eurecal **Development of epoxy**vitrimers as versatile reversible estructural adhesives

<u>Marc Surós</u>, David Santiago, Pere Verdugo, Marina Pedrola, Silvia De la Flor

Benefits and drawbacks of thermosetting adhesives

Vitrimers as reversible adhesives

Vitrimers are a type of thermosetting polymers that can undergo

Chem. Eng. J., **2020**, 385, 123820. Prog. Polym. Sci., **2018**, 80, 39-93

2

Polymer formulations

Formulation	DG	SUCC	TMP	1MI	
Formulation	(wt.%)	(wt.%)	(wt.%)	(wt.%)	
DG:SUCC:TMP-1:1:1	53.3	31.4	14.0	1.3	
DG:SUCC:TMP-1:1:0.8	54.9	32.3	11.5	1.3	
DG:SUCC:TMP-1:0.8:1	58.6	27.6	12.3	1.4	
DG:SUCC:TMP-1:0.8:0.8	60.1	28.3	10.1	1.4	

Thermomechanical and vitrimeric characterization

Adhesion and re-adhesion methodologies

Single lap joint

Failure surface

Re-adhesion setup

Coated plates

Debonded joint

Pristine adhesion

Re-adhesion after failure

Re-adhesion after thermal

debonding

Self-welding

Adhesion and re-adhesion results

eurecat

Formulation	Bond line thickness (mm)	Lap shear stress (MPa)	Re-adhesion after failure (MPa)		Re-adhesion thermal debo (MPa)	after onding	Adhesion after self-welding (MPa)	
DG:SUCC:TMP-1:1:1	0.2	25.6 ± 2.3	11.0 ± 2.5	(43 %)	12.7 ± 2.6	(50 %)	8.4 ± 1.7	(33 %)
DG:SUCC:TMP-1:1:0.8	0.2	23.4 ± 2.1	9.5 ± 2.0	(41 %)	12.3 ± 2.5	(52 %)	6.9 ± 1.0	(29 %)
DG:SUCC:TMP-1:0.8:1	0.2	20.2 ± 1.8	12.2 ± 1.7	(60 %)	10.5 ± 4.1	(52 %)	13.4 ± 5.9	(67 %)
DG:SUCC:TMP-1:0.8:0.8	0.2	25.8 ± 2.9	7.2 ± 2.1	(28%)	16.4 ± 3.1	(63%)	5.7 ± 2.1	(22%)

Adhesion and re-adhesion results

Effect of bond-line thicness

Formulation	Bond line thickness (mm)	Lap shear stress (MPa)	Re-adhesion at (MPa	fter failure)	Re-adhes thermal d (MF	ion after ebonding Pa)	Adhesion after self- welding (MPa)		
DG:SUCC:TMP-1:0.8:1	0.2	20.2 ± 1.8	12.2 ± 1.7	(60 %)	10.5±4.1	(52 %)	13.4±5.9	(67 %)	
	0.5	15.4 ± 1.8	6.2 ± 2.8	(40 %)	11.4±3.5	(74 %)	6.1±1.0	(40 %)	
	1	12.6 ± 1.9	6.9 ± 0.8	(55 %)	11.3±3.9	(90 %)↓	5.5±2.4	(44 %)	
	0.2	25.8 ± 2.9	7.2 ± 2.1	(28%)	16.4±3.1	(63%)	5.7±2.1	(22%)	
DG:SUCC:TMP-1:0.8:0.8	0.5	20.8 ± 1.8	8.5 ± 3.4	(40%)	13.5±0.9	(65%)	7.8±4.2	(38%)	
	1	14.3 ± 1.3	5.0	(35%)	13.7±0.6	(96%)	8.6±2.4	(60%)	

Adhesion and re-adhesion results

Effect of bond-line thicness

Thicker bond-line thicknesses **improve re-adhesion** performance (covalent forces), but **adversely affect adhesive forces**. **Superficial modification** can increase adhesive forces without affecting cohesive interactions, potentially reducing this compromise.

Surface treatment methods

A) Degreasing surface preparation methods:
 S0 Mechanical abrasion and acetone wiping
 S1 Degreasing solution
 S2 Mechanical abrasion and degreasing solution

B) Plasma exposure surface preparation methods:
S3 Plasma exposure (5 min)
S4 Plasma exposure (5 min) and abrasion
S5 Plasma exposure (10 min) and abrasion

C) Chemical etching surface preparation methods:
S6 Nitrate etching solution
S7 NaOH 0.1 M etching solution (ultrasounds)
S8 P2 etching solution

 $135g/LFe_{2}(SO_{4})_{3}$ 30% H₂SO₄

eurecat

Surface treatment adhesion results

High dispersion of results. Need of statistical analyses.
 Superficial treatments affect pristine adhesion as well as readhesion methodologies.
 Re-adhesion methodologies are influenced differently by superficial treatment.

eurecat

Pristine adhesion and re-adhesion after failure

Re-adhesion after thermal debonding

Adhesion after self-welding

Superficial characterization

Before bonding SO

After adhesive failure (S0)

7.3405 mm ETD SE 12 000 x 15.00 kV 17.3 µm 50 pA 0.0 °

 WD
 det
 mode
 mag
 ⊞
 HV
 HFW
 curr

 7.1251 mm
 ETD
 SE
 5 000 x
 5.00 kV
 41.4 µm
 0.10 nA
 UR

B WD det mode mag ⊞ HV HFW curr 7.1350 mm ETD SE 5 000 x 5.00 kV 41.4 μm 0.10 nA

14

Superficial characterization

Before bonding S2

After adhesive failure (S2)

eurecat

Superficial characterization

Before bonding S7

WD det mode mag
 HV HFW curr tilt
 3.8789 mm ETD SE 1 200 x 15.00 kV 173 μm 50 pA 0.0 °

After bonding(S7)

Effect of superficial treatment

Results comparison

Formulation	Bond line thickness (mm)	Superficial treatment	Lap shear stress (MPa)	Re-adhesion after failure (MPa)		Re-adhesion after thermal debonding (MPa)		Adhesion after self- welding (MPa)	
	0.2		20.2 ± 1.8	12.2 ± 1.7	(60%)	10.5 ± 4.1	(52%)	13,4 ± 2.1	(67%)
0.1 DG:SUCC:TMP-1:0.8:1	0.5	SO	15.4 ± 1.8	6.2 ± 2.8	(40%)	11.4 ± 3.5	(74%)	6.1 ± 1.0	(40%)
	1		12.6 ± 1.9	6.9 ± 0.8	(55%)	11.3 ± 3.9	(90%)	5.5 ± 2.4	(44%)
		S2	23.9 ± 8.5	5.9 ± 3.1	(25%)	16.2 ± 1.8	(68%)	10.4 ± 1.1	(44%)
	4	S6	22.4 ± 3.6	10.8 ± 4.0	(48%)	14.7 ± 2.1	(66%)	5.3 ± 3.1	(24%)
		S7	15.9 ± 1.7	12.0 ± 3.0	(75%)	14.8 ± 3.0	(93%)	12.6 ± 2.5	(79%)
		58	15.1 ± 1.6	12.8 ± 2.5	(85%)	16.3 ± 2.9	(108%)	10.5 ± 3.4	(70%)

Conclusions

- Different vitrimer formulations were obtained using commercial reagents. They can be tweaked to obtain different glass transition temperatures and stress-relaxation behaviors.
- When tested as adhesives, they showed high adhesion strength and could be readhered, self-welded or debonded on demand thanks to their vitrimeric characteristics.
 Study of bond-line thickness showed that thicker BLs imply a decrease of pristine adhesion strength but an improvement of re-adhesion performance.
- Surface treatment technology not only improved pristine adhesion strength but also improved re-adhesion performance.

"innovating with businesses"

Thank you

Before bonding

Superficial characterization

After adhesive failure

Effect of superficial treatment

Surface characterization

Treatment	As received	S0	S2	S4	S6	S7	S 8
Apparent water contact angle (º)	38.4	88.9	13.4	45.3	22.9	23.9	8.3