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Forest, J.; Pribanić, T. Calibration of a

Structured Light Imaging System in

Two-Layer Flat Refractive Geometry

for Underwater Imaging. Sensors

2023, 23, 5444. https://doi.org/

10.3390/s23125444

Academic Editor: Walter Neu

Received: 26 April 2023

Revised: 1 June 2023

Accepted: 5 June 2023

Published: 8 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Calibration of a Structured Light Imaging System in Two-Layer
Flat Refractive Geometry for Underwater Imaging †
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Abstract: The development of a robust 3D imaging system for underwater applications is a crucial
process in underwater imaging where the physical properties of the underwater environment make
the implementation of such systems challenging. Calibration is an essential step in the application
of such imaging systems and is performed to acquire the parameters of the image formation model
and to enable 3D reconstruction. We present a novel calibration method for an underwater 3D
imaging system comprising a pair of cameras, of a projector, and of a single glass interface that is
shared between cameras and projector(s). The image formation model is based on the axial camera
model. The proposed calibration uses a numerical optimization of a 3D cost function to determine all
system parameters, thus avoiding the minimization of re-projection errors which require numerically
solving a 12th order polynomial equation multiple times for each observed point. We also propose a
novel stable approach to estimate the axis of the axial camera model. The proposed calibration was
experimentally evaluated on four different glass interfaces, wherein several quantitative results were
reported, including the re-projection error. The achieved mean angular error of the system’s axis
was under 6◦, and the mean absolute errors for the reconstruction of a flat surface were 1.38 mm for
normal glass interfaces and 2.82 mm for the laminated glass interface, which is more than sufficient
for application.

Keywords: calibration; structured light; underwater imaging; flat refractive geometry

1. Introduction

The applications of underwater 3D imaging systems span over various fields of
research and have diverse applications, e.g., mapping of the underwater sites of archaeo-
logical value [1], monitoring of underwater wildlife in marine biology [2], and underwater
inspection [3], to name a few. Recent developments also place such a system onto ROVs
(remotely operated vehicles), UAVs (underwater autonomous vehicles), or similar under-
water systems [4,5] thus making them perfect for underwater applications where human
life might be endangered.

There are many challenges in the design and usage of an underwater 3D imaging
system [6]. The difficulty of achieving the desired accuracy [7,8] of the imaging system
is caused by image distortions due to the physical properties of light propagation in an
underwater environment. To limit these, an underwater enclosure or a watertight housing
must be designed accurately for each element of the imaging system, which include
a camera and a projector. In the underwater environment, such enclosures introduce
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refractions and reflections of light-rays on both the air-to-glass interface and the glass-to-
water interface, while water itself introduces attenuation and dispersion of the transmitted
and reflected rays. Together, these effects present significant challenges in the calibration of
a 3D imaging system. To overcome these challenges, cameras and projectors are usually
first calibrated individually to acquire the corresponding intrinsic parameters, followed by
a calibration of the whole 3D imaging system to acquire and to refine all parameters of the
image formation model [9].

Sensors of a 3D imaging system may be classified as passive or active. The key
difference is that active 3D imaging introduces an artificial illumination in the observed
scene. A typical example of passive 3D imaging is stereo vision [10], and an example of
active 3D imaging is structured light or SL [11,12]. In an SL imaging system, a projector
projects a code onto a surface of an observed object, which is then observed by one or
more cameras to reconstruct the 3D shape. Therefore, an underwater 3D imaging system
comprising one or more cameras and one or more projectors is an active SL 3D imaging
device for which there are many reported uses in underwater imaging [1,3,6,13–15]. Next,
underwater SL systems may be classified depending on the shape of the air-to-water
interface, usually a protective glass, which may be flat or curved [9,16]. Although curved
interfaces offer some advantages, including the compensation of unwanted refractions, they
are difficult to design and to manufacture, thus making flat interfaces a more convenient
and more flexible choice. Finally, when a camera or a projector is coupled with a flat
refractive interface, the ubiquitous pinhole camera model [10,17,18] is no longer applicable
and must be extended. One possible extension of the pinhole model for flat refractive
interfaces is the axial camera model [19,20], which can account for the spatial spreading of
the focal point of the pinhole camera model.

In this paper, we present a novel method for calibrating a structured light 3D imaging
system, which comprises two cameras and of one projector and which uses a shared flat
refractive interface (a single shared glass). The proposed method is a continuation of our
previous work [9] on projector calibration for underwater imaging, which we here extend
to the calibration of the whole SL imaging system. It is also based on the previous work by
Agrawal et al. [19], which introduced flat refractive imaging geometry for a single camera,
which we extended to a system of two cameras and a projector. The proposed calibration
method uses a planar calibration board with white circles arranged in a hexagonal pattern
as a calibration object [21]. Once the calibration object is imaged in several positions,
the obtained data is combined with the in-the-air calibration data to obtain the axis of the
axial camera first, which is then followed by a numerical optimization procedure using a
3D cost function to determine the final imaging parameters of the SL system. The proposed
calibration method was thoroughly evaluated in a laboratory environment for four different
glass interfaces. To summarize, compared to the previous works and to the state-of-the-art
approaches, our contributions are the following:

1. The coplanarity constraint proposed by Agrawal et al. [19] and used in our previous
work [9] was extended to the case of multiple cameras and projectors that share a single
flat glass interface and was then applied to the estimation of the axial camera’s axis.
The proposed axis estimation was more stable than the method of [19] as demonstrated
by the performed experiments.

2. The proposed optimization of the 3D cost function from our previous work [9] was
extended to the whole SL imaging system, and we also introduced boundaries on
allowed system parameters.

3. Calibration using the extended coplanarity constraint and the proposed 3D cost
function were thoroughly evaluated on four different glass types, and the obtained
results verify that the proposed method can cope with differing glass thicknesses.

Note that, to the best of our knowledge, the proposed method is the first method for
calibration of a SL underwater imaging system that uses a single glass interface.
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The rest of this paper is structured as follows: Section 2 describes state-of-the-art and
related works. In Section 3, we present the proposed calibration method. Experimental
results are presented in Section 4 and are discussed in Section 5. We conclude with Section 6.

2. Related Work

In this section, we present prior works considering the in-the-air geometric calibration
of multiple cameras and projectors based on the work by Petković et al. [21], which follows
with an individual camera (or projector) calibration for the underwater imaging, where
a camera is represented using an axial parametric model with an additional calibration
of the refractive parameters as proposed by Agrawal et al. [19]. This approach has been
extended to projector calibration by Zoraja et al. [9]. In addition, we present prior works
where a camera was modeled purely by the pinhole model [17], without any additional
imaging parameters to model refractions, and by the Pinax model [22], which allows a fast
refraction correction of the flat pane housing by utilizing a pre-computed lookup table.

The geometric calibration of multiple cameras and projectors for in-the-air imaging is
an essential step in the everyday use of an SL imaging system [11]. A typical calibration
procedure utilizes a planar calibration object that comprises bright circles on a dark back-
ground arranged in a regular lattice and follows a flexible method proposed by Zhang and
Huang [23] for projector calibration. Such a calibration board makes the projected code
easier to decode w.r.t. the standard checkerboard pattern. Petković et al. [21] summarized
the whole procedure and also proposes to use a hexagonal calibration lattice, as it increases
the number of calibration points, and a multiple phase shift (MPS) structured light code,
as it inherently provides subpixel precise mapping w.r.t. the gray code, which requires
interpolation for such a level of precision.

A theory of multi-layer flat refractive geometry proposed by Agrawal et al. [19]
provides the basis for underwater camera calibration. Their calibration procedure is
based on a pinhole camera model, which is extendend to an axial model with additional
parameters to model refractions on flat layers. The camera is firstly calibrated in air
using Zhang’s [24] calibration procedure, followed by the underwater imaging of a planar
calibration object to determine additional refractive parameters. Agrawal et al. introduced
a multi-layer flat refractive geometry and a plane of refraction (POR), which have been used
in our calibration method as well. They model the imaging system as an axial camera [20],
since all refracted camera rays when extended to infinity intersect the axis at some point.
Here, we stress the fact that the axis of the whole system is not the optical axis of a single
camera, although, in a special case, they may coincide. The coplanarity constraint for a
single camera yields a linear system, which is solved using singular value decomposition
(SVD) to yield an essential matrix from which the axis of the axial system is determined.
The pose parameters R and t are also computed from the essential matrix, and the layers’
thicknesses di are computed using the flat refraction constraint (FRC), which states that
the segment between the 3D point P and the point on the last refractive layer ~q2 should
be parallel to the final refracted ray ~v2 (see Figure 1). The refinement of all calibration
and pose parameters is achieved by minimizing the re-projection error, which requires
solving the analytical forward projection (AFP) equation. The AFP describes a method for
the analytical computation of the projection of a known 3D point and is computationally
expensive, which has prompted further research into possible simplifications, as performed
by Kawahara et al. [25]. Our proposed calibration method sidesteps this issue by using a
3D cost function instead of the AFP.

A projector calibration in a two-layer flat refractive geometry presented by Zoraja et al. [9]
provides a projector calibration procedure where the projector is modeled as an inverse
camera. The projector calibration proposed by Zoraja et al. [9] utilizes the geometric
camera calibration procedure proposed by Petković et al. [21] and an additional calibration
of the refractive parameters as proposed by Agrawal et al. [19]. Zoraja et al. [9] also
discussed the noted instability in the estimation of the axis of an axial system as proposed
by Agrawal et al. [19]; this instability has been addressed in our calibration method.
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Figure 1. A two-layer flat refractive geometry and a plane of refraction π. Left: 3D view. Right: plane
of refraction.

An underwater 3D reconstruction using structured light was proposed by Bruno
et al. [13], which provided experimental results for a highly turbid environment with a
heavy presence of scattering and absorption. Their imaging system was experimentally
assessed in different turbidity conditions. For the underwater calibration, Bruno et al. [13]
used Bouguet’s Camera Toolbox [26] and adopted the ubiquitous in-the-air calibration
model; thus, they did not consider optical properties of different mediums, including air
and water. Such a calibration procedure utilizing only the pinhole camera model with
standard distortions, without any additional calibration of the refractive parameters, is
simple and convenient to use, but it has a larger error than a proper model, which includes
refractions [19]. Here, we note that the necessary requirements [22,27] for the pinhole model
to be applicable are that the glass interface should be: (1) perpendicular to the camera’s
optical axis, (2) be as close to the lens as possible, and (3) be as thin as possible.

Finally, the Pinax model for accurate and efficient refraction correction, presented by
Łuczyński et al. [22], allows for a pre-computation of a lookup-table for very fast refraction
correction of the flat-pane with high accuracy. The model takes the refraction indices of
water into account, especially with respect to salinity, and it is, therefore, sufficient to
calibrate the underwater camera only once in-the-air. They require that the optical axis
of the camera be perpendicular to the glass surface and that the distance d0 (see Figure 1)
between the glass and the center of projection be minimal; the posed requirements were
not considered in our implementation i.e., the direction of camera’s (projector’s) optical
axis and the distance d0 was considered to be arbitrary.

3. Calibration Method

The proposed calibration method is applicable to a structured light imaging system
comprising an arbitrary number of cameras and projectors that all share a single flat in-
terface that separates them from the water. We first provide a description of the imaging
geometry used in Section 3.1, which is followed by a description of the coplanarity con-
straint for an individual camera (or projector) in Section 3.2, which is then extended to an
arbitrary number of cameras and projectors in Section 3.3). The in-the-air calibration of
individual cameras and projectors and of a whole SL system are described in Section 3.4.
Finally, the proposed numerical optimization using a 3D cost function is described in
Section 3.5, and the final calibration procedure of a SL system is described in Section 3.6.

3.1. Imaging Geometry

The building blocks of an SL imaging system are cameras and projectors, and, for
underwater imaging, we also require a protective flat glass. W.l.o.g., we limit the discussion
to a system comprising two cameras and of one projector. The protective interface must
be flat and must be shared between all cameras and projectors in the imaging system.
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Then, the imaging geometry of the SL imaging system is based on the multi-layer flat
refractive geometry introduced by Agrawal et al. [19]. For a submerged imaging system
enclosed in a watertight housing using a single protective glass, there are two interfaces
between mediums with different optical properties: an air-to-glass interface and a glass-
to-water interface. This two-layer flat refractive geometry is presented in Figure 1. On the
left, ~vi represents the light path of a camera/projector ray in 3D (for a two-layer system
i = 0, 1, 2): ~v0 is the initial camera ray, ~v1 and ~v2 are refracted rays, and qi+1 are points of
refraction. A point P is the point in the 3D space, and C is the extrinsic center of a pinhole
camera/projector model. The axis of the axial camera model âx points in the opposite
direction of the refractive interface’s normal n̂. Note that âo denotes the optical axis of the
camera, which is different than the axis âx.

A plane of refraction π introduced by [19] is the most important concept in the multi-
layer flat refractive geometry, as it contains the entire light path of a camera ray for each
pixel (see Figure 1, right). When considering the properties of the light propagation, both
the incident ray and the surface normal lie on the unique plane π, and when considering
Snell’s law, the refracted ray must also lie on π; hence, by induction, the entire light path
and the point P are also on π [19].

A 2D coordinate system on the POR is defined by a vector ~z1, which points in the
direction of the axis âx of the axial system, and a vector~z2, which is defined for an unique
camera ray ~v0 as ~z2 = ~z1 × (~z1 ×~v0). A typical POR π for an unique pixel is shown in
Figure 1: on the right, it contains the axis âx, the light path ~vpi of a camera/projector ray
in 2D, points of refraction qpi+1 , and the point P′ denoting the point P in the coordinate
system on the POR. Note that ~vpi (see Figure 1, right) denotes the camera/projector rays
~vi (see Figure 1, left) in the coordinate system on the POR. Vector di represents the layers’
thickness; d0 is the distance between camera’s (projector’s) extrinsic center to the boundary
of the first refractive interface; d1 is the thickness of the second interface (glass interface);
and d2 is the distance between the boundary of the second refractive interface and the
point P′. Note that, for each pixel, there exists a unique POR and that all PORs for all
corresponding pixels comprise a pencil of planes through the straight line, which is the axis
of the axial camera âx [9,20].

3.2. The Coplanarity Constraint for a Camera/Projector Using a Single Interface

A constraint that binds the point P and the corresponding initial camera ray ~v0 to the
same plane (POR) is called the coplanarity constraint [19], and it may be expressed in a
matrix form as (

[a]×v0
)T

(Sp + u) = 0, (1)

where [a]× is a skew-symmetric matrix representing âx in the camera coordinate system,
v0 is a 3× 1 vector representing the initial camera ray ~v0 in the camera coordinate system,
and p is a 3× 1 vector representation of the illuminated point P in the calibration frame.
As Equation (1) is expressed in the camera coordinate system, the parameters S (rotation)
and u (translation) represent the relative pose of the world coordinate system to the camera
coordinate system (see Figure 2). The coplanarity constraint that binds a relative pose of
the world coordinate system to the camera coordinate system may be re-written as

vT
0 [a]×Sp + vT

0 [a]×u = 0. (2)

The product of a skew-symmetric matrix [a]× and a rotation matrix S is a 3× 3 a matrix
E, which has the properties of an essential matrix [10]; note that this is not an essential
matrix of a stereo vision system. The product of a skew-symmetric matrix [a]× and a
translation vector u is a 3× 1 vector h representing a constraint on the translation vector u.
Considering [a]×S = E and [a]×u = h, Equation (2) may be expressed as

vT
0 Ep + vT

0 h = 0, (3)
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and, by forming a Kronecker’s product (denoted as ⊗) between points p(i) in 3D space
and their corresponding initial camera rays v0(i), we may express Equation (3) as a linear
system by stacking equations for their points’ correspondences

p(1)T ⊗ v0(1)T v0(1)T

p(2)T ⊗ v0(2)T v0(2)T

...
...

p(N)T ⊗ v0(N)T v0(N)T


︸ ︷︷ ︸

Q

[
E(:)

h

]
= 0. (4)

We denote a N × 9 matrix of the linear system with Q. N is the number of points’ corre-
spondences. Vector E(:) is a column vector formed by stacking columns of the essential
matrix E.

World Coordinate 
System

x y

z

o

Flat Air to Glass Interface

Camera A Camera B

Projector

Object

Flat Glass to Water Interface

Figure 2. Relative poses of cameras and a projector w.r.t. the world coordinate system.

The solution of the linear system, given by Equation (4), is acquired by performing
a singular value decomposition (SVD) of the matrix Q. A planar calibration object is
commonly represented as the xy plane with the z coordinate set to zero [24], so p =
[xi, yi, 0]T and columns 7, 8, and 9 all reduce to zero. Therefore, we cannot directly estimate
the full matrix E; we may only estimate the first two columns of E. The last column of E is
estimated using Demazure’s [28] constraints (also see Nister [29]). The axis a of the axial
system, a 3× 1 vector, may be extracted from the acquired E matrix by performing an SVD.
Note that hTa = 0; hence, the full translation cannot be extracted, as the component of u in
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the direction of the axis vanishes in h. By using the acquired solution for h, we may only
estimate a part of translation orthogonal to the axis uorth as a cross product of h and a. Note
that the full translation may be estimated from a flat refraction constraint (FRC) defined
on the POR for each point correspondence; see Agrawal et al. [19]. Alternatively, a central
approximation may be used to obtain an approximate estimate. In a central approximation,
3D points in the world frame are mapped to 2D points in the image frame by a central
projection model in which a ray defined by a 3D point in space and a fixed point in space,
the center of projection, intersects a specific plane in space that is chosen as the image plane
(see Hartley and Zisserman [10]). In our calibration procedure, the rotation and translation
estimates were computed using central approximation, which is simpler than solving the
FRC and which yields appropriate initial points for the numerical optimization.

The coplanarity constraint may be derived separately for each pose of the cam-
era/projector w.r.t. the calibration object. In the case of multiple cameras/projectors,
we set the coordinate system of the camera a as the referent one; hence, the coplanarity
constraint may be re-written w.r.t. to this referent frame as

vT
0a

[
[a1]×Sapa + [a1]×ua

]
= 0, (5)

vT
0b

[
[Raba1]×(RabSapb + Rabua + tab)

]
= 0, (6)

vT
0c

[
[Raca1]×(RacSapc + Racua + tac)

]
= 0, (7)

where Equation (5) represents the coplanarity constraint of the camera a, Equation (6) is
the coplanarity constraint of the camera b in the frame a, and Equation (7) denotes the
coplanarity constraint of the projector in the frame a (see Figure 2). Each constraint yields
a certain pose of the camera (projector) w.r.t. the calibration object: the pose [Sa|ua] for
the correspondence between the object’s frame and the frame a, the pose [Sb|ub] for the
correspondence between the object’s frame and the frame b, and the pose [Sc|uc] for the
correspondence between the object’s frame and the frame c.

The rotation matrix Rab = RbRa
T is the rotation from the camera coordinate system a

to the frame b, and Rac = RcRa
T is the rotation from the camera coordinate system a to

the projector’s frame (frame c). The corresponding translations are tab = −RbCb + RbCa
and tac = −RcCc + RcCa, where Ci denotes the extrinsic center of the corresponding
camera (projector). These rotations and translations are determined during the in-the-air
calibration. The axis a1 of an axial system is the system’s axis expressed in the referent
frame (frame a). In Equations (6) and (7), the axes a2 and a3 are rotated into the referent
frame, since a2 = Raba1 and a3 = Raca1.

The rotation matrices Sb and Sc w.r.t. the frame a are Sb = RabSa and Sc = RacSa. The
corresponding translations w.r.t. the frame a are ub = Rabua + tab and uc = Racua + tac.
The 3× Ni matrices of initial camera rays are denoted with v0a , v0b , and v0c , and they are
expressed in the corresponding camera/projector frame (see Figure 2). The corresponding
pi denotes 3×Ni matrices of the object’s points in the world coordinate system (the object’s
frame). Note that the coplanarity constraint is performed for each pose of the calibration
object. For a complete derivation of the coplanarity constraint, see Appendix A.1.

3.3. Unified Coplanarity Constraint for a System Using a Single Interface

Following up on Section 3.2, we proposed to calibrate the system by using an unified
coplanarity constraint. We formed the coplanarity constraint equations separately for each
pose of the camera/projector w.r.t. the calibration board (see Equations (8)–(10)), and we



Sensors 2023, 23, 5444 8 of 22

combined them into a single linear equation for the whole system (see Equation (14)).
Considering [a]×R = E and [a]×t = h, Equations (5)–(7) may be simplified as

vT
0a

E1pa+ vT
0a

h1 = 0 (8)

vT
0b

RabE1pb+vT
0b

Rabh1 + vT
0b
[Raba1]×tab = 0 (9)

vT
0c

RacE1pc+ vT
0c

Rach1 + vT
0c
[Raca1]×tac = 0, (10)

where the essential matrix E1, the parameter h1, and the axis a1 denote the unknown
parameters in the frame a (the referent frame). Furthermore, we may refactor the term
vT

0b
[Raba1]×tab in Equation (9) as

[
Rab

T(tab × v0b

)]Ta1 and the term vT
0c
[Raca1]×tac in

Equation (10) as
[
Rac

T(tac × v0c

)]Ta1, thus forming a linear system

vT
0a

E1pa+ vT
0a

h1 = 0 (11)

vT
0b

RabE1pb+vT
0b

Rabh1 +
[
Rab

T(tab × v0b

)]Ta1 = 0 (12)

vT
0c

RacE1pc+ vT
0c

Rach1 +
[
Rac

T(tac × v0c

)]Ta1 = 0, (13)

which may be refactored further w.r.t. Equation (3), by using Kronecker’s product, and rep-
resented in the matrix form:

pa(1)T ⊗ v0a(1)
T v0a(1)

T 0
pa(2)T ⊗ v0a(2)

T v0a(2)
T 0

...
...

...

pb(1)T ⊗
(
v0b(1)

TRab
)

v0b(1)
TRab

[
Rab

T(tab × v0b(1)
)]T

pb(2)T ⊗
(
v0b(2)

TRab
)

v0b(2)
TRab

[
Rab

T(tab × v0b(2)
)]T

...
...

...

pc(1)T ⊗
(
v0c(1)

TRac
)

v0c(1)
TRac

[
Rac

T(tac × v0c(1)
)]T

pc(2)T ⊗
(
v0c(2)

TRac
)

v0c(2)
TRac

[
Rac

T(tac × v0c(2)
)]T

...
...

...



E1(:)
h1
a1

 = 0 (14)

Equation (14) is the unified coplanarity constraint for a system using a single interface
w.r.t. the coordinate system of the camera a. Since we are using a planar calibration object,
only the first two columns of the essential matrix E1 may be estimated using SVD; the
third column is estimated using the Demazure’s [28] constraints (also see Nister [29]). Note
that the key feature in the proposed unified coplanarity constraint is the estimation of the
system axis âx (expressed in the referent frame as axis a1) derived directly from the posed
linear system (Equation 14). The estimated parameter h1 is not used, since we compute
the initial pose parameters directly from the central approximation. Note that the unified
coplanarity constraint is performed for each pose of the calibration object, thereby implying
that we acquire as many solutions as there are positions of the imaged calibration object.
The system’s axis is then acquired as a circular mean of the estimated axes. For a full
derivation of the unified coplanarity constraint, see Appendix A.2.

3.4. In-the-Air Calibration

In-the-air geometric calibration is required in order to determine the intrinsic pa-
rameters of camera/projector and the relative poses between cameras and projectors [21].
This geometric calibration is a necessary prerequisite for the proposed calibration of the
underwater imaging system and is performed in three steps:

1. Create an image of a planar calibration board in many positions;
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2. Extract the image coordinates of the calibration points;
3. Optimize all the parameters by minimizing the re-projection error.

Regarding projector calibration, the projector is not able to acquire images of the
observed illuminated scene. The necessary data is instead acquired by cameras in the
imaging system [21,23,30]. Since the projector is modeled as an inverse camera, the stan-
dard pinhole camera model with radial distortion is used. The state-of-the-art projector
calibration algorithms follow the procedure proposed by Zhang and Huang [23] using a
structured light scanning technique to obtain calibration data [11,12]. The projector’s row
and column coordinates are embedded in the projected coded pattern, which yields direct
correspondences between an uncalibrated camera and the projector [21].

Considering the calibration object, we used a planar calibration board with a regular
hexagonal lattice of bright circles on a dark background, which is shown in Figure 3. The
projected SL code is easier to decode for white circles when compared to the standard
checkerboard pattern [30]. The calibration board should be imaged in many different
positions w.r.t. the camera/projector position [21]. For each camera and projector, two
different positions of the calibration board constitute the minimum [24]. We proposed to use
MPS-coded patterns, which enable simultaneous acquisition in a system comprising of an
arbitrary number of projectors [31,32]. Another key point of the proposed approach is that,
if there are multiple cameras observing the same part of the calibration board illuminated
by a projector, then the number of extracted points for calibrating that particular projector
is increased as measurements are repeated up to the number of cameras observing the
illuminated board [21].

Side A of hexagonal 21x(19,18) calibration board. Circles’ diameter is 15mm and circles’ centers are 25mm apart.

Figure 3. Planar calibration board (left: ideal calibration pattern; right: physical board used).

3.5. Numerical Optimization

As proposed in Section 3.3, we did not estimate the pose parameters [S|u] from
the coplanarity constraint (1); instead, we utilized a central approximation algorithm to
acquire the initial pose of the camera(s) and projector(s). To refine the acquired pose
parameters, we designed a numerical optimization algorithm, which follows our previous
implementation [9], which was extended to include parameter boundaries. Instead of
minimizing the re-projection error, we minimized the 3D cost function of [9], which we
describe here for completeness. This avoided the minimization of the re-projection error,
which introduces high computational requirements of an analytical forward projection
algorithm for which a 12th degree polynomial must be solved for each calibration point
and for each iteration of the minimization [19,25].

The total error in 3D comprises three components: (1) coplanarity error; (2) frustum
error; and (3) backprojection error. Posed errors may be used to form an objective function
in a nonlinear least-squares minimization algorithm.
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3.5.1. Coplanarity Error

The coplanarity constraint (1) limits the position of a point ~p and its corresponding
ray ~v0 to an unique plane (the POR, see Figure 1). The shortest vector~rCPL connecting the
point ~p to the plane is

~rCPL = (δ− n̂ · ~p) n̂, (15)

where a plane in the Hesse normal form is described by its normal n̂ and its signed distance
to the origin δ. It is implied that a posed constraint must be zero for all points and their
corresponding rays; hence, the sum of squares of two-norms is

∑i ||~rCPL,i||22 (16)

for all ray-point correspondences (~v0,i,~pi) must be minimized in order to find the lo-
cal minimum.

3.5.2. Frustum Error

Since all calibration points must be in a field of view (FoV), we proposed a frustum
error [9] as the distance to the projector’s clipping planes (see Figure 4). Frustum is defined
by six clipping planes: front, back, top, bottom, left, and right. We may apply a constraint
by considering the distance to a clipping plane, with the purpose to guide the minimization
by constraining the pose parameters. The equations of all six clipping planes are easily
expressed in the Hesse normal form from the known in-the-air calibration. If the normals
of all the clipping planes are oriented to point inside the frustum, then the vector~rFRS
connecting the point ~p, which is outside of the frustum to the clipping plane, (n̂j, δj) is

~rFRS =

{
(δj − n̂j · ~p)n̂j, n̂j · ~p− δj > 0
0, else.

(17)

Equation (17) implies that, if the point is on the correct side of the clipping plane (inside
the frustum), then we set~rFRS to zero. All calibration points that end up outside of or on
the boundaries of the frustum are fed to the numerical optimization algorithm. The sum of
squares of two-norms is

∑i ||~rFRS,i||22, (18)

which defines the objective function in a minimization scheme.

Projector

C
C

P

v0

a
Projector

P
v0

a

Figure 4. Projector’s clipping planes (left: 3D view; right: top 2D view).

3.5.3. Backprojection Error

From the known imaging geometry, we may analytically derive the equations of
refracted rays in the water [19]. We are only interested in the part of the last ray in the
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water, which is inside the projector’s frustum. This ray segment is best modeled via its two
endpoints, which are denoted as~q2 and~q3 (see Figures 1 and 5):

~q3 = ~q2 + `v̂2, (19)

where ` represents the distance between ~q2 and ~q3, which is defined by the projector’s
frustum. The point ~q2 denotes the point of refraction on the second refractive layer, and
~q3 is the point on the camera ray in the 3rd medium (water). The distance of a point ~pi to
the line segment connecting~q2 to~q3 is defined as the backprojection error. Expressing the
line in a parametric form as~q2 + t~q3 enables a simple computation of t, which defines the
closest point as

t =
(~pi −~q2) · (~q3 −~q2)

||~q3||
. (20)

The shortest vector~rBPR connecting a point ~p to the line segment is then

~rBPR =


~q2 − ~p, t ≤ 0
~q2 + t~q3 − ~pi, 0 < t < 1
~q3 − ~p, 1 ≤ t.

(21)

Hence, the sum of squares of two-norms

∑i ||~rBPR,i||22 (22)

for all ray-points correspondences (~v0,i,~pi) must be minimized.

Figure 5. Initial and refracted camera rays. Left: for a single camera in the corresponding camera
coordinate system. Right: for a system in the world coordinate system. Initial camera rays in the air
are displayed in red, rays refracted in the glass are displayed in green, and final refracted rays in the
water are displayed in blue.

3.5.4. Total Error

If the cameras and the projector are calibrated in the air, implying that we know
the corresponding intrinsic parameters for each camera (projector) expressed in the same
physical units, then all three vectors given by Equations (15) (17) and (21) are measured
using the same physical units, and they may be joined together in an objective function for
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the optimization algorithm. Therefore, the total error, which defines the objective function
to minimize, is

∑i ||~rCPL,i||22 + ||~rFRS,i||22 + ||~rBPR,i||22. (23)

The value of (23) is minimized over the space of parameters, which includes the system
axis âx, the pose parameters (a 3× 3 rotation matrix S and a 3× 1 translation vector u), as
well as distances d0 and d1. For a nonlinear least-squares minimization scheme, we utilized
the Levenberg–Marquardt optimization algorithm (i.e., Matlab’s lsqnonlin function [33]).

3.5.5. Boundary Constraints

We proposed additional tweaks on the minimization of the objective function, i.e., we
imposed boundary constraints on the optimization algorithm. A nonlinear least-squares fit-
ting problem optionally may be bounded by upper and/or lower bounds. The components
of an initial value x0 that violate the bounds

LB ≤ x ≤ UB, (24)

where x is an output, LB is a lower bound, and UB is an upper bound, are reset to the
interior of the box defined by the bounds. Components that satisfy the boundary constraint
are not changed. We set boundaries for the distance d0 between the camera’s (projector’s)
extrinsic center and the glass interface, and, for thickness d1 of the glass interface, the ranges
of these two parameters are easily estimated (see Figure 1).

3.6. SL System Calibration

The purpose of geometric calibration is to determine all parameters that describe
the image formation model of a particular SL system. Our proposed calibration method
required two rounds of data acquisition: the first one was performed in-the-air without
the shared protective glass, and the second one was performed underwater, with both
using the same calibration object. The proposed geometric calibration of an underwater SL
imaging system comprising an arbitrary number of cameras and projectors is performed
as follows:

1. Calibrate all cameras and projectors in-the-air using a standard pinhole model with
distortions as described in Section 3.4.

2. Acquire as many images of the calibration board in the water as is practical and
process the data using the procedure of [21] to extract the calibration data.

3. Estimate the axis using Equation (14). In addition, for each position of the calibration
board, estimate the initial pose of the calibration board w.r.t. the camera/projector
frame using central approximation.

4. Use a numerical optimization with the objective function comprising the coplanarity
error and of the frustum error (see Section 3.5) to estimate true relative poses and to
refine the axis; this is performed separately for each position of the calibration board.

5. Use the numerical optimization with the complete objective function comprising the
backprojection, the coplanarity, and the frustum errors to refine all parameters (see
Section 3.5).

4. Evaluation

Evaluation of the proposed calibration method was achieved by performing several
quantitative measurements. First, we computed the angular error of the estimated axis of
the system; second, we computed the error in 3D (23); third, we computed the re-projection
error; and, fourth, we computed the distance error for a plane fitted on the reconstructed
calibration board. The errors are reported as a mean for each position of the calibration
board w.r.t. the different glass interface. For the comparisons with the state-of-the-art
techniques, we used the method proposed by Agrawal et al. [19] as the baseline.
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4.1. Laboratory Setup

The proposed method was evaluated on a laboratory setup comprising a water tank
with a 300 L capacity filled with fresh water, a projector, and two cameras mounted on a
fixed rig (see Figure 6). The water tank comprised four glass interfaces, with each interface
having different properties. We labeled the interfaces with indices from I to IV: the interface
I was the 8 mm thick glass; the interface II was the 10 mm thick glass; the interface III was
the 10 mm thick laminated glass; and the interface IV was the 12 mm thick glass. The two
cameras used were PointGrey’s Grasshopper 3 GS3-U3-23S6C-C cameras equipped with
Fujinon HF12.5SA-1 lenses, and the projector used was an Acer S1383WHne.

Figure 6. Laboratory setup. Left: SL scanner. Middle: side view. Right: top view.

4.2. Data Acquisition

Since an in-air calibration of both the camera and projector is a prerequisite, we first
performed the geometrical calibration using the procedure of [21]. Then, we acquired the
calibration data for four relative positions of the imaging system w.r.t. to the four glass
interfaces; we performed this calibration once per each glass interface (see Section 4.1).
For every position of the imaging system, the calibration board (Figure 3) was imaged
underwater in at least five positions. The extraction of the calibration points (Figure 7, right)
was performed using the procedure of [21], and the SL code (Figure 7, left) was MPS-coded
using 20:21:25 ratios [32].

Figure 7. Underwater imaging (left: structured light projection; right: extraction of points’
coordinates).

4.3. Axis Estimation

The axis of an axial system may be estimated from the proposed unified coplanarity
constraint given by Equation (14) directly as a1 or indirectly by the decomposition of the
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matrix E (see Section 3.3). We estimated the axis of the system directly from the coplanarity
constraint. The mean angular error for the obtained axis of the system is presented in
Table 1 for four different glass interfaces.

Table 1. Mean angular errors and standard deviation for the axis direction w.r.t. the true axis of
the system (measured in air): column i lists sides of the tank; column d1 lists corresponding glass
thickness; column Ours lists error for the axis A estimated from the Equation (14) and for the axis a
extracted by decomposition of the essential matrix E1; column Agrawal et al. lists errors by utilizing
the algorithm proposed by Agrawal et al. [19]. Sides II and III of the tank are both 10 mm thick; the
exponent (a) denotes a real glass, while the exponent (b) denotes a laminated glass.

i
d1 Ours Agrawal et al. [19]

[mm] θA [◦] θa [◦] θCAMa [◦] θCAMb [◦] θPRJc
[◦]

I 8 4.85± 0.73 4.83± 0.71 81.22± 18.36 78.44± 17.04 47.00± 38.30

II 10 (a) 5.34± 0.81 5.35± 0.80 81.81± 22.16 73.65± 26.76 46.96± 27.23

III 10 (b) 17.38± 16.72 17.11± 16.58 79.16± 32.19 79.04± 17.59 84.76± 6.22

IV 12 5.31± 0.83 5.32± 0.82 72.95± 31.19 64.61± 22.33 64.98± 17.31

4.4. Errors in 2D and 3D

Three components form the total error in 3D: the coplanarity error, the backprojection
error, and the frustum error (23). The total error in 3D is presented in Table 2 as a mean
backprojection and coplanarity error for four different glass interfaces. Note that the
frustum error was expected to be zero, since all calibration points needed to be within the
field of view (FOV).

Table 2. Errors in 2D and 3D: column i lists sides of the tank, while column d1 lists corresponding
glass thickness; column Total Error (Mean) lists mean coplanarity and backprojection errors in 3D;
column Re-Projection Error (Mean) lists mean errors in 2D for a corresponding camera (projector);
and column Re-Projection Error (Median) lists median of errors in 2D. Sides II and III of the tank
are both 10 mm thick; the exponent (a) denotes a real glass, while the exponent (b) denotes a
laminated glass.

i
d1

Total Error Re-Projection Error Re-Projection Error

(Mean) [mm] (23) (Mean) [px] (Median) [px]

[mm] eBPR eCPL ea eb ec ea eb ec

I 8 0.63 0.17 5.11 2.38 1.91 5.24 1.99 1.32

II 10 (a) 0.47 0.13 4.22 2.01 1.80 4.47 1.72 1.23

III 10 (b) 2.72 0.78 16.33 6.88 5.20 18.54 6.00 2.64

IV 12 0.50 0.14 4.12 2.19 1.66 4.16 1.97 1.24

The re-projection error, i.e., the distance in pixels in the image frame between the
observed 2D point and the re-projected 3D point, is computed using the AFP equation [19]
for a two-layer flat refractive system. Note that the AFP equation was not used in the
calibration procedure. Table 2 presents the mean and median values of the re-projection
error for four different glass interfaces (tank sides I–IV).

To evaluate the 3D reconstruction quality, we also fit 3D planes onto the reconstructed
3D points for each position of the calibration board. Table 3 lists the mean absolute distances
of the reconstructed 3D points for the ideal fitted plane.
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Table 3. Fitting errors: column i lists sides of the tank; column d1 lists corresponding glass thickness;
column Ni lists number of positions in which the calibration board was imaged; column Fitting Error
(Mean) lists mean errors computed as distances from the fitted plane in 3D; and column Fitting Error
(Median) lists median errors computed as distances from the fitted plane in 3D. Sides II and III of the
tank are both 10 mm thick; the exponent (a) denotes a real glass, while the exponent (b) denotes a
laminated glass.

i
d1 Ni

Fitting Error (Mean) [mm] Fitting Error (Median) [mm]

[mm] [ej], j = 1, . . . , Ni [ej], j = 1, . . . , Ni

I 8 7 [1.83], [1.31], [0.60], [2.29], [1.08], [1.12], [1.69] [1.34], [1.06], [0.46], [1.80], [0.90], [0.93], [1.39]

II 10 (a) 6 [1.18], [1.16], [0.84], [2.16], [1.43], [1.37] [0.99], [0.95], [0.69], [1.68], [1.14], [1.07]

III 10 (b) 7 [2.70], [1.80], [2.42], [4.16], [1.76], [3.21], [3.68] [2.36], [1.56], [2.13], [3.40], [1.55], [2.82], [3.07]

IV 12 6 [1.24], [1.09], [0.96], [2.12], [1.40], [1.30] [1.04], [0.90], [0.80], [1.62], [1.12], [1.02]

5. Discussion

The calibrated imaging geometry is presented in Figure 5, where calibrated poses of
the calibration board are shown. Backprojected rays were drawn for the position of the
board w.r.t. the side I of the tank; rays in the air are displayed in red, green rays are the
refracted rays in the glass interface, and blue rays are the refracted rays in the water.

Regarding the axis estimation, Zoraja et al. [9] conjectured that the coplanarity con-
straint given by Equation (1) exhibits a coupling between the axis âx and the pose parame-
ters S and u. The coplanarity constraint of Equation (1) states that the points in 3D must lie
on the POR, but, if we flatten the 3D space onto the POR, the constraint holds as well. Let
O = Null(aT)T be a 3× 2 matrix representing the orthographic projection of the 3D space
onto the null space of âx. Then,(

O([a]×v0)
)T(O(Sp + u)

)
= vT

0 [a]×OTO(Sp + u) = 0 (25)

holds, thus indicating a possible instability in the solution, as points p are planar and losing
one degree of freedom, and, due to coupling the null-space of Equation (4), are susceptible
to noise. Zoraja et al. [9] analyzed the data provided by Agrawal et al. [19] by minimizing
Equation (1) to start with many random initial axis directions, and they found at least three
local minima having an average CPL error less than 1 mm. Axis estimations using the
procedure of Agrawal et al. [19] are shown in Figure 8 on the left: in red are estimated
axes of the camera a, in green are the estimated axes of the camera b, and in blue are the
estimated axes of the projector c. The ground truth axis of the system is displayed in black.
On the other hand, if the axis is estimated using the unified coplanarity constraint, (14)
then the results are much more robust. The axis estimated in such way is a robust initial
point for the proposed optimization algorithm, and this approach is presented in Figure 8
on the right: in red are the estimated axes of the system, and in black is the ground truth
axis of the system.

Numerical values for mean angular errors (before optimization) w.r.t. different sides
of the tank are listed in Table 1: the column Ours lists angles between the mean estimated
axes of the system and the ground truth (the sub-column θA for axes was extracted from
Equation (14), and the sub-column θa for axes was obtained by the decomposition of the
essential matrix of the system), and the column Agrawal et al. [19] lists angles between
the mean estimated axes of the single camera/projector obtained by the decomposition
of the corresponding essential matrices [19]. The mean angular error of the estimated
systems’ axes for each position of the SL system w.r.t. the tank’s side was 5.17 deg (without
considering the side III), which is acceptable and is a great improvement considering
the error we obtained from Agrawal et al. [19] (see also Zoraja et al. [9]). Furthermore,
system’s axis estimated by the unified coplanarity constraint was a good initial value for
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the optimization algorithm. Note that the angular error obtained w.r.t. the side III was
greater than others due to the optical properties of the laminated glass, which we modeled
as a single glass medium (without considering different optical properties for each layer of
the laminated glass).

Figure 8. Estimated cameras’ axes for different views of the calibration board (before optimization);
the estimates were used as an initial point in the optimization. Left: using the coplanarity constraint
for a single camera/projector where red, green, and blue vectors correspond to axes acquired for
each device in the system; Right: using the unified coplanarity constraint for a system where the axis
of the system is denoted in red. The ground truth axis is denoted in black for both the left and the
right case.

The numerical results for the total error w.r.t. the different sides of the tank are listed
in Table 2. Both the experimental backprojection and the coplanarity errors were less than
one millimeter, which was sufficient for the 3D reconstruction using SL imaging when
considering a working distance of up to 2 m. The numerical results for the re-projection
error w.r.t. the different side of the tank are listed in Table 2; both the mean and median of
the re-projection error are presented. For better visualization of the estimated re-projection
error, we provide Figure 9 for a single position of the calibration board in water (imaged
over the 8 mm thick glass interface). Notice that re-projection error was greater for the
camera a, w.r.t. the camera b and the projector c, due to the greater angle between the
optical axis and the axis of the system (see Figure 5). The re-projection error increased with
the aforementioned angle.

Figure 9. Extracted 2D points and corresponding re-projected 3D points for a single position of the
calibration board in water (imaged over the 8mm thick glass interface): left—error for the camera a,
middle—error for the camera b, and right—error for the projector. Red crosses represent re-projected
3D points in the camera (projector) frame, and blue crosses are the extracted 2D points.

The last quantitative measure is the distance error for a fitted plane. The numerical
results for the proposed error w.r.t. the different sides of the tank are listed in Table 3. Con-
sidering the number of positions Ni in which the calibration board was imaged, for every
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position (I–IV) of the imaging system, we reconstructed the calibration board and fitted the
plane on the acquired dataset, thus acquiring the mean distance error. For positions where
the angle δ between the axis âx and the normal of the calibration board was minimal, the
mean error was less than a millimeter. By increasing δ, the mean distance error increased.

Note that the error in 3D, the re-projection error, and the distance error for the fitted
plane were greater for the pose where an imaging system observed the calibration board
over the side III of the tank due to the optical properties of the laminated glass, which we
modeled as a simple glass interface (disregarding reflections and refractions on multiple
layers of the laminated glass).

6. Conclusions

We have presented a novel calibration procedure of a structured light underwater
3D imaging system using the theory of two-layer flat refractive geometry. The proposed
calibration procedure is applicable to SL scanners with an arbitrary number of cameras and
projectors, which share a common flat glass interface. It also uses a simple planar calibration
board, which is readily available. The obtained experimental results demonstrated a low
mean angular error for the estimation of the axis of the system using the proposed unified
coplanarity constraint. This indicates that the proposed unified coplanarity constraint gives
a robust initial estimate for the optimization algorithm. The experimentally assessed errors
in 3D were less then one millimeter, which is sufficient for a 3D reconstruction and which
indicates that the proposed calibration is applicable in the real world.

Future Work

Given that the proposed system was evaluated in a laboratory with a tank simulating
an underwater environment, our future work will focus on the design and implementa-
tion of a prototype of an underwater SL scanner that will be tested in a real underwater
environment. We will also investigate the possibility of using a 3D calibration object com-
prising two planar boards at a 90◦ angle. Finally, we will investigate the robustness of the
MPS-structured light pattern under conditions of increased turbidity.
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SVD Single Value Decomposition
AFP Analytical Forward Projection
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FRS Frustum
FOV Field of View

Appendix A

Here, we present the complete derivation of the coplanarity constraint individually
for a single camera/projector and the derivation of the unified coplanarity constraint for an
imaging system. The equation for the unified coplanarity constraint is derived w.r.t. the
referent coordinate system, which we set to be the coordinate system of the camera a.

Appendix A.1. Coplanarity Constraint for Camera (Projector) Using a Single Interface

A coplanarity constraint is given as:(
[a]×v0

)T
(Sp + u) = 0. (A1)

Considering Equation (A1), the coplanarity constraint between the calibration object
and the camera a may me derived as:(

[a1]×v0a

)T
(Sapa + ua) = 0

−vT
0a

[
[a1]×(Sapa + ua)

]
= 0

vT
0a

[
[a1]×Sapa + [a1]×ua

]
= 0

vT
0a
[a1]×Sapa + vT

01
[a1]×ua = 0. (A2)

By using the following identities

[a1]×Sa = E1 (A3)

[a1]×ua = h1 (A4)

the Equation (A2) may be simplified as

vT
0a

E1pa + vT
0a

h1 = 0. (A5)

The resulting linear system from Equation (A5) may be expressed in the matrix form:pa(1)T ⊗ v0a(1)
T v0a(1)

T

pa(2)T ⊗ v0a(2)
T v0a(2)

T

...
...

[E1(:)
h1

]
= 0, (A6)

where ⊗ denotes a Kronecker’s product, and E1(:) is the vector formed by stacking the
columns of the essential matrix E1.

Considering Equation (A1), the coplanarity constraint between the calibration object
and the camera b is (

[a2]×v0b

)T
(Sbpb + ub) = 0

−vT
0b

[
[a2]×(Sbpb + ub)

]
= 0

vT
0b

[
[Raba2]×(RabSapb + Rabua + tab)

]
= 0, (A7)
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and the coplanarity constraint between the calibration object and the projector c is(
[a3]×v0c

)T
(Scpc + uc) = 0

−vT
0c

[
[a3]×(Scpc + uc)

]
= 0

vT
0c

[
[Raca3]×(RacSapc + Racua + tac)

]
= 0. (A8)

By using the following identities depicting rotations and translations between the coordi-
nate systems a, b, and c,

Rab = RbRa
T

Rac = RcRa
T

tab = −RbCb + RbCa

tac = −RcCc + RcCa

and the identities for the rotations and translations between the aforementioned coordinate
systems and the coordinate system of the calibration object (world frame),

Sb = RabSa

Sc = RacSa

ub = Rabua + tab

uc = Racua + tac

the coplanarity constraint for the camera b w.r.t. the referent frame (A7) may be re-written as

vT
0b

[
[Raba1]×RabSapb + [Raba1]×Rabua + [Raba1]×tab

]
= 0

vT
0b

[
Rab

(
[a1]×Sapb

)
+ Rab

(
[a1]×ua

)
+ [Raba1]×tab

]
= 0

vT
0b

Rab
(
[a1]×Sapb

)
+ vT

0b
Rab

(
[a1]×ua

)
+ vT

0b
[Raba1]×tab = 0, (A9)

and the coplanarity constraint for the projector c w.r.t. the referent frame (A8) may be
re-written as

vT
0c

[
[Raca1]×RacSapc + [Raca1]×Racua + [Raca1]×tac

]
= 0

vT
0c

[
Rac
(
[a1]×Sapc

)
+ Rac

(
[a1]×ua

)
+ [Raca1]×tac

]
= 0

vT
0c

Rac
(
[a1]×Sapc

)
+ vT

0c
Rac
(
[a1]×ua

)
+ vT

0c
[Raca1]×tac = 0. (A10)

By using the identities from Equations (A3) and (A4), we may simplify Equations (A9) and
(A10) as

vT
0b

RabE1pb + vT
0b

Rabh1 + vT
0b
[Raba1]×tab = 0 (A11)

and
vT

0c
RacE1pc + vT

0c
Rach1 + vT

0c
[Raca1]×tac = 0, (A12)

where Equation (A11) denotes the coplanarity constraint between the calibration object
and the camera b w.r.t. the referent frame, and Equation (A12) denotes the coplanarity
constraint between the calibration object and the projector c w.r.t. the referent frame.
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Appendix A.2. Unified Coplanarity Constraint for System Using a Single Interface

Equations (A5), (A11), and (A12) denote the coplanarity constraints of camera a,
camera b, and projector c w.r.t. the referent frame, respectively. The third terms of Equa-
tions (A11) and (A12) may be reformed, which, for Equation (A11), results in

vT
0b
[Raba1]×tab = vT

0b
[Raba1]×

(
RabRab

Ttab
)

= vT
0b

Rab

[
[a1]×

(
Rab

Ttab
)]

= aT
1

[(
Rab

Ttab
)
×
(
vT

0b
Rab

)T
]

= aT
1

[(
Rab

Ttab
)
×
(
Rab

Tv0b

)]
= aT

1

[
Rab

T(tab × v0b

)]
=

[
Rab

T(tab × v0b

)]T

a1.

Similarly, the third term of Equation (A12) may be reformed as

vT
0c
[Raca1]×tac = vT

0c
[Raca1]×

(
RacRac

Ttac
)
= · · · =

[
Rac

T(tac × v0c

)]T

a1.

Considering the reformation of the third term in both Equations (A11) and (A12), both
linear systems may be re-written as

vT
0b

RabE1pb + vT
0b

Rabs1 +

[
Rab

T(tab × v0b

)]T

a1 = 0 (A13)

vT
0c

RacE1pc + vT
0c

Racs1 +

[
Rac

T(tac × v0c

)]T

a1 = 0. (A14)

The matrix form of Equation (A11) is


pb(1)T ⊗
(
v0b(1)

TRab
)

v0b(1)
TRab

[
Rab

T(tab × v0b(1)
)]T

pb(2)T ⊗
(
v0b(2)

TRab
)

v0b(2)
TRab

[
Rab

T(tab × v0b(2)
)]T

...
...

...


E1(:)

s1
a1

 = 0, (A15)

and the matrix form of Equation (A12) is


pc(1)T ⊗
(
v0c(1)

TRac
)

v0c(1)
TRac

[
Rac

T(tac × v0c(1)
)]T

pc(2)T ⊗
(
v0c(2)

TRac
)

v0c(2)
TRac

[
Rac

T(tac × v0c(2)
)]T

...
...

...


E1(:)

s1
a1

 = 0. (A16)

Considering linear systems, posed by Equations (A6), (A15), and (A16), by denoting
the coplanarity constraints between the calibration object and the corresponding cam-
era/projector frame w.r.t. the referent frame, we obtain the unified coplanarity constraint
of Equation (14) for the imaging system w.r.t. the referent frame.
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