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Simple Summary: Prolonged stress negatively affects pig health, welfare, and productivity. Herein,
we used a porcine model of stress during the growing period, divided into stressed and control
groups. Stressed pigs experienced reduced space and were mixed twice, leading to decreased
body weight and feed efficiency. Differences in feeding behavior were also observed; stressed
pigs visited feeders less frequently and spent more time per meal. The microbiota of stressed pigs
showed an increase in opportunistic bacteria, while control pigs had a higher abundance of beneficial
butyrate- and propionate-producing bacteria. This study highlights the potential of using specific fecal
microorganisms as non-invasive biomarkers to assess stress and well-being in pigs, with implications
for improving both animal welfare and research applied to the human gut-brain axis.

Abstract: Stress significantly affects the health, welfare, and productivity of farm animals. We
performed a longitudinal study to evaluate stress’s effects on pig performance, feeding behavior,
and fecal microbiota composition. This study involved 64 Duroc pigs during the fattening period,
divided into two experimental groups: a stress group (n = 32) and a control group (n = 32). Stressed
groups had less space and were mixed twice during the experiment. We monitored body weight,
feed efficiency, feeding behavior, and fecal microbiota composition. Compared to the control group,
the stressed pigs exhibited reduced body weight, feed efficiency, fewer feeder visits, and longer meal
durations. In the fecal microbiota, resilience was observed, with greater differences between groups
when sampling was closer to the stressful stimulus. Stressed pigs showed an increase in opportunistic
bacteria, such as Streptococcus, Treponema and members of the Erysipelotrichaceae family, while control
pigs had more butyrate- and propionate-producing genera like Anaerobutyricum, Coprococcus and
HUN007. Our findings confirm that prolonged stress negatively impacts porcine welfare, behavior,
and performance, and alters their gut microbiota. Specific microorganisms identified could serve as
non-invasive biomarkers for stress, potentially informing both animal welfare and similar gut-brain
axis mechanisms relevant to human research.
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1. Introduction

Stress is a body’s non-specific response to challenges that could threaten homeostasis,
health, and well-being [1]. The stress response can be the result of several types of stressors,
including environmental factors and social challenges. Social factors such as isolation,
crowding, and social instability have been shown to induce physiological and behavioral
stress responses in livestock [2]. Pigs, like humans, are social animals adapted to living in
complex social networks, and as happens with humans, some of their stressors originate
from their conspecifics. Pigs form hierarchies at 1–2 weeks of age when they compete to
establish a teat order [3], and whenever these animals are regrouped with unfamiliar ones,
they tend to exhibit aggressive behavior, allowing them to develop new hierarchies [4].
Therefore, post-mixing aggression could be considered an acute factor of stress that compro-
mises welfare and profitability [5]. Another source of social conflict is related to competition
for resources such as food, water, or resting areas [6]. Space is essential in intensive pig
production, as animals tend to stay in crowded environments. According to the current
EU regulation, a pig of 90 kg should have 0.65 m2 [7] but the literature suggests that pigs
with a body weight between 66 and 124 kg should have 0.91 m2, resulting in a higher
average daily gain (ADG) [8]. The greater the deviation from this ideal space allowance,
the higher the competition among pigs becomes. This can be a significant source of social
stress, particularly as the animals grow larger [9].

Maintaining good welfare standards is crucial to ensure optimal pig production. High
stress levels and poor welfare can negatively affect many factors related to pig production
including growth rates, feed efficiency, immune function, reproductive performance, and
health [10]. For example, glucocorticoids, which increase due to stress, stimulate the hy-
pothalamus to secrete somatostatin, inhibiting the secretion of growth hormone (GH) from
the anterior pituitary, affecting animal growth [11]. The reason is that the energy demand
increases when the animal copes with a stress factor, and consequently, the available energy
for functions like growth is reduced. This decrease in growth could be reflected in reduced
productivity and the development of behaviors like tail-biting or excessive fighting [12].
Food intake, daily gain, and body weight affect pig performance [13]. Moreover, stressful
situations can reduce the normal function of the immune system, even suppressing the
response after vaccination [14].

In addition, chronic stress often affects the gastrointestinal tract, disturbing the
microbiome-gut-brain axis and impairing gut barrier integrity, microbiome function, and
metabolism [15,16]. Gut bacteria, which regulate the immune system, can increase the risk
of infection or autoimmune disease in dysbiosis [17]. Moreover, commensal bacteria may
develop an opportunistic phenotype under stressful conditions through pathoadaptive
mutations, which allow these microorganisms to colonize and survive more efficiently.
Pathoadaptive mutations mainly increase the fitness of their microenvironment by improv-
ing nutrient use, aiding immune evasion, or promoting biofilm formation for effective
colonization [18]. Furthermore, depression may increase the dominance of proinflamma-
tory species over health-promoting species [19], and stress and depression can improve gut
barrier permeability, resulting in a “leaky gut” that allows bacteria to get into circulation,
producing a more significant inflammatory response [20]. Other sources of stress, such as
birth, weaning, heat stress, and transport stress, also threaten the intestinal health of pigs,
leading to disruptions in the gut microbiota [21–23].

Human biomedical research benefits greatly from the use of animal models. Pigs’
anatomy, immunology, genome, and physiology are close to humans’ [24]. For example,
the pig brain shares similarities with the human brain, being gyrencephalic, and exhibits
comparable features of structure, vascularization, anatomy, growth, and development. The
gut microbiome of pigs and humans exhibits around a 96% similarity in functional path-
ways [25]. Since the microbiota-gut-brain axis plays a significant role in neuropsychiatric
disorders [26], proposing an animal model that reflects these human-like characteristics
is crucial. Previous research has shown that porcine microbiota-gut-brain interactions are
comparable to those in humans, indicating that pigs can be effectively utilized to study
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the gut microbiota changes after neurological events such as stress [27]. However, we
have identified limitations in current research by examining how stress affects porcine
performance, well-being, and gut microbiota. For instance, as in murine models, gender
bias exists, with previous studies primarily focusing on males [28], neglecting potential
differences in response to stress across genders. Additionally, a lack of longitudinal studies
was noticed, thus failing to capture the dynamic nature of gut microbiota resilience, as the
microbial composition may shift significantly over time in response to stress.

In the present study, a social stress model in pigs was used based on two handling
procedures: half of the pigs tested were mixed twice during the growing period, and a
reduced space allowance was maintained to induce more competition for resources. In
comparison, the other half had more space available and were not mixed. This stress model
was already tested with success in a previous study [29], where it was found that growing
rates differ dramatically between stressed and not-stressed pigs. Therefore, although
behavioral and phenotypic differences are also expected in the present study, its main
objective is to check the fecal microbiota impacts of this long-term stress model in pigs to
identify potential non-invasive fecal microbial biomarkers indicative of animal welfare.
These biomarkers could offer insights into the dynamics of the gut microbial ecosystem
under prolonged stress situations, to better understand the gut-brain axis, potentially
leading to applications in both livestock production and even human health.

2. Materials and Methods
2.1. Experimental Design and Sample Collection

Animal care and experimental procedures were carried out following national and
institutional guidelines for Good Experimental Practices and were approved by the IRTA
Ethical Committee (code: 10329). This study raised 64 healthy Duroc pigs of the same
genetic line (Selección Batallé) at the IRTA experimental farm in Monells (Girona, Spain). The
experiment lasted 131 days, from June (animals were 60 days old) to October. The average
weight of the animals at their arrival was 18 kg, being 18.8 ± 1.78 kg for castrated males
and 18.6 ± 1.64 kg for females, and they were maintained until 140 kg. The 64 pigs were
housed in the same building, in a total of 8 pens (4 control and 4 stress) containing 8 pigs
each (4 castrated males and 4 females). The control pens had a total space of 12 m2 (1.5 m2

per pig) and the stress pens a total space of 8 m2 (1 m2 per pig). In both cases they had the
same type of electronic feeding station, a slatted floor, and a drinker. In addition, all pens
had two pieces of wood as enrichment material. Pigs were vaccinated against Aujeszky
disease at 12 and 16 weeks old. In the four pens considered as stress treatment, animals
were mixed twice during the growing period (Figure 1). The first mixing of animals for the
stress treatment, which consisted of moving just the females among pens, was performed
61 days after the start of the study, and the second one, which consisted of moving just
the castrated males among pens, was performed 22 days later. In both cases, for castrated
males and females, three animals were changed to the other three pens (one per pen), and
the fourth, the smallest female and the smallest castrated male, remained in the original
pen. In this way, mixed pigs did not meet again with their original pen mates (Figure 1).
All animals had ad libitum access to a commercial cereal-based diet consisting of a starting,
growing and finishing formula (Supplementary Table S1).
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Figure 1. Overview of the experimental design, including sampling time-points, sample collection,
and group mixing details.

2.2. Performance and Feeding Behaviour Traits

Body weight (BW in kg) was recorded using a weighing scale. Average daily feed
intake (ADFI in kg) was recorded using IVOG® feeding stations (Insentec, Markenesse,
The Netherlands). This system records feed intake per meal, from which individual daily
feed intake was computed as the sum of all meals in a day. To achieve this, the animals
were identified using ear electronic tags (e-tags), which provide daily records from each
pig, also documenting the number of visits to the feeder and the duration of feeding events
(meal duration in seconds). Additionally, each animal underwent individual monthly
weigh-ins, totaling five times over the experimental period. These comprehensive datasets
were employed to calculate the ADG and feed conversion ratio (FCR).

2.3. Fecal Sampling

Fecal samples were collected three times throughout the experiment between 7:00
and 8:00 a.m. Multiple samplings were planned to gain a deeper understanding of the
dynamics of the gut microbial ecosystem throughout the pig-fattening period and to assess
the effects of short-term stress episodes. The first sampling was performed on 22 July
(07_2022), 52 days from the beginning of the experiment, and five days before the first mix.
The second sampling was performed on 2 September (09_2022), 17 days after the second
mixing event. The final fecal collection was performed on 5 October (10_2022), 50 days
after the second mix (Figure 1). On each sampling day, fecal samples were collected in
sterile tubes and stored at −80 ◦C until DNA extraction.

2.4. Microbial DNA Extraction, Sequencing and Bioinformatic Analysis

Microbial DNA extraction was conducted systematically one week after sample col-
lection using 250 mg of fecal content with the DNeasy PowerSoil Pro kit (Qiagen, Hilden,
Germany) following the manufacturer’s recommendations. DNA concentration and purity
were checked with a nanoDrop One spectrophotometer. Extracted DNA of 60 out of the
64 samples was sent to the Centro de Regulación Genómica (Barcelona, Spain) for paired-
end (2 × 300 bp) sequencing on a single run of an Illumina MiSeq (Illumina, San Diego,
CA, USA). The V3-V4 fragment of the 16S rRNA gene was amplified using the primers
FW (5′-CCTACGGGNGGCWGCAG-3′) and RV (5′-GACTACHVGGGTATCTAATCC-3′).
Sequences were analyzed with QIIME2 [30]; barcode sequences, primers, and low-quality
reads (Phred score < 30) were removed. The quality control process also trimmed sequences
based on the expected amplicon length and removed chimeras. Afterwards, the sequences
were assembled into amplicon sequence variants (ASVs) at 99% identity. After removing
singletons, only those ASVs representing more than 0.0001% of the total abundance were



Animals 2024, 14, 2704 5 of 15

retained. ASVs were classified to the lowest possible taxonomic level from Phylum to
Genus based on a primer-specific trained version of the GreenGenes2 Database (released
October 2022) [31].

2.5. Statistical Analysis and Microbial-Biomarker Identification

Samples were rarefied at 31,731 reads to correct for sequencing depth. The diversity
metrics were estimated with the microeco R package [32]. The α-diversity was evaluated
based on the Shannon index [33], and the β-diversity was assessed using the Whittaker in-
dex [34]. Permutational multivariate analyses of variance (PERMANOVA) were performed
to assess the effect of sex [35]. To identify microbial biomarkers associated with state
transitions (e.g., control vs. stress conditions), we utilized the NetMoss2 algorithm, which
applies a network-based differential abundance approach [36]. This methodology focuses
on shifts in microbial network modules rather than comparing the abundance of individual
bacteria, allowing the integration of large-scale microbial datasets. The procedure was
implemented step-by-step as follows:

Network Inference: The raw genus abundance matrix for each condition was used to
infer a co-occurrence network using the SparCC algorithm [37]. This approach is ideal for
handling sparse compositional data, ensuring robust network construction. The control
and stress networks (six networks in total) were subsequently integrated into two com-
prehensive networks (one for control and one for stress), and batch effects were corrected
using a univariate weighting methodology [36]. Network graphical representation was
created with CytoScape [38], and the topological parameters of the network and ‘node’
centralities values were calculated using the CentiScaPe plugin [39].

Module Detection: Modules within these networks were identified using the Weighted
Gene Co-Expression Network Analysis. This step allowed the detection of microbial
taxa that cooperatively interact within the same module while maintaining competitive
interactions between different modules. The connection strength of node i defined as the
sum of the connections between this node and all other nodes in the network, as:

ki =
n

∑
j = 1

aij (1)

Herein, aij represents the correlation coefficient between node i and node j. While the
importance of nodes in the module structure of the network was estimated as:

kij =
n1

∑
j = 1

aij −
n

∑
j = n1+1

aij (2)

where n represents the number of all nodes in the network and n1 represents the number of
nodes inside a specific module.

Driving Force Calculation: The contribution of each node (bacterial genus) to the
transition between the control and stress networks was calculated for each genus using the
following model:

NMSS(i)A→B =
NeighborsA

∑
j

∆Dij −
NeighborsB

∑
l

∆Dij (3)

where A and B represent the control and stress networks, respectively. D denotes the
differential module distance matrix, Neighbors A includes all neighboring modules in the
control network, and Neighbors B represents all neighboring modules in the stress network.
The intersection modules represent the stable elements during the transition from health
to disease, where the transited modules resulted in alteration of the network structure. In
this way, the model quantifies the shift in module structure, highlighting microbial taxa
that drive network changes between the experimental conditions. The whole pipeline was
performed independently within each sampling time and later conducted longitudinally
by integrating the three sampling points (following the NetMoss2 multiple files mode).
The FDR method was employed to correct for multiple testing (FDR < 0.05). Finally, the
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classification performance of the microbial biomarkers was evaluated by using 10-fold
cross-validation to implement the ‘netROC’ function within NetMoss2.

3. Results
3.1. Effect of Stress on Animal Performance and Feeding Behaviour

Animals from the control group were, on average, 7.09% heavier (136 kg; p < 0.0001)
than those from the stress treatment (127 kg; Figure 2, Table 1). In addition, the control
group had a 6.32% extra ADG (1.01; p = 0.0001) than the stress group (0.95; Table 1).
Differences in feeding behaviour were also detected, with pigs in the control group showing
a higher frequency of visits to the feeder (719; p = 0.022) than the stress group (589; Table 1).
Additionally, pigs from the control group spent less time feeding per day (74.6 min; p = 0.028)
than their counterparts in the stress group (75.8 min; Table 1).
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Figure 2. Comparative evolution across the experiment of mean of body weight (BW) and the
standard error between control (solid blue line) and stress (dotted red line).

Table 1. Summary of mean phenotype differences and standard error (se) between control and stress
group along the experiment.

Trait Control (se) Stress (se) p-Value

Body weight (BW kg) 136 (1.49) 127 (1.35) <0.0001
Average daily gain (ADG kg) 1.01 (0.01) 0.95 (0.01) 0.0001

Feed conversion ratio (FCR kg) 2.93 (0.18) 2.87 (0.16) 0.048
Total number of visits 719 (0.75) 589 (0.54) <2 × 10−16

Total feed time per day (min) 74.55 (3.61) 75.83 (3.97) 0.028

3.2. Impact of Stress on the Diversity and Composition of Fecal Microbiota

This study used 16S rRNA gene sequences from 60 fecal samples of Duroc pigs col-
lected across three time-points (180 records) of the growing-finish period to determine
the impact of prolonged stress challenge on the diversity and composition of pig fecal
microbiota. After quality control, a total of 9.8 × 106 reads were retained to detect 1124 Am-
plicon Sequence Variants (ASVs). In agreement with previous reports [25,40], the dominant
bacterial phyla across the three time-points were Firmicutes and Bacteroidetes, and the five
most abundant genera were Lactobacillus, Limosilactobacillus, Clostridium, Streptococcus, and
Prevotella (Supplementary Figure S1). Of the 1124 ASVs, 91.28% (1026 ASVs) were consis-
tently identified across the three sampling points (Figure 3A). Sample distribution based
on the Bray-Curtis distance matrix is represented in Figure 3B. Non-significant variations
in Shannon-alpha diversity levels were observed between the experimental conditions
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(Figure 3C). Supplementary Table S2 shows the observed patterns of alpha-diversity using
Simpson, Chao1, and ACE indices. Beta-diversity did not show statistically significant
differences between the groups (p = 0.06); however, there was a noticeable trend suggesting
a more uniform fecal microbiota in the control group compared to the stress group at the
end of the experiment (Figure 3D).
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The results of the PERMANOVA analysis indicate that under our experimental condi-
tions, sex plays a minor role (p > 0.05) in shaping the structure of the microbial community.
In addition, no significant differences in the abundance of genera were observed between
females and castrated males. The number of bacterial biomarkers varied according to the
sampling day: six at the first time-point (07_2022), 23 at the second (09_2022), and 15 at
the last (10_2022). A detailed description of the bacterial biomarkers at each sampling
time-point can be found in Supplementary Table S3. The topological parameters of inferred
networks also differed between the two experimental conditions, with lower connectivity
(node degree in control = 15.23 vs. stress = 13.81, p = 0.03) in the co-occurrence network
derived from the stressed animal in comparison with the one from the control group
(Supplementary Figure S2).

In addition, the NetMoss2 pipeline allowed us to consolidate the genera abundance
matrix generated across the experiment into two comprehensive, integrated co-occurrence
networks (one for the control and one for the stress group), thus offering a more comprehen-
sive picture of the microbial abundance dynamics throughout the growing-finish period.
As illustrated in Figure 4, important distinctions between the stress and control groups
were found, with 18 genera showing significantly differential abundance patterns and a
moderate ability to distinguish between the two experimental conditions (AUC = 0.77).
Compared to their control counterparts, the fecal microbiota of the stressed pigs exhibited
a lower relative abundance of Coprococcus (FDR = 0.042), DSXL01 (FDR = 0.021), SFDB01
(FDR = 0.021), and HUN007 (FRD = 0.023) genera. A contrasting trend was observed for
the other 14 genera including the enrichment of the opportunistic bacteria Holdemanella
(FDR = 0.034) and Collinsella (FDR = 0.097). The genera Phascolarctobacterium (FDR = 0.021),
Megasphaera (FDR = 0.015), Intestinibacter (FDR = 0.021), and four members of family
Lachnospiraceae [Blautia (FDR = 0.063), Bariatricus (FDR = 0.015), Dorea (FDR = 0.022), and
Marvinbryantia (FDR = 0.049)] were also enriched in the stress group.
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patterns, with red circles denoting genera enriched in the stress group and blue ones enriched in the
control group.

4. Discussion

The results of this study offer a comprehensive understanding of the relationship
between social stress in pigs and its effects on animal performance, behavior, and microbiota
during the growing-finish period.

In the present study, two sources of stress were combined; mixings of unknown
animals and reduced space allowance. Previous research has shown that the regrouping
of pigs typically results in intense fighting as they establish a new dominance hierarchy,
causing significant stress to the animals [41]. This often results in wounds and depressive-
like performance including elevated plasma cortisol concentrations, affecting immune
function [42], metabolic, and endocrine responses in pigs negatively [43]. In fact, mixed pigs
have poorer growth performance [44]. The smaller the floor space, the more aggressions
occur after mixing animals, which affects the formation of a stable hierarchy [45]. Mixtures
also present a long-term effect, in addition to the already known acute stress effect [44].
Space allowance affects competition for resources by limiting access to food, water, and
resting areas, among other factors [6,45], especially when animals become older due to
their higher body weight, which leads to a decrease in ADG and increase in FCR (9).
Moreover, this competition for space is an excellent long-term stressor, since it provides an
increment of aggressions and injuries [46,47]. Therefore, the pig model used in the present
study, already used in the past by Fonseca et al. [29,48], combined acute and chronic stress
factors. In addition, consistent with previous reports, our results confirm that prolonged
social stress during the growing period significantly influences pig productivity, including
a reduction in body weight, average daily gain, and feed efficiency, impacting feeding
behavior and altering the fecal microbial ecosystem [28,49–51]. In any case, it is important
to note that other sources of stress could have other effects on the animals’ physiology and
microbiota, so the results found in the present study should not be generalized to any stress
factor affecting pigs.
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Moreover, in agreement with previous reports [16,19,28,52] no stress impact on the
fecal microbiota’s Shannon-alpha diversity was perceived (Figure 3). Notably, 91.28% of
the total ASVs were observed to overlap across the three sampling points (Figure 3A). This
fact may suggest that the stress challenge prompted differences in the relative abundance
of species rather than in species richness between the experimental conditions. Several
bacterial biomarkers were identified, with a higher number detected at the second sampling
time (09_2022), as compared to both the initial (07_2022) and final (10_2022) samplings
(Supplementary Table S1). We hypothesize that observed differences between time-points
could be attributed to the proximity between the mixed-stress event and sampling col-
lection (17 days after the mix for the second sampling, as opposed to 51 and 50 days for
the first and last samplings, respectively). In fact, this second sampling was selected to
assess this acute effect of the social stress model, while the third (one month later) was
selected to assess a more chronic effect. In any case, similar results have been reported in
mice where stress significantly modulates the microbiota, mainly when the samples were
assessed closely after stressor exposure [53]. We also observed that 56.52% of the genera
identified at the second time-point were not detected in the integrated analysis or any of
the two additional sampling points. This suggests potential changes in the gut microbiota,
particularly involving stress-enriched bacteria. These include opportunistic genera like
Bulleidia, Streptococcus, Treponema, and UBA636 (a member of the Erysipelotrichaceae family).
Conversely, a reduction in the abundance of beneficial bacteria such as Anaerobutyricum,
Enterenecus, or Peptococcus was observed. These findings may be indicative of fecal micro-
bial signatures associated with acute or short-term stressful situations. Consistent with
our findings, a recent study reported the enrichment of opportunistic genera Streptococcus
and Treponema in response to a 28-day social stress in growing pigs [28]. The longitudinal
dynamics of the abundance of the bacteria mentioned above are shown in Supplementary
Figure S3. After the shifts caused by the acute stress episode, the relative abundance
of these genera tends to recover close to its original values at the third sampling point,
demonstrating the resilience of the microbiota after a perturbation. On the other hand, as
three different diets were used during this study (Supplementary Table S1), some effect of
this on the differences observed between the sampling periods cannot be ruled out.

Microbial signatures characterized by a reduction in the abundance of Coprococcus,
DSXL01, SFDB01, and HUN007 (a member of family Ruminococcaceae), along with the
enrichment of Collinsella, Phascolarctobacterium, Marvinbryantia, and ER4 genera were consis-
tently observed in both the integrated analysis and at least two of the three sampling points,
each separated by a minimum of 42 days. Hence, we propose these bacterial signatures
as fecal indicators after prolonged stressful stimuli during the growing-finish period in
pigs. As previously documented and confirmed by our findings, stress challenges prompt
changes in the microbiota composition. Gut inflammation caused by stress may lead to
the proliferation of pathogenic or opportunistic bacteria [15]. This could also be explained
by the higher abundance of Bulleidia, Streptococcus, Treponema, and members of the family
Erysipelotrichaceae in the group of stressed pigs. As previously reported by Nguyen et al.,
Streptococcus and Treponema were enriched in their stressed porcine model. The increase of
Streptococcus abundance has been previously associated with major depressive disorder
(MDD), and could play a role in the modulation of inflammatory response in depression
patients [54,55]. Regarding feed efficiency, Kubasova et al. [56] studied the association
between gut microbiota and RFI, showing that pigs with a high RFI (less efficient) had an
increased abundance of Erysipelotrichaceae and Collinsella, and an increased abundance of
Streptococcus after sanitary stress. Moreover, lower levels of members of Erysipelotrichaceae
and Streptococcus were also reported in pigs with low RFI by McCormack et al. [57]. These
results follow our findings; these three bacteria were enriched in the stress group, showing
lower feed efficiency than the control group. Among the genera associated with long-term
stress highlighted by the integrated analysis, we focus on the genera Collinsella, Holde-
manella, Phascolarctobacterium, Marvinbryantia, and ER4. Collinsella’s pathobiont nature is
related to several human diseases, like irritable bowel syndrome [58], Alzheimer’s disease,
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and autism spectrum disorder [59]. The pathogenic potential of Collinsella may be attributed
to its capacity to enhance gut permeability and inflammation [58,60]. Holdemanella, a genus
from the Erysipelotrichaceae family, was previously associated with a psychological stress
model in rats [61], has recently been proposed as a microbial indicator of subordinance
in pigs [62], and is linked to neurological disorders such as Alzheimer’s disease [63], and
obsessive-compulsive behavior [64]. Even though the genus Phascolarctobacterium and
members of the Lachnospiraceae family (Blautia and Dorea) were enriched in our stress group,
previous studies have reported a negative association of these bacteria with psychological
stress and potential beneficial effects for the host [65–67]. However, it is important to
mention that observed patterns may be related to the individual’s resilience to stress. In
mice, He et al. [68] revealed a correlation between stress resilience and mice microbiota
composition in which stress-resistant mice exhibited lower levels of members of the family
Lachnospiraceae including Blautia and Roseburia genera. Therefore, further investigation
into the role of these genera is necessary to better understand their function under stress
conditions. In line with our findings, a recent study [28] also observed an increase in
Marvinbryantia abundance in a porcine stress model, while ER4 has also been reported
in many depression diseases, with an increased or reduced abundance depending on the
study [54].

Coprococcus, a butyrate- and propionate-producing bacterium, is particularly inter-
esting in terms of well-being indicators. Several lines of evidence across humans, murine
models, and pigs support the decrease or depletion of Coprococcus because of different
stressful scenarios. In humans, Coprococcus has been associated with a higher quality of life
and is depleted in depression [69]. This genus was found also depleted in rats exhibiting
depressive behavior after fecal transplantation from depressed human donors [70], and
confirmed by meta-analysis as negatively associated with major depression and anxiety dis-
order in humans [55,71]. It is noteworthy that Coprococcus was the only genus consistently
identified in our study as most abundant in the control group compared with the stress
group throughout the experiment (Supplementary Table S3). This result is in line with a
recent report showing the reduction of Coprococcus levels in the colon of crossbreed stressed
male pigs [28]. HUN007, another genus linked to well-being, produces succinate [72,73],
and belongs to the family Ruminococcaceae. Previous evidence supports the depletion of
HUN007 in MDD [19] and other neurological disorders like schizophrenia [72].

Previously mentioned microbial signatures, which we propose as indicators of stress
or well-being, could play an important role in livestock health, production, and even be
applied to human research [74]. Observed shifts of fecal microbiota give us an approach to
how the microbial ecosystem evolves under stress conditions. Likewise, acquired knowl-
edge of enriched stress bacteria could be relevant for monitoring animal welfare and the
detection of stressed pigs on farms. Our approach allows the identification of non-invasive
fecal biomarkers that after standardization could provide valuable information regarding
the welfare status of the animals. For example, this can be achieved by quantitative real-
time PCR or target sequencing approaches to quantify their prevalence, allowing rapid and
accurate monitoring of animal welfare. Moreover, our results could be a starting point for
proposing a microbial consortium that could be employed to reduce the negative effect of
stressful stimuli and improve mood and productivity during the porcine growing-finish
period. However, it is important to note that the model used in the present study addresses
a very specific type of social stress that combines two different management strategies, a
reduced space allocation that will impact animals chronically by increasing competition for
space and mixing animals twice during the growing period that affects animal welfare more
acutely. Although it is impossible to separate both factors, because the stress treatment is
based on the combination of both, the result on the microbiota shows how some effects are
maintained over time (so they could be related to the chronic consequences of the model)
and others disappear after the mixtures (so they could be related to the acute consequences
of the model). Furthermore, Ochoteco et al. [62] found how another intrinsic factor of social
stress (in this case not controlled by the researchers) such as being subordinate or dominant
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within the group also impacts the microbiota, characterized by a higher abundance of
beneficial genera Faecalibacterium and Peptococcus and a lower prevalence of Holdemanella in
the microbial ecosystems of dominant pigs compared with subordinates. Therefore, it is
evident that social stress caused by mixing, competition for space, or even social status, in
addition to affecting welfare and performance in pigs, produces changes in the microbiota,
mainly focused on an increase in opportunistic microorganisms and reduction in SCFA
producers in the social stressed animals. However, although we observed that the gut
microbial ecosystem of pigs exhibits resilience following disturbances caused by acute
stress episodes such as mixing, our findings suggest potential fecal microbial biomarkers
that may be associated with long-term stress conditions, acute stress episodes, and overall
well-being. Further validation is necessary to determine at what level these changes are
applicable to other types of stressors and can be used as an assessment tool for global
animal welfare statuses.

Future research will be focused on investigating the effects of this consortium in a
targeted manner using various animal models, including germ-free mice and different
breeds of pigs. Once this methodology has been validated with these models, we propose
advancing to studies related to human health, using the pig as a model to better under-
stand the microbiome-gut-brain axis, and to mitigate the adverse effects of neurological
disorders and proposed potential psychobiotics. A plausible mechanism of action could be
through the SCFA production capacity of most well-being indicators, including butyrate,
propionate, acetate, and succinate. A recent report showed that a higher relative abundance
of butyrate producers is associated with a lower risk of hospitalization for infections [75].
Moreover, consistent with our study, stress leads to a depletion of butyrate producers
with a subsequent enrichment of opportunistic bacteria, which may be detrimental to
animal health [28]. SCFA-producing bacteria have been previously reported to be involved
in developing resilience to stress [76], and the administration of SCFA to stressed mice
helped to reduce long-lasting changes in mood, sensitivity to stress, and increased leakiness
in the gut caused by stress [77]. Another modulatory strategy could be through dietary
interventions using prebiotics, fecal microbiota transplantation, or the administration of
psychobiotics that can restore abnormalities in the gut microbiota and abnormal brain
function through the brain-gut-microbiota axis [78]. Finally, our results suggest the benefits
of employing the pig as a biomedical model to gain deeper insights into the impact of social
stress on humans. The striking parallels between our findings and alterations in human
gut microbiota during periods of prolonged stress or neurological disorders highlight the
relevance of a porcine model to understand better the role of the gut-brain axis with a dual
focus on animal welfare and human well-being.

5. Conclusions

Our findings underscore the impact of prolonged stress on various aspects of pig
performance, feeding behavior, and the composition of porcine fecal microbiota. Pheno-
typically, the social stress assessed in the present study manifests in reductions in body
weight, average daily gain, and feed efficiency. The fecal microbiota analysis of stressed
pigs revealed an enrichment of potentially opportunistic bacteria, including Streptococcus,
Treponema, and several members of the Erysipelotrichaceae family, alongside a reduction of
beneficial SCFA-producing bacteria. The longitudinal evaluation throughout the growing-
finish period enables us to propose non-invasive fecal microbial biomarkers reflecting short
and long-term stress events. Monitoring shifts of these biomarkers could enhance the
assessment of pig welfare. The identified bacterial indicators of welfare may serve to design
microbial consortia to alleviate stress during the growing period, thereby improving pig
performance, welfare, and health. Additionally, some of these biomarkers hold promise as
potential psychobiotics, offering a model for studying gut-brain axis disorders in humans,
therefore, in the context of One-health, opening the possibility to impact both veterinary
and biomedical research for pigs and humans.
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