brøn-
sted base (Eq. 2) that can deprotonate the alcohols to form 
alkoxides, which in that case phenoxide is mostly formed 
from phenol [99].

)(NHC)]             (2)
Brønsted baseLewis acid

Nucleophilic a
ack

R-CC-R + [{Au(NHC)}2(μ-OH)][BF4] [{Au(η2-R-CC-R)(NHC)]+[BF4]- + [Au(OH

In this reaction, gold activation of substrates occurs sep-
arately and smoothly in an excess of alkyne, making the 
complexes more susceptible to interaction. This increased 
reactivity facilitates the nucleophilic attack of the phenox-
ide, which reacts in a specific manner to selectively produce 
trans vinyl ether monomers. Poater et al. conducted further 
studies to deepen the understanding of the mechanism for 
the hydrophenoxylation of alkynes in toluene [57]. Their 
initial findings confirmed the ability of gem-digold hydrox-
ides to readily dissociate and re-associate (Fig. 6). They also 
observed the poor reactivity of phenol in monoaurated sys-
tems and highlighted the active role of water and the coun-
ter-ion in the reaction mechanism. Additionally, the reaction 
conditions ruled out water-mediated alkyne hydration over 
hydrophenoxylation, although water molecules were found 
to be crucial. Under anhydrous conditions, the reaction slows 
down significantly, indicating that water, in conjunction with 

phenol, plays a critical role in maintaining the balance of 
gem-digold species. These findings underscore the impor-
tance of water not only in facilitating the reaction but also in 
stabilizing the reactive intermediates. The insights provided 
by Poater et al. offer a comprehensive understanding of the 
nuanced roles of various components in the hydrophenoxyla-
tion of alkynes, paving the way for more efficient and selec-
tive catalytic processes.

Multiple possible mechanisms were studied to explore the 
total synthesis of vinyl ethers as there was evidence of assis-
tance in the mechanism. All in all, first comes the activation 
of the two substrates by coordinating one gold center each 
other from gem-digold phenoxide; [{Au(NHC)}2(μ-OPh)], 
thus, at this point, one gold phenoxide [Au(OPh)(NHC)] and 
one gold alkyne [Au(NHC)(η2-alkyne)] spring out and the 
catalytic cycle begins (Fig. 7). Additionally, computational 

Fig. 6  Equilibrium between 
gem-digold species
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results with low potential energy gem-digold “off-cycle” 
species were revealed in this study [50].

Full conversion of gem-digold hydroxide to the aforemen-
tioned species is achieved and counter-ion is in charge of 
stabilizing the species. This nucleophilic attack from the 
phenoxide takes place and the C-O bond is formed. This 
step was reported by Zucaccia and coworkers to be the rds 
in the reaction of monogold [38] and actual studies made so 
for dually catalyzed mechanism. Subsequent protodeauration 
in the mechanism leads to the product and to the recovery 
of the catalyst.

To support the experimental data discussed above, den-
sity functional theory (DFT) calculations are crucial. They 
have been used for characterizing the stability and providing 
structural insights by identifying all intermediates along the 
reaction coordinate. They also found entropy to be particu-
larly relevant during the C-O bond formation facilitated by 
the gold-activated substrates.

Further mechanistic studies on hydrophenoxylation by the 
group aimed to better understand the exact mechanism of 
dual gold-catalyzed hydrophenoxylation of alkynes and its 
advantages over the monogold mechanism [100, 101]. The 
effects of exchanging the NHC ligand for a less bulky one, 
such as 1,3-dimethylimidazol-2-ylidene (IMe), and using 
different substrates were also investigated.

They began by energetically defining the rds for single 
auration of the alkyne. Results suggested that the direct 
nucleophilic attack by free alcohol is highly dependent on 
whether the alcohol is alkylic or arylic and requires the 

assistance of the counter-anion or a co-catalyst, as it is nei-
ther kinetically nor thermodynamically favorable (Fig. 8).

In the framework of dual activation applied in the hydro-
phenoxylation of alkynes, the reaction proceeds mildly and 
with low catalyst loadings. Using DFT to define the Gibbs 

Fig. 7  Hydrophenoxylation of alkynes by dual gold activation catalysis unveiled by DFT calculations [57]

Fig. 8  Relative Gibbs energies in the C-O bond formation reaction of 
methanol with [Au(IMe)(η2-Me-CC-Me)]+, where [Au] = [Au(IMe)]
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energies for the process, assistance from substrates was seen 
to be of high relevance in the process (Fig. 9). At the C-O 
bond formation step, dual gold–catalyzed hydrophenoxyla-
tion of diphenylacetylene mechanism left out of the game 
that of the mono-catalyzed one, having two phenols to coop-
eratively conduct the nucleophilic attack, by displaying a 
much lower energy barrier (ΔG‡).

In general, lower ΔG‡ are achieved directly affecting the 
rds. Activation of acidic phenol alcohol improving the selec-
tivity and reactivity sets dual gold catalysis at a whole new 
level from that of mononuclear gold hydrophenoxylation of 
alkynes, as it is thermodynamically favorable, even once the 
entropic penalty of this bimolecular reaction is included. 
However, to obtain the cis vinyl ether product, it was also 
claimed that the dual catalysis was not convenient, and, for 
this purpose, monogold catalysis may achieve the feat.

Cooperative catalysis using a linear gold(I) complex that 
has dual behavior far surpasses that of the monogold in 
terms of reactivity and selectivity as to answer unequivocally 
the question “Why dual gold catalysis over mono gold?” 
whose response is summarized in two points:

• Broaden the possible coordination sphere and the scope 
of the reaction

• High-tier mechanism control by activation of both sub-
strates, lowering ΔG‡ thereof

The importance of this reaction lies in the rupture of the 
normal process, those that are more visible but not environ-
mentally sustainable [102], to introduce sustainability by 
enabling a mild synthesis and high catalyst activity with a 
robust and versatile methodology [96]. Furthermore, Nolan 
et al. optimized dual catalysis, achieving greater TOF than 
previous reports in the field [99].

The mechanism for homodually aurated systems has been 
extensively studied, with efforts focused on optimizing the 
reaction pathway and establishing the key contributions. 
This includes understanding the role of the counter-ion and 
the assistance provided by various species in the reaction 
mixture. Through extensive research, the reaction pathway 
has been fine-tuned to improve efficiency and selectivity. 
The counter-ion has been identified as a crucial factor, stabi-
lizing intermediates and facilitating key steps in the mecha-
nism. Additionally, the assistance of other species present in 
the reaction mixture has been shown to significantly influ-
ence the overall process, enhancing the catalytic activity and 
ensuring a smoother progression of the reaction. These stud-
ies have provided valuable insights into the intricate dynam-
ics of homodually aurated systems, laying the groundwork 
for further advancements in the field of gold catalysis.

Fig. 9  Hydrophenoxylation of diphenylacetylene mechanism Gibbs energies computationally defined ([Au] = Au(NHC)). Theory level: M06/
TZVP∼sdd(toluene)//BP86/SVP∼sdd
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Heterodual bimetallic cooperative catalysis

Inspired by the complexity and efficiency of multimetallic 
assemblies in enzyme catalysis, chemists have made sig-
nificant strides in developing heterobimetallic complexes 
for applications in homogeneous catalysis [103]. These 
biological systems serve as a blueprint, highlighting how 
multiple metal centers can work in concert to enhance reac-
tivity, selectivity, and efficiency. Building on this concept, 
researchers began by designing relatively simple heterobi-
metallic complexes that feature a combination of σ-donating 
and π-accepting ligands, such as N-heterocyclic carbenes 
(NHCs) and carbonyl ligands. Over the past two decades, 
these efforts have led to the development of increasingly 
sophisticated and diverse systems.

One of the primary advantages of heterobimetallic com-
plexes over their monometallic counterparts is their potential 
to significantly boost catalytic performance. The presence 
of a second metal center in the active catalyst can open up 
entirely new reaction pathways, facilitating transformations 
that would be less efficient, or even impossible, with a single 
metal. This synergistic effect between the two metal centers 
allows for a more dynamic catalytic process, often resulting 
in increased reaction rates, improved selectivity, or access 
to more challenging substrates.

The mechanistic intricacies of heterobimetallic com-
plexes in homogeneous catalysis can be explained by differ-
ent factors. Take for instance, by examining how the second 
metal interacts with substrates, these complexes can be clas-
sified into distinct categories based on the nature of their 
interaction [103]. These interactions may range from simple 
electronic effects, such as the modulation of electron den-
sity between the two metals, to more complex cooperative 
behaviors where both metals actively participate in substrate 
activation and bond-forming steps.

Each class of heterobimetallic complex is illustrated with 
numerous examples, showcasing the vast range of catalytic 
reactions they can facilitate. These include traditional trans-
formations like hydrogenation, hydrofunctionalization, and 
C–C bond formation, as well as more specialized processes 
that exploit the unique reactivity of bimetallic systems [103]. 
The examples underscore the flexibility and adaptability of 

heterobimetallic catalysts, which can be tailored to a vari-
ety of reaction conditions, substrates, and functional groups. 
Through these advances, heterobimetallic catalysis is poised 
to play an increasingly important role in the design of more 
efficient, sustainable, and selective catalytic processes in 
modern synthetic chemistry.

Heterobimetallic complexes have attracted special interest 
due to the fact that the bifunctionality of different metals can 
lead to unique reactivity [104, 105]. Gold catalysis was early 
implemented with success in heterodual catalysis to conduct 
transmetallation and cross-coupling reactions together with 
rhodium, palladium, copper, and nickel to expand catalytic 
capabilities by surpassing the inherent complexity of dual 
systems [106]. Soft Lewis acidity of Au(I) was then seen to 
be of relevance in cooperative catalysis as it facilitated the 
way the reaction proceeds (Fig. 10).

Although there is actually some information about 
homogeneous heterodual bimetallic gold catalysis [108], 
it is mainly in heterogeneous catalysis where efforts have 
been more visible [109, 110]. To balance this scarcity, actual 
groups are progressing in the development of heterobimetal-
lic complexes bearing one gold and another transition metal 
connected through a ligand. Low-valent palladium, zinc, and 
ruthenium, in addition to gold, bimetallic complexes, have 
been thoroughly studied for application into hydroarylation 
and hydroamination reactions as well [111, 112], but, due to 
the little separation between the metals, their utility seems 
limited to intramolecular transformations [113, 114].

Following the theme, recently Cazin et al. reported the 
hydrophenoxylation of internal alkynes with heterobimetal-
lic Cu-NHC/Au-NHC systems. Here, the bifunctionality of 
the two metals is highlighted making the reaction proceed 
very smoothly [115]. Additionally, Au/Ag/Cu systems have 

Fig. 10  Simultaneous action of 
both metals: Activation with 
gold(I) Lewis acid lowers the 
barrier for palladium-catalyzed 
deallylation/oxidative addition 
[107]

Fig. 11  Natural bond order (NBO) character definition for group 11 
metals
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been successfully applied in intramolecular cyclizations to 
synthetize heteroarenes [116–119].

As a response to the search for improvements in the 
mechanism of hydrophenoxylation of alkynes, Poater and 
coworkers studied heterodual catalysis for group 11 met-
als by individually activating phenol and diphenylacetylene 
[120]. In this wide computational study, the authors char-
acterized the tendency in the group for substrate activation, 
as the physicochemical differences between the three upper 
metals make them (Fig. 11) promote the C-O bond.

First, gem-dimetal(I) hydroxides are the dimers which break 
to generate, through a series of balances and upon phenol and 
diphenylacetylene addition, the two aforementioned monometal-
lic complexes. Second, the C-O bond is formed in a similar fash-
ion as previously (Fig. 12) and after the transition state with both 
fragments approaching and the production of the intermediate.

At the end, they showed the rds for six different bimetallic 
systems in order to see the inherent capacity of homobimetal-
lic dual activation with respect to heterobimetallic process. 

Gold(I), as a better π acceptor, was seen to be very proficient 
in activating alkynes and making them more electrophilic. 
On the other hand, the chemical hardness of silver phenox-
ide was the lowest, and therefore, σ-silver species, together 
with π-gold species, showed more favorable energy barri-
ers. Throughout the study, various NHC ligands are tested 
to see the relevance of the steric and electronic properties 
they play in the process of C-O bond formation (Fig. 13). In 
addition to IPr and IMe, they also explored medium-sized 
SiMes and IMes carbene ligands (SIMes = N,N′-bis(2,4,6-
trimethylphenyl)-4,5-dihydroimidazol-2-ylidene) and 
(IMes = N,N′-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene) 
and highly sterically hindered IPr* (IPr* = N,N′-bis(2,6-
bis(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene).

In summary, the most efficient system identified for the 
hydrophenoxylation reaction was the π-Au/σ-Ag combination. 
However, it has been demonstrated that copper(I), which is more 
earth-abundant, can also efficiently activate phenol to facilitate 
the nucleophilic attack. This makes copper a more advantageous 

Fig. 12  Mechanism for the hydrophenoxylation of internal alkynes assisted by gold/copper catalysts
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option due to its similar capacity for activation and greater abun-
dance. Moreover, copper outperforms gold in the activation of 
alcohols, providing additional benefits for certain reactions.

Furthermore, the π-Au/σ-Cu mechanism has been thor-
oughly elucidated, offering deep insights into its operational 
dynamics. The studies revealed that the steric hindrance of 
NHC ligands significantly influences the reaction’s rds energy 
barriers. Specifically, it was found that medium-sized NHC 
ligands, such as IMes (1,3-dimesitylimidazol-2-ylidene) and 
SIMes (1,3-dimesitylimidazolidin-2-ylidene), present more 
favorable formation energies. This indicates that they strike a 
balance between steric bulk and electronic effects, optimizing 
the overall catalytic performance.

These findings underscore the potential of copper as a 
viable alternative to gold in catalysis, particularly in terms of 
cost-effectiveness and sustainability. They also highlight the 
importance of ligand design in tailoring the catalytic activ-
ity and efficiency of metal complexes in various reactions.

Chelation of the complex to promote dual 
metal catalysis

Recently, inspired by the encapsulation of a monogold(I) 
NHC complex reported by Reek and coworkers [121], Nolan 
et al. investigated the idea of encapsulating the diaurated 

NHC complex within a cavity to achieve switchable reac-
tivity from dual gold catalysis to monogold catalysis [122], 
their sparked interest in the possibility of creating a chelate 
where two fragments, each containing a gold center, could 
be brought into close proximity by linking them with an 

Fig. 13  NHC involved in the steric and electronic studies of the rds

Fig. 14  Encapsulated hydrophenoxylation of alkynes by [{Au(NHC)}2 
(μ-OH)]+
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ethylene chain (Fig. 14). This arrangement is expected to 
enhance process activity and selectivity, allowing the reac-
tion to proceed in a more controlled manner [123].

Poater and Cavallo, in collaboration with Nolan [124], 
transformed the intermolecular digold system into an intra-
molecular mechanism by DFT calculations (Fig. 15). They 
found that the breaking of the gem-digold hydroxide com-
plex depended on the length of the ethylene chain (Fig. 16). 
Lower energy barriers and better thermodynamic profiles 
were observed with increased chain length, allowing for bet-
ter accommodation of the metal moieties after the attack of 
PhOH or Ph-CC-Ph. However, while a longer chain provided 
more space and improved separation, it also introduced flex-
ibility, potentially decreasing stability due to bending. Inter-
estingly, PhOH was more effective in breaking the hydrox-
ide dimer, showing superior kinetics and thermodynamics 

compared to the alkyne (Ph-CC-Ph). This preference was 
significant, considering the excess of the latter substrate and 
its smooth coordination leading to C-O bond formation.

Calculations demonstrated that chelation improves cataly-
sis, supporting the encapsulation results of Nolan and Reek 
[122]. The rds in this intramolecular setup was identified as 
the protonation of the intermediate alkene by phenol, with a 
barrier of 34.8 kcal/mol over the initial complex.

Conclusions

The historical trajectory of chemistry reveals the transforma-
tive impact of catalysis, with gold catalysis emerging as a 
significant milestone. Actually, the introduction of gold as 
a catalyst marked a pivotal evolution, extending its utility 

Fig. 15  Transition state for the C-O bond formation with the diaurated catalyst, chelated by nine ethylene groups (distances in Å)

Fig. 16  Intramolecular hydro-
phenoxylation scheme for the 
chelated digold complex
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beyond traditional applications to play a crucial role in 
homogeneous catalysis.

Gold’s distinctive properties, including its strong electro-
philicity, exceptional catalytic activity, and remarkable sta-
bility, have positioned it as a key element in the synthesis of 
complex molecules. Its high affinity for electron-rich species 
allows it to effectively activate substrates, facilitating a wide 
range of chemical transformations. Additionally, gold’s flex-
ibility and resistance to oxidation make it a robust catalyst in 
various reaction environments, which is particularly advan-
tageous in fields such as nanomedicine and green chemis-
try. Gold-based complexes have demonstrated notable effi-
ciency in hydroalkoxylation and hydroamination reactions, 
where they promote the formation of carbon–oxygen bonds 
under mild conditions, thus minimizing energy consumption 
and reducing the need for harsh reagents. These attributes 
underline gold’s potential in advancing sustainable chemical 
processes and expanding its role in innovative applications, 
including the development of therapeutic agents and envi-
ronmentally friendly synthesis methods.

Recent studies on dual gold catalysis and heterobimetal-
lic complexes further underscore the versatility and efficacy 
of gold catalysts. These innovations highlight the potential 
for achieving high turnover rates and selectivity, propelling 
forward the scope of modern synthetic chemistry.

In summary, the evolution of gold catalysis exemplifies 
a crucial advancement in the field of chemistry. Its unique 
properties and the resulting innovations offer promising 
pathways for developing sustainable and efficient chemical 
processes. This progress not only enhances the theoretical 
understanding of catalysis but also paves the way for practi-
cal applications that could benefit various industries, from 
pharmaceuticals to environmental science. The continuous 
exploration and development of gold catalysis will likely 
remain a cornerstone of future chemical research and indus-
trial application.
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