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Abstract: A dense artificial neural network, ESE-∆H-DNN, with two hidden layers for calculating
both solvation free energies ∆G◦

solv and enthalpies ∆H◦
solv for neutral solutes in organic solvents is

proposed. The input features are generalized-Born-type monatomic and pair electrostatic terms, the
molecular volume, and atomic surface areas of the solute, as well as five easily available properties of
the solvent. ESE-∆H-DNN is quite accurate for ∆G◦

solv, with an RMSE (root mean square error) below
0.6 kcal/mol and an MAE (mean absolute error) well below 0.4 kcal/mol. It performs particularly
well for alkane, aromatic, ester, and ketone solvents. ESE-∆H-DNN also exhibits a fairly good
accuracy for ∆H◦

solv prediction, with an RMSE below 1 kcal/mol and an MAE of about 0.6 kcal/mol.

Keywords: solvation; solvation free energy; solvation enthalpy; artificial neural networks; generalized-
Born method

1. Introduction

Solvation is a major effect in chemistry and has to be accounted for in chemical
computations. Typically, in high demand is the solvation free energy ∆G◦

solv, since it makes
a significant contribution to the total free energy of chemical reactions in solution and is
also crucially important for the estimation of partition coefficients. Nevertheless, solvation
enthalpy ∆H◦

solv also plays a significant role, as it gives a direct measure of the heat of
solvation and provides, in conjunction with ∆G◦

solv, access to the solvation entropy ∆S◦solv.
Hence, the development of reliable and efficient computational tools for prediction ∆G◦

solv
and ∆H◦

solv is an important task in computational chemistry.
While highly accurate explicit methods for solvation energy evaluation, such as um-

brella sampling [1,2] and free energy perturbation [3], are available, they are quite costly.
Consequently, most practical calculations of solvation energy rely on the continuum solva-
tion (CS) model, in which the electrostatic Eelst and nonelectrostatic contributions to ∆G◦

solv
are evaluated separately. The two most prominent CS approaches are the polarizable con-
tinuum model (PCM) [4–15] and the generalized Born (GB) method [16,17], including
SMx [18–21]. In the PCM family of methods, the solute placed in a cavity interacts with
the solvent, represented by a continuum. The cavity surface needs to be constructed and
induced charges placed on it have to be computed.

In contrast, in the GB method, Eelst is calculated directly from atomic charges {QI}:

EGB
elst = −1

2∑
I

Eself
I − ∑

I<J
Epair

I J = −1
2

(
1 − 1

ε

)
∑

I

Q2
I

RI
−

(
1 − 1

ε

)
∑
I<J

QI QJ

f I J
(1)

where ε is the dielectric constant of the solvent and fIJ is a function of the atomic radii RI (in
this context referred to as the Born radii) and the interatomic distance rIJ. The monatomic
terms (self-terms) EI

self = (1 − 1/ε)QI
2/RI in Equation (1) correspond to the solvation

energy in the Born theory [22] for spherical ions. The function fIJ in the pair term EIJ
pair = (1
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− 1/ε)QIQJ/fIJ is designed to interpolate between the Coulombic limit (1 − 1/ε)QIQJ/rIJ at
large rIJ and the Born or Onsager limits at small rIJ, when the diatomic fragment IJ collapses
either into an single ion of charge QI + QJ or into a neutral.

The choice of effective Born radii RI in the traditional GB methods is crucial for
achieving an acceptable accuracy [23]. A typical form of fIJ is the following [16]:

f I J =

√
r2

I J + RI RJ exp
(
−r2

I J/(4RI RJ)
)

, (2)

although alternative expressions for fIJ are also in use [18,23–26]. The GB approach has
been implemented within the framework of numerous solvation energy schemes [17–19,21].
The GB-type methods are generally more efficient than the PCM-type schemes, since they
avoid an explicit cavity construction and induced-charge calculation. However, the GB
methods are in general less accurate than PCM.

Nonelectrostatic correction is necessary for both PCM- and GB-type methods in order
to achieve reasonably accurate results. Typically, it is made of linear or nonlinear terms
depending on atomic surfaces SI, with the simplest form of the correction being ∑IκISI [16].
In addition, the correction term often involves the molecular volume, induced charges,
and possibly other characteristics of the solute and typically contains some adjustable
parameters that must be fitted on a suitable database. Thus, the CS methods inevitably
have some degree of empiricity.

In our previous works [27–32], we developed a family of non-iterative methods for
evaluating ∆G◦

solv (uESE—universal Easy Solvation Energy). The electrostatics is included
by means of COSMO (COnductor-like Screening MOdel) [14,15], while the correction term
depends on induced charges and surfaces. The atomic charges necessary for the COSMO
calculation can be evaluated by means of various techniques [27,33–36], including ab initio
or DFT-based, semiempirical, and even electronegativity-equalization (EE) [31] charges.
However, changing the charge scheme requires re-parameterization of the correction term.
Although the semiempirical and EE charges provide ∆G◦

solv estimates of reasonable quality,
the accuracy of the EE-based method (ESE-EE) [31] is not as high as that of the uESE
method [29] employing DFT charges. In order to improve the quality of an EE-based scheme,
artificial neural networks (ANN) were introduced as a computational framework [37,38].
In the ESE-EE-DNN method [37,39], the ANN input features are the COSMO electrostatic
energy, atomic cavity surface areas, total cavity volume, and induced surface charges. In
contrast, the ESE-GB-DNN method [38,40] is based on GB-style input features. In particular,
the number of atoms in the solute molecule, the total charge, the molecular volume, the
atomic surface areas as well as GB-type self-terms and pair terms (EI

self and EIJ
pair summed

over the elements) are used to represent the solute, while the solvent is described by just
three parameters: the dielectric constant ε, the boiling point (BP), and the number of non-
hydrogen atoms. The full list of solvents and their properties is given in the Supporting
Information (Table S1). Since no cavity construction is needed, the ESE-GB-DNN method
is substantially faster than ESE-EE-DNN (and dramatically more efficient than any DFT-
based approach), allowing for a virtually instantaneous ∆G◦

solv calculation for solutes up
to 100 atoms in size.

In the present paper, I further develop the GB-based approach proposed in [38]. The
purpose of the present work is to create a consistent ANN-based predictor of both ∆G◦

solv
and ∆H◦

solv at 298 K for organic solvents.
Neural networks for ∆G◦

solv evaluation were developed previously. Chen et al. [41]
presented a graph ANN with atomistic embedding. Vermeire and Green’s approach [42]
employed a directed message-passing ANN with SMILES (Simplified Molecular-Input Line-
Entry System) and InChI (International Chemical Identifier) as input features. Another suc-
cessful, but sophisticated, message-passing ANN for neutral solutes was presented by Low
et al. [43]. Lim and Jung [44] developed a recurrent ANN and a graph convolutional ANN
based on atomic vectors. Alibakhshi and Hartke [45] achieved quite accurate results within
their ANN that uses a self-consistent C-PCM input. The works by Bernazzani et al. [46],
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Hutchinson and Kobayashi [47], Wang et al. [48], Jaquis et al. [49], and Chung et al. [50] are
also worth mentioning. The latter two address approaches that target solvation enthalpy in
addition to Gibbs free energy.

2. Methods

The atomic charges used for the calculations are computed using an EE-based scheme
described in detail in my previous paper [38]. This is similar but not identical to the version
by Svobodová Vařeková et al. [51].

The original input features used to describe a solute closely follow the approach used
in my previous paper [38]. They are as follows:

• (1) the number of atoms in the solute molecule N;
• (2) the molecular volume Vtot: Vtot= ∑IVI;
• (3) the total surface area Stot composed of atomic surfaces: Stot= ∑ISI;
• (4–12) atomic surface areas summed over all the atoms of a given element L: SL =

∑IϵLSI for L = H, C, N, O, F, S, Cl, Br, and I. The atomic volumes VI and surfaces SI
are efficiently calculated by simple formulas based on geometric considerations. The
details are given in [38];

• (13–21) the Born-type self-terms, also summed over all the atoms of a given element L:

E1
Born(L) = ∑IϵLEI

self = (1 − 1/ε)∑IϵLQI
2/RI (3)

for L = H, C, N, O, F, S, Cl, Br, I calculated from the EE charges QI;

• (22–51) the Born-type pair terms:

E2
Born(L1,L2) = ∑IϵL1∑JϵL2 EIJ

pair = (1 − 1/ε)∑IϵL1∑JϵL2 QIQJ/fIJ (4)

The thirty L1–L2 pair terms are as follows: H–H, C–C, C–H, N–N, N–H, N–C, O–O,
O–H, O–C, O–N, F–F, F–H, F–C, F–O, S–H, S–C, S–N, S–O, Cl–H, Cl–C, Cl–N, Cl–O, Cl–F,
Br–H, Br–C, Br–N, Br–O, Br–Cl, I–H, and I–C.

The radii RI used in Equations (2)–(4) are unmodified Bondi [52] radii;

• (52–56) five solvent-related input features: in addition to the dielectric constant, boiling
point, and the number of nonhydrogen atoms employed in my previous work [38], in
this paper, the molar volume and the number of hydrogen-bond centers (the sum of
the donor and acceptor centers) are also used.

Thus, the initial input feature set consistes of 56 parameters. Some of them exhibit a
strong correlation on the training dataset used (vide infra). For instance, Vtot and Stot have a
correlation coefficient of 0.99; Stot and N have a correlation coefficient of 0.97; E1

Born(Cl) and
E2

Born(Cl,H) have a correlation coefficient of −0.99, etc. In total, 16 pairs of features with
correlation coefficients greater than 0.96 were identified. To reduce the number of ANN
parameters, principal component analysis using the sklearn.decomposition.PCA class from
the Python Scikit-learn package [53] was applied. This process allowed truncating the
16 most correlated features, resulting in a 56 × 40 transformation matrix. Consequently, a
vector of 40 input features is produced and fed into the ANN.

I employed a dense ANN with 40 input neurons and 2 hidden layers with 14 and
6 neurons, respectively, and an output layer with two neurons (corresponding to ∆G◦

solv
and ∆H◦

solv). The ReLU (Rectified Linear Unit) activation function for the hidden layers and
the linear activation for the output layer were used. Other ANN configurations were also
tested, including an ANN with a single hidden layer, but the abovementioned 40 × 14 × 6
× 2 network (Figure 1) turned out to be the most accurate. It contains 678 adjustable param-
eters (40 × 14 + 14 × 6 + 6 × 2 = 656 weights plus 14 + 6 + 2 = 22 biases). The input data
are min-max scaled and fed into the dense ANN described above. The ANN fitting was per-
formed on a suitable database (vide infra) using the Nesterov-accelerated [54] Adaptive Mo-
ment Estimation algorithm [55] as implemented in the tensorflow.keras.optimizers.Nadam
class [56], with mean squared error as the loss function and L2 regularization with a strength
λ = 0.01.
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Figure 1. DNN architecture used in the present work. The first row (various colors) denotes the
original 56 input features. The dimensionality reduction is achieved via a 56 × 40 linear transfor-
mation. The second row (40 red circles) represents the DNN input layer (40 linear combinations
of the 56 initial features). The following blue circles denote two hidden layers (14 and 6 neurons,
respectively). The green circles at the bottom are neurons in the output layer, corresponding to
∆G◦

solv and ∆H◦
solv.

3. Results and Discussion
3.1. Database

The datasets used for the training and testing of ESE-∆H-DNN are based on the
database of ∆H◦

solv and partition coefficients at T = 298 K by Prof. W. E. Acree [57,58]. The
logarithms of partition coefficients log10p were converted to solvation free energies: ∆G◦

solv
= −RTln(10)log10p. Subsequently, chemical names of the solutes were automatically trans-
lated into SMILES codes using the website of the National Institutes of Health [59]. The
resulting SMILES codes were then automatically converted to Cartesian coordinates, and
the geometries were optimized with MMFF94 (Merck Molecular Force Field) [60] using the
rdkit.Chem.AllChem module [61]. Subsequently, the geometries were manually controlled
and corrected when necessary. Atomic charges, volumes, and surfaces were computed
based on these geometries. The solvent parameters (boiling points, dielectric constants, mo-
lar volume, and the number of hydrogen-bond centers) were retrieved semi-automatically
from other public databases [62,63]. Finally, the resulting database contained 5201 ∆H◦

solv
values and 3789 ∆G◦

solv values. It was randomly divided into a training/validation set
(80%) and testing set (20%). The training/validation set was further split into a training
set and a validation set, with 20% assigned for validation. Once trained, the optimized
ESE-∆H-DNN parameters (neuron weights and biases) were incorporated into a user-
friendly Fortran code that reads the molecular geometry, computes the EE charges and
input features, and finally evaluates ∆G◦

solv and ∆H◦
solv via ESE-∆H-DNN.
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3.2. Training

The Cartesian coordinates of the solutes obtained as described above were used to
calculate the EE charges and atomic surfaces and volumes as explained in the Section 2.
Along with the five solvent-related features (52–56), they were submitted first to the
dimension-reducing 56 × 40 linear transformation and subsequently to the ANN training.
The mean-square error was used as the loss function. The learning rate was initially set to
1 × 10−3 mol2/kcal2 and then reduced to 1 × 10−4 mol2/kcal2 within the same training
run. Since ESE-∆H-DNN was trained simultaneously for both ∆H◦

solv and ∆G◦
solv, the

loss function was defined as the sum of two residual sums of squares calculated from
the predicted and reference ∆H◦

solv and ∆G◦
solv values. After a number of training runs,

ESE-∆H-DNN with the fitted parameters was evaluated on the testing sets that include
various classes of solvents.

3.3. Performance of ESE-∆H-DNN

The statistical data for predicted ∆H◦
solv and ∆G◦

solv values for various classes of sol-
vents are reported in Tables 1 and 2. Table 1 shows errors in predicted values, while Table 2
contains information about the correlation of predicted and reference values. Individual
data for the training, validation, and testing sets are given in the Supporting Information
(Tables S2 and S3).

Table 1. Mean signed error (MSE), mean absolute error (MAE), and root mean square error (RMSE) of
the predicted solvation free energy and solvation enthalpy for various testing subsets of ESE-∆H-DNN.

∆G◦
solv, kcal/mol ∆H◦

solv, kcal/mol

Solvent Class a MSE MAE RMSE MSE MAE RMSE

Alkanes (245/186) −0.10 0.24 0.34 −0.27 0.52 0.75
Alkoxyalcohols (44/7) −0.13 1.03 1.55 −0.02 0.40 0.43
Aromatic (81/71) 0.04 0.19 0.25 0.11 0.61 0.85
Amides (56/39) −0.17 0.47 0.62 0.19 0.68 1.06
Ethers (64/65) −0.21 0.34 0.70 0.22 0.58 0.80
Esters (45/8) 0.02 0.25 0.33 −0.54 0.59 0.80
Haloalkanes (123/85) 0.18 0.41 0.55 0.16 0.60 0.80
Haloaromatic (50/38) −0.17 0.48 0.69 −0.31 0.65 0.93
Ketones (60/41) 0.05 0.26 0.36 0.41 0.73 0.90
Miscellaneous (154/472) 0.01 0.39 0.57 −0.09 0.63 1.00
ALL (922/1036) −0.03 0.36 0.59 −0.04 0.62 0.96

a The numbers in parentheses are the number of entries in the ∆G◦
solv and ∆H◦

solv databases, correspondingly.

Table 2. Slope, intercept (in kcal/mol), and coefficient of determination R2 of the predicted solvation
free energy and solvation enthalpy for various testing subsets of the ESE-∆H-DNN.

∆G◦
solv ∆H◦

solv

Solvent Class a Slope Intercept R2 Slope Intercept R2

Alkanes (245/186) 0.98 −0.16 0.978 0.99 −0.33 0.972
Alkoxyalcohols (44/7) 0.55 −1.61 0.384 1.21 1.85 0.972
Aromatic (81/71) 0.96 −0.07 0.989 0.91 0.03 0.965
Amides (56/39) 0.84 −0.67 0.900 0.88 −1.13 0.969
Ethers (64/65) 0.94 −0.42 0.933 0.97 −0.09 0.976
Esters (45/8) 0.92 −0.27 0.976 0.81 −2.33 0.853
Haloalkanes (123/85) 0.92 −0.24 0.956 0.97 −0.13 0.962
Haloaromatic (50/38) 1.02 −0.11 0.944 1.08 0.46 0.949
Ketones (60/41) 0.94 −0.13 0.978 0.96 0.07 0.979
Miscellaneous (154/472) 0.89 −0.36 0.926 0.99 −0.23 0.953
ALL (922/1036) 0.93 −0.29 0.939 0.98 −0.29 0.960

a The numbers in parentheses are the number of entries in the ∆G◦
solv and ∆H◦

solv databases, correspondingly.
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3.3.1. Performance for Solvation Gibbs Free Energies

The overall quality of ESE-∆H-DNN for ∆G◦
solv over the entire testing set is character-

ized by an RMSE (root mean square error) below 0.6 kcal/mol and an MAE (mean absolute
error) well below 0.4 kcal/mol. This performance is very convincing: even DFT-based
methods often yield an RMSE between 0.6 and 1.5 kcal/mol. For instance, for nonaque-
ous solvents, our uESE [29] yields an RMSE between 0.6 and 1 kcal/mol depending on
the solvent class, while the SCCS model by Hille et al. [12] yields an average RMSE of
about 0.8 kcal/mol. The recent methods from W. H. Green’s group [50] exhibit an RMSE
range from about 0.7 to 1.5 kcal/mol. It should be noted, however, that the databases
used are not identical and the comparison is therefore illustrative only. Considering the
ESE-∆H-DNN results separately for various solvent classes (Table 1), very good results
(with RMSE < 0.5 kcal/mol, MAE < 0.3 kcal/mol) were obtained for nonpolar solvents
(alkanes and aromatic solvents), as well as for esters and ketone solvents. For other sol-
vent classes, the results are also compelling, with an RMSE mostly below 0.7 kcal/mol.
The only clearly unfavorable exception is alkoxyalcohols, for which a significant error
(RMSE > 1.5 kcal/mol) is detected. The failure with alkoxyalcohols is also reflected by poor
slope and R2 values (Table 2).

The ESE-∆H-DNN results for the entire testing set are illustrated in Figure 2a. There
are 420 entries (46%) with an error below 0.2 kcal/mol and 564 entries (61%) with an
error below 0.3 kcal/mol, thus confirming the overall good performance of ESE-∆H-
DNN. Still, there are some 60 (6.5%) outliers with a deviation ∆∆G◦

solv > 1 kcal/mol.
The worst failure is benzene dissolved in 2-butoxyethanol and pentane in anisole, for
which ESE-∆H-DNN fails to reproduce experimental positive ∆G◦

solv. For nitromethane in
triethylene glycol and SO2F2 in tributyl phosphate, the predicted ∆G◦

solv values are much
too negative. On the contrary, for C3F8 dissolved in hexafluorobenzene, a too positive
∆G◦

solv is incorrectly predicted.
The results for amide solvents (Figure 2b) may also appear somewhat disturbing based

on a slope value of 0.84. Indeed, ESE-∆H-DNN tends to slightly overestimate |∆G◦
solv| for

amides, but in fact the accuracy is still quite good: even for the worst-case amide solvent,
methylformamide, the RMSE is just 0.81 kcal/mol and there are only 9 (16%) outliers
(∆∆G◦

solv > 1 kcal/mol) out of 56 entries. Other examples shown in Figure 2 are alkane and
aromatic solvents. Figure 2c,d demonstrate a very good agreement between the predicted
and reference data for these solvent classes. There are only five (6%) outliers in each case.

The statistical ∆G◦
solv data for all the solvents tested are summarized in Table 3. ESE-

∆H-DNN performs consistently well for all the alkane, aromatic, and ketone solvents. The
results for the ethers are also very encouraging, except for anisole, where RMSE is about
1.2 kcal/mol. Ether and amide solvents are discussed above. The results for haloalkanes are
also very good. Only chloroform and methylene iodide exhibit slightly larger deviations
(RMSE about 0.7 kcal/mol). The haloaromatics are mostly very good (RMSE around
0.5 kcal/mol), with the only exception being perfluorobenzene. The problematic solvents
within the alkoxyalcohol class are butoxyethanol, diethylene glycol, and triethylene glycol,
the former being the worst case with an RMSE of almost 2.9 kcal/mol. The broad class of
various solvents that are grouped together in Table 3 as Miscellaneous demonstrate a reliable
accuracy, with an RMSE ranging from 0.2 to 1 kcal/mol. Eleven of the 24 solvents exhibit
an RMSE below 0.4 kcal/mol, and eight more exhibit an RMSE below 0.8 kcal/mol. Only
tributyl phosphate is slightly problematic, with an RSME of about 1 kcal/mol, which is still
an acceptable accuracy for many applications.
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Table 3. MSE, MAE, and RMSE of the predicted solvation free energy and solvation enthalpy for
various solvents (testing subsets).

∆G◦
solv, kcal/mol ∆H◦

solv, kcal/mol

Solvent a MSE MAE RMSE MSE MAE RMSE

Alkane solvents:
Pentane (6/3) −0.03 0.13 0.20 −0.04 0.41 0.43
Hexane (27/32) −0.15 0.33 0.49 −0.08 0.49 0.61
Heptane (27/49) −0.02 0.27 0.36 −0.31 0.54 0.80
Octane (27/12) −0.08 0.16 0.23 0.01 0.31 0.38
Nonane (14/2) −0.08 0.20 0.25 −0.36 0.36 0.46
Decane (15/11) 0.08 0.17 0.22 −0.28 0.50 0.71
Undecane (10/2) −0.20 0.32 0.42 −0.33 0.34 0.48
Dodecane (11/8) −0.07 0.17 0.19 −0.29 0.41 0.57
Hexadecane (65/17) −0.06 0.22 0.31 −0.25 0.35 0.42
Tetradecane (2/3) −0.12 0.24 0.27 0.50 0.68 0.87
Pentadecane (1/0) −0.32 0.32 0.32
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Table 3. Cont.

∆G◦
solv, kcal/mol ∆H◦

solv, kcal/mol

Solvent a MSE MAE RMSE MSE MAE RMSE

Methylcyclohexane (5/0) −0.29 0.29 0.50
Cyclohexane (33/51) −0.23 0.32 0.42 −0.48 0.67 0.96
Cyclooctane (2/0) −0.10 0.10 0.11

Alkoxyalcohol solvents:
2-methoxyethanol (6/7) 0.23 0.27 0.36 −0.02 0.40 0.43
2-ethoxyethanol (4/0) 0.55 0.55 0.59
2-butoxyethanol (6/0) −1.16 1.39 2.79
diethylene glycol (17/0) −0.42 0.99 1.16
triethylene glycol (11/0) 0.43 1.49 1.74

Aromatic solvents:
Benzene (13/46) −0.09 0.17 0.23 −0.14 0.59 0.84
Toluene (25/25) −0.03 0.21 0.29 0.56 0.65 0.86
Ethylbenzene (12/0) 0.09 0.19 0.20
o-xylene (8/0) 0.08 0.12 0.15
m-xylene (11/0) 0.14 0.18 0.20
p-xylene (12/0) 0.17 0.24 0.31

Amide solvents:
Formamide (15/18) −0.53 0.63 0.73 0.39 0.91 2.33

Methylformamide (7/8) −0.40 0.60 0.81 0.36 1.10 1.42
N-methylacetamide (15/0) −0.24 0.42 0.56
N-methyl-2-pyrrolidone (19/14) 0.25 0.35 0.46 0.53 0.80 1.30

Ether solvents:
diethyl ether (7/7) −0.28 0.30 0.51 0.09 0.22 0.29
dipropyl ether (5/0) −0.14 0.18 0.28
diisopropyl ether (4/0) −0.23 0.44 0.47
dibutyl ether (6/20) −0.17 0.24 0.41 0.22 0.53 0.72
methyl tert-butyl ether (5/0) −0.24 0.39 0.45
bis(2-ethoxyethyl) ether (1/0) 0.51 0.51 0.51
Tetrahydrofuran (17/32) −0.02 0.25 0.43 0.19 0.69 0.93
Tetrahydropyran (4/0) −0.04 0.16 0.18
anisole(15/0) −0.52 0.56 1.22

Ester solvents:
methyl acetate (10/8) −0.04 0.37 0.47 −0.54 0.58 0.80
ethyl acetate (13/24) 0.00 0.27 0.36 −0.15 0.56 0.74
propyl acetate (6/0) 0.11 0.16 0.17
butyl acetate (8/0) 0.09 0.17 0.21
pentyl acetate (7/0) −0.02 0.23 0.26
hexyl acetate (1/0) −0.08 0.08 0.08

Haloalkane solvents:
Dichloromethane (9/24) 0.02 0.26 0.29 −0.59 0.68 0.87
Chloroform (48/21) 0.34 0.51 0.67 0.77 0.86 1.08
carbon tetrachloride (45/40) 0.21 0.30 0.40 0.29 0.42 0.54
1-chlorobutane (8/0) 0.02 0.35 0.39
Dibromomethane (2/0) 0.32 0.42 0.52
Bromoethane (2/0) 0.13 0.39 0.41
methylene iodide (9/0) −0.57 0.63 0.71

Haloaromatic solvents:
Fluorobenzene (3/0) −0.54 0.54 0.58
Chlorobenzene (21/30) −0.30 0.41 0.53 −0.28 0.64 0.96
Bromobenzene (14/0) −0.35 0.44 0.53
Iodobenzene (8/0) −0.08 0.30 0.45
Hexafluorobenzene (4/0) 1.24 1.24 1.69
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Table 3. Cont.

∆G◦
solv, kcal/mol ∆H◦

solv, kcal/mol

Solvent a MSE MAE RMSE MSE MAE RMSE

Ketone solvents:
Acetone (20/27) 0.01 0.35 0.50 0.32 0.78 0.95
2-butanone (10/7) 0.18 0.21 0.28 0.35 0.41 0.52
3-pentanone (1/0) 0.21 0.21 0.21
2-hexanone (2/0) 0.23 0.23 0.24
4-methyl-2-pentanone (1/0) 0.29 0.29 0.29
Cyclohexanone (13/7) 0.05 0.20 0.25 0.78 0.85 1.00
Acetophenone (8/0) 0.10 0.19 0.23
Cyclopentanone (1/0) −0.06 0.06 0.06
2-methylcyclohexanone (4/0) −0.36 0.36 0.39

Miscellaneous solvents:
Benzonitrile (9/0) 0.08 0.21 0.27
tributyl phosphate (16/0) −0.14 0.57 1.01
propylene carbonate (12/17) 0.04 0.20 0.30 −0.19 0.61 0.74
carbon disulfide (5/0) −0.36 0.43 0.51
Triethylamine (4/10) 0.18 0.19 0.35 0.65 0.93 1.58
Ethoxybenzene (3/0) −0.14 0.66 0.77
2-methylpyridine (4/0) 0.40 0.41 0.47
benzyl ether (1/0) −0.57 0.57 0.57
3-methylphenol (1/0) 1.87 1.87 1.87
acetic acid (10/14) −0.08 0.48 0.60 0.12 0.66 0.94
Nitroethane (1/0) 0.60 0.60 0.60
benzyl alcohol (2/0) −0.30 0.30 0.35
Butyronitrile (9/0) −0.11 0.16 0.20
Aniline (11/0) −0.44 0.61 0.69
Nitromethane (4/9) 0.09 0.21 0.31 −0.49 0.55 0.66
Nitrobenzene (3/0) 0.68 0.68 0.76
dimethyl sulfoxide (11/37) 0.22 0.65 0.79 −0.58 0.75 1.08
Propionitrile (4/0) −0.03 0.34 0.39
Acetonitrile (6/41) 0.15 0.25 0.33 −0.23 0.89 1.23
ethyl benzoate (3/0) −0.03 0.24 0.26
Sulfolane (18/0) 0.24 0.36 0.43
Pyridine (12/14) 0.05 0.22 0.29 0.21 1.37 1.97
diethyl carbonate (5/15) −0.12 0.33 0.51 0.10 0.29 0.33

a The numbers in parentheses are the number of entries in the ∆G◦
solv and ∆H◦

solv databases, correspondingly.

3.3.2. Performance for Solvation Enthalpies

Tables 1–3 also provide statistical data for predicted solvation enthalpies ∆H◦
solv.

Overall, ESE-∆H-DNN yields somewhat larger errors for ∆H◦
solv than for ∆G◦

solv, with a
global RMSE of 0.96 kcal/mol and an MAE of 0.62 kcal/mol. While it is difficult to pinpoint
the exact reasons of the lower absolute accuracy of ESE-∆H-DNN for ∆H◦

solv, it is tempting
to assume that a large total range of ∆H◦

solv contributes to it. In fact, ∆H◦
solv is virtually

always more negative than ∆G◦
solv due to negative solvation entropy. An inspection

of Figure 3 shows that larger deviations often occur for more negative ∆H◦
solv. The

worst result is obtained for benzo-15-crown-5 in propanol, with |∆H◦
solv| overestimated

by 6.7 kcal/mol and for glycerol in methanol and tert-butanol, for which |∆H◦
solv| is

underestimated by 5.5 and 4.9 kcal/mol, respectively. Nevertheless, it is encouraging that
859 of 1036 values exhibit a deviation within 1 kcal/mol and 603 within 0.5 kcal/mol.
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Various classes of solvent demonstrate a fairly homogeneous distribution of errors for
∆H◦

solv, with RSME ranging from approximately 0.4 kcal/mol for alkoxyalkohols to about
1.1 kcal/mol for amides (see the rightmost column of Table 1). There are no solvent classes
with notably large errors. It is worth noting that the performance of ESE-∆H-DNN for
∆H◦

solv does not correlate with that for ∆G◦
solv: the lowest ∆H◦

solv RSME (0.43 kcal/mol) is
observed for alkoxyalkohols, which is the most problematic in terms of ∆G◦

solv. The largest
RMSE observed is for amides, but it does not remarkably deviate from the global average.

As for individual solvents, relatively large errors are detected for some amides and
amines: formamide, pyridine, triethylamine, methylformamide, and N-methylpyrrolidone.
While methylformamide is also problematic for ∆G◦

solv, pyridine and N-methylpyrrolidone
show quite accurate results in terms of ∆G◦

solv,
In addition to the tests conducted on our randomly selected testing dataset, I per-

formed evaluations using the structures retrieved from the Minnesota Solvation Database
(MNSol) [64]. The statistical results for nonpolar solvents are presented in Table 4. Individ-
ual data are given in the Supporting Information (Table S4). Overall, these data confirm
a good performance of ESE-∆H-DNN, with a global RMSE of about 0.7 kcal/mol. An
inferior performance was observed only for ethyl acetate, tributyl phosphate, and diethyl
ether solvents.

Table 4. MSE, MAE, and RMSE of the solvation free energy predicted by ESE-∆H-DNN for various
nonpolar solvents (MNSol database).

Solvent a
∆G◦

solv, kcal/mol
Solvent a

∆G◦
solv, kcal/mol

MSE MAE RMSE MSE MAE RMSE

acetic acid (7) 0.43 0.78 0.87 fluoroctane (6) −0.11 0.16 0.19
aniline (9) 0.00 0.53 0.63 heptane (69) −0.08 0.36 0.59
anisole (8) −0.06 0.22 0.28 hexadecane (198) −0.12 0.29 0.56

benzene (74) −0.04 0.42 0.75 hexadecyl iodide (9) 0.44 0.44 0.51
bromobenzene (27) −0.47 0.50 0.61 hexane (59) −0.23 0.36 0.56

bromoform (12) 0.10 0.26 0.32 iodobenzene (20) −0.31 0.41 0.54
bromooctane (5) 0.25 0.25 0.28 isooctane (32) −0.37 0.38 0.46
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Table 4. Cont.

Solvent a
∆G◦

solv, kcal/mol
Solvent a

∆G◦
solv, kcal/mol

MSE MAE RMSE MSE MAE RMSE

butyl acetate (21) 0.10 0.38 0.50 isopropylbenzene (19) 0.03 0.22 0.26
butylbenzene (10) 0.42 0.42 0.47 isopropyltoluene (6) 0.25 0.25 0.30

carbon disulfide (14) −0.51 0.58 0.67 mesitylene (7) 0.31 0.31 0.37
carbon tetrachloride (78) 0.01 0.25 0.41 nonane (26) −0.11 0.20 0.25

chlorobenzene (38) −0.59 0.60 0.72 nonanol (10) 0.27 0.42 0.50
chloroform (108) 0.09 0.65 0.98 octane (38) −0.23 0.28 0.37
chlorohexane (11) −0.07 0.17 0.20 pentadecane (9) 0.12 0.16 0.20
cyclohexane (92) −0.49 0.53 0.81 pentane (26) −0.41 0.43 0.47

decalin (27) −0.26 0.36 0.56 perfluorobenzene (15) 0.94 0.94 1.02
decane (39) −0.11 0.23 0.34 phenyl ether (6) −0.55 0.55 0.62
decanol (11) 0.38 0.50 0.58 sec–butylbenzene (5) 0.31 0.31 0.35

dibromoethane (10) −0.17 0.26 0.31 tert–butylbenzene (14) 0.12 0.18 0.21
dibutyl ether (14) −0.22 0.47 0.65 tetrachloroethene (10) 0.04 0.23 0.30

dichloromethane (11) −0.26 0.39 0.55 tetrahydrofuran (7) 0.18 0.27 0.30
diethyl ether (71) −0.03 0.74 1.30 tetralin (9) −0.92 0.92 1.15

diisopropyl ether (21) −0.10 0.45 0.66 toluene (50) 0.01 0.20 0.31
dimethylpyridine (6) −0.16 0.34 0.54 tributyl phosphate (16) 1.43 1.49 1.79

dodecane (8) −0.29 0.35 0.45 triethylamine (7) 0.25 0.26 0.38
ethoxybenzene (7) −0.08 0.22 0.30 trimethylbenzene (11) 0.27 0.27 0.29
ethyl acetate (23) 0.72 0.95 1.99 undecane (13) −0.09 0.29 0.40
ethylbenzene (29) −0.06 0.24 0.33 xylene (48) 0.08 0.25 0.34
fluorobenzene (7) −0.66 0.66 0.79 ALL (1543) −0.08 0.42 0.71

a The numbers in parentheses are the number of entries in the MNSol database.

4. Conclusions

In this paper, I proposed ESE-∆H-DNN, a dense neural network for calculating the
∆G◦

solv and ∆H◦
solv based on physically sound input features such as generalized-Born-

type electrostatic terms, the molecular volume, and the atomic surface area of the solute
as well as five characteristics of the solvent. ESE-∆H-DNN is defined for neutral solutes
in a wide range of organic solvents. It requires only the molecular geometry as the input
and provides accurate results, with an average RMSE below 0.6 kcal/mol. It is particularly
accurate for alkane, aromatic, ester, and ketone solvents. The limitations (which also present
opportunities for further development) are that ESE-∆H-DNN is trained only on neutral
solutes and is thus not automatically applicable to ions. It also has lower accuracy for
specific alkoxyalcohol solvents (butoxyethanol, triethylene glycol, and diethylene glycol),
as well as for hexafluorobenzene.

ESE-∆H-DNN also demonstrates a fairly good accuracy for ∆H◦
solv prediction, al-

though the errors are slightly larger, with an average RMSE still below 1 kcal/mol. One
positive aspect is that the error is quite homogeneous, with the RMSE showing small
variance among diverse solvent classes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/liquids4030030/s1: Part 1: ESE-∆H-DNN neural network buildup:
56 initial input vector components; 56 × 40 dimensionality reduction linear transformation; ESE-
∆H-DNN weights and biases; Part 2: Solvents and their properties. Part 3: Predicted and reference
solvation free energies and solvation enthalpies for the training, validation, and testing sets; predicted
and reference solvation free energies for nonpolar solvents from MNSol database. Reference [64]
appear in the Supplementary material.
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Data Availability Statement: The executable ESE-∆H-DNN program and a user guide are openly
available for download: https://github.com/vyboishchikov/ESE-DeltaH-DNN. Accessed on 3
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