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Introduction
Background and objective
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• Non-renewable

• Causes CO2 emissions

• Not accessible worldwide

• Renewable

• Minimize CO2 emissions

• Accessible worldwide

Lignin

Vanillin

Lignocellulose

Thermoplastics

Thermosets

• Poor mechanical performance

• Low chemical resistance

• Good reprocessing 

• Recyclable

• Good mechanical performance

• High chemical resistance

• Not reprocessing 

• Not recyclable

Vitrimers

Objective:

Synthesize an epoxy monomer,

derived from renewable sources,

used it to prepare epoxy-based

vitrimers, and demonstrate that it

can be used for functional

adhesives and composites



Introduction
Synthesis of monomer from vanillin and cystamine (Cyst-BVGE)
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• Easy procedure and purification. 

• High yield obtained, 78% in the first step and quantitative in the second step.

• The whole process is sustainable (use of Me-THF as solvent).

• No epoxide ring opening was observed during the imine condensation 

reaction. 

• The monomer is a viscous oil at 40-50 ºC.

The incorporation of aliphatic imine and disulfide groups, involved in the

exchange reactions, are part of the epoxy monomer. Theoretically, any

curing agent suitable for epoxy resins to obtain a vitrimer.



Results
Formulations and thermal characterization
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Curing of Cyst-BVGE with different amines

• The formulations were prepared between 40 and 50 ºC.

• All formulations present a single broad curing peak, with no 

significant differences between the amines. 

• The heat of reaction corresponds with that reported in the 

literature.

• The curing was performed 2 h at 120 ºC, 2 h at 140 ºC and 1 h 

at 160 ºC. 

• All formulations present high Tgs, around 90 ºC.

Formulation
Tpeak

(ºC)

ΔH 

(kJ/ee)

Ttanδ

(ºC)

FWHM 

(ºC)

E’g

(MPa)

E’r

(MPa)

Cyst-BVGE/TREN 105 87 88 14 2570 16

Cyst-BVGE/IPDA 114 93 90 13 2467 15

Cyst-BVGE/m-XDA 112 86 85 17 3015 12

Cyst-BVGE/DAC 117 84 87 12 2510 16
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Results
Thermal stability

77

Formulation T2% (ºC) Tmax (°C) Char yield (%)

Cyst-BVGE/TREN 245 323 32.8

Cyst-BVGE/IPDA 240 326 27.5

Cyst-BVGE/m-XDA 236 326 38.9

Cyst-BVGE/DAC 222 328 27.7

TGA curves TGA 1st derivative curves TGA isotherm at 160 ºC (3h)

• Very similar degradation rate in all the formulations.

• A shoulder can be observed in all formulations, which can correspond 

to more labile bonds (imine and disulfide).

• Only ≈ 0.7 % weight loss after 3 h at 160 ºC.



Results
Vitrimer characterization
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Sample τ (s) Tv (ºC) Ea (kJ/mol) Ln A (s) R2

Cyst-BVGE/TREN 1.7 26 71 19.30 0.98

Cyst-BVGE/IPDA 3.9 29 70 18.12 0.99

Cyst-BVGE/m-XDA 1.9 46 45 12.01 0.98

Cyst-BVGE/DAC 25.6 -38 64 14.68 0.99• Most formulations achieve complete relaxation in less than 1 min at 160 ºC.

• The topology freezing temperature (Tv) is far below the Tg of the material, 

then the relaxation temperature will be fixed by the Tg. 
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Results
Vitrimer characterization
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Angell fragility plot

• The materials do not present significant creep below the Tg (T > 90 ºC).

• The Angell fragility plot shows lower viscosity than the reference (grey line) corresponding to an ideal strong liquid.

Creep (Cyst-BVGE/IPDA)
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Results
Functional adhesives and composites
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Shear stress (MPa)

First 

adhesion

Re-adhesion after 

break

Re-adhesion after 

self-welding

Re-adhesion 

after debonding

Cyst-BVGE/IPDA 7.3±0.6 6.3±1.6 (86.2%) 7.2±3.1 (97.5%) 6.7±1.2 (90.9%)

Set-up for re-adhesion

Self-welding 

assembly before 

making the 

adhesive bond.

Re-shaping of 

carbon-fiber 

composites through 

hot-pressing 

Self adhesion of composite pieces

Self-healing process after 1 h, 160 ºC, and 

no external pressure



Results
Mechanical recycling
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(a) Virgin grinded Cyst-BVGE/IPDA sample

(b) Sample after mechanical recycling at 140 ºC and 0.4 MPa 

for 1 h. No remarkable differences were found in the 

thermomechanical properties of the recycled 

material.
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Results
Chemical recycling
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Sample of Cyst-BVGE completely solubilized after 24 h in a 0.2 M HCl 

solution in H2O:THF (2:8) at room temperature.

Acid hydrolysis

Thiol-disulfide exchange

Sample of Cyst-BVGE completely solubilized 

after 4 h in a 0.3 M DTT solution in DMF at 50 ºC.
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Results
Recycling of composites
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SEM images of carbon fibres after 

thiol-disulfide exchange degradation 

XPS spectra of pristine carbon 

fibres and after degradation

Recycling process of carbon-fibre composite materials with vitrimer matrix



Conclusions

• Procedure for preparing an epoxy monomer containing 2 imine and 1 disulfide moieties as dynamic

exchangeable groups.

• The process for synthesizing the monomer was completely renewable, from the starting materials to

the procedure using renewable solvents.

• The materials obtained present a relatively high Tg

• The presence of imine and disulfide moieties allows for an extremely fast relaxation (<1min) at a

relatively low temperature (160 ºC).

• The mechanical recycling of the materials allows the preparation of a new material with very similar

properties.

• The easy chemical recycling allows the recovery of fibres of composite materials.

• The vitrimeric behavior of the material allows the preparation of functional adhesives and composite

materials.

The results of this work are part of a European patent application (Ref. EP23383089.2, “Epoxy Vitrimer Formulations”, requested October 24th, 2023) and

were published in ACS Sustainable Chem. Eng., 2024, 12, 15, 5965–5978 (DOI: 10.1021/acssuschemeng.4c00205).
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