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Abstract: Wildfires pose a significant ecological, environ-
mental, and socioeconomic challenge in southeastern Europe.
The preservation of wildlands is not only essential but also a
foremost priority for Montenegro, a country recognized as
the world’s first ecological state. Consequently, the develop-
ment of optimal methodologies and models is of paramount
importance to enhance fire protection measures. With this
objective in mind, this study strives to create a wildfire sus-
ceptibility model on a national scale for Montenegro. The
study employed seven natural and anthropogenic causative
criteria: vegetation type; aspect; slope; elevation; climate clas-
sification; distance from road; and population. The modeling
process integrates both natural and anthropogenic causal
criteria, employing the Fuzzy Analytic Hierarchy Process
(F-AHP) and Frequency Ratio (FR) within geoinformatics
environment. The outcomes of the F-AHP model reveal that
72.84% of the total area is categorized as having high to very
high susceptibility. Conversely, based on the FR model, only
29.07% of the area falls within these susceptibility levels. In

terms of validation, the area under curvature values indicates
good performance of the F-AHP model. In contrast, the FR
model demonstrates poor performance. These novel findings,
pertaining to Montenegro at a national scale, offer valuable
insights for preemptive wildfire safeguarding efforts.
Moreover, the methodologies employed, with necessary modi-
fications, hold potential for application in geographically
diverse regions.
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1 Introduction

Uncontrolled wildfires rage in a natural setting, with vege-
tation serving as the predominant and primary source of
fuel [1]. Characterized as significant natural disasters, these
events escalate the magnitude of destruction and play a role
in the devastation of forests, bushes, grasslands, and other
wildland areas. Annually, hundreds of millions of hectares
of these vegetation areas are globally obliterated through
this phenomenon [2]. Since these wildfires are a global phe-
nomenon, they represent a constant threat to the environ-
ment, ecological, and socio-economic systems in which they
occur [3,4].

In 2020, despite increased readiness levels among
European Union countries, approximately 340,000 hec-
tares were burned across Europe. By October 29, 2021, a
report from the Joint Research Centre indicated that wild-
fires had affected about 0.5 million hectares, with forests
accounting for 61% of the impacted areas. A quarter of the
affected zones were located within “Natura 2000,” the EU’s
biodiversity reserve. These fires have spread across southern,
central, and northern Europe, with Romania experiencing the
most severe impact, followed by Portugal, Spain, and Italy.
Looking ahead, there is an expected increase in wildfire risk
in Southeast Europe and the Mediterranean due to climate
change and human influence, underscoring the critical need
for conserving wildland areas [5,6]. According to the data
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from the Forestry Administration, between 2010 and 2020,
Montenegro experienced 1,001 major wildfires, resulting in
the destruction of 50139.33 ha of forests and damage or destruc-
tion of over 900,000 m3 of timber. In the record-breaking year
of 2017, fires engulfed 21215.86 ha of forested areas [7].

In this regard, geoinformation technologies take center
stage as a dependable approach for crafting methods and
models for proactive wildfire prevention. Geoinformation
technologies present a broad spectrum of innovative, cost-
effective, and efficient solutions for sustainable geospatial
management [8,9]. These technologies have proven highly
valuable across various applications, including environ-
mental planning and management [10,11], responses to
natural disasters [12–14], addressing climate changes
[15], managing hydrology and water resources [16], as
well as in agriculture and forestry [17,18].

The utilization of low- and medium-resolution geospa-
tial data from European and global databases (i.e., MODIS,
Copernicus, WorldClim, and OpenStreetMap) has been
applied across various geographic regions worldwide to
derive criteria for modeling wildfire susceptibility, hazard,
vulnerability, and risk [19–21]. In extensive areas where the
creation of distinct groups of natural and anthropogenic
criteria is necessary, very high-resolution commercial satel-
lite images from WorldView 2 and 3 satellites are employed
[22]. Additionally, aerial photogrammetric data in high and
very high resolution collected by Unmanned Aerial Vehicles
(UAV) and Light Detection and Ranging (LIDAR) technology
have also been applied in developing criteria for modeling
wildfire risk [23–25].

GIS multi-criteria analysis (GIS-MCDA) utilizing Analytical
Hierarchy Process (AHP) [19,23,24,26–32] and Fuzzy Analytical
Hierarchy Process (F-AHP) [31–37] approaches are frequently
employed in numerous global studies to model wildfire vul-
nerability, susceptibility, hazard, and risk. In addition to these
methodologies, various studies employ different approaches
such as Frequency Ratio (FR) [36–39], Shannon Entropy (SE)
[39–41], Weight of Evidence (WoE) [42,43], Statistical Index (SI)
[43,44], Fuzzy Logic [45,46], Logistic regression (LR) [47,48] and
among Machine Learning methods [49–55] are commonly
utilized.

Machine Learning methods [49–55] are increasingly
employed with a harmonized approach. Indeed, the choice
between methodologies for assessing wildfire susceptibility
often hinges on specific needs and preferences. Following
validation, the superiority of machine learning methods in
performance is often attributed to their ability to capture
complex patterns and relationships within data. This can
result in more accurate predictions compared to traditional
methodologies [52,54]. However, the simplicity of statistical
processing and ease of interpretation of results offered by

other methodologies, such as AHP, F-AHP, and FR, is one of
the advantages compared to machine learning methods.
Despite their slightly weaker performance in some cases,
the straightforwardness of these methodologies can contri-
bute to a better understanding and implementation of wild-
fire risk management strategies.

There isn’t much research or previous studies addres-
sing this issue in Montenegro. Pioneering research across
Montenegro was conducted by Hysa and Spalevic [56]. This
study developed a wildfire spread capacity index using Eur-
opean and global low- to medium-resolution data, revealing
a high wildfire spread capacity in Montenegro. Vujović [57]
carried out GIS modeling for wildfire mapping using open
low- to medium-resolution data in his master’s thesis. The
results showed that the research area of Budva predomi-
nantly falls into categories of high and very high fire
hazards, with the developed model demonstrating good per-
formance after validation. Božović et al. [58] emphasized the
significance and potential of the project titled “Building
Capacity for Disaster Risk Reduction through the National
Forest Fire Information System,” implemented by the
Ministry of Internal Affairs of Montenegro – Directorate
for Protection and Rescue and the Japan International
Cooperation Agency since 2021. The project aims to base
its activities on the already developed Macedonian infor-
mation system, which assesses fire hazards and risk using
existing national and low-resolution European data. The
project plans to develop networks of meteorological sta-
tions to assess the meteorological index at the onset of
fires. Since the project is still in the implementation phase,
specific results are not yet available. Nikolić et al. [32]
assessed wildfire susceptibility in Budva, a coastal munici-
pality in Montenegro, and Rožaje, a northern municipality
with varying climates. Similar to previous research, low- to
medium-resolution data were used here to obtain natural
and anthropogenic criteria. Modeling results indicated that
over 80% of the territory in Budva and Rožaje falls into
categories of high and very high susceptibility. In this GIS-
MCDA-based study, both the AHP and F-AHP models exhibit
similar performance.

With all this in mind, the objective of this study is to
construct a pioneering wildfire susceptibility model on a
national scale for Montenegro. Previous studies have pri-
marily relied on AHP and FR methods. This study, how-
ever, is the first to compare F-AHP and FR. The modeling
procedure incorporates natural and anthropogenic cri-
teria, utilizing the F-AHP and FR methodologies within a
geoinformatics framework. The study extensively scruti-
nizes both methodological approaches during the valida-
tion phase, subjecting them to comprehensive evaluation
and analysis.
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2 Materials and methods

2.1 Study area

Montenegro, situated in southeastern Europe on the Balkan
Peninsula, spans from latitudes 41°52′ to 43°32′N and long-
itudes 18°26′ to 20°21′E (Figure 1). It encompasses an area of
13,883 km2 and is home to a population of approximately
620,000 inhabitants. It has a coastline of 293.5 km along
the Adriatic Sea [59].

The distribution of terrain can be categorized as fol-
lows: up to 200m covering 10% of the area, between 200
and 1,000m covering 33%, between 1,000 and 1,500 m cov-
ering 39%, and above 1,500 m covering 18% [60]. It is note-
worthy that over 60% of the terrain consists of carbonate
formations, where the predominant relief type is karst. The
landscape is characterized by diverse landforms, including
sandy and rocky coasts, karst fields, plateaus, canyons, and
high mountains exhibiting periglacial characteristics within
a relatively compact area [61].

According to Köppen’s classification, two climate types
are observed in the reference climate period [62]: warm
temperate (C) and cold temperate (D). The warm temperate
climate predominates in lower elevation regions, while in

the higher mountainous areas within Montenegro, particu-
larly above 1,000m, the climate shifts to the cold tempe-
rate type.

Montenegro can be geographically divided into three
distinct regions: Coastal, Central, and Northern Montenegro.
Administratively, the country is divided into 25 municipalities
[59]. The Coastal region, with its characteristic appearance,
exhibits all the typical features of Mediterranean areas. Being
the smallest by area (11.6% of the total area), this region,
which essentially coincides with the geomorphologically
defined and distinct area of the Coastal, encompasses the
municipalities of Herceg Novi, Kotor, Tivat, Budva, Bar, and
Ulcinj. The majority of tourism activity is concentrated
within this region, making it the primary generator of
tourist traffic in Montenegro.

The Central region, the most pronounced lowland area
of Montenegro, is surrounded by arid limestone surfaces.
Besides the well-known natural resources (bauxite reserves
and hydroelectric potential), its significant natural potential
lies in the complexes of agricultural land. This region
encompasses 35.5% of the total area, and in terms of geo-
morphology, it includes defined and distinct areas such as
the Valleys of central Montenegro, the Plateau of deep karst,
and the southern part of the Central high plateaus,

Figure 1: Location map of Montenegro.
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encompassing the municipalities of Podgorica, Tuzi, Zeta,
Danilovgrad, Nikšić, and Cetinje. The Northern region is
an extremely high mountainous part of the territory, inter-
sected by river valleys and, in many of its parts, resembles
the characteristic relief forms of Alpine landscapes. Arable
agricultural areas located along river valleys and slopes,
vast pastures, extensive complexes of high-quality forests
(beech and coniferous), significant reserves of coal, lead,
and zinc, considerable hydroelectric potential, and very
favorable conditions for the development of mountain and
spa tourism in most areas represent the most significant
natural resources and potentials of this region. The northern
region occupies over half of the total area of Montenegro
(52.9% of the total area) and is primarily composed of areas
defined as the Central high plateaus and the Northeastern
Montenegro region, with administrative centers in Kolašin,
Mojkovac, Žabljak, Savnik, Plužine, Pljevlja, Bijelo Polje,
Petnjica, Berane, Andrijevica, Plav, Gusinje, and Rožaje.

In 1991, Montenegro made a declaration stating its
status as an ecological country. By embedding this declara-
tion into its Constitution, Montenegro became the first
country in the world to officially proclaim itself as such.
The distinctive combination of geological background, cli-
mate, terrain, hydrography, and land cover has led to the
emergence of two biogeographical regions (Alpine and
Mediterranean) in Montenegro’s geographic space. These
regions exhibit exceptional biodiversity, highlighted by
Montenegro’s 3,250 plant species and a floristic diversity
index (S/A1) of 0.837. This positions Montenegro as one of
the “hot spots” of biodiversity in the Mediterranean region
and one of the 153 globally significant centers of floristic
diversity [60].

According to the results of the First National Forest
Inventory (NFI) [63], Montenegro is characterized by a high
level of forest coverage, at 59.5% (826,782 ha). Forest land occu-
pies 9.9% (137,480 ha). Together, forests and forest land make
up 69.4% of Montenegro’s territory. High forests encompass
51.1% of the overall forest area, with low-growth forests occu-
pying 48.9%. State-owned forests represent 52.3%, whereas
private forests account for 47.7% of the total forested land.
Within Montenegro, deciduous trees prevail, covering 76.2%
of the forested area. Conifers exhibit a notably greater volume
and growth rate within the total volume compared to decid-
uous trees. The share of conifers in the total volume is 40.2%.
Approximately 38.7% of accessible forests and 7.5% of acces-
sible forestland are designated as potential Natura 2000 Annex
I habitats. A substantial portion of these areas is legally pro-
tected, with 5.2% of forests located within national parks and
14.6% falling within Emerald zone territories.

Between 2005 and 2015,Montenegro experienced approxi-
mately 800 significant wildfires, resulting in the destruction or

impairment of over 18,000 ha of forest and more than 800,000
m3 of wood. The particularly severe year was 2012, with fires
impacting 7% of the forested area. However, the most devas-
tating fire season occurred in 2017, witnessing the registration
of 124 wildfires exceeding 30 ha. These fires affected a total
area of 51,661 ha [7].

2.2 Input data for causative criteria

To apply the F-AHP and FR methods, it was essential to
choose relevant causative criteria for the analysis. These
criteria were determined by considering a blend of factors
specific to the area under study area, a review of relevant
literature, and input from experts at the Environmental
Protection Agency of Montenegro. The study employed seven
natural and anthropogenic causative criteria: (C1) vegetation
type; (C2) aspect; (C3) slope; (C4) elevation; (C5) climate classi-
fication; (C6) distance from road; and (C7) population. Wildfire
susceptibility modeling excludes artificial areas and water
bodies based on the Boolean logic concept, which has values
of 0. The criteria were derived from open geospatial data and
national databases, which underwent transformation into a
500-meter grid and were subsequently reprojected into
the ETRS89-extended/LAEA Europe (EPSG: 3035) projection.
Table 1 provides details on the criteria, data sources, resolu-
tions, and formats utilized in modeling.

2.2.1 Criterion vegetation type

The structure of the wildlands plays a crucial role in wild-
fires, serving as a primary consideration in susceptibility
assessments due to its significant impact on both the onset
and behavior of fires [64]. Combustible materials such as
trees, leaves, and grass act as suitable fuels which can
initiate fires. Typically, coniferous species exhibit higher
burning potential compared to deciduous species, attrib-
uted to the presence of gum and resins in their cambium
and leaves. However, variability in flammability exists
even among different species within the same category of
trees. An additional factor that has an impact on suscept-
ibility is the age of the trees. Grasslands and shrublands
have a lower availability of fuel than woods, although they
are extremely dry. As a result, wildfire intensity in these
areas is generally low, yet flames spread quickly. The sus-
ceptibility to wildfires is significantly affected by aban-
doned agricultural areas that have ceased cultivation [65].
Vegetation types and their characteristics were given based
on the CORINE Land Cover 2018 database (Figure 2a).
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The aim of this database is to collect, coordinate, and
provide consistent information on natural resources and
the environment in Europe. So far, CLC status layers have
been created for 1990, 2000, 2006, 2012, and 2018, and the
nomenclature for these layers consists of three levels: the first
level indicates the main land cover categories, the second
level is for use at scales of 1:500,000 and 1:1,000,000, and
the third level is for use at a scale of 1:100,000. As for the
status layers, the accuracy of the satellite images used ranges
from 10 to 50m. The geometric accuracy of the CLC is 100m.
The minimum mapping unit is 25 ha for polygons, and the
minimum line thickness for linear entities is 100m. Thematic
accuracy is ≥85% [66].

2.2.2 Topographic group of criteria: Aspect, slope, and
elevation

The primary topographical elements affecting wildfire occur-
rence and spread are aspect (Figure 2b), slope (Figure 2c), and
elevation (Figure 2d) [24]. The aspect or orientation of the
slope determines the level of solar radiation received
depending on the side of the world it faces. Slope is a key
factor affecting wildfire spread. It is generally known that
wildfire spreads faster uphill than downhill. This phenom-
enon of expansion on sloping terrain is triggered by warm
air rising up the slope, further drying out the combustible
materials. It is important to point out that the slope can
reduce the influence of the wind, but it can also increase
it. This solar radiation significantly impacts the moisture
content in the fuel, consequently influencing the spread of
the fire. With increasing elevation, air temperature decreases
while humidity rises, correlating with precipitation levels and
temperature variations, ultimately impacting wildfire sus-
ceptibility [67].

Analysis of the topographic criteria was conducted
utilizing the functionalities of QGIS software, with the topo-
graphic data sourced from the European Digital Elevation
Model (EU-DEM) model. The EU-DEM, crafted by the

European Environmental Protection Agency (EPA), covers
the lands of 27 European Union (EU) member states and 6
partner nations [68]. This amalgamated dataset, named
EU-DEM, predominantly utilizes information from SRTM
DEM and ASTER GDEM, complemented by openly avail-
able Russian topographic maps for regions beyond 60°N.
The model exhibits moderate resolution, characterized by
a geospatial resolution of 25m. The projected root mean
square error (RMSE) for the standard vertical precision of
the revised edition (EU-DEM v1.1) stands at roughly 7m [69].

2.2.3 Criterion climate classification

The climate plays a crucial role in both the ignition and
escalation of wildfires. Its influence extends to every aspect
affecting the susceptibility of wildfires. This interaction
underscores the significance of climate in shaping the
conditions conducive to wildfire occurrence and spread,
highlighting its pivotal role in wildfire management and
prevention efforts. Nikolić et al. [32] demonstrated in their
research that identical or analogous criteria can be applied
across various climate zones in Montenegro. To examine
the connection between wildfire occurrences and climatic
elements, a digitized map illustrating climate zones based on
the Köppen classification system (Figure 2e), outlined by Burić
et al. [62]. Köppen’s formula relies on numerical values for
temperature and precipitation, along with defining character-
istic thresholds for these variables, which delineate between
different climate types based on their impacts on plant life,
animal habitats, and human activities [70].

2.2.4 Anthropogenic group criteria: Distance from road
and population

The group of anthropogenic causal criteria used includes
distance from road (Figure 3a) and population (Figure 3b).
These two criteria serve a dual purpose: they act as

Table 1: Causative criteria with format and source

Code Criteria Data Source

C1 Vegetation type ESRI Shapefile https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 10
March 2024)

C2 Aspect GeoTIFF (25 m) https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1 (accessed on 10 March 2024)
C3 Slope GeoTIFF (25 m) https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1 (accessed on 10 March 2024)
C4 Elevation GeoTIFF (25 m) https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1 (accessed on 10 March 2024)
C5 Climate classification ESRI Shapefile https://canupub.me/knjiga/atlas-klime-crne-gore/ (accessed on 10 March 2024)
C6 Distance from road ESRI Shapefile https://www.geofabrik.de/ (accessed on 10 March 2024)
C7 Population ESRI Shapefile http://www.geoportal.co.me/ (accessed on 10 March 2024)
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Figure 2: Natural causal criteria. (a) vegetation type; (b) aspect; (c) slope; (d) elevation; (e) climate classification.
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mitigating factors in reducing susceptibility to wildfires by
establishing fire barriers and escape routes, while simulta-
neously serving as potential contributors to heightened
vulnerability due to human activities, tourism, and recrea-
tional endeavors in wildland areas [26]. Euclidean analysis
was utilized in QGIS to determine distance from road, with
data sourced from the OpenStreetMap database serving as
input for this analysis. Data on the human population were
obtained based on statistical circles. Statistical circles represent
the smallest geospatial units within a unified statistical terri-
torial registry, covering the entire territory of Montenegro.
These are permanent units, with boundaries that can only be
changed under exceptional circumstances and according to
established criteria. These data are compiled by the Statistical
Office of Montenegro – MONSTAT and the Administration for
Cadastre and State Property of Montenegro [71].

2.3 Correlation analysis

Correlation analysis was conducted between all causal cri-
teria. The “corrplot” package in RStudio was employed for
this purpose. This package calculates correlations based on
the Pearson correlation method by default. The resulting
correlogram offers both visual and numerical insights into
the correlation coefficient of each pair of criteria. In the
correlogram, larger and darker blue circles indicate a
stronger positive correlation between criteria, while larger
and darker red circles signify a greater inverse correlation
between variables.

2.4 Historical wildfire data

For the scope of this study, geospatial subsets of Moderate
Resolution Imaging Spectroradiometer (MODIS) historical
wildfire locations within the borders of Montenegro for the
period 2001–2022 were obtained from the FIRMS geoportal
(https://firms.modaps.eosdis.nasa.gov/(accessed March 10,
2024)), utilizing the archive download tool for the standard
product MCD14ML. Each point represents the center of a
1 km pixel identified by the MODIS MOD14/MYD algorithm
for thermal anomalies and wildfires [72]. Only locations
with a confidence level exceeding 80% were chosen. In
building the wildfire susceptibility model, historical wild-
fire data were randomly divided into 70% (1,116 points) for
training and 30% (478 points) for testing (Figure 4).

2.5 F-AHP method

F-AHP is a methodology within GIS-MCDA that focuses
on key decision-making criteria. Integrating multi-criteria
analysis with GIS results in GIS-MCDA is a process that
involves converting and merging geospatial data to gen-
erate valuable new information for decision-making pur-
poses. The GIS-MCDA stands as one of the prevailing
methods for susceptibility modeling, finding utility across
diverse scientific domains [73]. The GIS-MCDA procedure
utilized in this study for modeling wildfire susceptibility
consists of three sequential steps (Figure 5): standardizing
causal criteria values, assigning criteria weights, and

Figure 3: Anthropogenic causal criteria: (a) distance from road; (b) population.
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analyzing results (Combination of Standardized Values and
Weight of Criteria). The entire GIS-based methodological
procedure was carried out in QGIS 3.28.3 software (https://
www.qgis.org/en/site/forusers/download.html (accessed 10
March 2024)).

The standardization and weighting of criteria values fol-
lowed a similar approach to the selection of causal criteria. This

process involved considering a combination of area-specific
factors, reviewing relevant literature, and consulting with
experts from theEnvironmental ProtectionAgencyofMontenegro.
The normalization of the values for all criteria was carried out
according to the evaluationmethod in a numerical interval from 1
(very low) to 5 (very high), with the ranges of values for each class
being determined separately.

Figure 4: Training and testing MODIS locations.

Figure 5: Flow chart illustrating the procedural steps of the F-AHP and FR method.

8  Filip Vujović et al.

https://www.qgis.org/en/site/forusers/download.html
https://www.qgis.org/en/site/forusers/download.html


Weighting coefficients for the causal criteria regarding
wildfire susceptibility importance are determined using the
F-AHP methodology. Numerous methodological approaches
incorporate fuzzy elements within pairwise comparison
matrices. For this analysis, we chose Ramík’s approach [74],
which is implemented in online software, available at (https://
fuzzyahp.holecekp.eu/(accessed 12 March 2024)) [75]. This
approach is built upon pairwise comparison of triangular fuzzy
elements. Such a matrix A˜ has the following form [74]:
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The following index was used to assess matrix consis-
tency [74]:
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The numerical values assigned to the index range
between 0 and 1, with 0 indicating complete consistency
of the matrix.

The modeling results were produced by F-AHP methods
using the weighted linear combination method at 500m reso-
lution. In this method, standardized values and weighting
coefficients are combined, and the analysis is conducted using
Raster Calculator tool, applying the given equation [76]:

∑ ∏= × ×w x EWFSI .i i
(5)

WFSI is the wildfire susceptibility index in the case of this
model, wi is the weighting coefficient of the criteria, and xi is
the value of the standardized criteria. The exclusion area
(∏E) is calculated using Boolean logic principles and holds
a value of 0. The WFSI values align with the evaluation range
of criteria 1 to 5, with scores categorized as very low (1), low
(2), moderate (3), high (4), and very high (5) susceptibility.

2.6 FR method

The FR method is based on the concept of the favorability
function [77]. FR represents the ratio between historical
wildfire occurrences and their geospatial correlation with
causal criteria contributing to the event [78]. Training sam-
ples from the MODIS satellite were used to perform this
analysis. As with the F-AHP method, the entire GIS-based
procedure is implemented in QGIS software (Figure 5).

The FR values for each class within the criteria were
obtained using the following equation [77]:

( ) ( )

( ) ( )
=

∑
∑

=

=

N N

N X N X
FR

LX / LX

/

,

i i

m

i

j j

n

j

pix
1

pix

pix
1

pix

(6)

where FR is the frequency ratio of class i of parameter j .
( )N LXipix

is the number of pixels with wildfires within class
i of parameter criteria X . ( )N Xjpix

is the number of pixels
within parameter criterion Xj. m is the number of classes
in the parameter criterion Xi, and n is the number of causal
criteria in the study.

The RF were then standardized to the range of prob-
ability values [0, 1] as the relative frequency in the next
phase (RF). The equation is shown in the continuation [77]:

= ∑ =
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FR

FR

.

ij

i

m

ij
1

(7)
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Even after equalization, the RF frequency still suffers
from the limitation of treating all conditioning elements
equally. The prediction rate (PR) was calculated to evaluate
each conditioning component using the training dataset,
according to the following equation [77]:

( )

( )
=

−
−

PR

RF RF

RF RF

.

max min

max min min

(8)

TheWFSI is calculated according to the following equation:

( )∑ ∏= × ×
=

EWFSI PR RF ,

i

n

1

(9)

where WFSI stands for the Wildfire Susceptibility Index, while
PR represents the prediction rate for the criterion, and RF
denotes the relative frequency for the criterion. Top of Form
(∏E) presents exclusion areas determined through the applica-
tion of Boolean logic principles, with a corresponding value of
0. The WFSI values were divided into five susceptibility classes
via the Natural Breaks (Jenks) technique, distinguished as very
low, low, moderate, high, and very high [44].

2.7 Validation of employed methods

Validating the obtained results is a crucial stage in the
modeling process as it enables the assessment of the rele-
vance and validity of the developed F-AHP and FR models.
For model validation, 30% of test samples were drawn from
historical wildfire locations sourced from the MODIS satellite.
The receiver operating characteristic curve (ROC) in LibreOffice

Calc was utilized as a validation technique. The ROC curve is
widely used in geospatial modeling. With the ROC curve, it is
possible to display the false positive fraction in relation to the
true positive for all values used to generate the modeling
results. The ROC curve graph depicts specificity on the x-axis
and sensitivity on the y-axis. Additionally, for validation pur-
poses, an automatically calculated area under curvature (AUC)
was created at ROC. The AUC values indicate the success and
accuracy of a given model with respect to the reference data,
with excellent (AUC = 0.9–1), good (AUC = 0.8–0.9), fair (AUC =

0.7–0.8), poor (AUC = 0.6–0.7), and failed models (AUC =

0.5–0.6) [79].

3 Results

3.1 Correlation between causal criteria

Figure 6 illustrates a correlogram, presenting visual and
numerical indications of the correlation coefficients among
the causal criteria. Larger circles and darker blue shades
signify stronger positive correlations, while larger circles
and darker red shades indicate stronger inverse correlations
among the causal criteria. As the results show, the highest
negative correlation value (−0.28) was found between eleva-
tion and climate classification. However, the highest value of
positive correlation (0.23) was determined between vegeta-
tion type and climate classification. The correlation observed
among other causal criteria similarly suggests a lack of
robustness or substantial influence between the selected
causal criteria.

3.2 Wildfire modeling by F-AHP

Causal criteria were standardized on a numerical scale
ranging from 1 (very low) to 5 (very high), as shown in
Table 2. The weighting coefficients for these criteria,
determined through the F-AHP procedure within the online
software solution, are illustrated in Figure 7. The matrix incon-
sistency, as measured by the NI value, is deemed acceptable.
The primary criterion with the highest weight coefficient is
vegetation type, followed by climate classification, distance of
road, population density, aspect, slope, and elevation, respec-
tively. The results of modeling conducted via the F-AHP pro-
cedure, which was employed in calculating the WFSI, are
outlined in Table 3. Furthermore, Figure 8 complements the
geospatial distribution illustrated in the overviewmap. As perFigure 6: Correlogram for causal criteria.
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the F-AHP model’s findings, a substantial 72.84% of the total
area demonstrates high to very high susceptibility. Within
this distribution, the moderate category holds a significant
share of 20.80%, highlighting its considerable presence. In

contrast, the low category accounts for just 2.53%, indicating
its minimal representation. Excluded areas occupy 3.83%.

In assessing wildfire susceptibility across three distinct
regions, the Coastal region emerges as particularly

Table 2: Standardization of criteria

Intensity of importance

Code for causal criteria Very low (1) Low (2) Moderate (3) High (4) Very high (5)

Vegetation type (C1)* 332, 333 331, 334, 411 211, 212, 221, 222, 223, 231, 241, 242, 243, 311 313, 321, 322, 324 312, 323
Aspect (C2) N NE, NW E, W SE, Flat S, SW
Slope (C3) <5° 5–10° 10–15° 15–20° >20°
Elevation (C4) >2,000 1,500–2,000 m 1,000–1,500 m 500–1,000 m <500m
Climate classification (C5) Dfbx” Cfws“bx”, Cfb Cfs”b Cfsb Csa
Distance from road (C6) >1,500 m 800–1,500 m 500–800 m 200–500 m <200m
Population (C7) <1 1–50 50–100 100–200 >200

*CLC 2018 classes. Available online: https://land.copernicus.eu/user-corner/technical library/corine-land-cover-nomenclature guidelines/docs/pdf/
CLC2018_Nomenclature_illustrated_guide_20190510.pdf (accessed March 10, 2024)).

Figure 7: F-AHP weight coefficients for causal criteria.
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susceptible, with over 50.05% of its area classified as
having a high susceptibility and a further 33.48% categor-
ized as very high. This indicates a significant portion of
land, amounting to approximately 83.53% in total. The
Central region also demonstrates concerning levels of sus-
ceptibility, with over 72.38% of its area falling within the
high to very high categories. In the Northern region, the
combined area of high and very high wildfire susceptibility
categories is precisely 71.01%. In the Coastal region, mod-
erate susceptibility occupies 10.11% of the area, while low
susceptibility is minimal at 0.03%. Similarly, in the Central
region, moderate susceptibility covers 18.51% of the area,
with low susceptibility constituting 1.38%. Meanwhile, in
the Northern region, moderate susceptibility encompasses
24.57% of the area, while low susceptibility covers 3.85%.

The Coastal region makes up 6.32% of the areas excluded,
while the Central region comprises 7.73%. In contrast, the
Northern region accounts for a mere 0.56%.

In the context of nationally protected natural areas
and wildfire susceptibility, the provided data illustrates
varying levels of susceptibility across different categories.
Nationally protected natural areas include strict nature
reserves, national parks, special nature reserves, nature
parks, natural monuments, and landscapes of exceptional
characteristics. The analyzed terrestrial nationally pro-
tected natural areas occupy about 13% of the total area
of Montenegro. As for the excluded areas, which are mostly
occupied by water bodies, they make up 14.64% of the total
area. Meanwhile, low susceptibility areas cover 3.65%,
moderate susceptibility areas cover 22.87%, high suscept-
ibility areas cover 51.88%, and very high susceptibility
areas cover 6.95% of the total area.

Montenegro has designated approximately 18% of its
territory to the European Network of Areas of Special
Conservation Interest (EMERALD). The provided model
indicates that excluded areas, which typically encompass
water bodies, constitute 9.37% of the total area. Low sus-
ceptibility areas cover 4.60%, moderate susceptibility areas
cover 23.26%, and high susceptibility areas, including both
high and very high categories, cover the majority at 62.77%
of the total area.

3.3 Wildfire modeling by FR

Table 4 displays FR values for causal criteria derived from
the training sample for historical wildfire locations. Out of
natural and anthropogenic causal criteria used for FR sus-
ceptibility modeling, the criterion of distance from roads
among anthropogenic criteria exhibits the highest prediction
ratio (PR) value. It is followed by climate classification, eleva-
tion, population density, vegetation type, slope, and aspect,
respectively. The modeling results obtained through the FR
procedure, utilized to derive the WFSI, are presented in
Table 5. As with the F-AHP model, the excluded areas occupy

Table 3: Percentage of the area in different areas of interest according to the F-AHP model % of area

Area of interest Excluded areas Very low Low Moderate High Very high

The whole area 3.83 — 2.53 20.80 66.08 6.76
Coastal region 6.32 — 0.03 10.11 50.05 33.48
Central region 7.73 — 1.38 18.51 65.59 6.79
Northern region 0.56 — 3.85 24.57 69.60 1.41
National protected areas 14.64 — 3.65 22.87 51.88 6.95
EMERALD 9.37 — 4.60 23.26 58.60 4.17

Figure 8: Spatial display of the F-AHP model by susceptibility categories.
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Table 4: Frequency ratio (FR) and prediction rate (PR) for causal criteria

Code for
causal
criteria

Class Number of
pixels in class

Percentage of
domain (PD)

Number of
wildfire pixels

Percentage of
wildfire (PW)

Frequency
ratio (FR)

Prediction
rate (PR)

C1 111 8 0.01 0 0.00 0.00
112 801 1.44 0 0.00 0.00
121 79 0.14 0 0.00 0.00
122 8 0.01 0 0.00 0.00
123 7 0.01 0 0.00 0.00
124 17 0.03 0 0.00 0.00
131 65 0.12 0 0.00 0.00
132 24 0.04 0 0.00 0.00
133 26 0.05 0 0.00 0.00
141 16 0.03 0 0.00 0.00
142 42 0.08 0 0.00 0.00
211 33 0.06 0 0.00 0.00
221 117 0.21 7 0.63 2.98
222 5 0.01 0 0.00 0.00
223 20 0.04 0 0.00 0.00
231 1,082 1.95 14 1.25 0.64
241 5 0.01 0 0.00 0.00
242 1,165 2.10 12 1.08 0.51
243 6,554 11.80 64 5.73 0.49
311 14,670 26.41 351 31.45 1.19
312 3,958 7.12 31 2.78 0.39
313 4,198 7.56 73 6.54 0.87
321 4,095 7.37 54 4.84 0.66
322 20 0.04 0 0.00 0.00
323 441 0.79 13 1.16 1.47
324 11,670 21.01 472 42.29 2.01
331 63 0.11 0 0.00 0.00
332 663 1.19 12 1.08 0.90
333 3,819 6.87 0 0.00 0.00
334 298 0.54 0 0.00 0.00
411 442 0.80 12 1.08 1.35
421 6 0.01 0 0.00 0.00
422 62 0.11 0 0.00 0.00
511 33 0.06 0 0.00 0.00
512 1,026 1.85 1 0.09 0.05
522 1 0.00 0 0.00 0.00
523 13 0.02 0 0.00 0.00
Sum 55,552 100.00 1,116 100.00 13.51 1.54

C2 Flat 638 1.15 0 0.00 0.00
North 6,649 11.97 113 10.13 0.85
Northeast 7,957 14.32 181 16.22 1.13
East 6,213 11.18 129 11.56 1.03
Southeast 5,404 9.73 117 10.48 1.08
South 7,594 13.67 160 14.34 1.05
Southwest 9,379 16.88 215 19.27 1.14
West 6,368 11.46 101 9.05 0.79
Northwest 5,350 9.63 100 8.96 0.93
Sum 55,552 1,116 8.00 1.00

C3 0–5 18,791 33.83 299 26.79 0.79
5–10 18,242 32.84 333 29.84 0.91
15–20 10,087 18.16 228 20.43 1.13
20–25 4,861 8.75 132 11.83 1.35
>25 3,571 6.43 124 11.11 1.73
Sum 55,552 100.00 1,116 100.00 5.91 1.11

(Continued)
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3.83% of the area. Furthermore, Figure 9 complements the
geospatial distribution illustrated in the overview map. Based
on the FR model, the very high susceptibility category shows
the smallest percentage representation at just 8.61%, whereas
the high category boasts 20.46%. The moderate category com-
prises 25.79% of the representation, slightly behind the low
category, which accounts for 25.87%. Meanwhile, the very
low category accounts for 15.44%.

Starting with the Coastal Region, excluded areas account
for 6.32% of the total area. Here, the distribution across cate-
gories is as follows: low (0.03%), moderate (10.11%), high

(50.05%), and very high (33.48%). Moving on to the Central
Region, excluded areas make up 7.73% of the overall total
area. The distribution across categories within this region
stands at very low (8.44%), low (13.43%), moderate (29.20%),
high (24.97%), and very high (16.22%). Shifting focus to the
Northern Region, excluded areas represent a mere 0.56% of
the total. Within this region, the breakdown shows very low
(17.63%), low (35.91%), moderate (24.14%), high (18.13%), and
very high (3.63%).

As for the nationally protected natural areas, the
excluded areas are mostly occupied by water bodies,

Table 4: Continued

Code for
causal
criteria

Class Number of
pixels in class

Percentage of
domain (PD)

Number of
wildfire pixels

Percentage of
wildfire (PW)

Frequency
ratio (FR)

Prediction
rate (PR)

C4 0–500 8,904 16.03 173 15.50 0.97
500–1,000 15,020 27.04 360 32.26 1.19
1,000–1,500 21,706 39.07 476 42.65 1.09
1,500–2,000 9,381 16.89 107 9.59 0.57
>2,500 541 0.97 0 0.00 0.00
Sum 55,552 100.00 1,116 100.00 3.82 2.18

C5 Csa 10,349 18.63 228 20.43 1.10
Cfsb 7,926 14.27 346 31.00 2.17
Cfs“b 12,965 23.34 396 35.48 1.52
Cfb 5,766 10.38 60 5.38 0.52
Cfws“bx” 12,753 22.96 34 3.05 0.13
Dfbx” 5,793 10.43 52 4.66 0.45
Sum 55,552 100.00 1,116 100.00 5.89 2.42

C6 0–500 30,706 55.27 379 33.96 0.61
500–1,000 13,740 24.73 290 25.99 1.05
1,000–1,500 5,363 9.65 95 8.51 0.88
1,500–2,000 2,937 5.29 233 20.88 3.95
>2,500 2,806 5.05 119 10.66 2.11
Sum 55,552 100.00 1,116 100.00 8.61 2.71

C7 <1 3,135 5.64 41 3.67 0.65
1–50 15,745 28.34 484 43.37 1.53
50–100 11,627 20.93 246 22.04 1.05
100–200 10,890 19.60 207 18.55 0.95
>200 14,155 25.48 138 12.37 0.49
Sum 55,552 100.00 1,116 100.00 4.67 1.57

Bold values are important to distinguish difference between causal criteria in FR methodology.

Table 5: Percentage of the area in different areas of interest according to the FR model % of area

Area of interest Excluded areas Very low Low Moderate High Very high

The whole area 3.83 15.44 25.87 25.79 20.46 8.61
Coastal region 6.32 29.43 19.52 21.98 16.05 6.70
Central region 7.73 8.44 13.43 29.20 24.97 16.22
Northern region 0.56 17.63 35.91 24.14 18.13 3.63
National protected areas 14.64 17.41 26.27 19.00 17.91 4.77
EMERALD 9.37 17.53 25.72 22.59 17.92 6.86
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making up 14.64% of the total area. Within this segment,
the breakdown across categories is as follows: very low
(17.41%), low (26.27%), moderate (19.00%), high (17.91%),
and very high (4.77%).

The resulting model in the EMERALD potential areas
shows that the excluded areas, which usually include
water bodies, make up 9.37% of the total area. The distri-
bution across categories within this region stands at very

low (17.53%), low (25.72%), moderate (22.59%), high (17.92%),
and very high (6.86%).

3.4 Validation

For validation purposes, 30% of the testing dataset, equiva-
lent to 478 historical wildfire locations, was employed. The
validation results shown on the ROC curve for the F-AHP
and FR methodological approaches are shown in Figure 10.
Specifically, the AUC values derived from the ROC curve
serve as a measure of each model’s predictive accuracy. In
this context, a higher AUC value indicates superior model
performance. After testing, the F-AHP model demonstrated
good performance in validation with an AUC value of 0.82,
while the FR model showed poor performance with an AUC
of 0.64. These findings underscore the effectiveness of the
F-AHP approach in predicting wildfire susceptibility. The
additional processed training samples used to construct
the model display nearly identical values to the test sam-
ples (Figure 11).

4 Discussion

Wildfires pose a significant ecological, environmental, and
socioeconomic challenge in southeastern Europe. The pre-
servation of wildland is not only essential but also a fore-
most priority for Montenegro, a country recognized as the
world’s first ecological state. It’s crucial to note that the
assessment methods for wildfire risk can differ among

Figure 9: Spatial display of the FR model by susceptibility categories.

Figure 10: Results of the ROC curve analysis with AUC values for testing data.
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countries and research teams, resulting in diverse regional
and national approaches that may not always be directly
comparable. This variability is particularly relevant as wild-
fires frequently cross borders, impacting multiple countries
simultaneously. Understandably, these divergent approaches
emphasize the specificities of the respective regions of
interest, with chosenmethods being influenced by each coun-
try’s unique characteristics [6]. In numerous instances docu-
mented in scientific and professional literature, when dealing
with extensive geospatial coverage at medium and low reso-
lutions, the complete implementation of risk assessment pro-
cedures becomes challenging. Instead, satisfactory outcomes
are often achieved through the assessment of wildfire sus-
ceptibility. This susceptibility is defined as the static prob-
ability of wildfire in a given area, contingent on the essential
terrain characteristics [55].

Carnicer et al. [80] explore how global warming is chan-
ging the relationships between wildfire weather and CO2

emissions from wildfires in Europe, emphasizing the
increased wildfire risk in Mediterranean countries, including
Montenegro. Kreider et al. [81] argue that while fire suppres-
sion can be effective in the short term, it is not sustainable in
the long term. They suggest that alternative land manage-
ment strategies, such as controlled burning and the revival
of agricultural and livestock activities, are necessary to pre-
vent the accumulation of biomass that could fuel future
mega-fires. Rouet-Leduc et al. [82] support this perspective
by showing the positive impact of large herbivores on fire
regimes and wildfire mitigation, advocating for their inclu-
sion in land management policies.

Standards for determining weighting coefficients for
various causal criteria, such as vegetative, topographical,
climatic, and anthropogenic factors, frequently depend on

expert opinions or static methodologies that utilize specific
training samples [19,23–55]. By combining these approaches,
researchers aim to establish a comprehensive and consistent
framework that facilitates the understanding and analysis
of these diverse causal criteria for differentiation. This inte-
gration not only enhances the reliability of the results but
also supports more nuanced insights into how these factors
interact and influence each other in various contexts [54].

In the study by Pradeep et al. [38], the AHP model
demonstrated superior AUC performance compared to
the FR model after validation. Conversely, Abdo et al. [37]
found that the FR model slightly outperformed the AHP
model, exhibiting somewhat higher AUC values. Addition-
ally, Zeleke’s master’s thesis [83] emphasized that the AHP
model outperforms the FR model. When comparing the
AHP and F-AHP models, the F-AHP model consistently
shows better performance than the AHP model, a finding
supported by previous studies [31,32,84].

This study utilizes F-AHP and FR methods for geospa-
tial modeling of wildfires, offering detailed insight into the
susceptibility of various regions and protected natural
areas in Montenegro to wildfire. Both approaches employ
distinct causal criteria and weighting mechanisms to assess
susceptibility, with F-AHP emphasizing vegetation type and
climate classification as primary determinants, while FR
prioritizes factors like distance from roads and elevation.
In terms of susceptibility categorization, F-AHP identifies a
substantial portion of Montenegro, as highly susceptible to
wildfires, with over 72.84% of the total area falling into
high to very high susceptibility categories. FR highlights a
reduced proportion of areas exhibiting high and very high
susceptibility, amounting to 29.07%, while displaying a
more evenly distributed range across categories.

Figure 11: Results of the ROC curve analysis with AUC values for training data.
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In comparing the findings of F-AHP and FR methodolo-
gies regarding wildfire susceptibility across Coastal, Central,
and Northern regions, both approaches underscore signifi-
cant concerns. F-AHP indicates that the Coastal region stands
out as the most susceptible, with over 83.53% of its area
classified as highly to very highly susceptible, followed by
the Central and Northern regions at 72.38 and 71.01%, respec-
tively. Conversely, FR analysis presents a more nuanced
picture, with lower percentages of high to very high suscept-
ibility across all regions – 22.75% in the Coastal, 41.20% in the
Central, and 21.75% in the Northern region.

Similar to the regional level, in assessing wildfire sus-
ceptibility within nationally protected natural areas and
the EMERALD potential network in Montenegro, both
F-AHP and FR methodologies show discrepancies in the
distribution across susceptibility categories, with F-AHP
indicating a higher proportion of high and very high sus-
ceptibility areas compared to FR.

In Montenegro, the F-AHP method identifies a signifi-
cant portion of nationally protected natural areas, with
51.88% categorized as highly susceptible and an additional
6.95% as very highly susceptible to wildfires. Similarly,
within the EMERALD regions, the F-AHP method reveals
a dominance of high and very high susceptibility cate-
gories, covering 62.77% of the total area. In contrast, the
FR method suggests lower susceptibility levels, with 17.91%
classified as high susceptibility and 4.77% as very high
susceptibility within nationally protected natural areas.
Similarly, in the EMERALD regions, the FR method indi-
cates 17.92% falling into the high susceptibility category
and 6.86% into the very high susceptibility category.

These differences underscore the importance of con-
sidering the nuances of each methodology’s categorization
approach when evaluating wildfire susceptibility. When
considering validation results, F-AHP demonstrates good
predictive accuracy, as indicated by its higher AUC value
on the ROC curve compared to FR. This suggests that the F-
AHP method is more effective in predicting wildfire sus-
ceptibility based on historical wildfire locations.

The limitations of utilizing low-resolution data and the
subjective nature of F-AHP methods impact the obtained
results, reducing accuracy in geospatial analyses like wild-
fire susceptibility modeling. Similarly, the FR method,
though widely used, oversimplifies complex relationships
between variables and relies heavily on the assumption of
stationarity, potentially leading to biased results due to sensi-
tivity to outliers and skewed data distributions. These draw-
backs should be taken into account when employing these
methods in geospatial analysis.

Overall, while both F-AHP and FR methodologies con-
tribute valuable insights into wildfire susceptibility, F-AHP

appears to offer a more robust and accurate predictive
model, particularly in the context of Montenegro’s land-
scape and environmental causal criteria. However, a com-
prehensive assessment necessitates a thorough exploration
of the distinct strengths and limitations of each method,
taking into consideration factors such as data availability
to various geographical contexts, and their alignment with
geoinfromation functionalities, including geospatial ana-
lysis, data integration, and visualization capabilities.

In future research, it would be beneficial to compare
the F-AHP and FR approaches with machine learning
methods. Additionally, incorporating additional causal cri-
teria that have not been previously used could enhance the
analysis and provide deeper insights into the outcomes. It
would also be valuable to obtain historical fire data directly
from emergency services and field sources. This comprehen-
sive approach could lead to a more thorough understanding
of the effectiveness of these methodologies.

5 Conclusions

A novel approach to geospatial modeling of wildfire sus-
ceptibility has been executed for the first time on a national
scale in Montenegro within geoinformatics environment,
leveraging F-AHP and FR methodologies. This pioneering
endeavor marks a significant advancement in the field, pro-
viding a comprehensive assessment of wildfire susceptibility
across the country. Nevertheless, following validation, the
F-AHP method demonstrates significantly superior perfor-
mance when contrasted with the FR approach. The compar-
ison between F-AHP and FR methodologies reveals varying
degrees of wildfire susceptibility across all regions. The F-AHP
findings highlight significant concerns regarding wildfire sus-
ceptibility across all regions, with the coastal region emerging
as the most susceptible, followed closely by the central and
northern regions. Conversely, FR analysis presents a more
nuanced picture, with lower percentages of high to very
high susceptibility across all regions. The unique characteris-
tics of each region, such as the tourism concentration in the
Coastal, agricultural potential in the Central, and diverse nat-
ural resources in the Northern, further emphasize the need
for tailored wildfire management strategies. The F-AHP
method indicates that a significant proportion of nationally
protected areas in Montenegro and the EMERALD areas are
highly susceptible to wildfires, while the FR method suggests
lower susceptibility levels. The abundant biodiversity and
vast forested areas, comprising over 69% of Montenegro’s
land, render it highly susceptible to wildfires, particularly
evident in its nationally protected areas and EMERALD zones,
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as evidenced by the study’s findings. This study has several
limitations that may affect accuracy. The use of low-resolu-
tion data and the subjective nature of F-AHP reduce precision
inwildfire susceptibilitymodeling. Additionally, the FRmethod
oversimplifies relationships and relies on the assumption of
stationarity, which can introduce bias. These novel findings,
pertaining toMontenegro at a national scale, offer valuable insights
for preemptive wildfire safeguarding efforts. Consequently, it can
be inferred that Montenegro grapples with expansive areas at
elevated susceptibility to wildfires, demanding immediate attention
and robust mitigationmeasures tomitigate the potential for devas-
tating wildfire outbreaks. Moreover, the methodologies employed,
with necessary modifications, hold potential for application in geo-
graphically diverse regions.
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