

Optimizing the vacuum assisted resin infusion process for carbon fiber laminates with Akelite resin

David Martín Crespo Dra. Raquel Verdejo Márquez Dr. Miguel Ángel López Manchado

MATRICES FOR SUSTAINABLE COMPOSITES

Bio-based matrices

- Commercial grades with up to 30 % biobased
- Similar properties
- Limited recyclability

Vitrimers

Dynamic covalent bonds

- ✤ Reprocessability
- ✤ Recyclable

Thermoplastic

- Reprocessability
- ✤ Recyclable
- ↔ High viscosity → reactive systems

AKELITE RESIN

- Patented by CSIC, acrylic based resin
- 100% Circular recover both fibers and matrix
- Conventional fabrication processes: RTM, VARI...

- Controlled and mild processing parameters
- Easy impregnation of commercial fibers
- Production of semi-elaborates

Laminate	% FC weight	Thickness (mm)					
			Longitudinal		Transversal		ILSS (MPa)
			σ _{max} (MPa)	E (GPa)	σ _{max} (MPa)	E (GPa)	
Akelite	65,8	$1,4 \pm 0,1$	1.045 ± 59	59 ± 4	79 ± 5	5,1 ± 0,5	58 ± 1
Epoxy (Resoltech)	69,6	1,4 ± 0,1	957 ± 67	59 ± 7	90 ± 5	6,6 ± 0,8	50 ± 3

AKELITE RESIN

Prototypes

Thermoforming

RECYCLING

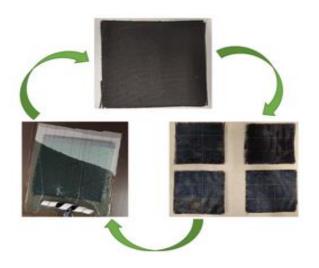
Method Immerse the laminate in acetone.

Time18 hours.

Result

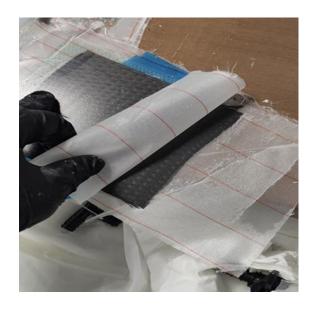
The carbon fiber panels could be separated, managing to remove more than 95% of the resin they had.

Acetone and resin recovery


Evaporation - condensation process: rotary evaporator

RESULTS RECYCLING

Test	Virg	in	Recycling		
Flexural	Longitudinal	Transversal	Longitudinal	Transversal	
σ (MPa)	488 ± 92	293± 99	469 ± 59	346 ± 75	
E (GPa)	23 ± 7	15 ± 6	24 ± 3	16 ± 4	
ILSS (MPa)	32 ±	: 2	26 ± 6		



VARI OPTIMIZATION

Stage	Temperature, °C	Time, h	PB, %	Vacuum, %	
1	70	2	1	100	
	70	2	2	100	
	70	2	3	100	
2	70	2	3	80	
3	60	2	3	100	
	70 + 80	2 + 1	3	100	

- Economical
- High fiber content
- Large dimensions

VARI OPTIMIZATION

Stage	Laminate	Longitudinal		Transversal		ILSS (MPa)
		σ _{max} (MPa)	E (GPa)	σ _{max} (MPa)	E (GPa)	
1	1-2	529.2 ± 59.3	44.6 ± 17.2	60.1 ± 4.0	1.4 ± 0.6	45.2 ± 2.7
	3-4	879.2 ± 35.0	54.9 ± 5.0	85.5 ± 8.0	2.7 ± 0.4	58.5 ± 2.4
	5-6	927.8 ± 72.0	57.0 ± 3.2	89.7 ± 7.4	2.4 ± 0.4	57.8 ± 4.3
2	7-8	856.1 ± 27.2	51.6 ± 5.6	69.7 ± 4.6	3.0 ± 0.4	53.0 ± 5.7
3	9-10	732.4 ± 62.5	54.0 ± 5.3	78.0 ± 2.5	2.0 ± 0.7	57.5 ± 3.3
	11-12	983.9 ± 22.0	52.7 ± 5.5	81.2 ± 6.0	2.9 ± 0.4	59.2 ± 1.9

- ✤ UD carbon fiber 12K, 340 g/m² weight.
- 20 x 11 cm laminates and 4 plyes (45 μm thickness).
- ✤ 2 laminates per condition.

Characterization

- 3P bending in longitudinal and transverse - UNE-EN ISO 178:2020.
- Interlaminar shear strength (ILSS) -UNE-EN ISO 14130:2003.

CONCLUSIONS

- The optimal conditions for manufacturing carbon fiber laminates with Akelite resin were 70°C for two hours, 100% vacuum and with 3% initiator.
- Recycling for laminates with Akelite resin is simple and fibre and resin can be recovered in addition to the solvent used.
- The property values obtained were very good and capable of competing with laminates made with thermoset matrices.
- Replace the carbon fiber reinforcement with natural fibers such as line or basalt.

ACKNOWLEDGMENTS

Contact: d.martincre@ictp.csic.es

Proyecto TED2021-130201B-C31 financiado por MICIU/AEI/10.13039/501100011033 y por la Unión Europea NextGenerationEU/ PRTR

Financiado por la Unión Europea NextGenerationEU

