
 
 
 
 
 
 

DEVELOPMENT OF CONSTITUTIVE MODELS 
FOR THE ACCURATE SIMULATION OF 

ADVANCED POLYMER-BASED COMPOSITES 
UNDER COMPLEX LOADING STATES 

 
 

Ivan Ruiz Cózar 
 
 

 
  
 

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets 
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials 
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual 
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En 
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la 
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació 
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc 
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant als continguts de la tesi com als seus resums i índexs. 
 
 
ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los 
derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en 
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto 
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización 
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá 
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se 
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación 
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una 
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como 
a sus resúmenes e índices. 
 
 
WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It 
can be used for reference or private study, as well as research and learning activities or materials in the 
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and 
previous authorization of the author is required for any other uses. In any case, when using its content, full 
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit 
use or public communication from outside TDX service is not allowed. Presentation of its content in a window 
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis 
and its abstracts and indexes. 



Doctoral Thesis

Development of constitutive models for
the accurate simulation of advanced

polymer-based composites under complex
loading states

Ivan Ruiz Cózar

2024





Doctoral Thesis

Development of constitutive models for
the accurate simulation of advanced

polymer-based composites under complex
loading states

Ivan Ruiz Cózar
2024

Doctoral Program in Technology

Advisors:
Dr. Pere Maimí Vert
Universitat de Girona

Dr. Emilio V. González Juan
Universitat de Girona

Dr. Fermin E. Otero Gruer
Universitat Politècnica de Catalunya

Thesis submitted to the Universitat de Girona for the degree of Doctor of
Philosophy



Ivan Ruiz Cózar
Development of constitutive models for the accurate simulation of advanced polymer-based
composites under complex loading states
Doctoral Thesis, 2024
Doctoral Program in Technology
Advisors:

Dr. Pere Maimí Vert
Dr. Emilio V. González Juan
Dr. Fermin E. Otero Gruer

Universitat de Girona
AMADE Research Group
Escola Politècnica Superior
Dept. d’Enginyeria Mecànica i de la Construcció Industrial
Carrer Universitat de Girona, 4. Campus de Montilivi
17003 Girona



„Knowledge will make you be free.

— Socrates
(Greek philosopher from Athens)

„ Luck is what happens when preparation
meets opportunity.

— Seneca
(Roman philosopher)

„ Everything we hear is an opinion, not a
fact. Everything we see is a perspective,
not the truth.

— Marco Aurelio
(Roman emperor)

„The beauty of pain, not only is it
temporary... is it tells you when you begin
to give enough of yourself in pursuit of
your dreams. If the work hasn’t hurt or
cost you anything, or at least made you
uncomfortable, then I’m sorry to be the
one to tell you but you’re not working
hard enough, or sacrificing all that you
could to be all you can be.

— Arnold Schwarzenegger
(seven-time Mr. Olympia,

actor, businessman,
38𝑡ℎ governor of California...)



Preface

The work contained in this Ph.D. thesis was conducted in the AMADE Research Group
(Escola Politècnica Superior, Dept. d’Enginyeria Mecànica i de la Construcció Indus-
trial, Universitat de Girona, Spain). The thesis was carried out with predoctoral Grant
2019FI_B_01117 from the Catalan government. This work has been conducted within
the framework of VITAL project. This work has also received funding from the Clean Sky
2 Joint Undertaking (JU) under grant agreement No. 864723 (TREAL). The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and
the Clean Sky 2 JU members other than the Union. Additionally, the present work has
received funding from the Clean Sky 2 Joint Undertaking (JU) under grant agreements
No. 886519 (BEDYN).

i



Acknowledgements

En primer lloc, m’agradaria agrair als meus directors de tesi el seu suport i ajuda, Dr.
Pere Maimí Vert, Dr. Emilio V. González Juan i Dr. Fermin E. Otero Gruer. Aquesta tesi
ha sigut una feina d’equip que sense vosaltres no hagués estat possible. Hem fet una molt
bona feina. Vull agrair tot el coneixement que meu transmès, el temps que meu dedicat,
les hores de discussió i anàlisi que hem tingut. Ha estat un plaer treballar amb vosaltres i
m’heu facilitat molt la feina. Sempre heu estat disposats a dedicar-me el temps que he
necessitat. I would also like to thank Dr. Pedro P. Camanho and Dr. Stephanie Miot for
their time, their comments have helped to improve this work.

En segon lloc vull agrair el suport i guia que ha sigut el Dr. Albert Turon Travesa en
el meu transcurs a AMADE. Si avui estic defensant aquesta tesi, en part és gràcies a tu.
Encara recordo la trucada que vam tenir on et vaig preguntar si podia fer la tesi doctoral
amb vosaltres. En aquell moment no vas dubtar i em vas oferir diferents opcions. A més,
en aquestes darreres setmanes m’has ajudat a trobar un lloc per poder fer una estada de
postdoc a l’estranger. Gràcies.

Vull fer una menció especial al Dr. Oriol Vallmajò Martín, vam començar al mateix
temps aquest camí tan especial que és fer una tesi doctoral. Encara recordo aquell viatge
que vam fer a Porto per definir els nostres temes de tesi (no direm que va passar aquell
matí en aquella presentació). Gràcies pel temps que m’has dedicat i les hores d’anàlisi
(Explícit/Implícit, true strain, B-basis value...).

També vull agrair a tots els membres del grup de recerca AMADE el seu suport durant
tots aquest anys. L’ambient de feina durant aquests anys ha sigut immillorable. Vull agrair
a tots els membres del laboratori el seu suport i la seva disponibilitat a resoldre qualsevol
dubte. També vull fer menció de l’ambient que hi ha a la sala de doctorands, vull agrair a
tots els doctorands l’ambient que heu creat. Sempre recordaré aquella nit del congrés del
MATCOMP’21, va ser una conversa de qualitat. I want to thank the ping-pong team for
their time, those hours learning and playing ping-pong have been a lot of fun. También
quiero agradecer a Pablo Martin Villaroel Marquina las horas de debate y conversa que
tuvimos durante el confinamiento.

Quiero agradecer a mi familia la ayuda que me ha prestado durante este tiempo. Ha
habido momentos difíciles, pero sé que habéis estado a mi lado ayudándome. Ahora vienen
nuevos retos y sé que me apoyareis en todo, como siempre lo habéis hecho, gracias.

ii



Aquestes són les darreres paraules que estic escrivint de la meva tesi. Ara es tanca una
etapa de la meva vida per donar pas a una de nova.

iii



Declaration

Dr. Pere Maimí Vert, Professor Titular at Universitat de Girona,

Dr. Emilio V. González Juan, Professor Agregat at Universitat de Girona,

and

Dr. Fermin E. Otero Gruer, Professor Lector at Universitat Politècnica de Catalunya,

hereby CERTIFY that:

The work entitled Development of constitutive models for the accurate simulation of
advanced polymer-based composites under complex loading states, submitted for the doctoral
degree by Ivan Ruiz Cózar, has been conducted under our supervision and that it fulfils
the requirements for the International Mention.

Dr. Pere Maimí Vert
Universitat de Girona

Dr. Emilio V. González Juan
Universitat de Girona

Dr. Fermin E. Otero Gruer
Universitat Politècnica de Catalunya

Girona, 2024

iv





Contents

Preface i

Acknowledgements ii

Declaration iv

List of Acronyms vii

List of Symbols viii

List of Figures xiii

List of Tables xiv

List of Codes xv

List of Algorithms xvi

Abstract xvii

Resum xx

Resumen xxiii

1 Introduction 1
1.1 Contextual background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Research dissemination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Elastoplastic damage model 11
2.1 Constitutive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Modelling Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Modelling Damage Evolution . . . . . . . . . . . . . . . . . . . . . 19

2.2 Input model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Numerical predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vi



2.4.1 Off-axis tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.2 Open-hole tensile and compressive tests . . . . . . . . . . . . . . . . 39

3 Enhanced elastoplastic damage model 42
3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Constitutive model implementation . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Numerical predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Longitudinal tensile test . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.2 Open-hole tensile and compressive tests . . . . . . . . . . . . . . . . 52
3.3.3 Open-hole compressive test with quasi-isotropic laminate . . . . . . 53
3.3.4 Open-hole compressive test at 0∘ . . . . . . . . . . . . . . . . . . . 57
3.3.5 Open-hole compressive test at 90∘ . . . . . . . . . . . . . . . . . . . 59

4 Transverse Poisson’s ratios 65
4.1 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Transverse tensile test . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.2 Transverse compressive test . . . . . . . . . . . . . . . . . . . . . . 69
4.1.3 Instrumentation and data reduction . . . . . . . . . . . . . . . . . . 71

4.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Failure envelope shape definition 84
5.1 Calibration of the envelope shape coefficients . . . . . . . . . . . . . . . . . 85
5.2 Bounds of the envelope shape coefficients . . . . . . . . . . . . . . . . . . . 88
5.3 Influence of the failure envelope on the failure strength of filled-hole com-

pressive laminates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.1 Experimental campaign . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.2 Finite element modelling strategy . . . . . . . . . . . . . . . . . . . 92
5.3.3 Failure envelopes definition . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Complex simulations under multiaxial loading conditions 105
6.1 End-notched flexure test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Four-point bending tests using L-shaped specimens . . . . . . . . . . . . . 108
6.3 Single-lap shear composite bolted joint tests . . . . . . . . . . . . . . . . . 112

7 Viscoelastic-viscoplastic viscodamage constitutive model 118
7.1 Constitutive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1.1 Modelling Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . 122
7.1.2 Modelling Viscoplasticity . . . . . . . . . . . . . . . . . . . . . . . . 125

vii



7.1.3 Modelling Viscodamage . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2 Thermodynamic consistency of the viscoelastic-viscoplastic viscodamage

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2.1 Thermodynamic consistency of the viscoelastic energy dissipated . . 128
7.2.2 Thermodynamic consistency of the viscoplastic energy dissipated . . 129
7.2.3 Thermodynamic consistency of the viscodamage energy dissipated . 130
7.2.4 Thermodynamic restrictions of the material properties . . . . . . . 133

7.3 Numerical predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.3.1 Calibration of the strengths under dynamic conditions . . . . . . . 134
7.3.2 Gauss-point level tests . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.3.3 Off-axis compressive tests . . . . . . . . . . . . . . . . . . . . . . . 139

8 Numerical limitations of the constitutive model 144
8.1 Infinitesimal Strain theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.1.1 Rigid body rotation virtual test . . . . . . . . . . . . . . . . . . . . 144
8.1.2 Simple longitudinal shear virtual test . . . . . . . . . . . . . . . . . 146

8.2 Friction effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9 Conclusions 153
9.1 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.2 Perspectives and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Appendices 161

A Determination of the parameters of the plastic flow potential function 162

B Damage variables 166
B.1 Longitudinal damage variable 𝑑ℓ . . . . . . . . . . . . . . . . . . . . . . . . 166

B.1.1 Longitudinal tensile damage variable 𝑑ℓ𝑇 . . . . . . . . . . . . . . . 166
B.1.2 Longitudinal compressive damage variable 𝑑ℓ𝐶 . . . . . . . . . . . . 170

B.2 Transverse damage variable 𝑑𝑡 . . . . . . . . . . . . . . . . . . . . . . . . . 172
B.3 Transverse shear damage variable 𝑑𝑠𝑡 . . . . . . . . . . . . . . . . . . . . . 172
B.4 Longitudinal shear damage variable 𝑑𝑠ℓ . . . . . . . . . . . . . . . . . . . . 174

C Calculus of the increment of the consistency parameter of the plasticity model
(Δ𝛾(𝑘)

(𝑛+1)
) 178

C.1 Derivatives as a function of 𝝈 . . . . . . . . . . . . . . . . . . . . . . . . . 180
C.2 Derivatives as a function of 𝕂 . . . . . . . . . . . . . . . . . . . . . . . . . 181
C.3 Derivatives as a function of 𝕃 . . . . . . . . . . . . . . . . . . . . . . . . . 183

viii



C.4 Derivatives as a function of 𝕄 . . . . . . . . . . . . . . . . . . . . . . . . . 184
C.5 Numerical-analytical comparison of Δ𝛾 . . . . . . . . . . . . . . . . . . . . 184

D Vector product in Fortran 188

E Prevent division by zero in Fortran 192

F Critical characteristic element length 194
F.1 Critical characteristic length for a linear softening law . . . . . . . . . . . . 195
F.2 Critical characteristic length for a bilinear softening law . . . . . . . . . . . 196
F.3 Critical characteristic length IM7/8522 unidirectional prepreg system . . . 197

G Verification of the implementation of the constitutive model 199
G.1 Plasticity modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
G.2 Damage modelling using the original model . . . . . . . . . . . . . . . . . . 204
G.3 Damage modelling using the enhanced model . . . . . . . . . . . . . . . . . 210

H Positive semi-definite matrix 214

I Strain-crack opening displacement relationship 216

Bibliography 219

ix



List of Acronyms

FE finite element
CFRP carbon fibre-reinforced polymer
FRP fibre-reinforced polymer
CDM continuum damage mechanics
3D three-dimensional
C/C-SiC carbon fibre reinforced carbon-silicon carbide
VUMAT user material Fortran subroutine used in Abaqus/Explicit solver
C3D8R Eight-node 3D solid finite element with reduced integration used in Abaqus
OHT open-hole tensile
OHC open-hole compressive
ASTM American Society for Testing and Materials
CAI compression after impact
DIC digital image correlation
PEEK poly-ether-ether-ketone
FHC filled-hole compressive
AITM Airbus’ internal test method
DENT double edge notched tensile
DENC double edge notched compressive
ENF end-notched flexural
SLS single-lap shear
1D one-dimensional

x



List of Symbols

Capital Latin letters
𝐴𝐷𝐼𝐶 DIC area analysed
𝐀 Generic matrix in Appendix D
𝔸,𝔹 Generic matrices in Appendix H
ℂ𝑒 Elasticity tensor
ℂ𝑣𝑒 Maxwell elasticity tensor
𝐸 Young’s modulus in Appendix I
𝐸𝑡 Bulk elastic modulus in the isotropic plane
𝐸11 Longitudinal Young’s modulus
𝐸22 Transverse Young’s modulus
𝐄 Green-Lagrange strain tensor
𝔼𝐷𝐼𝐶𝑖𝑗

Experimental error of the DIC equipment
𝔼𝑆𝐺 Error from the strain gauge equipment
𝔼𝑟𝑎𝑛𝑑 Random experimental error
𝔼𝑠𝑡𝑑 Standard experimental error
𝔼𝜈23

Experimental uncertainty of 𝜈23

𝔼𝜈23𝐶
Experimental uncertainty of 𝜈23𝐶

𝔼𝜈23𝑇
Experimental uncertainty of 𝜈23𝑇

𝐹𝑁 Activation function in direction 𝑁
𝐅 Deformation gradient tensor
𝐺𝑡 Shear elastic modulus in the isotropic plane
𝐺12 Longitudinal shear Young’s modulus
ℍ Compliance tensor
𝕂,𝕄 Tensors with the coefficients of the non-linear terms of 𝜙𝑝

𝐿𝑠 Doubler length of the metallic part in the single-shear bolted joint test
𝕃 Tensor with the coefficients of the linear term of 𝜙𝑝

𝑁𝑝𝑥 Number of pixels of the analysed area with the DIC equipment
𝑅 Residual in Newton-Raphson algorithm at Gauss-point level
𝑆𝐿 Longitudinal shear strength
𝑆𝐿𝑃 Longitudinal shear yield stress
𝑆𝑇 Transverse shear strength
𝑆�̄�𝐷𝐼𝐶

𝑖𝑗
Sample standard deviation of the strain field from the DIC equipment

𝑈11 Total displacement applied in Chapter 8

xi



𝑊 Complementary Gibbs free-energy density function
𝑊𝑠 Width of the specimen in the single-shear bolted joint test
𝑋𝐶 Longitudinal compressive strength
𝑋𝑇 Longitudinal tensile strength
𝑌𝐶 Transverse compressive strength
𝑌𝐶𝐵 Biaxial transverse compressive strength
𝑌𝐶𝑃 Transverse compressive yield stress
𝑌𝑇 Transverse tensile strength
𝑌𝑇 𝐵 Biaxial transverse tensile strength
𝑌𝑇 𝑃 Transverse tensile yield stress

Small Latin letters
𝑎𝑖𝑠𝑀 Slope of the corresponding softening law
𝑏𝑖𝑠𝑀 Intercept of the corresponding softening law
𝐛, 𝐜 Generic vector in Appendix D
𝑑𝑀 Damage variable in direction 𝑀
𝑑𝑆11 Initial length in Chapter 8
𝑑𝑠11 Final length in Chapter 8
𝑒𝑠 Eccentricity of the hole in the single-shear bolted joint test
𝑓𝑋𝐶

Parameter to define the shape of the longitudinal compressive softening law
𝑓𝑋𝐶

𝒢𝑋𝐶
Longitudinal compressive fracture toughness

𝑓𝑋𝑇
, 𝑓𝒢𝑋𝑇

Parameters to define the shape of the longitudinal tensile softening law

𝑙∗𝑀 Characteristic element length in direction 𝑀
𝑚 Coefficient of the non-linear terms of 𝜙𝑝 in Voigt notation
𝑟𝑁 Elastic threshold domain in direction 𝑁
𝑡 Time discretisation of the FE explicit solver
tol Tolerance
𝑢 Displacement
⃗𝑣 Generic vector in Appendix H

𝑧𝛼/2 Confidence range of the standard experimental error

Greek letters
𝛼0 Fracture plane angle
𝛽𝑣𝑝 Rate sensitivity viscoplastic parameter
𝚪 Viscoelastic relaxation tensor
𝛾 Consistency parameter of the implementation of plasticity

xii



𝛾𝑣𝑒 Uniaxial viscoelastic parameter
̄𝛾𝑣𝑒 Viscoelastic parameter

𝜺 Strain tensor
�̄�𝑣𝑒 Equivalent viscoelastic strain tensor
̄𝜀𝑝 Equivalent plastic strain

𝜂ℓ Longitudinal matrix friction coefficient
𝜂𝑡, 𝜂𝑞

𝑡 , 𝜂𝑠ℓ, 𝜂𝑞
𝑠ℓ Failure envelope shape coefficients

𝜂𝑣𝑑 Viscodamage parameter
𝜂𝑣𝑝 Viscoplastic parameter
𝜃 Fibre orientation
𝜅𝑀 Coefficient of the 𝑀 damage variable
𝜆 Plastic multiplier parameter
𝜇𝑡, 𝜇𝑠ℓ Failure envelope shape coefficients
𝜇𝑡𝑝, 𝜇𝑠ℓ𝑝 Plastic envelope shape coefficients
𝜈12 Longitudinal shear Poisson’s ratio
𝜈23 Transverse shear Poisson’s ratio
𝜈𝑝

122 Ratio of −𝜀𝑝
22/𝜀𝑝

12 under longitudinal shear loading conditions
𝜈𝑝

23𝐶 Plastic transverse shear Poisson’s ratio in compression
𝜈𝑝

23𝑇 Plastic transverse shear Poisson’s ratio in tension
Ξ Mechanical energy dissipated per unit volume
𝝈 Stress tensor
𝜎ℓ, 𝑝𝑡, 𝜏𝑡, 𝜏ℓ Stress invariants
𝜎𝑢 Strength
𝜏𝑣𝑒 Viscoelastic relaxation time parameter
𝜙𝑁 Loading function of the damage variable in direction 𝑁
𝜙𝑞𝑠

ℓ𝐶 Longitudinal compressive viscodamage norm in Chapter 7
𝜙𝑞𝑠

𝑡 Transverse viscodamage norm in Chapter 7
𝜙𝑝 Yield function
𝜑𝑝 Plastic potential function
Ψ Helmholtz free-energy density function
𝜓 Rotation angle in Chapter 8
𝜔𝑖𝑠𝑀 Crack opening of the cohesive law in direction 𝑀 of the segment 𝑖𝑠

𝜔𝑖𝑗 Crack opening displacement
Ω𝐷𝐼𝐶 DIC area domain

xiii



Others
𝒢𝑆𝐿

Longitudinal shear fracture toughness
𝒢𝑋𝑇

Longitudinal tensile fracture toughness
𝒢𝑌𝐶

Transverse compressive fracture toughness
𝒢𝑌𝑇

Transverse tensile fracture toughness

Operators
𝜕𝑥(𝑓) Partial derivative of function 𝑓 with respect to 𝑥
𝑑𝑥(𝑓) Derivative of function 𝑓 with respect to 𝑥
⟨⋅⟩ McCauley operator

Indices, superscripts and brackets
(⋅)𝐶 Refers to compression
(⋅)𝑐 Refers to critical
(⋅)𝑖𝑖

Index of the segment of softening law
(⋅)𝑖𝑗 Cartesian components
(⋅)ℓ Refers to longitudinal direction
(⋅)𝑝𝑥 Refers to a pixel of the DIC equipment
(⋅)𝑠 Refers to shear direction
(⋅)𝑇 Refers to tension
(⋅)𝑡 Refers to transverse direction
(⋅)𝑣𝑜𝑙 Volumetric part of a quantity
(⋅)𝜓 Refers to a rotation with respect to 𝜓
(⋅)(𝑛+1) Data in the current integration time
(⋅)𝑐 Cracking part of a quantity
(⋅)𝑐𝑜𝑟 Quantity in the Corotational coordinate system
(⋅)𝑑 Refers to the degraded part of a quantity due to damage
(⋅)𝐷𝐼𝐶 Refers to the DIC equipment
(⋅)𝑑𝑦𝑛 Dynamic part of a quantity
(⋅)𝑒 Elastic part of a quantity
(⋅)𝐺 Global coordinate system
(⋅)𝑖 Inelastic part of a quantity
(⋅)𝑝 Plastic part of a quantity
(⋅)𝑝𝑟 Predictor of the damage modelling
(⋅)𝑡𝑟 Trial quantity in elastic predictor step
(⋅)𝑣 Viscous part of a quantity

xiv



(⋅)𝑣𝑒 Viscoelastic part of a quantity
(⋅)𝑣𝑝 Viscoplastic part of a quantity
(⋅)( 𝑘 +1 ) Counter of Newton-Raphson steps

̂(⋅) Refers to the potential parameters of the potential plastic function
̃(⋅) Refers to the effective stress domain
̌(⋅) Refers to the predictor stress domain
̄(⋅) Average of quantity in Chapter 4

xv



List of Figures

1.1 Schematic representation of the length scales employed in the finite element
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Schematic representation of the discretisation of the different meso-mechanical
analyses of finite element models. . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Schematic representation of uniaxial stress vs. strain curve response at the
Gauss-point level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Schematic representation of yield stresses vs. equivalent plastic strain curve. 17
2.3 Schematic representation of the failure envelope in the effective stress space. 21
2.4 Stress vs. crack opening displacement (𝜔𝑖𝑗) curve of each softening law. . . . 23
2.5 Schematic representation of the meshes and the applied boundary conditions

used in the: (a) off-axis simulations, and (b) open-hole simulations. 𝜃 is the
fibre angle orientation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Plastic and failure envelopes of the IM7/8552 unidirectional prepreg system. 34
2.7 Yield stress vs. equivalent plastic strain curves of the M7/8552 unidirectional

prepreg system [124]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.8 Numerical-experimental comparison of the remote stress vs. axial strain

curves of the off-axis compressive tests performed by Koerber et al. [8]. . . . 37
2.9 Failure envelope for the �̃�22 − �̃�12 effective stress space with different values

of 𝑆𝐿 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.10 Numerical-experimental comparison of the fracture planes obtained from the

off-axis compressive tests performed by Koerber et al. [9]. . . . . . . . . . . . 38
2.11 Numerical-experimental comparison of the remote stress vs. axial strain

curves of the off-axis tensile tests performed by Koerber et al. [9]. . . . . . . 39
2.12 Numerical-experimental comparison of the remote failure strength of the

open-hole tensile and compressive tests measured by Camanho et al. [114]
and by Bessa [129], respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Longitudinal virtual tensile test at the Gauss-point level using a CDM model
using the effective stress tensor. . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Schematic representation of the numerical implementation of the enhanced
constitutive model at the Gauss-point level when a pure transverse tensile
test is applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xvi



3.3 Schematic representation of the numerical implementation of the enhanced
constitutive model at the Gauss-point level when a pure transverse tensile
test is applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Schematic representation of the boundary conditions applied in the open-hole
compressive virtual test. 𝜃 is the fibre angle orientation. . . . . . . . . . . . . 51

3.5 Longitudinal virtual tensile test at the Gauss-point level using the enhanced
constitutive model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Numerical-experimental comparison of the remote failure strength of the
open-hole tensile and compressive tests. . . . . . . . . . . . . . . . . . . . . . 53

3.7 Numerical-experimental comparison of the remote stress vs. axial strain
curves of the open-hole compressive test performed by Wisnom et al. [139]. . 54

3.8 Numerical-experimental comparison of the onset of failure at 98% of the
remote failure load from the quasi-isotropic laminate in the open-hole com-
pressive test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9 Numerical-experimental comparison of the external failure pattern after
the remote failure load from the quasi-isotropic laminate in the open-hole
compressive test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.10 Predicted failure mechanism evolution of the quasi-isotropic laminate in an
open-hole compressive test using the enhanced model. . . . . . . . . . . . . . 57

3.11 Predicted remote stress vs. axial strain curves from the open-hole compressive
test with [0]8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.12 Numerical-experimental comparison of the failure pattern at the remote
failure load from the open-hole compressive test with all 8 plies at 0∘. . . . . 59

3.13 Predicted external failure patterns after the remote failure load of the [0]8
laminate in an open-hole compressive test using: a) the enhanced model; and
b) the original model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.14 Predicted remote stress vs. axial strain curves from the open-hole compressive
test with [90]8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.15 Predicted failure mechanism at the remote failure strength of the [90]8 lam-
inate in an open-hole compressive test using: a) enhanced model; and b)
original model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.16 Predicted failure pattern when 2.25% of the axial strain is applied from the
open-hole compressive test with all 8 plies at 90∘.. . . . . . . . . . . . . . . . 63

4.1 Experimental setup of the transverse tensile (a) and compressive (b) tests. . 68
4.2 Schematic representation of: a) and c) transverse tensile test, and b) and d)

transverse compressive test. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xvii



4.3 Schematic representation of load vs. time curve of the transverse compressive
test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Schematic representation of the procedure to measure the elastic (a) and
plastic (b) transverse Poisson’s ratios in compression. . . . . . . . . . . . . . 72

4.5 Lateral strain field from the transverse tensile (a) and compressive (b) tests
using the DIC equipment at abs( ̄𝜀𝐷𝐼𝐶

22 ) ≈ 0.5%. . . . . . . . . . . . . . . . . 76
4.6 Stress vs. strain curve obtained from the transverse compressive (left) and

tensile (right) tests using the average strain from the two strain gauges. . . . 77
4.7 Goodness-of-fit plot of the DIC axial strain vs. average strain measured from

the two strain gauges from the transverse tensile test. . . . . . . . . . . . . . 77
4.8 Elastic transverse Poisson’s ratio in tension vs. DIC elastic axial strain curve. 78
4.9 Goodness-of-fit plot of the DIC axial strain vs. average strain measured from

the strain gauges from the transverse compressive test. . . . . . . . . . . . . 79
4.10 Elastic transverse Poisson’s ratio in compression vs. DIC elastic axial strain

curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.11 Stress vs. strain curve from the transverse compressive test (a) and elastic

transverse Poisson’s ratio in compression vs. DIC elastic axial strain from
different loading cycles (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.12 Plastic transverse Poisson’s ratio in compression vs. DIC plastic axial strain
curve measured from the transverse compressive test. . . . . . . . . . . . . . 81

5.1 Schematic representation of the failure envelope for the �̃�22 − �̃�33 effective
stress space with discontinuity. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Schematic representation of the failure envelope for the �̃�11 − �̃�12 effective
stress space with discontinuity. . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Schematic representation of the finite element models using in the filled-hole
compressive tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Schematic representation of the failure envelopes for the effective stress space
at the onset of damage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Normalised strength for each FHC configuration and for each failure envelope.
Results are all normalised by the experimental average strength of FI-24np. . 98

5.6 Comparison of the failure mechanisms, at the onset of damage, with each
failure envelope for the QI-W25 configuration. . . . . . . . . . . . . . . . . . 100

5.7 Comparison of the failure pattern between the experiments and FE model
for three different configurations. . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 Schematic representation of the assembly of the end-notched flexure finite
element model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xviii



6.2 Schematic representation of the applied boundary conditions of the end-
notched flexure finite element model. . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Numerical-experimental comparison of reaction force vs. cross-head displace-
ment of the end-notched flexure test carried out by Jiménez and Miravete
[206]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Numerical-experimental comparison of the end-notched flexure test carried
out by Jiménez and Miravete [206]. . . . . . . . . . . . . . . . . . . . . . . . 108

6.5 Dimensions of the the four-point bending test on L-shaped specimens. . . . . 109
6.6 Schematic representation of the applied boundary conditions of the four-point

bending finite element model with a L-shaped specimen. . . . . . . . . . . . 110
6.7 Numerical-experimental comparison of the four-point bending test using L-

shaped specimens with the quasi-isotropic laminate (25/50/25) (left) and the
highly disoriented laminate (11/67/22) (right) carried out by Airbus. The
reaction force is normalised with respect to its experimental average value. . 111

6.8 Numerical-experimental comparison of the external failure pattern at the
peak load from the quasi-isotropic laminate (25/50/25): a) experimental data,
and b) numerical results. 𝑑𝑡 is damage variable associated to the mode-I
matrix cracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.9 Numerical-experimental comparison of the external failure pattern at the
peak load from the highly disoriented laminate (11/67/22): a) experimental
data, and b) numerical results. 𝑑𝑡 is damage variable associated to the mode-I
matrix cracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.10 Geometry and dimensions of the single-shear bolted joints. All dimensions
are in mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.11 Schematic representation of the mesh and boundary conditions applied on
the single-lap shear FE model. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.12 Predicted results of the SLS-Net configuration. . . . . . . . . . . . . . . . . . 116
6.13 Predicted results of the SLS-Bearing configuration. . . . . . . . . . . . . . . 117

7.1 Schematic representation of uniaxial stress vs. strain curve response at the
Gauss-point level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2 Schematic representation of the 1D rheological scheme of the proposed con-
stitutive model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3 Schematic representation of a transverse tensile test to measure the relaxation
time of the Newtonian dashpot of the Maxwell element. . . . . . . . . . . . . 125

7.4 Simple longitudinal shear virtual test at the Gauss-point level at two different
strain rate conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xix



7.5 Relaxation virtual test under simple longitudinal shear loading conditions at
the Gauss-point level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.6 Comparison between the relaxation test and the monotonically increasing
tests at different strain rates applying simple longitudinal shear loading
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.7 Schematic representation of the boundary conditions (a), and the displacement
vs. time curves applied to the dynamic tests in the off-axis compressive tests
[8] (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.8 Numerical-experimental comparison of the remote stress vs. axial strain
curves of the off-axis compressive tests performed by Koerber et al. [8]. . . . 142

8.1 Comparison of the longitudinal strain from the Infinitesimal Strain theory
with that obtained from Green-Lagrange strain tensor (Finite Strain theory)
when a rotation and a small longitudinal displacement is applied. . . . . . . 145

8.2 Schematic representation of the deformed shape of unidirectional FRP lami-
nates under longitudinal shear conditions. . . . . . . . . . . . . . . . . . . . 147

8.3 Simple longitudinal shear virtual test. . . . . . . . . . . . . . . . . . . . . . . 148
8.4 A schematic representation of the stress vs. crack opening displacement curve

under longitudinal shear loading conditions for different compressive loads. . 150
8.5 Comparison of the predicted stress vs. cross-head displacement curve of the

SLS-Bearing configuration obtained using both the enhanced model and the
enhanced model with friction effects. . . . . . . . . . . . . . . . . . . . . . . 151

B.1 Softening law in the longitudinal tensile direction. . . . . . . . . . . . . . . . 168
B.2 Softening law in the longitudinal compressive direction. . . . . . . . . . . . . 170
B.3 Stress vs. crack opening displacement curve of the softening law in: a)

transverse tensile direction and b) longitudinal shear direction. . . . . . . . . 173

C.1 Maximum relative error between the analytical solution of Δ𝛾 and its nu-
merical approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

F.1 Schematic representation of a stress vs. strain curve behaviour using a linear
softening law with two different characteristic element lengths. . . . . . . . . 194

F.2 Schematic representation of a stress vs. strain curve behaviour using a linear
softening law with three different characteristic element lengths. . . . . . . . 195

F.3 Schematic representation of a stress vs. strain curve behaviour using a bilinear
softening law with the critical length of the: a) first segment and b) second
segment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

xx



G.1 The stress vs. strain curve obtained from a longitudinal compressive virtual
test. The cross indicates the longitudinal compressive strength 𝑋𝐶. . . . . . 200

G.2 The stress vs. strain curve obtained from a longitudinal tensile virtual test.
The cross indicates the longitudinal tensile strength 𝑋𝑇. . . . . . . . . . . . 201

G.3 The stress vs. equivalent strain curve ( ̄𝜀𝑝) obtained from transverse compres-
sive virtual tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

G.4 The stress vs. equivalent strain curve ( ̄𝜀𝑝) obtained from transverse tensile
virtual tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

G.5 The stress vs. equivalent strain curve ( ̄𝜀𝑝) obtained from biaxial transverse
compressive virtual tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

G.6 The stress vs. equivalent strain curve ( ̄𝜀𝑝) obtained from biaxial transverse
tensile virtual tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

G.7 The stress vs. equivalent strain curve ( ̄𝜀𝑝) obtained from longitudinal shear
virtual tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

G.8 The stress vs. equivalent strain curve ( ̄𝜀𝑝) obtained from transverse shear
virtual tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

G.9 The stress vs. strain curve obtained from a longitudinal compressive virtual
test using the original constitutive model proposed in Chapter 2. . . . . . . . 205

G.10 The stress vs. strain curve obtained from a longitudinal tensile virtual test
using the original constitutive model proposed in Chapter 2. . . . . . . . . . 206

G.11 The stress vs. strain curve obtained from transverse compressive virtual tests
using the original constitutive model proposed in Chapter 2. . . . . . . . . . 207

G.12 The stress vs. strain curve obtained from transverse tensile virtual tests using
the original constitutive model proposed in Chapter 2. . . . . . . . . . . . . 207

G.13 The stress vs. strain curve obtained from biaxial transverse compressive
virtual tests using the original constitutive model proposed in Chapter 2. . . 208

G.14 The stress vs. strain curve obtained from biaxial transverse tensile virtual
virtual tests using the original constitutive model proposed in Chapter 2. . . 208

G.15 The stress vs. strain curve obtained from longitudinal shear virtual tests
using the original constitutive model proposed in Chapter 2. . . . . . . . . . 209

G.16 The stress vs. strain curve obtained from transverse shear virtual tests using
the original constitutive model proposed in Chapter 2. . . . . . . . . . . . . 209

G.17 The stress vs. strain curve obtained from a longitudinal compressive virtual
test using the enhanced constitutive model proposed in Chapter 3. . . . . . . 211

G.18 The stress vs. strain curve obtained from a longitudinal tensile virtual test
using the enhanced constitutive model proposed in Chapter 3. . . . . . . . . 211

xxi



G.19 The stress vs. strain curve obtained from transverse compressive virtual tests
using the enhanced constitutive model proposed in Chapter 3. . . . . . . . . 212

I.1 Schematic representation of a crack band in a continuum damage model. . . 217

xxii



List of Tables

2.1 Standardised tests to determine the model input parameters. Other standard
procedures may also be employed. . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Comparison of the number of elements and nodes with different finite element
modelling approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Model input parameters for the IM7/8552 unidirectional prepreg system. . . 33

4.1 Accuracy of the equipment used in the experimental tests. . . . . . . . . . . 75
4.2 Transverse Poisson’s ratio obtained from the corresponding linear regression

analysis of ̄𝜀𝐷𝐼𝐶
33 vs. ̄𝜀𝐷𝐼𝐶

22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Configurations of the filled-hole compressive tests analysed. . . . . . . . . . . 92
5.2 Tests carried out to determine the model input parameters for the carbon/e-

poxy unidirectional prepreg system used. . . . . . . . . . . . . . . . . . . . . 93

6.1 Material properties for steel and titanium alloy. . . . . . . . . . . . . . . . . 110
6.2 Dimensions of the single-lap shear tests [201]. . . . . . . . . . . . . . . . . . 114

7.1 Modelling strategies used in the literature to address the dynamic effects in
CFRP laminates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2 Dynamic model input parameters for a unidirectional IM7/8552 prepreg system.134

F.1 Critical characteristic element length to prevent the snap-back effect in each
direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

G.1 Virtual tests performed to verify the implementation of the plasticity model
in a user material subroutine. . . . . . . . . . . . . . . . . . . . . . . . . . . 200

G.2 Virtual tests performed to verify the implementation of the damage model in
a user material subroutine using the original constitutive model. . . . . . . . 204

G.3 Virtual tests performed to verify the implementation of the damage model in
a user material subroutine using the enhanced constitutive model. . . . . . . 210

xxiii



List of Codes

D.1 Fortran code of the traditional algorithm of the product between a matrix
and a vector (𝐜 = 𝐀𝐛). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

D.2 Fortran code of the suggested algorithm by Cowell and Christopher [113] of
the product between a matrix and a vector (𝐜 = 𝐀𝐛). The code is available
at: https://github.com/IR-Cozar/Vector-product-in-Fortran. . . . . 189

E.1 Fortran code to prevent a division by zero. The code is available at:
https://github.com/IR-Cozar/Prevent-a-division-by-zero. . . . . . 192

xxiv

https://github.com/IR-Cozar/Vector-product-in-Fortran
https://github.com/IR-Cozar/Prevent-a-division-by-zero


List of Algorithms

1 Algorithm of the proposed constitutive model at time 𝑡
(𝑛+1)

. . . . . . . . . . 29

2 Algorithm of the enhanced constitutive model at time 𝑡
(𝑛+1)

. . . . . . . . . . 49

3 Algorithm of the damage modelling based on the finite strain theory at time
𝑡

(𝑛+1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4 Algorithm in each statement of the above Fortran code (Algorithm D.1). . . 189
5 Algorithm in each statement of the improved Fortran code (Algorithm D.2). 190

xxv



Abstract

In recent decades, several meso-scale computational models have been developed for
predicting the failure evolution and strength of composite materials. Nevertheless, the
complex failure mechanisms of composites pose a formidable challenge to the development
of models capable of consistently reproducing its mechanical response under different
loading case scenarios. Furthermore, the lack of standardised multiaxial tests has hindered
consensus on failure envelopes and criteria for composites. In this thesis, a new 3D
elastoplastic damage model is then proposed to predict the plastic deformation and the
progressive failure of unidirectional laminated composite materials at the meso-scale
level.

A new plastic yield function and a new non-associative flow rule are proposed to properly
define the evolution of the plastic strains. The transverse plastic Poisson’s ratio and
the volumetric plastic strains can be then imposed. The proposed model is developed
under the continuum damage mechanics and the thermodynamics of irreversible process
framework. The damage evolution laws are defined to account for the failure mechanisms
on both longitudinal and transverse directions. The plastic yield function and the failure
criteria can be adjusted by setting two and six input model parameters (envelope shape
coefficients), respectively, to account for the mechanical behaviour of the material being
analysed. Off-axis compressive and tensile tests with different ply orientations and high
plastic dependency are used to demonstrate the ability of the model to capture the
plastic response and the onset of damage as well as the fracture planes. In addition,
a numerical-experimental comparison of open-hole compressive and tensile tests with
different dimensions are carried out to demonstrate the capabilities of the model to predict
the failure strength. Good agreement is obtained between the numerical and experimental
data.

Spurious damage modes in continuum damage mechanics models for transversally isotropic
materials which use the effective stress tensor can be generated when large strains occur.
A new methodology to prevent this phenomenon is developed in the present thesis. The
longitudinal damage activation functions are based on the effective stress tensor. However,
nominal stresses are used on the transverse damage activation function. The proposed
method can be straightforwardly implemented on previously-developed constitutive models
which use effective stress tensor, and an explicit implementation of the proposed constitutive
model is presented. The enhancement of the predicted failure mechanisms obtained from
the present constitutive model, with respect to models which use effective stress tensor, is

xxvi



then demonstrated. The proposed constitutive model presents a good agreement of the
predicted failure pattern obtained from open-hole experimental tests, as well as on the
predicted failure strength.

Guidelines are provided on how to characterise the input material parameters of the
proposed model. In this line, a new methodology to measure the transverse Poisson’s
ratios in fibre-reinforced polymer composite materials is developed. Transverse tensile and
transverse compressive standardised tests are instrumented using digital image correlation
equipment to measure the strain field on the through-the-thickness surface of the specimens.
A thermoplastic-based composite material is used to describe the proposed methodology.
The elastic transverse Poisson’s ratio exhibits a different behaviour in tension than in
compression, its value being greater in compression than in tension. Assuming no plastic
strain in the longitudinal direction, the plastic transverse Poisson’s ratio in compression
suggests no volumetric plastic strains for small axial plastic strains. However, plastic
dilatancy is observed when the amount of compressive plastic axial strain increases.

The influence of the failure envelope shape coefficients on the failure strength prediction
of filled-hole compressive laminates is analysed. The analysis is carried out using different
geometries, stacking sequences, preloads, etc. The findings indicate a large effect of the
failure envelope shape on both the predicted failure strength of filled-hole compressive
laminates and developed failure mechanisms. Therefore, the correct adjustment of the
failure criteria can be as relevant as defining accurately the model input parameters. These
results emphasise the importance of accurately establishing failure envelope, rather than
overemphasising the development of complex models.

The capabilities of the constitutive model to predict the mechanical response of carbon
fibre-reinforcement polymer laminates under complex loading conditions is demonstrated
by performing several numerical-experimental comparisons. Apart from the accurate
predictions in the off-axis and open-hole tests, there is good agreement between the
numerical results and the experimental data in end-notched flexural test, four-point
bending tests using L-shaped specimens and single-lap shear composite bolted joint tests.
These tests have been analysed because they are tests in which the non-uniform out-of-plane
stress states are developed, and they are challenging problems due to the combination of
different failure mechanisms.

The constitutive model is extended to account for the viscous effects due to dynamic
loading conditions. A novel 3D viscoelastic-viscoplastic and viscodamage constitutive
model is proposed. The viscoelastic response is modelled using the generalised Maxwell
model and an overstress model is employed to address the viscoplastic strain. The onset of

xxvii



viscodamage mechanisms is based on experimental expressions, and their propagation is
considered to ensure the correct dissipation of the corresponding energy. The mechanical
response of the present constitutive model under pure longitudinal shear loading conditions
at different strain rates is presented. The higher the strain rate is, the stiffer the response in
the viscoelastic and viscoplastic region is. Additionally, the onset of viscodamage increases
with high strain rate. Off-axis compressive experimental data at two different strain rates
are employed to demonstrate the capabilities of the present model, and good predictions
are obtained.
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Resum

En les darreres dècades, diferents models computacionals a nivell meso s’han desenvolupat
per predir l’evolució de la fractura i la resistència dels materials compostos. No obstant,
els mecanismes de falla dels compostos són complexos i això fa que sigui un gran repte
desenvolupar models capaços de reproduir el seu comportament sota diferents estats de
càrrega de manera consistent. A més, la falta d’assajos multiaxials estandarditzats ha
dificultat el consens sobre les evolvents i criteris de falla dels material compostos. En
aquesta tesi s’ha proposat un nou model elastoplàstic amb dany en tres dimensions per
predir la deformació plàstica i el dany progressiu dels laminats unidireccionals de material
compost a l’escala meso.

Una nova funció de fluència plàstica i una nova regla de fluència no associada es proposen per
definir correctament l’evolució de les deformacions plàstiques. Aleshores, es poden imposar
el coeficient de Poisson transversal plàstic i les deformacions plàstiques volumètriques. El
model proposat es basa en la mecànica del dany continu i la termodinàmica de processos
irreversibles. Les lleis d’evolució del dany s’han definit per tenir en compte els mecanismes
de falla en la direcció longitudinal i transversal. La funció de fluència plàstica i els criteris
de falla es poden ajustar mitjançant dos i sis paràmetres d’entrada del model (coeficients
de forma de les evolvents), respectivament, per considerar el comportament mecànic
del material que està analitzant. S’utilitzen assajos de compressió i tracció “off-axis”
amb diferents orientacions de les capes i una alta dependència plàstica per demostrar la
capacitat del model per captar la resposta plàstica, l’inicia del dany i també els plans de
falla. A més, es realitza una comparació numèric-experimental d’assajos a compressió i
tracció en provetes amb un forat amb diferents dimensions per demostrar la capacitat
del model de predir la seva resistència. S’obté una bona concordança entre les dades
numèriques i les experimentals.

Quan hi ha grans deformacions, es poden generar modes de dany espuris en el models basats
en la mecànica del dany continu per materials transversalment isotròpics els quals utilitzen
el tensor de tensions efectives. En aquesta tesi es desenvolupa una nova metodologia per
prevenir aquest fenomen. Les funcions d’activació del dany longitudinal estan basades en
les tensions efectives. En canvi, s’utilitzen les tensions nominals a la funció d’activació
del dany transversal. El mètode proposat es pot implementar directament en els models
constitutius que s’han desenvolupat prèviament utilitzant les tensions efectives i es presenta
una implementació explicita del model constitutiu proposat. A continuació, es mostra
la millora en la predicció dels mecanismes de falla obtinguda amb el model constitutiu
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presentat, respecte a models que utilitzen el tensor de tensions efectives. El model
constitutiu proposat mostra una bona concordança amb el patró de falla extern obtingut
a partir d’assajos experimentals amb provetes foradades i també en la predicció de la seva
resistència.

Es proporcionen pautes per caracteritzar els paràmetres d’entrada del model proposat. En
aquesta línia, es desenvolupa una nova metodologia per mesurar els coeficients de Poisson
transversal en materials compostos polimèrics reforçats amb fibra. S’instrumentalitzen
assajos normalitzats de tracció i de compressió transversals mitjançant un equip de
correlació digital d’imatges per mesurar el camp de deformacions a través de l’espessor
de la superfície de les provetes. S’utilitza un material compost amb base termoplàstica
per descriure la metodologia proposada. El coeficient de Poisson transversal mostra un
comportament diferent a tracció que a compressió, sent el seu valor més gran a compressió
que a tracció. Assumint que no hi ha deformació plàstiques en la direcció longitudinal, no
hi ha deformacions plàstiques volumètriques segons el coeficient de Poisson transversal
plàstic a compressió. En canvi, s’observa dilatància plàstica quan la deformació axial
transversal a compressió augmenta.

S’analitza la influència dels coeficients de forma de l’evolvent de falla sobre la predicció de la
resistència en provetes a compressió amb un forat i un cargol. L’anàlisi es realitza utilitzant
diferents geometries, seqüències d’apilament, precàrregues, etc. Els resultats indiquen que
hi ha un gran efecte de la forma de l’evolvent de falla sobre la prediccions de la resistència
i el desenvolupament dels mecanismes de falla en les provetes analitzades. Aleshores, el
correcte ajustament dels criteris de falla pot ser tan important com definir amb precisió els
paràmetres d’entrada del model. Aquest resultats subratllen la importància d’establir amb
precisió les evolvents de falla, en lloc de focalitzar-se en desenvolupar models complexos.

Les capacitats del model constitutiu per predir la resposta mecànica de laminats polimèrics
reforçats amb de fibra de carboni sota condicions de càrrega complexes es demostren
realitzant diferents comparacions numèric-experimentals. A més de les bones prediccions
obtingudes als assajos “off-axis” i amb les provetes foradades, hi ha una bona concordança
entre els resultat numèrics i les dades experimental en assajos a flexió amb una entalla a
l’extrem, en assajos a flexió a quatre punts utilitzant provetes en forma de “L” i en assajos
d’unions cargolades sotmeses a tallant. Aquest assajos han sigut analitzats perquè són
assajos on hi ha estats de tensions no uniformes fora del pla i són un gran repte degut a
què hi ha la combinació de diferents mecanismes de falla.

El model constitutiu s’ha ampliat per tenir en compte els efectes viscosos degut a condicions
dinàmiques. S’ha proposat un nou model viscoelàstic viscoplàstic amb dany viscós en tres
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dimensions. La resposta viscoelàstica s’ha modelat utilitzant el model de Maxwell general-
itzat i s’ha utilitzat un model de sobretensió per modelar les deformacions viscoplàstiques.
La iniciació dels mecanismes dany viscós es basa en expressions experimentals i la seva
propagació té en compte la correcta dissipació de l’energia corresponent. Es presenta la
resposta mecànica del model constitutiu proposat sota estats de càrrega longitudinals a
tallant a diferents velocitats de deformació. A l’augmentar la velocitat de deformació,
augmenta la rigidesa en els règims viscoelàstic i viscoplàstics. A més, la iniciació del dany
viscós augment a l’augmentar la velocitat de deformació. S’utilitzen assajos “off-axis” a
compressió per demostrar les capacitats predictores del model proposat.
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Resumen

En las últimas décadas, diferentes modelos computacionales a nivel meso se han desarrol-
lado para predecir la evolución de la fractura y la resistencia de los materiales compuestos.
No obstante, los mecanismos de falla de los compuestos son complejos i esto hace que sea
un gran reto desarrollar modelos capaces de reproducir su comportamiento bajo diferentes
estados de carga de manera consistente. Además, la falta de ensayos mutiaxiales normaliza-
dos ha dificultado el consenso sobre las envolventes y los criterios de fallo de los materiales
compuestos. En esta tesis se propone un nuevo modelo de daño elastoplástico en 3D para
predecir la deformación plástica y el fallo progresivo de los laminados unidireccionales de
materiales compuesto a escala meso.

Una nueva función de fluencia plástica y una nueva regla de fluencia no asociada se
proponen para definir correctamente la evolución de las deformaciones plásticas. Entonces,
se pueden imponer el coeficiente de Poisson transversal plástico y las deformaciones
plásticas volumétricas. El modelo propuesto se basa en la mecánica del daño continuo y la
termodinámica de procesos irreversibles. Las leyes de evolución del daño se han definido
para tener en cuenta los mecanismos de falla en la dirección longitudinal y transversal. La
función de fluencia plástica y los criterios de falla pueden ajustarse mediante dos y seis
parámetros de entrada del modelo (coeficientes de forma de las evolventes), respectivamente,
para considerar el comportamiento mecánico del material que está analizando. Se utilizan
ensayos de compresión y tracción ”off-axis” con diferentes orientaciones de las capas y
una alta dependencia plástica para demostrar la capacidad del modelo para captar la
respuesta plástica, el inicio del daño y también los planos de falla. Además, se realiza
una comparación numérico-experimental de ensayos a compresión y tracción en probetas
con un agujero con distintas dimensiones para demostrar la capacidad del modelo de
predecir su resistencia. Se obtiene una buena concordancia entre los datos numéricos y
experimentales.

Cuando existen grandes deformaciones, se pueden generar modos de daño espurios en
los modelos basados en la mecánica del daño continuo por materiales transversalmente
isotrópicos que utilizan el tensor de tensiones efectivas. En esta tesis se desarrolla una nueva
metodología para prevenir ese fenómeno. Las funciones de activación del daño longitudinal
están basadas en las tensiones efectivas. Sin embargo, se utilizan las tensiones nominales en
la función de activación del daño transversal. El método propuesto puede implementarse
directamente en los modelos constitutivos que se han desarrollado previamente utilizando
las tensiones efectivas y se presenta una implementación explicita del modelo constitutivo
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propuesto. A continuación, se muestra la mejora en la predicción de los mecanismos
de falla obtenida con el modelo constitutivo presentado respecto a modelos que utilizan
el tensor de tensiones efectivas. El modelo constitutivo propuesto muestra una buena
concordancia con el patrón de falla externo obtenido a partir de ensayos experimentales
con probetas agujereadas y también en la predicción de su resistencia.

Se proporcionan pautas para caracterizar los parámetros de entrada del modelo propuesto.
En esta línea, se desarrolla una nueva metodología para medir los coeficientes de Poisson
transversal en materiales compuestos poliméricos reforzados con fibra. Se instrumentalizan
ensayos normalizados de tracción y compresión transversales mediante un equipo de
correlación digital de imágenes para medir el campo de deformaciones a través del espesor
de la superficie de las probetas. Se utiliza un material compuesto de base termoplástica
para describir la metodología propuesta. El coeficiente de Poisson transversal muestra un
comportamiento diferente a tracción que a compresión, siendo su mayor valor a compresión
que a tracción. Asumiendo que no existe deformación plástica en la dirección longitudinal,
no hay deformaciones plásticas volumétricas según el coeficiente de Poisson transversal
plástico a compresión. Sin embargo, se observa dilatación plástica cuando la deformación
axial transversal a compresión aumenta.

Se analiza la influencia de los coeficientes de forma de la envolvente de falla sobre la
predicción de la resistencia en probetas a compresión con un agujero y un tornillo. El
análisis se realiza utilizando diferentes geometrías, secuencias de apilado, precargas, etc.
Los resultados indican que existe un gran efecto de la forma de la envolvente de falla sobre
las predicciones de la resistencia y el desarrollo de los mecanismos de falla en las probetas
analizadas. Entonces, el correcto ajuste de los criterios de falla puede ser tan importante
como definir con precisión los parámetros de entrada del modelo. Estos resultados subrayan
la importancia de establecer con precisión las evolventes de falla, en lugar de focalizarse a
desarrollar modelos complejos.

Las capacidades del modelo constitutivo para predecir la respuesta mecánica de laminados
poliméricos reforzados con fibra de carbono bajo condiciones de carga complejas se demues-
tran realizando diferentes comparaciones numérico-experimentales. Además de las buenas
predicciones obtenidas en los ensayos “off-axis” y con las probetas agujereadas, existe una
buena concordancia entre los resultados numéricos y los datos experimental en ensayos
a flexión con una muesca en el extremo, en ensayos a flexión a cuatro puntos utilizando
probetas en forma de “L” y en ensayos de uniones atornilladas sometidas a cortante.
Estos ensayos han sido analizados porque son ensayos donde existen estados de tensiones
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no uniformes fuera del plano y son un gran reto debido a que existe la combinación de
diferentes mecanismos de falla.

El modelo constitutivo se ha extendido para tener en cuenta los efectos viscosos debido a
condiciones dinámicas. Se ha propuesto un nuevo modelo viscoelástico viscoplástico con
daño viscoso en tres dimensiones. La respuesta viscoelástica se ha moldeado utilizando el
modelo de Maxwell generalizado y se ha utilizado un modelo de sobretensión para modelar
las deformaciones viscoplásticas. La iniciación de los mecanismos de daño viscoso se basa
en expresiones experimentales y su propagación tiene en cuenta la correcta disipación de
la energía correspondiente. Se presenta la respuesta mecánica del modelo constitutivo
propuesto bajo estados de carga longitudinales a cortante a distintas velocidades de
deformación. Al aumentar la velocidad de deformación, aumenta la rigidez en los regímenes
viscoelástico y viscoplásticos. Además, la iniciación del daño viscoso aumento al aumentar
la velocidad de deformación. Se utilizan ensayos “off-axis” a compresión para demostrar
las capacidades de predicción del modelo propuesto.
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1Introduction

1.1 Contextual background
Composite materials are defined as a combination of materials with different constituents.
They do not fuse or dissolve into each other and can usually be physically identified.
The structure of composites consists of two components: i) matrix and ii) reinforcement.
In addition, the region between these two components is known as the interface. The
reinforcement constituent is surrounded by the matrix component, resulting in superior
properties of both materials [1]. Matrices can be divided into three main groups: i)
metallic, ii) ceramic, and iii) polymeric, while the reinforcements can be made of different
material: glass, carbon, aramid, etc. [2, 3]; and geometries: particles, short fibres, long
fibres, etc. The present thesis focuses on unidirectional plies of polymer-based composite
materials reinforced with long carbon fibres.

Carbon fibre-reinforced polymer (CFRP) laminates are the combination of multiple CFRP
laminae tailored to withstand the appropriate external loads, improving the stiffness and
strength of a single laminae [4]. They can fail due to various interacting failure mechanisms
such as fibre failure, matrix cracking and delamination, due to the heterogeneity of the
material and its complex mechanical behaviour [5]. Fibre failure under tensile loading
occurs on a plane perpendicular to the longitudinal axis, whereas compressive fibre failure
is due to the collapse of the fibres and promotes shear kinking and matrix damage [6,
7]. Matrix cracking occurs in the resin, accounting for fibre-matrix debonding or voids.
Delamination between layers can be promoted by interlaminar stresses that can develop
at the free edges or due to curvature areas, as well as out-of-plane loading conditions
such as impacts, etc. In addition, CFRP components exhibit non-linearity due to plastic
deformation, which causes stress redistribution and affects the onset of failure mechanisms.
The directions governed by the matrix can show significant plastic deformation [8–10].
Furthermore, the mechanical behaviour of CFRPs depends on the hydrostatic pressure in
both plastic and damage stages [11, 12].

The use of CFRP laminates in the aircraft component manufacturing has increased in the
recent years due to its high stiffness and strength, low density and high fatigue resistance
[1, 13, 14]. CFRPs are widely employed in major-load bearing structures and replace older
aircraft structures which were made of aluminium. In addition, CFRP laminates are used
in the automotive sector to reduce the pollutant emissions through weight reduction of

1



vehicles, thereby improving energy efficiency in both internal combustion engine vehicles
[14–16] and electric vehicles [17–20].

The certification requirements for composite structures in the civil aircraft sector require
long and expensive test campaigns. For instance, during the airworthiness certification
process, all critical loading scenarios and associated failure modes must be considered:
environmental effects, material and manufacturing variability, defects, and service damage
during maintenance [21]. The building block approach is a method often used to support
the certification process. This approach involves different levels of testing from coupon
level to component level (the complete full scale product) [2, 21, 22]. Experimental testing
is then combined with analysis techniques to achieve a good balance between the cost and
reliability of CFRP structural designs.

Finite element (FE) models with appropriate constitutive models can be used to model
the mechanical behaviour of fibre-reinforced polymer (FRP) structures. The FE modelling
approach for FRPs can be divided into different length scales from lower to higher as [23]:
micro-mechanical, meso-mechanical and macro-mechanical, see Fig. 1.1. Macro-mechanical
analyses use shell elements to model FRP laminates with many integration points through-
the-thickness as the number of plies in the laminate [24–26]. As a result, the analyses
are limited to plane stress states, but are very efficient in terms of computational time
[27]. They are often employed to predict the behaviour of large structures, but also for
preliminary design and optimisation processes [28–32].

Figure 1.1.: Schematic representation of the length scales employed in the finite element models.

In the other extreme, micro-mechanical analyses model the constituents (fibres and matrix)
providing detailed information of the deformation and fracture processes of FRP laminates
[33]. No simplifications or assumptions are required as in the higher length scales. However,
FE models at this scale are generally limited to small representative volumes due to the
high computational time, and are not suitable for application at the coupon or structural
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level. They are usually employed to design the material itself [34–37] and analyse the
effect of defect of FRPs [38–46].

Each laminae of FRP laminates is explicitly modelled at the meso-scale level. Therefore,
the laminate is constructed by stacking each ply with the appropriate fibre orientation.
The intralaminar behaviour of each layer can be then modelled by assuming that the
FRP plies behave as a transversely isotropic homogeneous material within the continuum
damage mechanics (CDM) framework [5, 47–52]. In addition, the interface behaviour
between the plies can be considered using cohesive zone models [53–56].

The CDM theory was originally proposed by Kachanov [57] and Rabotnov et al. [58] for
creep analysis of metals. The CDM is based on the general framework of thermodynamics
of irreversible processes with internal state variables [59]. The constitutive equations of
the material are modelled as a continuum. The deformation is described by the strain field
variable, while the distribution of internal forces is described by the stress field. Under
certain loading conditions, the material starts to degrade and is modelled it by a continuum
field in CDM. Therefore, a discontinuity (a crack) is modelled by continuous variables [60].
The elastic material properties are degraded by the internal damage variables.

Meso-mechanical models can be categorised according to their discretisation [61] (see
Fig. 1.2 from left to right): i) fully continuum model without interface elements, ii)
continuum model for intralaminar damage with cohesive elements to model delamination,
iii) continuum model in the fibre direction with cohesive elements to capture matrix cracking
and delamination and iv) fully discretised model with cohesive elements to capture fibre
failure, matrix cracking and delamination. Regardless of the level of discretisation, all
continuum damage models have three common parts: i) the undamaged state which can
be linear, elasto-plastic, visco-elastic, etc.; ii) the onset of damage; and iii) the damage
propagation modelling. This thesis focuses on the modelling of CFRP laminates at the
meso-scale level.
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Figure 1.2.: Schematic representation of the discretisation of the different meso-mechanical
analyses of finite element models. Note that the dots are the schematic representation
of the fibres, but the fibres are not explicitly modelled.

1.2 Motivation
CFRP structures can fail due to various interacting failure mechanisms. As a consequence,
extensive experimental test campaigns are necessary for designing and certifying composite
parts [2]. The development of accurate modelling and simulation approaches to support
design and certification processes is an ongoing topic. This will allow experimental test
campaigns to be replaced or complemented by virtual testing, thereby reducing the time
of the design process and the final cost of CFRP structures.

Often, the load-carrying capacity of FRP structures does not suddenly drop when the
onset of damage occurs in a specific region. The structure can support additional load
before collapsing completely. Therefore, it is important to quantify the initial failure as
well as its development and progression. Additionally, FRP laminates can exhibit plastic
deformation under loading states governed by the matrix, such as under transverse shear
loading scenarios. Plastic deformation can produce stress redistribution that affects the
failure of FRP laminates. Other important aspect to consider is the influence of dynamic
loading on the mechanical response of FRPs, as the loading rate effects can be significant
in impact loading scenarios. Moreover, the effect of the 3D stress states on the failure
mechanisms is significant such as in curved FRP laminates, bolted composite joints with
clamping pressure, etc. These factors, among others, make predicting the mechanical
response of FRPs a challenging task.

Different methods to predict the failure response of FRP laminates under complex loading
conditions have been carried out in the literature. The world wide failure exercises [62–
67] evaluated the predictive ability of each method by comparing its predictions with
experimental data. The comparison demonstrated that none of the theories considered
successfully predicted properly all the analysed aspects: the onset of damage, laminate
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strength, crack density, large deformation, etc. [62, 66, 68]. Several constitutive models
have been proposed for FRP structures in the literature. However, no single model has
been consolidated as a reference. There is no single 3D constitutive model presented in
the literature that combines plastic modelling, failure modelling (onset and progressive
model), and considers the dynamic loading effects of FRPs. Additionally, the models that
partially account for these aspects have not been fully validated.

1.3 Objectives
The main objective of the thesis is to develop a high-fidelity model to predict the plastic
deformation and fracture of FRP laminates under dynamic loading conditions. This main
objective is addressed through the following sub-objectives:

1. To develop a constitutive model to predict the plastic deformation and fracture of
FRP laminates under quasi-static loading conditions.

2. To implement the constitutive model in a subroutine to be used with a FE commercial
solver.

3. To verify the implementation of the constitutive model.

4. To carry out an extensive numerical-experimental comparison to analyse the capabil-
ities of the model to predict the mechanical response of FRPs.

5. To extend the quasi-static model to predict the plastic deformation and fracture of
FRP laminates under dynamic loading conditions.

1.4 Methodology
As a starting point, a state-of-art of constitutive models proposed in the literature to
predict the plastic deformation and fracture of FRP laminates at the meso-scale level
is conducted. An existing 3D damage model is selected and extended to also predict
plastic deformation in Chapter 2. A new yield function and a non-associative flow rule are
proposed. Then, a new implementation is also proposed to combine plastic and damage
modelling. The algorithm is implemented in a user-defined material in Fortran subroutine
to be used in a commercial FE software. The capabilities of the proposed model to predict
the plastic deformation and fracture of FRP laminates are also demonstrated through
numerical-experimental comparisons under different loading states. A scientific article has
already been published based on this work.
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After, the proposed constitutive model is enhanced to improve the prediction of the failure
mechanisms after the onset of damage. The new formulation and its implementation
are described in Chapter 3. The new model is also implemented in a user material
Fortran subroutine and verified. A comparison is carried out between the predictions of
the enhanced model and those of the original model to demonstrate the improvements.
Furthermore, a numerical-experimental comparison is conducted. Another scientific article
has already been published based on this work.

Most of the model input parameters can be characterised using standardised tests or
experimental methodologies proposed in the literature. Only the methodology to measure
the transverse Poisson’s ratio and the shape of the failure envelope in some stress spaces
are not clearly defined with standard tests. Therefore, a new methodology is proposed to
measure the transverse Poisson’s ratio in Chapter 4, and a numerical analysis is conducted
to determine the effect of the failure envelope on the failure strength in Chapter 5.

From the new proposed methodology, the transverse Poisson’s ratio can be measured
experimentally in both the elastic and plastic regions. Experimental tests are carried out
using a CFRP thermoplastic-based composite material to demonstrate the ability of the
proposed methodology. Finally, the experimental data are presented and analysed. This
work is also summarised in a scientific article and has already been published.

The influence of the selected failure criterion on the failure strength of FRP laminates
under 3D loading conditions is investigated. In this analysis, different failure criterion
are defined in the longitudinal vs. transverse stress space. The numerical results are
compared to experimental data highlighting the significant influence of the failure criterion
on the failure predictions. This analysis is also summarised in a scientific article already
published.

The enhanced constitutive model is evaluated under different complex 3D loading conditions
in Chapter 6. Numerical-experimental comparisons of different loading cases are conducted.
The FE modelling strategy of each case is described, and the results are analysed.

The enhanced constitutive model is then extended to account for visco effects due to
dynamic loading conditions in Chapter 7. The new model is described, implemented
in a user material Fortran subroutine, and verified. Finally, a numerical-experimental
comparison is performed and analysed. This viscous constitutive model is also described
in scientific article already accepted for publication.

Different numerical limitations of the proposed constitutive model are analysed in Chapter 8.
Firstly, some aspects of the use of the Infinitesimal Strain theory are presented and analysed.
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The results obtained from the Infinitesimal Strain theory are then compared with those
obtained from the Finite Strain theory. Additionally, a potential influence of the friction
effects in the constitutive model is presented.

The thesis concludes by proposing future work to further improve the proposed constitutive
model in Chapter 9. The concluding remarks summarise the work done. Additionally,
detailed descriptions of previously mentioned milestones are presented in different appen-
dices.

1.5 Research dissemination
The work included in this thesis resulted in the following scientific publications:

i. I.R. Cózar, F. Otero, P. Maimí, E.V. González, S. Miot, A. Turon, and P.P. Ca-
manho. A three-dimensional plastic-damage model for polymer composite materials.
Composites Part A: Applied Science and Manufacturing (2022), 163, 107198. DOI:
https://doi.org/10.1016/j.compositesa.2022.107198

ISSN: 1359-835X, Impact Factor: 8.7, ranked 4/35 in the category of Materials
Science, Composites (1st quartile)1.

ii. I.R. Cózar, F. Otero, P. Maimí, E.V. González, A. Turon, and P.P. Camanho. An
enhanced constitutive model to predict plastic deformation and multiple failure
mechanisms in fibre-reinforced polymer composite materials. Composite Structures
(2024), 330, 117696. DOI: https://doi.org/10.1016/j.compstruct.2023.117696

ISSN: 0263-8223, Impact Factor: 6.3, ranked 6/35 in the category of Materials
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2Elastoplastic damage model
In recent decades, several meso-mechanical models have been developed to predict the
failure evolution and strength of FRP laminates [5, 51, 52]. However, the complex
mechanical behaviour of FRPs presents a major challenge in developing a model capable
of consistently reproducing different loading conditions, from in-plane to complex 3D
conditions [62, 66, 68]. As previously explained, the fracture of FRPs are governed by
the combination of different failure mechanisms. Furthermore, the plastic deformation of
the FRP structures under certain loading conditions causes stress redistribution, which
affects the failure mechanisms. All these phenomena need to be taken into account by
formulating advanced constitutive models to accurately predict the mechanical response
of FRP structures.

Out-of-plane stresses are insignificant when laminated composite materials are used in
thin structures where in-plane stresses dominate the stress state away from free edges.
However, FRP laminates are used in complex geometries where it is critical to capture
the effects of out-of-plane stresses [69]. Therefore, 3D material models are needed to
capture the inelastic deformation and fracture behaviour in out-of-plane stress states (e.g.
shear yielding and the fracture strengths affected by the hydrostatic pressure [11, 12],
three-dimensional (3D) stress state effects on the failure of pressure vessels [70], three-point
bending tests to predict the out-of-plane tensile strength [71], bolted composite joints with
clamping pressure, in impact tests, in curved structures, etc.), but also under the in-plane
stress states (e.g. tests with in-plane boundary conditions where interface damage plays a
relevant role).

Plasticity models combined with continuum damage mechanics formulations are often used
to predict the non-linear mechanical response of FRP laminates. Chen et al. [72] developed
an elastoplastic damage model to predict the mechanical response of a unidirectional FRP
laminate by assuming plane stress conditions. The plasticity model was based on the
model presented by Sun and Chen [73]. An isotropic yield function and an associative flow
rule were used. The damage model was based on the Hashin’s failure criteria with three
damage variables to capture: fibre failure, matrix cracking due to a pure transverse load,
and longitudinal shear stiffness degradation from fibre failure and matrix cracking. The
damage evolution was described with exponential softening laws. The onset of damage
was validated by comparing the numerical failure predictions with the failure strength
from open-hole tensile tests. In general, good predictions were found, although the relative
error was higher than 15% for 4 of the 17 cases studied. In addition, an in-plane shear
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test was simulated. The results showed a good prediction of the plastic strain but an
under-prediction of the failure strength.

Hoffarth et al. [74] proposed an elastoplastic damage model to predict the mechanical
behaviour of a unidirectional FRP laminate under impact load. The yield function of
the plasticity model was defined using the Tsai-Wu composite failure criterion [75]. A
new non-associative flow rule was proposed to define the evolution of the plastic strains.
The onset and propagation of damage were based on the work of Matzenmiller et al. [76].
The authors compared the out-of-plane displacement vs. time curve obtained from an
impact test with the numerical predictions. The predicted curve accurately captured the
positive and negative peak displacement values of the first cycle and the displacement
profile around the first peak. However, the peak displacements were overestimated for the
subsequent cycles.

Xie et al. [77] presented an elastoplastic damage model to describe the mechanical response
of a carbon fibre reinforced carbon-silicon carbide (C/C-SiC) composite material in-plane
stress conditions. The authors proposed a new yield function as a function of the in-plane
stresses and the material properties, and an associative flow rule was used. Three damage
variables were used to degrade the in-plane elastic material properties. The evolution of
each damage variable was defined using exponential functions. The material model was
validated by comparing the plastic response to the one obtained from experimental data.
Off-axis tensile and in-plane shear curves were predicted with a good agreement with the
experimental data, and the plastic deformations were correctly predicted. In addition,
the load-displacement, load-plastic strain and load-strain predicted curves from a single
open-hole tensile test were compared to the corresponding experimental data. Again, the
material model properly captured the plastic response.

Holthusen et al. [78] developed a constitutive model for unidirectional fibre composite
materials. The plasticity model was based on the Von Mises yield criterion with an
associative flow rule. Three damage variables were used: two associated with the fibre
(tension and compression damage) and one for the matrix. The authors showed the
simulated response of the material under cyclic uniaxial tensile-compressive loading and
the interaction between the fibre and matrix damage. Open-hole virtual tests were also
performed with different conditions on the material model (enabling/disabling plasticity
and damage).

Chen et al. [10] proposed an elastoplastic damage model to describe the plastic hardening
response and damage evolution. The modified Drucker-Prager yield criterion proposed
by Cho et al. [79] was employed to account for the deviatoric and dilatational plastic
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deformation. In addition, the authors added a term in the yield function to prevent
compressive stresses from generating shear yielding based on the work of Daniel [80]. An
associative flow rule was used. The damage activation functions was based on the Puck
failure criteria [81, 82]. Exponential damage laws were used to model the degradation of
the elastic material properties in the principal directions. The model was validated by
simulating off-axis compressive and tensile tests. The comparison with the experimental
test showed good agreement of the stress vs. strain curves and the failure strengths.

From the previous literature observations, there is a need to develop an elastoplastic damage
model using: a plastic flow rule to capture the plastic dilatancy or contractility, a 3D
material model to account for out-of-plane loading conditions, and an extensive comparison
of the numerical predictions with experimental data. Therefore, the objective of this
chapter is to develop a reliable constitutive model to predict the plastic deformation and
the progressive failure of FRPs at the meso-scale level. The constitutive model is described
in Section 2.1 and the characterisation of the input model properties in Section 2.2. The
numerical implementation of the model is described in Section 2.3. The capabilities of
the model are demonstrated by comparing the numerical results with experimental data
from off-axis compressive and tensile tests and open-hole compressive and tensile (OHC
and OHT, respectively) tests. Section 2.4 presents a detailed comparison of the stress vs.
strain curves, the failure strength and the fracture planes.

2.1 Constitutive model
The proposed material model is developed within the framework of the Infinitesimal Strain
theory. The strain tensor is composed as

𝜺 = 𝜺𝑒 + 𝜺𝑝, (2.1)

where 𝜺𝑒 is the elastic strain tensor (it includes cracking strains) and 𝜺𝑝 is plastic strain
tensor.

For homogenised composite materials, plasticity is not considered in the longitudinal
direction. The model describes a purely elastic response before the onset of damage in the
longitudinal direction, Fig. 2.1a. However, an elastic behaviour until the onset of plasticity
in the directions governed by the matrix is assumed. Then, the plastic strains can grow
until a matrix crack is started. After that, the damage develops without increasing the
plastic strains at the Gauss-point level, see Fig. 2.1b.
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Figure 2.1.: Schematic representation of uniaxial stress vs. strain curve response at the Gauss-
point level: a) in the longitudinal direction, and b) in the directions governed by
the matrix.

A new plasticity model is proposed and combined with a damage model (see Fig. 2.1b).
Several failure criteria have been proposed in the literature such as maximum stress/strain
criterion, Hashin’s criterion, LaRC, Puck’s criterion [82–85], etc. As evidenced by the
world wide failure exercises [63–67], there is no a single failure criteria that can consistently
reproduce the experimental data. For this reason, the damage model developed by
Quintanas-Corominas et al. [86] is used in the proposed constitutive model of this thesis,
since this damage modelling allows the failure criteria to be modified as a function of six
input model parameters. Therefore, the failure envelope can be adjusted according to the
behaviour of the material being studied, rather than having a fixed failure criteria as seen
in other models.

The complementary Gibbs free-energy density function (𝑊) proposed by Quintanas-
Corominas et al. [86] is then used. The model depends on four of the five invariants of the
stress tensor (𝝈) at a rotation with respect to the longitudinal axis: the longitudinal stress
𝜎ℓ (fibre dominant direction); the transverse hydrostatic pressure 𝑝𝑡; 𝜏ℓ and 𝜏𝑡 which are
related with the longitudinal shear stress and the transverse shear stress, respectively. The
function 𝑊 is defined as

𝑊 ∶=
𝜎2

ℓ
2(1 − 𝑑ℓ)𝐸11

−
2𝜈12𝜎ℓ𝑝𝑡

𝐸11
+

𝑝2
𝑡

2(1 − 𝑑𝑡)𝐸𝑡
+

𝜏2
𝑡

2(1 − 𝑑𝑠𝑡)𝐺𝑡
+

𝜏2
ℓ

2(1 − 𝑑𝑠ℓ)𝐺12
+ 𝝈𝑇𝜺𝑝, (2.2)

where 𝐸11 is the longitudinal elastic modulus, 𝜈12 is the longitudinal Poisson’s ratio and
𝐺12 is the longitudinal shear elastic modulus. 𝐸𝑡 and 𝐺𝑡 are the bulk and shear elastic
stiffness in the transverse isotropic plane, respectively, which are defined as

𝐸𝑡 ∶=
𝐸22

2(1 − 𝜈23), (2.3)
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and
𝐺𝑡 ∶=

𝐸22

2(1 + 𝜈23), (2.4)

where 𝐸22 is the transverse elastic modulus and 𝜈23 is the transverse Poisson’s ratio. The
stress invariants are defined as

𝜎ℓ = 𝜎11, (2.5)

𝑝𝑡 =
𝜎22 + 𝜎33

2 , (2.6)

𝜏ℓ = √𝜎2
12 + 𝜎2

13 (2.7)

and

𝜏𝑡 =
√(𝜎22 − 𝜎33)2 + 4𝜎2

23

2 , (2.8)

where 𝜎𝑖𝑗 are the Cartesian components of the stress tensor (𝝈). The scalar variables
𝑑𝑀=ℓ,𝑡,𝑠ℓ,𝑠𝑡 describe the damage state in the corresponding direction. The subscript ℓ
refers to longitudinal (fibre), 𝑡 refers to transverse (matrix) and 𝑠 refers to shear. The
material is undamaged for 𝑑𝑀 = 0, is damaged for 0 < 𝑑𝑀 ≤ 1, and is fully damaged for
𝑑𝑀 = 1.

The strain tensor is obtained from the Clausius-Duhem inequality [47, 87] as the derivative
of 𝑊 with respect to the mechanical stresses as

𝜺 =
𝜕𝑊
𝜕𝝈 = ℍ𝝈 + 𝜺𝑝, (2.9)

where ℍ is the compliance tensor and can be expressed in Voigt Notation as

ℍ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ℍ11 ℍ12 ℍ12 0 0 0
ℍ12 ℍ22 ℍ23 0 0 0
ℍ12 ℍ23 ℍ22 0 0 0

0 0 0 ℍ44 0 0
0 0 0 0 ℍ55 0
0 0 0 0 0 ℍ55

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.10)
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with:

ℍ11 = 1
(1 − 𝑑ℓ)𝐸11

ℍ12 = −
𝜈12

𝐸11

ℍ22 = 1
4(1 − 𝑑𝑡)𝐸𝑡

+ 1
4(1 − 𝑑𝑠𝑡)𝐺𝑡

ℍ23 = 1
4(1 − 𝑑𝑡)𝐸𝑡

− 1
4(1 − 𝑑𝑠𝑡)𝐺𝑡

ℍ44 = 1
(1 − 𝑑𝑠𝑡)𝐺𝑡

ℍ55 = 1
(1 − 𝑑𝑠ℓ)𝐺12

.

(2.11)

2.1.1 Modelling Plasticity
A scalar function is proposed as the yield function, which depends on the stress invariants,
and the equivalent plastic strain ̄𝜀𝑝 since the yield stresses (𝑌𝑇 𝑃, 𝑌𝐶𝑃 and 𝑆𝐿𝑃) are defined
as a function of ̄𝜀𝑝, see Fig. 2.2. The yield function is developed from the transverse
loading function proposed by Quintanas-Corominas et al. [86], because it is a convex
function homogeneous of degree one. In addition, the function allows different shapes of
the yield surface to be defined. Furthermore, a single function is used for defining a closed
plastic envelope instead of using multiple equations as formulated in other models (e.g.
using one for compression and one for tension depending on the transverse hydrostatic
pressure [9]). Therefore, the yield function reads

𝜙𝑝(𝝈, ̄𝜀𝑝) ∶=√(
𝑌𝐶𝑃 + 𝑌𝑇 𝑃

𝑌𝐶𝑃𝑌𝑇 𝑃
)

2 𝜏2
𝑡 + 𝜇𝑡𝑝𝑝2

𝑡

1 + 𝜇𝑡𝑝
+ (

𝜇𝑠ℓ𝑝

𝑆𝐿𝑃
𝜏ℓ)

2

+
𝑌𝐶𝑃 − 𝑌𝑇 𝑃

𝑌𝐶𝑃𝑌𝑇 𝑃
𝑝𝑡 +

1 − 𝜇𝑠ℓ𝑝

𝑆𝐿𝑃
𝜏ℓ − 1 ≤ 0,

(2.12)

where 𝑌𝑇 𝑃 and 𝑌𝐶𝑃 are the transverse tensile and compressive yield stresses, respectively,
and 𝑆𝐿𝑃 is the longitudinal shear yield stress. 𝜇𝑠ℓ𝑝 and 𝜇𝑡𝑝 are the plastic envelope shape
coefficients, see Fig. 2.3a and b replacing the damage parameters by the corresponding
plastic parameters, e.g. 𝑌𝑇 by 𝑌𝑇 𝑃.
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Figure 2.2.: Schematic representation of yield stresses vs. equivalent plastic strain curve.

The yield function of Eq. (2.12) allows to control the activation of the yielding for uniaxial
loads in the transverse direction in tension and in compression, as well as for longitudinal
shear loading states by means of the corresponding yield stresses. Furthermore, the
plasticity can be activated under other transverse loading conditions controlled by 𝜇𝑡𝑝 and
𝜇𝑠ℓ𝑝. For example, shear yielding in the longitudinal or transverse direction is affected
by the transverse hydrostatic pressure as observed in [11, 12]: the higher the transverse
compressive hydrostatic is, the higher the shear yielding is.

The evolution of the equivalent plastic strain rate is defined as

̇̄𝜀𝑝 ∶= √1
2 ∥ ̇𝜺𝑝∥ , (2.13)

where ̇𝜺𝑝 is the plastic strain rate.

The mechanical behaviour of FRP laminates depend on the transverse hydrostatic pressure
[11, 12]. This dependence requires the use of elastoplastic material models with a non-
associative flow rule to properly capture the plastic dilatancy or contractility. This allows
the volumetric plastic strains and the plastic Poisson’s ratios to be imposed. Therefore, a
non-associative flow rule is applied in the proposed model, and the evolution of the plastic
strains is defined by the gradient of the potential function 𝜑𝑝, see Eq. (2.21). The plastic
strain rate is defined as

̇𝜺𝑝 ∶= 𝜆 𝜕𝜑𝑝

𝜕𝝈 , (2.14)

where 𝜆 is the plastic multiplier parameter [88]. The loading-unloading conditions are
applied using the following Kuhn-Tucker conditions to calculate 𝜆:

𝜙𝑝 ≤ 0, 𝜆 ≥ 0. (2.15)
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Therefore, under plastic loading 𝜙𝑝 = 0 and 𝜆 > 0, and for unloading 𝜙𝑝 < 0 and 𝜆 = 0.
Hence,

𝜙𝑝𝜆 = 0. (2.16)

These conditions can be summarised in the consistency condition as

�̇�𝑝𝜆 = 0. (2.17)

The plastic multiplier parameter 𝜆 can be calculated in case of plastic loading (�̇�𝑝 = 0
and 𝜆 > 0) imposing the following condition

�̇�𝑝 =
𝜕𝜙𝑝

𝜕𝝈 �̇� +
𝜕𝜙𝑝

𝜕 ̄𝜀𝑝 ̇̄𝜀𝑝 = 0. (2.18)

Inserting Eqs. (2.13) and (2.14) in the previous conditions yields

�̇�𝑝 =
𝜕𝜙𝑝

𝜕𝝈 ℂ𝑒 ( ̇𝜺 − 𝜆 𝜕𝜑𝑝

𝜕𝝈 ) +
𝜕𝜙𝑝

𝜕 ̄𝜀𝑝 𝜆√1
2 ∥𝜕𝜑𝑝

𝜕𝝈 ∥ = 0, (2.19)

and the plastic multiplier parameter yields

𝜆 =
𝜕𝝈(𝜙𝑝)ℂ𝑒 ̇𝜺

𝜕𝝈(𝜙𝑝)ℂ𝑒𝜕𝝈(𝜑𝑝) − √1
2𝜕�̄�𝑝(𝜙𝑝) ∥𝜕𝝈(𝜑𝑝)∥

. (2.20)

Finally, the plastic potential function is defined as

𝜑𝑝(𝝈) ∶=
√√√

⎷
(

̂𝑌𝐶𝑃 + ̂𝑌𝑇 𝑃
̂𝑌𝑇 𝑃

̂𝑌𝐶𝑃
)

2 𝜏2
𝑡 + ̂𝜇𝑡𝑝𝑝2

𝑡

1 + ̂𝜇𝑡𝑝
+ (

̂𝜇𝑠ℓ𝑝
̂𝑆𝐿𝑃

𝜏ℓ)
2

+
̂𝑌𝐶𝑃 − ̂𝑌𝑇 𝑃

̂𝑌𝑇 𝑃
̂𝑌𝐶𝑃

𝑝𝑡 +
1 − ̂𝜇𝑠ℓ𝑝

̂𝑆𝐿𝑃
𝜏ℓ − 1.

(2.21)

Eq. (2.21) has the same form as the yield function but each yield stress and plastic envelope
shape coefficients are replaced by the corresponding plastic potential parameters. Hence, a
one degree homogenous and convex function is used for 𝜑𝑝. The plastic potential stresses

̂𝑌𝑇 𝑃, ̂𝑌𝐶𝑃 and ̂𝑆𝐿𝑃 and the plastic potential envelope shape coefficients ̂𝜇𝑡𝑝 and ̂𝜇𝑠ℓ𝑝 are
defined as constant parameters. They do not have a physical meaning, they are used to
control the plastic dilatancy or contractility in the plastic zone (these parameters define
the direction of the plastic flow). For this reason, only the ratios between them are relevant
and not their absolute values. Note that, if the plastic potential parameters are set equal
to the yield parameters, the plasticity would be modelled using an associative flow rule.
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The plastic dilatancy or contractility can be defined using three plastic Poisson’s ratios: 𝜈𝑝
23𝑇

and 𝜈𝑝
23𝐶 are the transverse tensile and compressive plastic Poisson’s ratios, respectively,

and 𝜈𝑝
122 ∶= −

𝜀𝑝
22

𝜀𝑝
12

. They can be measured by three tests: pure transverse tensile test
(𝜈𝑝

23𝑇), pure transverse compressive test (𝜈𝑝
23𝐶) and pure longitudinal shear test (𝜈𝑝

122).
It should be noted that, these tests are also used to adjust the yield function. Hence,
the total number of tests required to calibrate the plasticity input parameters does not
increase.

The procedure to obtain the plastic potential ratios as a function of the plastic Poisson’s
ratios is explained in detail in Appendix A. They are defined as

̂𝑌𝐶𝑃
̂𝑌𝑇 𝑃

=
𝜈𝑝

23𝐶 + 1
𝜈𝑝

23𝑇 + 1
̂𝑆𝐿𝑃
̂𝑌𝑇 𝑃

=
2𝜈𝑝

122(𝜈𝑝
23𝐶 + 1)

𝜈𝑝
23𝑇 − 𝜈𝑝

23𝐶

̂𝜇𝑡𝑝 =
1 − 𝜈𝑝

23𝐶𝜈𝑝
23𝑇

(𝜈𝑝
23𝐶 + 1)(𝜈𝑝

23𝑇 + 1)

̂𝜇𝑠ℓ𝑝 ∈ R.

(2.22)

However, if there is no volumetric plastic strains (𝜈𝑝
23𝑇 = 𝜈𝑝

23𝐶 = 1 and 𝜈𝑝
122 = 0), the

plastic potential relationships are simplified to

̂𝑌𝐶𝑃
̂𝑌𝑇 𝑃

= 1

̂𝑆𝐿𝑃 ∈ R

̂𝜇𝑡𝑝 = 0

̂𝜇𝑠ℓ𝑝 ∈ R.

(2.23)

2.1.2 Modelling Damage Evolution
As explained before, CDM theory is often employed in conjunction with FE models to
predict crack initiation and propagation in FRP laminates [5, 51, 52]. CDM models
represent a crack by introducing damage variables (𝑑𝑀) in the corresponding terms of
the elasticity tensor (ℂ𝑒(𝑑𝑀) = ℍ−1) to obtain the stress tensor (𝝈) as a function of the
elastic strain tensor (𝜺𝑒),

𝝈 = ℂ𝑒(𝑑𝑀)𝜺𝑒. (2.24)
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Therefore, the non-linear response due to cracking is obtained without explicitly modelling
it in the FE discretisation (the FE mesh).

In the proposed constitutive model, the evolution of the damage is based on the model
developed by Quintanas-Corominas et al. [86]. The model is based on the Crack Band
model proposed by Bažant and Oh [89] to ensure the proper energy dissipation when the
crack propagates. The degradation of the elastic properties is modelled by four softening
laws: 𝑑ℓ(𝑟ℓ𝑇, 𝑟ℓ𝐶) is associated to the first stress invariant 𝜎ℓ and model the longitudinal
failure in tension (𝜎ℓ > 0) and in compression (𝜎ℓ < 0); 𝑑𝑡(𝑟𝑡) is related to the mode-I
matrix cracking associated to the second stress invariant 𝑝𝑡; 𝑑𝑠𝑡(𝑟𝑡) describes the mode-II
matrix cracking associated to the third stress invariant 𝜏𝑡; and 𝑑𝑠ℓ(𝑟𝑡, 𝑟ℓ𝑇) is linked to the
longitudinal tensile and matrix damage mechanisms associated to the stress invariant 𝜏ℓ.

The terms of ℂ𝑒 are often modified according to the corresponding 𝑑𝑀 obtained from a
failure criterion. For example, Maimí et al. [49] modelled a longitudinal crack resulting
from tensile stresses by reducing the longitudinal Young’s modulus as a function of a
damage variable obtained from the non-interactive maximum strain failure criterion. The
authors evaluated the failure criterion using the effective stress tensor (�̃�). This framework
was introduced by Lemaitre [90] and is based on the hypothesis of Strain Equivalence
[90, 91]. The hypothesis considers that the strain associated to a damaged stress state
(𝝈) is equivalent to the strain associated with its effective stress state (undamaged stress
state, �̃�). The effective stress tensor can be calculated as a function of the elastic material
properties and 𝜺𝑒 as

�̃� = ℂ𝑒(𝑑𝑀 = 0)𝜺𝑒, (2.25)

and is widely used to evaluate the failure criteria in CDM models [47, 49, 52, 72, 76, 86,
92–95]. In the proposed model, three loading functions as a function of �̃� are employed
to consider the previously explained damage mechanisms: 𝜙ℓ𝑇 for the fibre breakage and
pull-out, 𝜙ℓ𝐶 for the fibre kinking and crushing, and 𝜙𝑡 for the matrix cracking. They
read

𝜙ℓ𝑇 ∶=
�̃�ℓ − 2𝑣12 ̃𝑝𝑡

𝑋𝑇
, (2.26)

𝜙ℓ𝐶 ∶= 1
𝑋𝐶

(√�̃�2
ℓ + 𝜂𝑞

𝑡 ̃𝑝2
𝑡 + 𝜂𝑞

𝑠ℓ ̃𝜏2
ℓ + 𝜂𝑡 ̃𝑝𝑡 + 𝜂𝑠ℓ ̃𝜏ℓ) , (2.27)

and

𝜙𝑡 ∶= √(
𝑌𝐶 + 𝑌𝑇

𝑌𝑇𝑌𝐶
)

2 ̃𝜏2
𝑡 + 𝜇𝑡 ̃𝑝2

𝑡

1 + 𝜇𝑡
+ (

𝜇𝑠ℓ
𝑆𝐿

̃𝜏ℓ)
2

+
𝑌𝐶 − 𝑌𝑇

𝑌𝑇𝑌𝐶
̃𝑝𝑡 +

1 − 𝜇𝑠ℓ
𝑆𝐿

̃𝜏ℓ, (2.28)
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where 𝑋𝑇 and 𝑋𝐶 are the longitudinal tensile and compressive strengths, respectively; 𝑌𝑇

and 𝑌𝐶 are the transverse tensile and compressive strengths, respectively; and 𝑆𝐿 is the
longitudinal shear strength. The effective stress invariants �̃�ℓ, ̃𝑝𝑡, ̃𝜏ℓ and ̃𝜏𝑡 are obtained
by evaluating Eqs. (2.5)–(2.8) with �̃�. The failure envelope shape coefficients: 𝜂𝑡 and
𝜂𝑞

𝑡 are related to the transverse hydrostatic pressure and the longitudinal compressive
strength; 𝜂𝑠ℓ and 𝜂𝑞

𝑠ℓ are associated to the longitudinal compressive and longitudinal shear
strengths; 𝜇𝑡 is governed by the transverse shear and transverse biaxial strengths; and 𝜇𝑠ℓ

is linked to the transverse and longitudinal shear strengths, see Fig. 2.3.
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Figure 2.3.: Schematic representation of the failure envelope in the effective stress space: a)
�̃�22 − �̃�33, b) �̃�22 − �̃�12, c) �̃�11 − �̃�22, and d) �̃�11 − �̃�12. Note that, b) and d) are
symmetric with respect to their X-axis. The experimental data in c) from Welsh
et al. [96] is used to propose Eq. (5.7), and d) from Soden et al. [97] for Eq. (5.9),
see Section 5.1.

Damage activation functions based on effective stresses (or strains) can be expressed as

𝐹𝑁 ∶= 𝜙𝑁 − 𝑟𝑁 ≤ 0, (2.29)
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where 𝑟𝑁 is the corresponding elastic domain threshold (an internal damage variable)
related to a damage mechanism 𝑁 = ℓ𝑇 , ℓ𝐶, 𝑡. The corresponding elastic domain threshold
is calculated by integrating its corresponding loading function with respect to time applying
the Kuhn-Tucker relations [47]. They can be explicitly integrated as

𝑟𝑁 = max(1, max
𝑠∈[0,𝑡]

(𝜙𝑠
𝑁) ), (2.30)

since the loading functions are defined only as a function of the strain tensor.

The evolution of 𝑑𝑀 is defined as a function of 𝑟𝑁 in Appendix B. The longitudinal
damage variable 𝑑ℓ is defined as

𝑑ℓ ∶= 𝑑ℓ𝑇
⟨𝜎ℓ⟩
|𝜎ℓ|

+ 𝑑ℓ𝐶
⟨−𝜎ℓ⟩
|𝜎ℓ|

, (2.31)

where ⟨𝑥⟩ = (𝑥 + |𝑥|)/2 is the McCauley operator. Therefore, if the first stress invariant is
positive (𝜎ℓ > 0), then 𝑑ℓ = 𝑑ℓ𝑇, otherwise 𝑑ℓ = 𝑑ℓ𝐶. This allows a different longitudinal
damage evolution in tension than in compression. The procedure to calculate both
the longitudinal tensile and compressive damage variables as a function of 𝑟ℓ𝑇 and 𝑟ℓ𝐶,
respectively, is described in detail in Appendix B.1. The calibration of 𝑑ℓ𝑇 and 𝑑ℓ𝐶 can be
achieved through the use of 𝑋𝑇 and 𝑋𝐶 obtained from longitudinal tensile and compressive
tests, respectively, according to the standards [98, 99]. Additionally, the tensile and
compressive fracture toughnesses (𝒢𝑋𝑇

and 𝑓𝒢𝑋𝐶
𝒢𝑋𝐶

, respectively) can be obtained from
the methodology proposed by Ortega et al. [100], as well as the shape of the longitudinal
softening laws.

The softening law in the longitudinal tensile direction 𝑑ℓ𝑇 is defined using a bilinear law,
in the same way as in [101, 102]. The first segment is defined with a large drop stress due
to the fibre breakage followed by a large tail related to the fibre pull-out, see Fig. 2.4a.
The damage variable in the longitudinal compressive direction 𝑑ℓ𝐶 is also defined using a
bilinear softening law, in the same way as [101, 102]. The first segment defines the onset
of kink-band using a large drop followed by an horizontal asymptote related to kink-band
broadening and frictional contact, see Fig. 2.4b.

The degradation of the matrix stiffness due to mode-I matrix cracking is assumed to be
equivalent to that generated by mode-II matrix cracking when the crack opens (𝑝𝑡 > 0 →
𝑑𝑡 = 𝑑𝑠𝑡). However, there is no degradation of the matrix stiffness in mode-I when the
crack closes (𝑝𝑡 < 0 → 𝑑𝑡 = 0). Therefore, the transverse damage variable 𝑑𝑡 is defined
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equal to the transverse shear damage variable 𝑑𝑠𝑡 when the second invariant 𝑝𝑡 is positive,
and equal to zero when the second invariant is negative,

𝑑𝑡 ∶= 𝑑𝑠𝑡
⟨𝑝𝑡⟩
|𝑝𝑡|

. (2.32)

Figure 2.4.: Stress vs. crack opening displacement (𝜔𝑖𝑗) curve of the softening law in: a) the
longitudinal tensile direction, a) the longitudinal compressive direction, and b) the
directions governed by the matrix.

The damage variable 𝑑𝑠𝑡 is defined assuming a linear softening law (Fig. 2.4c) and is
established as a function of the elastic domain threshold 𝑟𝑡 in Appendix B.3. This damage
variable can be calibrated from a transverse tensile standard test [98] for determining 𝑌𝑇.
Additionally, the mode-I intralaminar fracture toughness (𝒢𝑌𝑇

) can be assumed equal
to the mode-I interlaminar fracture toughness of a unidirectional laminate that can be
obtained by a double cantilever beam standard test [103].

The stiffness degradation in the longitudinal shear direction is introduced by 𝑑𝑠ℓ, which is
defined as a function of the longitudinal shear effective stresses (�̃�12 and �̃�13), but also
due to the longitudinal tensile effective stress (�̃�11). The proposed 𝑑𝑠ℓ is defined as

𝑑𝑠ℓ ∶= 1 − (1 − 𝑑𝑠ℓ∗)(1 − 𝑑ℓ𝑇), (2.33)

where 𝑑𝑠ℓ∗ is the damage variable presented in Appendix B.4 and is related to the
longitudinal shear effective stresses. The calibration of 𝑑𝑠ℓ∗ can be carried out with either
a longitudinal shear standard test [104] or a V-notched rail shear standard test [105] for
determining 𝑆𝐿. Additionally, the mode-II intralaminar fracture toughness (𝒢𝑆𝐿

) can be
assumed equal to the mode-II interlaminar fracture toughness of a unidirectional laminate
that can be obtained by a calibrated end-loaded split standard test [106].
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2.2 Input model parameters
The input model parameters of the proposed constitutive model can be divided into
three groups: (i) elastic material properties, (ii) plasticity modelling inputs, and (iii)
damage modelling inputs. Most of these parameters can be measured or fitted directly
from standardised tests, see Table 2.1. However, there are no standardised tests for
determining the transverse Poisson’s ratios and the shape coefficients of the plastic and
failure envelopes. The input model parameters can be obtained from seven different types
of tests with different configurations (stacking sequences, sizes, etc.), in exception of the
shape coefficients of the envelopes and 𝜈𝑝

122.

A new methodology for measuring the transverse Poisson’s ratio from standardised tests
using a supplementary data acquisition system and a data reduction method is described in
Chapter 4. The definition of the envelope shape coefficients and their bounds are presented
in Chapter 5. Additionally, the effect of 𝜂𝑡 and 𝜂𝑞

𝑡 on the failure strength prediction of
filled-hole compressive (FHC) tests is analysed.
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Table 2.1.: Standardised tests to determine the model input parameters. Other standard procedures may also be employed.

Description Symbol Test

El
as

tic

Longitudinal Young’s modulus 𝐸11 Longitudinal tensile test (ASTM D3039) [98]
Transverse Young’s modulus 𝐸22 Transverse tensile test (ASTM D3039) [98]
Longitudinal shear’s modulus 𝐺12 Longitudinal shear tensile test (ASTM D3518) [104]
Longitudinal Poisson’s ratio 𝜈12 Longitudinal tensile test (ASTM D3039) [98]
Transverse Poisson’s ratio 𝜈23 Transverse tensile test (ASTM D3039) [98]†

Pl
as

tic

Transverse tensile yield stress curve 𝑌𝑇 𝑃 Transverse tensile test (ASTM D3039) [98]††

Transverse compressive yield stress curve 𝑌𝐶𝑃 Transverse compressive test (ASTM D6641) [99]††

Longitudinal shear yield stress curve 𝑆𝐿𝑃 V-notched rail shear test (ASTM D7078) [105]††

Longitudinal shear tensile test (ASTM D3518) [104]††

Transverse plastic Poisson’s ratio in tension 𝜈𝑝
23𝑇 Transverse tensile test (ASTM D3039) [98]†

Transverse plastic Poisson’s ratio in compression 𝜈𝑝
23𝐶 Transverse compressive test (ASTM D6641) [99]†

D
am

ag
e

Longitudinal tensile strength 𝑋𝑇 Longitudinal tensile test (ASTM D3039) [98]
Longitudinal tensile fracture toughness 𝒢𝑋𝑇

Compact tensile test [100]
Double end notched tensile test [107]

Shape of the longitudinal tensile softening law 𝑓𝑋𝑇
and 𝑓𝒢𝑋𝑇

Compact tensile test [100]
Double end notched tensile test [107]∗

Longitudinal compressive strength 𝑋𝐶 Longitudinal compressive test (ASTM D6641) [99]
Longitudinal compressive fracture toughness 𝑓𝒢𝑋𝐶

𝒢𝑋𝐶
Compact compressive test [100]
Double end notched compressive test [108]

Shape of the longitudinal compressive softening law 𝑓𝑋𝐶
Compact compressive test [100]
Double end notched compressive test [108]∗

Transverse tensile strength 𝑌𝑇 Transverse tensile test (ASTM D3039) [98]
Transverse tensile fracture toughness 𝒢𝑌𝑇

Mode-I interlaminar fracture toughness test (ASTM D5528/ISO 15034) [103, 109]‡
Transverse compressive strength 𝑌𝐶 Transverse compressive test (ASTM D6641) [99]
Longitudinal shear strength 𝑆𝐿 V-notched rail shear test (ASTM D7078) [105]

Longitudinal shear tensile test (ASTM D3518) [104]
Longitudinal shear fracture toughness 𝒢𝑆𝐿

Mode-II interlaminar fracture toughness test (ASTM D7905/ISO 15114) [106, 110]‡
† Using a digital image correlation acquisition system with an additional data reduction method, see Chapter 4.

†† Assuming no damage occurs until the specimen fails, the plastic strain can then be calculated by subtracting the elastic strain, as the ratio of stress to Young’s
modulus, from the total strain.

∗ Inversely identified using finite element simulations.
‡ Assuming that the intralaminar fracture toughness is equivalent to the interlaminar fracture toughness.
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2.3 Implementation
The constitutive model presented in Section 2.1 is solved at the Gauss-point level using
an explicit FE solver. The evolution of the plasticity internal variables (𝜺𝑝 and ̄𝜀𝑝) is
discretised in time using the Backward Euler integration scheme and the operator split
method: (i) an initial elastic predictor step, and (ii) a posterior plastic corrector step.
However, the evolution of the internal damage variables (𝑟𝑁) is carried out by integrating
𝑟𝑁 into time using Eq. (2.30), therefore, they can be explicitly solved.

The algorithm of the material model time discretisation (𝑡
(𝑛+1)

) is presented in this section.
The known data with respect to the previous increment of the time (𝑡

(𝑛)
) are the current

total strain tensor at the end of the increment (𝜺
(𝑛+1)

) and the internal variables at the
beginning of the increment (𝜺𝑝

(𝑛)
, ̄𝜀𝑝

(𝑛)
and 𝑟𝑁(𝑛)

).

Firstly, the damage model is evaluated to determine if the damage variables associated
with the matrix cracking (𝑑𝑡, 𝑑𝑠ℓ and 𝑑𝑠𝑡) are activated in the current time interval. If they
are greater than zero, plasticity does not develop. However, if the matrix is undamaged
(𝑑𝑡 = 𝑑𝑠ℓ = 𝑑𝑠𝑡 = 0), plasticity can evolve, see Fig. 2.1b. It is possible that the initiation
of the matrix damage and an increase of the plastic strain tensor occur at the same time
interval. In this case, the model assumes that the strain increment is only due to damage
instead of damage and plasticity. This assumption produces a negligible error in the
results, because very small time increments are used in simulations with explicit solver.

Secondly, if the matrix is undamaged, the model calculates the increment of the plastic
strains. For that, the elastic trial stress tensor is obtained by assuming that there is no
increase in the plastic strain tensor in the current time step (𝝈𝑡𝑟

(𝑛+1)
= 𝝈

(𝑛+1)
(Δ𝜺𝑝

(𝑛+1)
= 0)).

Then, the yield function is evaluated with 𝝈𝑡𝑟
(𝑛+1)

and ̄𝜀𝑝
(𝑛)

. If the yield function is less than
zero (in this case, the bound is defined using a tolerance tol), there are no increment of
plastic strains in the current time interval. However, if the yield function is greater than
tol, the plastic strains increase in the current time interval. Therefore, the equivalent
plastic strain that meets the condition in Eq. (2.12) must be found.
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The Backward Euler algorithm at 𝑡
(𝑛+1)

is applied to update the evolution of the plasticity
equations with 𝛾

(𝑛+1)
= 𝜆

(𝑛+1)
(𝑡

(𝑛+1)
−𝑡

(𝑛)
), where 𝛾

(𝑛+1)
is the consistency parameter. Therefore,

the evolution of the plasticity equations read

𝜺𝑝
(𝑛+1)

=𝜺𝑝
(𝑛)

+ 𝛾
(𝑛+1)

𝜕𝜑𝑝

𝜕𝝈
(𝑛+1)

𝝈
(𝑛+1)

=𝝈𝑡𝑟
(𝑛+1)

− 𝛾
(𝑛+1)

ℂ𝑒
𝜕𝜑𝑝

𝜕𝝈
(𝑛+1)

̄𝜀𝑝
(𝑛+1)

= ̄𝜀𝑝
(𝑛)

+ 𝛾
(𝑛+1)

√1
2 ∥ 𝜕𝜑𝑝

𝜕𝝈
(𝑛+1)

∥ .

(2.34)

The yield function condition from Eq. (2.12) gives an algebraic constraint that has to
be fulfilled at the end of the current time step (𝜙𝑝

(𝑛+1)
(𝝈

(𝑛+1)
, ̄𝜀𝑝

(𝑛+1)
) = 0). This condition is

solved with the Newton-Raphson method for 𝛾
(𝑛+1)

. The residual equation is developed in
a Taylor-series and linearised as

Lin[𝑅(𝑛+1)] = 𝜙𝑝
(𝑛+1)

+
𝑑𝜙𝑝

(𝑛+1)

𝑑𝛾
(𝑛+1)

Δ𝛾
(𝑛+1)

= 0. (2.35)

Therefore, the linearisation of the residual is solved for the increment of the consistency
parameter as

Δ𝛾
(𝑛+1)

= −
𝜙𝑝

(𝑛+1)

𝑑𝜙𝑝
(𝑛+1)

𝑑𝛾
(𝑛+1)

. (2.36)

The analytical calculation of Δ𝛾
(𝑛+1)

is outlined in Appendix C. Additionally, a comparison
between the numerical and analytical solutions has been conducted. The findings exhibit
no significant difference in resolving Eq. (2.36) or computational time between the two
approaches when the suitable numerical perturbation is used. Therefore, the numerical
approximation of 𝜕𝛾(𝜙𝑝) is used to calculate Δ𝛾, as its implementation algorithm is simpler
than the analytical one.

Finally, the evolution of the plasticity internal variables is evaluated with the general con-
vex cutting-plane algorithm presented by Simo and Springer [88]. Algorithm 1 summarises
the workflow to implement the proposed constitutive model using an explicit solver in
a non-linear FE framework. The constitutive model is implemented in a user material
Fortran subroutine (VUMAT) to be used with the FE Abaqus/Explicit solver [111]. The
implementation carried out using a VUMAT subroutine is verified to determine that the
Fortran code accurately represents the proposed constitutive model [112].
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The user material subroutine has been developed taking into account several considerations
for reducing the computational time for the constitutive model calculation. All constant
scalar, vector and matrix values of the constitutive model are calculated at the beginning
of the FE simulation and stored in memory. Consequently, they are evaluated only once,
rather than repeating it at every time interval. Additionally, the approach to calculate the
vector product proposed by Cowell and Christopher [113] is implemented. The proposed
approach consists into reorganise the traditional loop to reduce its number of iterations and,
then its computational time, see Appendix D. Others aspects have also been considered:
avoid ”if” conditions in loops and prioritise calculation with vectors instead of scalars.

Dividing by zero should be avoided to prevent numerical errors. In some cases, manipulating
the expressions alone may suffice. However, certain operations require a specific evaluation
to prevent this issue. Appendix E presents a Fortran function to prevent this numerical
error.
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Algorithm 1: Algorithm of the proposed constitutive model at time 𝑡
(𝑛+1)

Input:
total strain tensor at 𝑡

(𝑛+1)
: 𝜺

(𝑛+1)

internal variables at 𝑡
(𝑛+1)

: 𝜺𝑝
(𝑛)

, ̄𝜀𝑝
(𝑛)

, 𝑟ℓ𝑇(𝑛)
, 𝑟ℓ𝐶(𝑛)

, 𝑟𝑡(𝑛)

Initialisation:
Local Newton-Raphson iteration: 𝑘 = 0
Effective stress tensor: �̃� = ℂ𝑒0(𝜺

(𝑛+1)
− 𝜺𝑝

(𝑛)
)

Effective stress invariants in Eqs. (2.5)–(2.8)
Loading functions in Eqs. (2.26)–(2.28)
Elastic domain threshold in Eq. (2.30)
Damage variables in Eqs. (2.31)–(2.33)
Elastic predictor: 𝝈𝑡𝑟

(𝑛+1)
= ℂ𝑒(𝜺

(𝑛+1)
− 𝜺𝑝

(𝑛)
)

1 if 𝑑𝑡 = 0 and 𝑑𝑠ℓ = 0 and 𝑑𝑠𝑡 = 0 then
Yield stresses: 𝑌𝐶𝑃( ̄𝜀𝑝

(𝑛)
), 𝑌𝑇 𝑃( ̄𝜀𝑝

(𝑛)
) and 𝑆𝐿𝑃( ̄𝜀𝑝

(𝑛)
)

Yield function in Eq. (2.12): 𝜙𝑝
(𝑛+1)

General convex cutting-plane algorithm (return-mapping):
2 𝝈(𝑘)

(𝑛+1)
= 𝝈𝑡𝑟

(𝑛+1)

3 𝜙𝑝(𝑘 + 1)

(𝑛+1)
= 𝜙𝑝

(𝑛+1)

4 while 𝜙𝑝(𝑘 + 1)

(𝑛+1)
> tol do

Derivative of the plastic potential function with respect to the stress tensor:
𝜕

𝝈(𝑘)

(𝑛+1)

(𝜑𝑝)

Increment of the consistency parameter in Eq. (2.36): Δ𝛾(𝑘)

(𝑛+1)

Update the plastic strain tensor: 𝜺𝑝(𝑘 + 1)

(𝑛+1)
= 𝜺𝑝(𝑘)

(𝑛+1)
+ Δ𝛾(𝑘)

(𝑛+1)
𝜕

𝝈(𝑘)

(𝑛+1)

(𝜑𝑝)

Update the stress tensor: 𝝈(𝑘 + 1)

(𝑛+1)
= 𝝈(𝑘)

(𝑛+1)
− Δ𝛾(𝑘)

(𝑛+1)
ℂ𝑒𝜕

𝝈(𝑘)

(𝑛+1)

(𝜑𝑝)

Update the equivalent plastic strain: ̄𝜀𝑝(𝑘 + 1)

(𝑛+1)
= ̄𝜀𝑝(𝑘)

(𝑛+1)
+ Δ𝛾(𝑘)

(𝑛+1)
√1

2 ∥𝜕
𝝈(𝑘)

(𝑛+1)

(𝜑𝑝)∥

Update yield stresses: 𝑌𝐶𝑃( ̄𝜀𝑝(𝑘 + 1)

(𝑛+1)
), 𝑌𝑇 𝑃( ̄𝜀𝑝(𝑘 + 1)

(𝑛+1)
) and 𝑆𝐿𝑃( ̄𝜀𝑝(𝑘 + 1)

(𝑛+1)
)

Yield function in Eq. (2.12): 𝜙𝑝(𝑘 + 1)

(𝑛+1)

5 𝑘 = 𝑘 + 1
6 end
7 end
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2.4 Numerical predictions
Four cases are used to demonstrate the capabilities of the material model to predict not
only the plastic deformation of composite materials, but also the onset and propagation of
damage. Off-axis compressive and tensile tests with different ply orientations and high
plastic dependency are used to demonstrate the ability of the model to capture the plastic
response in Section 2.4.1. In addition, they are selected to demonstrate the capabilities
of the model to predict the onset of damage as well as the fracture planes when the
failure mechanisms are matrix dominated. OHT and OHC tests are used to present the
potential of the model to predict the failure strength when the failure mechanisms are
fibre dominated [114], see Section 2.4.2.

The FE results using the Abaqus/Explicit solver [111] are compared to the corresponding
experimental data. 3D eight-node C3D8R solid elements with reduced integration are used.
For all the simulations presented in this thesis, 3D eight-node C3D8R solid elements with
reduced integration are used. The C3D8R solid elements are widely used in FE simulations
with constitutive models based on the Crack Band model [89], such as open-hole and
filled-hole test [115], low velocity impact and compression after impact (CAI) test [116],
single-lap bolted joints [117–119], composite pressure vessels [120], etc. Reduced integration
elements are used to alleviate the overstiffness of the elements away from the hole due
to their high aspect ratio [121]. Reduced integration elements also allow to reduce the
computational time compare with the full integration elements.

The in-plane mesh element size is defined less or equal to 0.24 mm around the areas
where damage is expected to occur, in order to prevent snap-back of the constitutive
softening laws for each failure mode [101]. In this case, the in-plane mesh element size is
approximately defined four times smaller than the critical one (0.99 mm in the transverse
direction), see Appendix F. In addition, elastic elements are defined in the regions where
the damage is not expected to occur in order to reduce the computational time in the
open-hole specimens, see Fig. 2.5b.

Three elements through-the-thickness of each ply are used. In the literature, the most
common practise is to use a single element per ply instead. However, with a single
element through-the-thickness per ply, in-situ strengths are employed to compensate
the deficiency in the out-of-plane discretisation, which implies to increase the transverse
strengths (𝑌𝐶, 𝑌𝑇 and 𝑆𝐿). Consequently, the critical element size drastically decreases
since the damage model regularises the fracture toughness with respect to the characteristic
element size [89], see Appendix F. The use of three elements through-the-thickness of each
ply allows to better discretise the out-of-plane kinematics of the laminate compared with
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using a single element. Therefore, no in-situ strengths [122] are used in the proposed FE
modelling strategy.

Figure 2.5.: Schematic representation of the meshes and the applied boundary conditions used
in the: (a) off-axis simulations, and (b) open-hole simulations. 𝜃 is the fibre angle
orientation.

As a reference, Table 2.2 presents the difference in the number of elements and nodes from
an off-axis FE model as well as from an open-hole model. The dimensions of the off-axis
specimen are 10 mm × 20 mm with 32 plies, and those of the open-hole are 30 mm × 20
mm and a hole diameter of 5 mm with 32 plies. The mesh element size of each case in
Table 2.2 is defined equal to one third of the critical one, the FE meshes are presented
in Fig. 2.5. The critical element size is reduced more than 4.5 times when the in-situ
strengths are used increasing drastically the total computational time.

Table 2.2.: Comparison of the number of elements and nodes with different finite element
modelling approaches.

Off-axis FE model Open-hole FE model
Number of elements per ply 3 1 3 1
In-situ strengths No Yes No Yes
Critical element size (mm) 0.99 0.20 0.99 0.20
Mesh element size (mm) 0.33 0.05 0.33 0.05
Number of elements 187 488 2 560 000 215 136 1 001 928
Number of nodes 198 656 2 659 833 219 146 1 003 050
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The off-axis specimen with three elements per ply results in approximately 14 times fewer
elements than using a single element per ply, and approximately 4 times fewer in the
open-hole specimen. Therefore, the proposed FE modelling approach is more efficient in
terms of computational time than using a single element through-the-thickness per ply
with in-situ strength. In addition, cohesive elements are not included between the ply
interfaces to model delamination in the proposed FE modelling strategy. Instead, the
presence of three elements per ply allows the model predicts failure patterns similar to
delamination in the vicinity between the plies. This approach also helps to reduce further
the computational resources. Furthermore, the use of three elements through-the-thickness
per ply mitigate the hourglass effect, since through-the-thickness kinematics is much better
described.

In all loading cases, the laminates are manufactured using a CFRP system, IM7/8552
unidirectional prepreg system with a nominal thickness of 0.131 mm [114]. Table 2.3
summarises the model input parameters. The failure envelope shape coefficients are those
reported in [86], see Fig. 2.6. They were obtained by fitting the failure criteria previously
developed by Camanho et al. [123], which were developed by combining experimental data
and micro-mechanical models for the selected material in this work. The plastic envelope
shape coefficients are fitted from the yield surface developed by Vogler et al. [124], see
Fig. 2.7. In addition, the plastic yield-equivalent plastic strain relationships are obtained
from [124].
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Table 2.3.: Model input parameters for the IM7/8552 unidirectional prepreg system.

Symbol Value Unit Source

El
as

tic

𝐸11 171420.00 MPa [114]
𝐸22 9080.00 MPa [114]
𝐺12 5290.00 MPa [114]
𝜈12 0.32 - [114]
𝜈23 0.45 - Assumed

Pl
as

tic

𝑌𝐶𝑃( ̄𝜀𝑝) curve [124]
𝑌𝑇 𝑃( ̄𝜀𝑝) curve [124]
𝑆𝐿𝑃( ̄𝜀𝑝) curve [124]

𝜇𝑡𝑝 0.47 - Adjusted in Section 2.4
𝜇𝑠ℓ𝑝 1.00 - Adjusted in Section 2.4
𝜈𝑝

23𝑇 1.00 - [124]
𝜈𝑝

23𝐶 1.00 - [124]
𝜈𝑝

122 0.00 - [124]

D
am

ag
e

𝑋𝑇 2323.50 MPa [126]
𝑓𝑋𝑇

𝑋𝑇 464.70 MPa [86]
𝒢𝑋𝑇

97.80 N/mm [127]
𝑓𝒢𝑋𝑇

𝒢𝑋𝑇
48.90 N/mm [86]

𝑋𝐶 1017.50 MPa [126]
𝑓𝑋𝐶

𝑋𝐶 203.50 MPa [86]
𝑓𝒢𝑋𝐶

𝒢𝑋𝐶
26.58 N/mm [86]

𝑌𝑇 62.30 MPa [114]
𝒢𝑌𝑇

0.28 N/mm [114]
𝑌𝐶 253.70 MPa [86]
𝑆𝐿 92.30 MPa [114]

𝒢𝑆𝐿
0.80 N/mm [114]

𝜇𝑡 0.90 - [86]
𝜇𝑠ℓ 1.00 - [86]
𝜂𝑠ℓ 9.50 - [86]
𝜂𝑞

𝑠ℓ 0.00 - [86]
𝜂𝑡 12.00 - [86]
𝜂𝑞

𝑡 350.00 - [86]
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Plastic envelope Failure envelope

Figure 2.6.: Plastic and failure envelopes of the IM7/8552 unidirectional prepreg system for the
effective stress space: a) �̃�22 − �̃�33, b) �̃�22 − �̃�12, c) �̃�11 − �̃�22, and d) �̃�11 − �̃�12.
Note that, b) and d) are symmetric with respect to their X-axis.
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Figure 2.7.: Yield stress vs. equivalent plastic strain curves of the M7/8552 unidirectional prepreg
system [124].

The transverse Poisson’s ratio (𝜈23) is assumed considering the value from [125] (𝜈23 =
0.45), where the same polymer with different carbon fibre was used. The effect of
𝜈23 on the numerical results is analysed. Different virtual tests are carried out with
𝜈23 = {0.3, 0.35, 0.40, 0.45}: off-axis compressive virtual tests with a fibre orientation of
30∘ and another at 75∘, and OHT test with a hole diameter equal to 8 mm and OHC
test with a diameter of 2 mm. No significant differences are found neither in the failure
strength (the higher coefficient of variation from the numerical results is less than 0.4%)
nor in the strains at the failure strength (the higher coefficient of variation is less than
2.5%) and in the stress vs. strain curves.

2.4.1 Off-axis tests
The off-axis compressive tests carried out by Koerber et al. [8] with the fibre angle
orientations 𝜃 = 15∘, 30∘, 45∘, 60∘, 75∘ and 90∘ are simulated. The in-plane dimensions of
the specimens are 10 mm × 20 mm with 32 plies. In the numerical model, only the vertical
displacements are fixed at the ends of the specimens, and vertical displacement is applied
on the top face at low velocity to avoid dynamic effects during the simulation. Additional
boundary conditions are defined to avoid rigid body motions, see Fig. 2.5a.

The stress vs. axial strain curves from the numerical simulations are compared to the
experimental data in Fig. 2.8. The predicted failure strength of the specimens is in very
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good agreement with the test data at 𝜃 = 15∘, 30∘, 75∘ and 90∘. However, failure strength
is underestimated at 𝜃 = 45∘ and 60∘. An explanation is that the experimental data are
out of the failure envelope, see Fig. 2.9. To obtain more accurate predictions, 𝜙𝑡 could
be modified to fit the experimental data. Additionally, the value of 𝜇𝑠ℓ can be adjusted
to improve the agreement with the experimental data. In this case, this value has been
fixed at one to be consistent with the definition of the shape coefficients reported by
Quintanas-Corominas et al. [86] (𝜇𝑠ℓ = 1). Moreover, three material properties are required
to define the failure envelope: 𝑌𝐶, 𝑌𝑇 and 𝑆𝐿, where the latter can be experimentally
estimated using different methods. Camanho et al. [114] estimated 𝑆𝐿 using the ASTM D
3518/3518M-94 test standard [104]. Therefore, 𝑆𝐿 was estimated from an in-plane shear
test using a [±45∘] laminate when 5% of the axial strain is reached (it is not physically
measured). However, Koerber et al. [8] estimated 𝑆𝐿 by decomposing the failure strength
into the transverse normal stress and shear stress in the material direction from off-axis
compressive tests at 𝜃 = 15∘ and 30∘ [128]. Consequently, there are discrepancies when
setting 𝑆𝐿, hence, the value can be adjusted within a range (𝑆𝐿 = [92.3, 99.9] MPa) to
improve the failure strength predictions. In this study, 𝑆𝐿 is defined from Camanho et al.
[114], to be also consistent with the definition of the input damage parameters of the
composite material coming from the same work. In addition, it should be mentioned that
a small discrepancies in the failure strength produces a large disagreement in the ultimate
axial strain.

A good accuracy of the predicted plastic deformation with respect to the experimental data
are obtained, except at 𝜃 = 60∘ where the hardening response is slightly underpredicted.
This numerical-experimental discrepancy at 𝜃 = 60∘ is because the yield surface does not
properly fit the experimental data at that orientation, similar to the failure envelope at
𝜃 = 45∘ and 60∘ in Fig. 2.9.

The predicted fracture planes are compared to those experimentally obtained in Fig. 2.10,
where the fully damaged elements are represented with a dark transparent colour. The
predicted fracture planes are in good agreement with the experimental data reported,
except for 𝜃 = 15∘. For this orientation, the damage growth is consistent with the
experimental data until the peak load, then the fracture angle suddenly changes. The
prediction of the fracture planes for 𝜃 = 15∘ can be improved by orienting the mesh with
the fibre angle. For the rest orientations, the model is able to predict the in-plane fracture
angle (which is clearly visible at 𝜃 = 30∘) but also the out-of-plane fracture angle (which
is clearly visible at 𝜃 = 75∘).
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Figure 2.8.: Numerical-experimental comparison of the remote stress vs. axial strain curves of
the off-axis compressive tests performed by Koerber et al. [8].
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Figure 2.9.: Failure envelope for the �̃�22 − �̃�12 effective stress space with 𝑆𝐿 from Camanho et al.
[114] and with 𝑆𝐿 from Koerber et al. [8], and compressive and tensile experimental
data from Koerber et al. [8] and Koerber et al. [9], respectively.

Figure 2.10.: Numerical-experimental comparison of the fracture planes obtained from the off-
axis compressive tests performed by Koerber et al. [9].

2.4 Numerical predictions 38



The comparison between the numerical and experimental data from off-axis tensile tests
performed by Koerber et al. [9] is carried out. The in-plane dimensions of the specimens
for 𝜃 = 15∘ are 8 mm × 72 mm and for 𝜃 = 30∘, 45∘ and 90∘ are 8 mm × 62 mm, and they
are made with 12 plies. The same boundary conditions as the previous simulations are
used applying tension instead of compression, see Fig. 2.5a. Good correlation between
the numerical and experimental data for the plastic deformation is obtained, see Fig. 2.11.
However, the numerical model underpredicted the failure strength for 𝜃 = 15∘, 30∘ and 45∘,
since the experimental data are outside the failure envelope, see Fig. 2.9.
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Figure 2.11.: Numerical-experimental comparison of the remote stress vs. axial strain curves of
the off-axis tensile tests performed by Koerber et al. [9].

2.4.2 Open-hole tensile and compressive tests
The experimental data from the OHT and OHC tests carried out by Camanho et al. [114]
and by Bessa [129], respectively, are used to further evaluate the accuracy of the proposed
constitutive model. The hole diameters used in the tests were: 2 mm, 4 mm, 6 mm
and 8 mm in tension, and 2 mm, 3 mm, 4 mm and 5 mm in compression. The in-plane
dimensions were defined using a width-to-diameter ratio equals to 6 and the laminate
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thickness with a stacking sequence of [90/0/±45]3S. Vertical displacement is applied on
the top face at low velocity to avoid dynamic effects during the simulation. Additionally,
the ends of the virtual specimens are clamped to reproduce the boundary conditions of
the tests, see Fig. 2.5b.

The predicted remote failure strengths are compared to the experimental data in Fig. 2.12.
The numerical results for the tensile tests are within the experimentally measured dispersion,
except the test with a hole diameter equal to 2 mm where a relative error of 2.8% is
obtained. The numerical results of the compressive simulations with small hole diameters
(2 mm and 3 mm) are within the experimental data scatter, but for higher hole diameters
(4 mm and 5 mm) overpredictions are obtained (the highest relative error is 1.9%).
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Figure 2.12.: Numerical-experimental comparison of the remote failure strength of the open-hole
tensile and compressive tests measured by Camanho et al. [114] and by Bessa [129],
respectively. The error bars denote the standard deviation of the experimental data
and the values are the relative error between the numerical result and experimental
data.

The influence of the plasticity on the numerical results of the OHC tests with hole diameters
equal to 2 mm and 3 mm is analysed, since the rest of the configurations have a large
dependence on the longitudinal direction where the plasticity is not considered, see the
experimental data reported by Camanho et al. [122]. Similar remote failure strengths
are obtained whether or not plasticity is enabled in the constitutive model (difference
in failure strength is less than 5%). However, enabling plasticity significantly influences
the ultimate strain (difference in ultimate strain is within 11% and 13%). The smallest
ultimate strains are obtained when plasticity is disabled.
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3Enhanced elastoplastic damage
model
One of the main advantages of using �̃� in CDM models is to develop a constitutive model
efficient in terms of computational time. The elastic material properties (i.e., ℂ𝑒(𝑑𝑀 = 0))
and 𝜺𝑒 are the known data in CDM models with �̃� while evaluating the failure criteria.
Therefore, the damage only depends on the strain tensor and can be explicitly found, see
Section 2.3. However, an iterative implicit solution for the damage variables should be
employed in CDM models which use 𝝈 to evaluate the failure criteria [123, 130–132], then
the computational time increases.

The use of �̃� in evaluating failure criteria can induce the activation of damage variables
corresponding to failure mechanisms that should not occur [133]. A large elastic strain in
a particular direction due to damage produces a large effective stress in that direction,
but also large effective stresses in other directions may be generated. This phenomenon is
observed in the pure longitudinal and transverse directions of �̃�, due to the coupling of the
strains by the Poisson’s ratios. For example, a uniaxial loading in the longitudinal direction
activates damage variables associated to the longitudinal direction (𝑑ℓ). In this case, this
longitudinal damage also produces effective stresses in the pure transverse directions,

�̃�22 = �̃�33 =
𝐸11𝐸22𝜈12

𝐸11(1 − 𝜈23) − 2𝐸22𝜈2
12

𝑑ℓ𝜀𝑒
11. (3.1)

Hence, damage variables associated to the transverse directions can be activated despite
the nominal stresses being null (𝜎22 = 𝜎33 = 0), see Fig. 3.1. Consequently, spurious
damage can be generated in the transverse directions. This event is a general limitation
of constitutive models which use �̃�. This phenomenon can be observed in the literature
constitutive models [49, 86, 92, 93, 95].

Matzenmiller et al. [76] proposed a damage model to describe the mechanical behaviour of
FRP laminates based on the CDM theory. The model describes four failure mechanisms: i)
fibre failure due to traction; ii) fibre buckling and kinking due to compression; iii) matrix
cracking under transverse tension and shearing; and iv) matrix cracking under transverse
compression and shearing. Each failure mechanism listed above is associated with a failure
criterion as a function of �̃� and its corresponding damage variable. The authors avoided
the coupling of the components of �̃� when the damage is achieved by degrading the
Poisson’s ratios as a function of the corresponding damage variable. These relationships
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Figure 3.1.: Longitudinal virtual tensile test at the Gauss-point level using a CDM model using
the �̃�, where 𝑑ℓ and 𝑑𝑡 are the damage variables associated to the longitudinal and
transverse direction, respectively, 𝑋𝑇 is the longitudinal tensile strength and 𝑌𝑇 𝐵 is
the biaxial transverse tensile strength. Longitudinal response (top) and transverse
response (bottom).

were assumed from experimental evidence. This procedure allows the components of
�̃� to be decoupled when damage occurs. Hence, the Poisson’s ratios are a function
of the damage variables that are unknown while �̃� must be calculated. Therefore, an
iterative algorithm should be implemented to solve the model [134], thus increasing the
computational time. In addition, the solution presented by Matzenmiller et al. [76] cannot
be straightforwardly implemented in the previously developed constitutive models which
use �̃� (e.g. the evolution of the damage variables must be redefined).

The main objective of this chapter is to present an improved approach to avoid spurious
damage in CDM models which use �̃� due to large strains caused by damage in other
directions. The solution presented here can be explicitly implemented in existing CDM
models that have already been developed using �̃� [49, 86, 92, 93, 95] and linked with an
explicit FE solver. The constitutive model presented in the previous chapter (original
model) is used as a baseline to demonstrate how the formulation of existing CDM model
can be modified to avoid spurious damage modes developing.

The formulation of the new proposed constitutive model is presented in Section 3.1 and
its implementation in a FE explicit solver in Section 3.2. A pure longitudinal virtual test
at the Gauss-point level presented in Section 3.3 demonstrates that no spurious damage is
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found in the new proposed constitutive model (enhanced model). In addition, OHC tests
with a multidirectional laminate and with unidirectional laminates are used to explain and
demonstrate the improvements in the failure patterns predicted by the enhanced model.

3.1 Formulation
The previous formulation can produce spurious damage, as explained before. That is
clearly presented in Fig. 3.1 where a large 𝜀𝑒

11 generates transverse effective stresses (due
to 𝑑ℓ) and, then spurious transverse damage. This phenomenon cannot be observed for
the longitudinal tensile damage because 𝜙ℓ𝑇 in Eq. (2.26) only depends on 𝜀𝑒

11, since a non-
interacting maximum allowable strain criteria is employed. However, this event can arise at
𝜙ℓ𝐶 (from Eq. (2.27)) since longitudinal compressive failure mechanisms are promoted by
matrix cracking in FRP laminates. Longitudinal compressive failure is promoted by fibre
collapse as a result of shear kinking (due to small initial fibre misalignments) and matrix
cracking [135, 136]. In addition, the transverse failure directly affects the longitudinal
compressive stiffness since the matrix is not capable of containing the fibres promoting
fibre microbuckling.

In FRPs, the onset of a crack in any direction governed by the matrix is reached with
less stress compared with the stress required to initiate a crack in the pure longitudinal
direction. Therefore, the longitudinal damage variables do not usually experience the
spurious damage phenomenon previously discussed. Based on the previous observations, 𝜙𝑡

(see Eq. (2.28)) is modified as a function of the nominal stress tensor instead of the effective
stress tensor. Therefore, 𝜙𝑡 is not affected by pure longitudinal loading conditions. The
damage activation function defined in Eq. (2.29) is rewritten for the transverse direction
as

𝐹𝑡 ∶= 𝜙𝑡 − 1 ≤ 0, (3.2)

and the transverse loading function as (𝝈 instead of �̃� in Eq. (2.28))

𝜙𝑡 ∶= √(
𝑌 𝑑

𝐶 + 𝑌 𝑑
𝑇

𝑌 𝑑
𝑇 𝑌 𝑑

𝐶
)

2 𝜏2
𝑡 + 𝜇𝑡𝑝2

𝑡
1 + 𝜇𝑡

+ (
𝜇𝑠ℓ
𝑆𝑑

𝐿
𝜏ℓ)

2
+

𝑌 𝑑
𝐶 − 𝑌 𝑑

𝑇
𝑌 𝑑

𝑇 𝑌 𝑑
𝐶

𝑝𝑡 +
1 − 𝜇𝑠ℓ

𝑆𝑑
𝐿

𝜏ℓ, (3.3)

where the index (⋅)𝑑 in strengths refers to them being from the material currently damaged.
Therefore, these strengths must be defined as a function of the corresponding damage
variable (current strengths) since the loading function is evaluated with the nominal stress
tensor. Otherwise, only the onset of damage and not the evolution of the damage would
be captured. For example, in a pure transverse tensile test 𝜎22 = 𝑌𝑇 is only in the onset of
damage, after that 𝜎22 < 𝑌𝑇. The current strengths are obtained assuming linear softening
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laws for the transverse damage variables as in Chapter 2 (see Fig. 2.4c) and applying:
pure transverse compressive state stress conditions for 𝑌 𝑑

𝐶(𝑑𝑠𝑡); pure transverse tensile
state stress conditions for 𝑌 𝑑

𝑇 (𝑑𝑠𝑡); and pure longitudinal shear state stress conditions for
𝑆𝑑

𝐿(𝑑𝑠ℓ∗). They read

𝑌 𝑑
𝐶 =

4𝑌𝐶𝒢𝑌𝐶
𝐸22(1 − 𝑑𝑠𝑡)

4𝒢𝑌𝐶
𝐸22(1 − 𝑑𝑠𝑡) + 𝑙∗𝑡(𝜈23 − 1)(𝑌𝐶𝑑𝑠𝑡)2 + 2𝑌 2

𝐶𝑙∗𝑡𝑑𝑠𝑡
, (3.4)

𝑌 𝑑
𝑇 =

2𝑌𝑇𝒢𝑌𝑇
𝐸22(1 − 𝑑𝑠𝑡)

2𝒢𝑌𝑇
𝐸22(1 − 𝑑𝑠𝑡) + 𝑌 2

𝑇 𝑙∗𝑡𝑑𝑠𝑡
, (3.5)

and

𝑆𝑑
𝐿 =

2𝒢𝑆𝐿
𝑆𝐿𝐺12(1 − 𝑑𝑠ℓ∗)

2𝒢𝑆𝐿
𝐺12(1 − 𝑑𝑠ℓ∗) + 𝑆2

𝐿𝑙∗𝑠ℓ
𝑑𝑠ℓ∗

, (3.6)

where 𝑙∗𝑡 and 𝑙∗𝑠ℓ
are the characteristic element length at the transverse and longitudinal

shear directions, respectively.

3.2 Constitutive model implementation
The implementation of the constitutive model presented in this chapter (enhanced model)
for an explicit FE solver at the Gauss-point level is explained below. The damage variable
corresponding to the longitudinal direction (𝑑ℓ) is explicitly obtained as in the original
model, since the same damage activation functions (Eq. (2.29)) are used. However, the
damage variables corresponding to the transverse direction (𝑑𝑠𝑡 and 𝑑𝑠ℓ∗) must be obtained
from the transverse damage activation function in Eq. (3.2).

FE models with explicit solvers use very small increments of the strain tensor, especially
for FRPs. Therefore, the variation of the stress tensor and of the internal variables is
very small between each increment of the strain tensor. The implementation algorithm
presented here is based on the fact that the solution at time 𝑡

(𝑛+1)
is close to solution at

the converged solution at the previous time interval (𝑡
(𝑛)

).

The schematic representation of the modelled damage for a pure transverse tensile test at
the Gauss-point level is presented in Fig. 3.2; note that the displayed strain increment
is high for the sake of the algorithm explanation. Firstly, the elastic-plastic behaviour is
considered without damage (see Fig. 3.2a). Then, the onset of matrix crack is observed
and, therefore, no further development of plasticity will evolve. From point 0 to 1 in
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Fig. 3.2b, a predictor stress tensor (�̌�) is calculated using ℂ𝑒 as a function of the damage
variables of the previous time interval (𝑑𝑀(𝑛)

) as

�̌�
(𝑛+1)

∶= ℂ𝑒(𝑑𝑀(𝑛)
)𝜺𝑒

(𝑛+1)
. (3.7)

Therefore, the predicted and effective stress tensors are the same when the material
is undamaged (𝑑𝑀(𝑛)

= 0 → �̌� = �̃�). However, if the Gauss-point is damaged at
the previous time interval, the predicted and effective stress tensors are not the same
(𝑑𝑀(𝑛)

> 0 → �̌� ≠ �̃�), see Fig. 3.2c from points 1 to 2. After that, 𝜙𝑡(𝑛+1)
is evaluated as a

function of �̌�(𝑑𝑀(𝑛)
) and the current transverse strengths from Eqs. (3.4)–(3.6) with 𝑑𝑀(𝑛)

(𝑌 𝑑
𝐶(𝑑𝑠𝑡(𝑛)

), 𝑌 𝑑
𝑇 (𝑑𝑠𝑡(𝑛)

) and 𝑆𝑑
𝐿(𝑑𝑠ℓ∗ (𝑛))).

Figure 3.2.: Schematic representation of the numerical implementation of the enhanced constitu-
tive model at the Gauss-point level when a pure transverse tensile test is applied: a)
undamaged stress state; b) onset of a matrix crack; and c) propagation of a matrix
crack.

A new internal transverse damage variable (𝑟𝑡) is introduced to account for the history
of the transverse damage, then 𝑑𝑠𝑡 and 𝑑𝑠ℓ∗ are obtained as a function of 𝑟𝑡. When the
transverse damage evolves, the imposed condition by Eq. (3.2) is achieved by linearising
𝐹𝑡 as

𝐹𝑡(𝑛+1)
+

𝜕𝐹𝑡(𝑛+1)

𝜕𝑟𝑡(𝑛+1)

Δ𝑟𝑡(𝑛+1)
= 0. (3.8)

Considering that Eq. (3.3) satisfies

𝜕𝐹𝑡(𝑛+1)

𝜕𝑟𝑡(𝑛+1)

≈ − 1
𝑟𝑡(𝑛)

, (3.9)

and by introducing Eq. (3.9) in Eq. (3.8), the internal transverse damage variable at the
current time yields

𝑟𝑡(𝑛+1)
= 𝜙𝑡(𝑛+1)

𝑟𝑡(𝑛)
. (3.10)
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Finally, to guarantee that 𝑟𝑡 monotonically increases, then

𝑟𝑡(𝑛+1)
= max (𝑟𝑡(𝑛)

, 𝜙𝑡(𝑛+1)
𝑟𝑡(𝑛)

) , (3.11)

where the initial 𝑟𝑡 must be defined equal to 1. The residue from the first iteration is
negligible when FE explicit solver is employed.

In summary, the implementation is based on the approach applied in the constitutive
model presented in Chapter 2 with �̃�. The main difference is that 𝐹𝑡 is evaluated with
the damaged material properties and the applied stress tensor. The graphical comparison
of the proposed implementation method with the one used in constitutive models with
�̃� under a pure transverse tensile loading state is presented in Fig. 3.3. The current
predictor stress tensor (�̌�

(𝑛+1)
) is equal to the effective stress tensor calculated by degrading

the corresponding stiffness using 𝑑𝑀(𝑛)
(�̃�

(𝑛+1)
(ℂ𝑒(𝑑𝑀(𝑛)

)). Similar behaviour is obtained
when the transverse internal damage variable 𝑟𝑡 is compared. Therefore, the evolution of
the transverse damage variables as a function of 𝑟𝑡 yields the one in constitutive models
with �̃�. The transverse damage is guaranteed to increase since 𝑟𝑡(𝑛+1)

in Eq. (3.11) always
increases and the transverse damage variables as a function of 𝑟𝑡(𝑛+1)

are monotonically
increasing functions.

Figure 3.3.: Schematic representation of the numerical implementation of the enhanced constitu-
tive model at the Gauss-point level when a pure transverse tensile test is applied: a)
proposed implementation; b) equivalent implementation using the effective stress
tensor and damaged material properties.

The longitudinal elastic domain thresholds (𝜙ℓ𝑇, 𝜙ℓ𝐶) are explicitly obtained from Eq. (2.30).
All damage variables (longitudinal and transversal) are obtained from the expressions
presented in the original model using the strengths from the undamaged material, see
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Appendix B. The return mapping for the plasticity modelling and its coupling with the
damage modelling presented in Section 2.3 are employed here. Algorithm 2 summarises the
workflow to implement the constitutive model at the Gauss-point level using an explicit
solver in a non-linear FE framework. The enhanced constitutive model is implemented in
a user material Fortran subroutine (VUMAT) to be used with the Abaqus/Explicit solver
[137], and its implementation is verified as the previous model using the loading cases
presented in Appendix G.
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Algorithm 2: Algorithm of the enhanced constitutive model at time 𝑡
(𝑛+1)

Input:
Total strain tensor at 𝑡

(𝑛+1)
: 𝜺

(𝑛+1)

Internal variables at 𝑡
(𝑛+1)

: 𝜺𝑝
(𝑛)

, ̄𝜀𝑝
(𝑛)

, 𝑟ℓ𝑇(𝑛)
, 𝑟ℓ𝐶(𝑛)

, 𝑟𝑡(𝑛)

Initialisation:
Local Newton-Raphson iteration: 𝑘 = 0
Effective stress tensor: �̃� = ℂ𝑒(𝑑𝑀 = 0)(𝜺

(𝑛+1)
− 𝜺𝑝

(𝑛)
)

Effective stress invariants using �̃� in Eqs. (2.5)–(2.8)
Stress tensor of the damage predictor: �̌� = ℂ𝑒(𝑑𝑀(𝑛)

)(𝜺
(𝑛+1)

− 𝜺𝑝
(𝑛)

)
Stress invariants of the damage predictor using �̌� in Eqs. (2.5)–(2.8)
Update the transverse strengths as a function of 𝑑𝑀(𝑛)

in Eqs. (3.4)–(3.6)
Loading functions in Eqs. (2.26), (2.27) and (3.3): 𝜙ℓ𝑇(�̃�), 𝜙ℓ𝐶(�̃�) and 𝜙𝑡(�̌�)
Internal damage variables in Eqs. (2.30) and (3.11)
Damage variables from the original model: 𝑑𝑀(𝑛+1)

Elastic predictor: 𝝈𝑡𝑟
(𝑛+1)

= ℂ𝑒(𝑑𝑀(𝑛+1)
)(𝜺

(𝑛+1)
− 𝜺𝑝

(𝑛)
)

1 if 𝑑𝑡 = 0 and 𝑑𝑠ℓ = 0 and 𝑑𝑠𝑡 = 0 then
Yield stresses: 𝑌𝐶𝑃( ̄𝜀𝑝

(𝑛)
), 𝑌𝑇 𝑃( ̄𝜀𝑝

(𝑛)
) and 𝑆𝐿𝑃( ̄𝜀𝑝

(𝑛)
)

Yield function in Eq. (2.12): 𝜙𝑝
(𝑛+1)

General convex cutting-plane algorithm (return-mapping):
2 𝝈(𝑘)

(𝑛+1)
= 𝝈𝑡𝑟

(𝑛+1)

3 𝜙𝑝(𝑘 + 1)

(𝑛+1)
= 𝜙𝑝

(𝑛+1)

4 while 𝜙𝑝(𝑘 + 1)

(𝑛+1)
> tol do

Derivative of the plastic potential function with respect to the stress tensor:
𝜕

𝝈(𝑘)

(𝑛+1)

(𝜑𝑝)

Increment of the consistency parameter: Δ𝛾
(𝑛+1)

= −
𝜙𝑝

(𝑛+1)
𝑑𝜙𝑝

(𝑛+1)
𝑑𝛾

(𝑛+1)

Update the plastic strain tensor: 𝜺𝑝(𝑘 + 1)

(𝑛+1)
= 𝜺𝑝(𝑘)

(𝑛+1)
+ Δ𝛾(𝑘)

(𝑛+1)
𝜕

𝝈(𝑘)

(𝑛+1)

(𝜑𝑝)

Update the stress tensor: 𝝈(𝑘 + 1)

(𝑛+1)
= 𝝈(𝑘)

(𝑛+1)
− Δ𝛾(𝑘)

(𝑛+1)
ℂ𝑒𝜕

𝝈(𝑘)

(𝑛+1)

(𝜑𝑝)

Update the equivalent plastic strain: ̄𝜀𝑝(𝑘 + 1)

(𝑛+1)
= ̄𝜀𝑝(𝑘)

(𝑛+1)
+ Δ𝛾(𝑘)

(𝑛+1)
√1

2 ∥𝜕
𝝈(𝑘)

(𝑛+1)

(𝜑𝑝)∥

Update yield stresses: 𝑌𝐶𝑃( ̄𝜀𝑝(𝑘 + 1)

(𝑛+1)
), 𝑌𝑇 𝑃( ̄𝜀𝑝(𝑘 + 1)

(𝑛+1)
) and 𝑆𝐿𝑃( ̄𝜀𝑝(𝑘 + 1)

(𝑛+1)
)

Yield function in Eq. (2.12): 𝜙𝑝(𝑘 + 1)

(𝑛+1)

5 𝑘 = 𝑘 + 1
6 end
7 end
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3.3 Numerical predictions
The improvement of the formulation presented in this chapter (enhanced model) is
demonstrated by comparing its predictions with those obtained by the previous model
presented in Chapter 2 (original model, which is a CDM model based on �̃�). A longitudinal
virtual tensile test at Gauss-point level is performed in Section 3.3.1. The stresses and
damage variables vs. strain curves of the longitudinal and transverse direction are presented.
The numerical-experimental comparison of the remote failure strengths of open-hole tests
carried out in Section 2.4.2 is extended with the predictions from the enhanced model.
Next, an OHC virtual test is conducted using a quasi-isotropic laminate with both the
original and enhanced models and the results are compared with experimental data in
Section 3.3.3. This comparison is used to analyse the impact of the enhanced model on the
predictions (failure strength and failure pattern). After that, an OHC witual test using
a unidirectional stacking sequence at 0∘ is presented in Section 3.3.4, since the failure
strength of OHC tests in quasi-isotopic laminates is governed by the plies at 0∘. This
comparison can help to explain the possible discrepancies on the predicted failure strength
obtained from each model in the quasi-isotropic laminate. Finally, another OHC virtual
test using a unidirectional stacking sequence at 90∘ is performed in Section 3.3.5. This last
comparison can help to explain the possible discrepancies on the predicted failure pattern
in the quasi-isotropic laminate.

The FE modelling strategy used in Section 2.4 is employed to predict the strength of
the OHT and OHC tests of Section 3.3.2 (geometries, discretization of the FE meshes,
boundary conditions, etc.). For the rest of the simulations, the mesh element size is defined
approximately equal to 0.1 mm to prevent snap-back of the constitutive softening laws for
each failure mode around the regions where damage is expected in the open-hole tests. In
this case, the in-plane mesh element size is defined approximately ten times smaller than
the critical one [101] (0.99 mm in the transverse direction, see Appendix F) to enhance
the predictability of failure patterns of each configuration. In addition, three elements
through-the-thickness of each ply are used.

The same CFRP system employed in Chapter 2 is used in this chapter, IM7/8552 unidi-
rectional prepreg system. Therefore, the material properties presented in Section 2.4 are
used. Additionally, the fracture toughness in the transverse compressive direction (𝒢𝑌𝐶

)
is adjusted to fit the experimental data. This material property (𝒢𝑌𝐶

) is not employed
in the original model. The OHC test presented in Section 2.4.2 with a hole diameter of
3 mm is selected to adjust 𝒢𝑌𝐶

. The FE modelling strategy used in the fit analysis also
follows the one presented in Section 2.4. The relative error between the numerical and
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average experimental values of the remote failure strength is equal to 0.18%. Finally, the
value of 𝒢𝑌𝐶

is set equal to 2.8 N/mm.

The boundary conditions presented in Fig. 3.4 are applied in the open-hole virtual tests,
except for the FE models of Section 3.3.2. The displacement on the upper face of the
specimens is applied at low velocity to avoid dynamic effects, while the remaining degrees
of freedom of this face are constrained. Furthermore, all degrees of freedom on the bottom
face of the specimens are constrained. In addition, the out-of-plane displacement on the
front and back faces are fixed in the virtual test of Section 3.3.4 in accordance with Seon
et al. [138], who used a support to prevent buckling during experimental tests.

Figure 3.4.: Schematic representation of the boundary conditions applied in the open-hole
compressive virtual test. 𝜃 is the fibre angle orientation.

3.3.1 Longitudinal tensile test
A pure longitudinal virtual tensile test is carried out using the enhanced constitutive model
at the Gauss-point level. The longitudinal stress vs. strain curve follows the imposed
softening law in the tensile direction (bilinear softening curve) and the evolution of 𝑑𝑠ℓ

is equal to 𝑑ℓ𝑇 due to the definition of Eq. (2.33) since 𝑑𝑠ℓ∗(𝜙𝑡 = 0) = 0, see Fig. 3.5.
However, the transverse damage variables are equal to zero (𝑑𝑡 = 𝑑𝑠𝑡 = 𝑑𝑠ℓ∗ = 0) since
the stresses in the transverse directions are equal to zero and, therefore, 𝜙𝑡 = 0.

The comparison of Fig. 3.1 with Fig. 3.5 demonstrates that the CDM which use �̃� can
generate spurious damage in the transverse direction when a pure tensile loading condition is
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applied. However, the enhanced model avoids transverse damage variables being activated
when the Gauss-point is not loaded in the transverse direction (𝑝𝑡 = 𝜏ℓ = 𝜏𝑡 = 0).

Figure 3.5.: Longitudinal virtual tensile test at the Gauss-point level using the enhanced con-
stitutive model, where 𝑌𝑇 𝐵 is the biaxial transverse tensile strength. Longitudinal
response (top) and transverse response (bottom).

3.3.2 Open-hole tensile and compressive tests
The numerical results of the original model are compared to the experimental data from
OHT and OHC tests in Section 2.4.2, and the comparison is extended to the proposed
constitutive model described in this chapter (enhanced model). The same FE modelling
strategy as the aforementioned section is used with the enhanced constitutive model. The
remote failure strengths predicted are then compared to the experimental data in Fig. 3.6.
The predictions of the enhanced model are comparable to those of the original constitutive
model, apart from with respect to larger hole diameters (8 mm under tension and 4 mm
and 5 mm under compression). For these cases, the relative error of the remote failure
strength between the numerical and experimental results has decreased; from 2.8% to
0.7% under tension. The relative error decreases under compression in the configuration
with a hole diameter equal to 4 mm from 1.8% to 1.3%. Additionally, the prediction of
the enhanced model is within the scatter of the experimental data for the hole diameter of
5 mm.
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Figure 3.6.: Numerical-experimental comparison of the remote failure strength of the open-hole
tensile and compressive tests measured by Camanho et al. [114] and by Bessa [129],
respectively. The error bars denote the standard deviation of the experimental data
and the values are the relative error between the numerical result and experimental
data.

3.3.3 Open-hole compressive test with quasi-isotropic laminate
The OHC test in a quasi-isotropic laminate [45/90/-45/0]4s with a diameter of 6.35 mm
carried out by Wisnom et al. [139] is used in this section. The remote stress vs. strain curve
obtained from the enhanced model matches the one obtained by the original model until
the onset of damage, see Fig. 3.7. After that, the evolution of the curves are significantly
different. It would be expected that the original model which use �̃� suddenly drops when
the failure strength is reached since the longitudinal damage generates spurious transverse
damage. However, the remote stress vs. strain curve gradually decreases after the failure
strength from the original model. This behaviour is explained in Fig. 3.9c, the failure
from the original model is developed in a larger area in comparison with the results from
the enhanced model because the spurious damage is extended in the whole specimen.
Therefore, the model with �̃� dissipated more energy due to damage than the enhanced
model.

The remote stress obtained from the enhanced model suddenly drops after the remote
failure strength since the damage is localised at the midplane of the specimen (see Fig. 3.9b).
In addition, the comparison of predicted remote failure strength using the enhanced model
and the original model with the average value from the experimental tests is in very good
agreement. The relative error between the remote failure strength from the enhanced
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model and the average experimental data are equal to 0.32%, and 1.15% from original
model. The grey area in Fig. 3.7 represents the experimental error of the remote failure
strength by assuming a level of confidence equal to 95%. Therefore, the predicted remote
failure strength from both models are within the expected dispersion of the experimental
data.

Experimental data

Original model Enhanced model
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Figure 3.7.: Numerical-experimental comparison of the remote stress vs. axial strain curves of
the open-hole compressive test performed by Wisnom et al. [139]. The grey area
represents the experimental error of the remote failure strength by assuming a level
of confidence equal to 95%.

Fig. 3.8 compares the predicted external failure pattern with the experimental data at
98% of the remote failure load. Only the comparison of 𝑑𝑠ℓ with the experimental data are
presented since the external failure patterns of 𝑑𝑠𝑡 is approximately equal to 𝑑𝑠ℓ and no
fully-damaged elements are found in 𝑑ℓ and 𝑑𝑡. The initiation of the failure patterns from
both constitutive models are in good agreement with the experimental data. In all cases,
failure starts in two separate zones around the hole edge with similar in-plane angles.

The predicted failure external patterns after the peak load are compared to the experimental
data in Fig. 3.9. Only the transverse damage variable 𝑑𝑠𝑡 is presented since the failure
pattern of 𝑑𝑠ℓ is approximately equal to 𝑑𝑠𝑡 and negligible failure is found in 𝑑𝑡. The
brittle failure mechanism observed in the experimental data are properly captured by the
enhanced constitutive model. The predicted failure pattern is in good agreement with
the fracture straight across the laminate and the out-of-plane fracture plane observed in
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the experimental data, see Fig. 3.9a and b. However, the failure pattern predicted by the
original constitutive model is not in agreement with the experimental data, see Fig. 3.9a
and c. Similar behaviour is observed at the remote peak load, the damage is localised
around the hole in a fracture straight across the laminate in the enhanced model. However,
the failure pattern suddenly grows from the hole to either direction in the original model.

Figure 3.8.: Numerical-experimental comparison of the onset of failure at 98% of the remote
failure load from the quasi-isotropic laminate in the open-hole compressive test: a)
experimental data from [139]; b) numerical results from the enhanced model; and c)
numerical results from the original model.

The localisation of the damage in OHC specimens with multidirectional laminates always
initiates at the hole edges in the outer 0∘ plies at about 75÷85% of the failure strength
[140–145]. This phenomenon is predicted by the enhanced model, most of the energy
dissipated from the longitudinal failure mechanism at 75% of the failure strength is observed
at the outer 0∘ plies, see Fig. 3.10b. A negligible failure is found in the rest of the layers
at 75% of the remote failure load.

The main failure mechanism in OHC specimens is the fibre microbuckling in the 0∘ plies,
which promotes delamination between the off-axis and 0∘ plies at the hole edges [140–145].
In the FE models, there are three elements through-the-thickness of each ply and 𝑑𝑡 refers
to the mode-I matrix cracking. In addition, despite not having specific elements to model
delamination as cohesive elements on the ply interfaces, the elements located on the 0∘

midplane layer in contact with those from the -45∘ layer show the typical delaminated
failure pattern. After that, the delamination grows in that interface, see Fig. 3.10c.
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Figure 3.9.: Numerical-experimental comparison of the external failure pattern after the remote
failure load from the quasi-isotropic laminate in the open-hole compressive test: a)
experimental data from Wisnom et al. [139]; b) numerical results from the enhanced
model; and c) numerical results from the original model.
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Figure 3.10.: Predicted failure mechanism evolution of the quasi-isotropic laminate in an open-
hole compressive test using the enhanced model: a) predicted remote stress vs.
strain curve; b) longitudinal failure pattern of 0∘ outer ply at 75% of the failure
strength; and c) failure pattern of 0∘/-45∘ interface in the midplane of the specimen
after the failure strength.

The discrepancies on the failure pattern predicted by the original model with the pattern
experimentally obtained does not have significant influence on the failure strength in OHC
quasi-isotropic laminates. However, these discrepancies can take an important influence in
damage-tolerance design. In the aeronautical and aerospace industry, a composite structure
is designed to able to sustain loads even with damage [146]. For example, in a CAI test,
firstly the specimen is impacted and different damage mechanisms are then produced:
matrix cracking, fibres fractures and delamination [101]. After that, the specimen is
loaded in compression until failure. In the CAI test, the residual strength depends on the
local buckling and the propagation of the impacted-induced failure mechanisms previously
described [147, 148]. Hence, a good prediction of the failure pattern in the impact test
is required to properly predict the CAI strength. The CAI strength decreases when the
delaminated area increases [101, 102, 149]. Therefore, if the delaminated area is not
properly predicted, the constitutive model cannot capture the CAI strength.

3.3.4 Open-hole compressive test at 0∘

As previously mentioned, the failure strength in OHC tests of multidirectional laminates
is governed by the 0∘ layers [140–145]. For this reason, an OHC virtual test with all plies
aligned with respect to the load direction is used to explain the agreement of the predicted
failure strength from the enhanced and original models in Fig. 3.7. In addition, the OHC
test carried out by Seon et al. [138] is employed to compare the predicted onset failure
pattern. The hole diameter of the specimen used in the virtual tests is equal to 6.35 mm
and the in-plane dimensions are 12.8 mm × 25.6 mm as defined in [138], and eight plies
at 0∘ with respect to the loading direction are used (as in Section 3.3.3).
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The comparison of the remote stress vs. strain curve obtained from both the enhanced and
original models is performed in Fig. 3.11. Good agreement between both predicted curves
is found until the remote failure strength. After that, the curves differently drop and,
finally, the stress stabilises around 100 MPa in both cases. This observation could explain
the agreement in the predicted failure strength from OHC specimens with quasi-isotropic
laminates. The failure strength in quasi-isotropic laminates is governed by 0∘ layers and
no significant discrepancies in the predicted remote failure strength from both models with
0∘ unidirectional laminates are obtained.
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Figure 3.11.: Predicted remote stress vs. axial strain curves from the open-hole compressive test
with [0]8.

Fig. 3.12 compares the external predicted failure pattern at the remote failure strength
with the experimental data reported by Seon et al. [138]. A matrix crack is observed in all
cases (the experimental data and the numerical predictions). Good agreement is found on
the failure mechanism between the predictions and the experimental data. In contrast, the
predicted failure patterns obtained after the failure load from both models are significantly
different, see Fig. 3.13. The cracks predicted after the failure load by the enhanced model
grow with an inclination from the hole edge to the lateral edges (Fig. 3.13a), whereas
the cracks predicted by the original model grow horizontally, see Fig. 3.13b. That can
explain the discrepancies obtained in the failure pattern of the quasi-isotropic laminate in
Fig. 3.9.

3.3 Numerical predictions 58



Figure 3.12.: Numerical-experimental comparison of the failure pattern at the remote failure
load from the [0]8 laminate in the open-hole compressive test: a) experimental
data from Seon et al. [138]; b) numerical results from the enhanced model; and c)
numerical results from the original model.

Figure 3.13.: Predicted external failure patterns after the remote failure load of the [0]8 laminate
in an open-hole compressive test using: a) the enhanced model; and b) the original
model.

3.3.5 Open-hole compressive test at 90∘

OHC virtual tests at 90∘ are carried out to better understand the discrepancies obtained
in the predicted failure pattern from the quasi-isotropic laminate in Section 3.3.3. The
dimensions of the specimen are 31.75 mm × 31.75 mm, the hole diameter is defined equal
to 6.35 mm and eight plies at 90∘ with respect to the load direction.
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The remote stress vs. strain curve predicted from the enhanced model match the one
obtained from the original model until the remote failure strength of the latter model
is reached, see Fig. 3.14. After that, the results from the original model are unstable
and very large values of the remote load are obtained. However, the remote stress vs.
strain curve predicted by the enhanced model increases until the failure strength and,
after that, suddenly decreases until 0 MPa. The percent difference between the predicted
remote failure strength obtained by each model is 10.65%. This difference does not have a
significant impact on the predicted remote stress vs. strain curve until the failure strength
of an OHC virtual test with a multidirectional laminate, since they are dominated by the
0∘ layers.
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Figure 3.14.: Predicted remote stress vs. axial strain curves from the open-hole compressive test
with [90]8.

The external failure patterns predicted by the original model at the remote failure strength
is significantly different from those obtained with the enhanced model, see Fig. 3.15. In
the enhanced model, two matrix cracks are localised at the midplane of the specimen at
the hole edge, and they are horizontally propagated to the specimen edge, see Fig. 3.15a.
However, the original model not only predicts two matrix cracks at the hole edge growing
in the horizontal direction, but also in the vertical direction, see Fig. 3.15b. In addition,
the fibre failure predicted by the enhanced model is negligible, but fully-damaged elements
in the longitudinal direction are found in the predictions from the original model.
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Figure 3.15.: Predicted failure mechanism at the remote failure strength of the [90]8 laminate in
an open-hole compressive test using: a) enhanced model; and b) original model.

The constitutive models which use �̃� can generated spurious damage due to damage in
the other directions. After the onset of damage in one direction, the effective stresses
in other directions increase. Therefore, the activation of the damage functions in the
rest of the directions can be achieved. Longitudinal failure promotes artificial transverse
cracking, which in turn, also promotes artificial longitudinal failure. That becomes in an
unstable damage evolution accentuated after the failure strength. This could explain the
fibre damage field in Fig. 3.15b. The enhanced constitutive model does not experience
that phenomenon because the evolution the transverse variables is not affected by 𝑑ℓ.
Therefore, no spurious transverse damage can affect to 𝑑ℓ.

Fig. 3.16 displays the external failure pattern and the deformed shape of the numerical
results when 2.25% of the axial strain is applied. The failure pattern and the deformed
shape of the specimen from the enhanced model are in agreement with the expected results.
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Matrix cracks are localised at the hole edge and propagated to the specimen edge, as well
as the out-of-plane displacement of the layers at the midplane. Hence, the matrix cannot
contain the fibres and, therefore, the longitudinal compressive damage is activated at
the midplane of the specimen. However, all elements are fully-damaged in the transverse
direction from the original model, therefore, the elements present a large distortion, see
Fig. 3.16b. The large distorted elements in Fig. 3.16b are removed, otherwise, the results
cannot be analysed. It is worth mentioning that the enhanced constitutive model prevents
Abaqus’ error regarding excessive distortion of the elements, as the failure propagation
is stable. Therefore, FE simulations can be successfully completed using the enhanced
model.
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Figure 3.16.: Predicted failure pattern when 2.25% of the axial strain is applied from the [90]8
laminate in the open-hole compressive test: a) enhanced model; and b) original
model. The large distorted elements in b) are removed.
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4Transverse Poisson’s ratios
Unidirectional FRP laminates behave as homogenous transversely isotropic materials
[150–153] and, thus, have a plane of symmetry with respect to a rotation about the
fibre-oriented axis. The material properties of this transverse plane are the same in
all directions. Therefore, five elastic material properties are required in the generalised
Hooke’s law. Several standardised methodologies have been developed to measure them:
the longitudinal Young’s modulus [98, 99], the transverse Young’s modulus [98, 99], the
shear Young’s modulus [104, 105, 154], and the elastic longitudinal Poisson’s ratio (𝜈12)
[98]. However, there is no standardised method for measuring the elastic transverse
Poisson’s ratio (𝜈23).

FRP structures exhibit non-linear response under certain loading conditions, such as
compressive or shear loading states in the directions governed by the matrix [8–10]. This
behaviour is largely due to plastic strains, especially in thermoplastic-based composite
materials [155, 156]. The evolution of the plastic strains is governed by the plastic
transverse Poisson’s ratio (𝜈𝑝

23). Several constitutive models, developed to predict the
inelastic deformation due to plastic strains, use a non-associative plastic flow rule and
they can be adjusted using 𝜈𝑝

23 [124, 157–160].

In solid mechanics, 𝜈23 is defined as the negative quotient of the transverse strain (𝜀33)
to the axial strain applied (𝜀22) on the transverse plane. Transverse Poisson’s ratio is an
important material property of FRPs in the elastic and plastic regions. In the literature,
few works are addressed to the experimental measurement of 𝜈23. Recently, Khaled
et al. [161] carried out a transverse tensile and compressive tests using a unidirectional
carbon/epoxy composite material. Specimens with fibres aligned through-the-thickness
of the panel were employed, thus limiting the width and length of the specimens to the
thickness of the panel. The authors used 96 plies per panel which equals to 18.3 mm
specimen length. Curing thick laminates can lead to significant residual stresses which
can cause delamination cracking and residual shape distortions [162–164]. Furthermore,
special gripping assemblies were manufactured to transfer the load from a hydraulic grip
onto the specimen. The strain fields were measured with digital image correlation (DIC)
techniques. The elastic Poisson’s ratio from tensile tests was reported, and the elastic and
plastic Poisson’s ratios from compressive tests were also presented.

Frederiksen [165] presented an approach to estimate 𝜈23 of unidirectional FRP laminates
from the natural frequencies of a plate specimen. The measurement of frequencies was
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obtained through non-destructive impact testing and a model analysis, and 𝜈23 was
estimated based on the higher-order shear deformation theory [166] and an optimisation
algorithm. Kohlhauser and Hellmich [167] proposed a methodology to estimate the
elastic material constants of isotropic, transversely isotropic and orthotropic materials
by combining ultrasonic-mechanical and uniaxial tests. The method is based on the
generalised Hooke’s law, the authors presented an approach to estimate the components
of the stiffness tensor using an ultrasonic-mechanical test. The material properties of a
carbon/aluminium composite material were estimated. First, the Young’s modules were
obtained from uniaxial tests. Subsequently, several ultrasonic pulse transmission tests
were performed at different directions and the components of the stiffness tensor were
calculated. Finally, the Poisson’s ratios were estimated from the stiffness tensor.

The only use of ultrasonic-mechanical testing leads to significant errors in the estimation
of 𝜈23. Kohlhauser and Hellmich [167] reported a relative error between the measured 𝜈23

from ultrasonic-mechanical tests and the one estimated by the combined method higher
than 70% in FRPs. Accordingly, the estimation of 𝜈23 based on the modal analyses or
ultrasonic-mechanical techniques is a current challenge [168].

Baere et al. [169] carried out tensile tests to measure the longitudinal Poisson’s ratio (𝜈12)
from a wave cross-ply laminate using a carbon fibre thermoplastic-based composite material.
The experimental data showed a clear tendency for 𝜈12 to decrease when the longitudinal
strain exceeds 0.6%. The authors analysed the influence of the experimental methodology
on this tendency. Different tensile loading levels and cycle tests were employed, with
different measuring equipment (strain gauges, optical fibre and extensometer). The authors
concluded that the relationship between 𝜈12 and longitudinal strain, as observed in the
experimental data, reflects the material’s behaviour rather than any influence from the
experimental setup. Yilmaz et al. [170] also analysed the relationship between 𝜈12 and
the longitudinal strain of different stacking sequences of a glass fibre thermoset-based
composite material (stitched fabric technology). Similar experimental setups to those
conducted in [169] were employed. The authors concluded that the 𝜈12 decreases as the
longitudinal strain increases because the transverse microcracks release the compressive
strain in the transverse direction.

Alternatively, micro-mechanics FE models can also be employed to estimate 𝜈23. Generally,
several loading states are applied to micro-mechanical FE models using characterised
constituent materials (fibre and matrix). Then, the Hooke’s law and the averaging
techniques [171] are applied to the numerical results and the elastic material properties
at the meso-scale level can be determined [34, 172]. In addition, micro-mechanical-based
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analytical models are used to estimate 𝜈23 [173]. Furthermore, out-of-plane material
properties can be estimated using inverse identification methods combining experimental
data and FE models. Seon et al. [138] carried out an open-hole compressive test using a
carbon/epoxy material and DIC equipment to measure the surface strain field. The authors
employed an algorithm to minimise the least square error between the DIC-measured
strain field and FE models-predicted strains by tuning the elastic material properties of
the FE model.

In many works in the literature, the value of the transverse Poisson’s ratios is assumed
[79, 124, 125, 159], as well as the transverse shear modulus [174]. There is no standardised
test to experimentally measure the elastic and plastic values of transverse Poisson’s ratios.
In the present chapter, a new methodology is proposed to measure the elastic transverse
Poisson’s ratio in tension (𝜈23𝑇) and in compression (𝜈23𝐶) as well as the plastic transverse
Poisson’s ratio in compression (𝜈𝑝

23𝐶) from standardised tests for measuring elastic and
strength properties [98, 99]. The methodology and data reduction approach is described
in Section 4.1, and measured transverse Poisson’s ratios are discussed in Section 4.2.

4.1 Material and methods
The analysed material was a carbon fibre-reinforced poly-ether-ether-ketone (PEEK). The
consolidated ply thickness of a unidirectional laminate was equal to 0.182 mm and a fibre
volume content of 56%. The hot stamping manufacturing process was employed following
the manufacturing procedure from the material supplier. All panels were examined
through an ultrasound non-destructive inspection using a C-scan technique to ensure good
consolidation of the laminates.

The total strain field of each specimen was measured using both strain gauges and DIC
equipment. Then, the total strain was decomposed into two components: elastic strain
and plastic strain. At the beginning of each test, the total strain was deemed to be
elastic strain until the stress-strain relationship was not linear (see Fig. 4.6). Subsequently,
unloaded-reloaded steps were performed in which the external load vanishing, thus the
total strain was considered as plastic strain.

4.1.1 Transverse tensile test
The elastic transverse Poisson’s ratio in tension (𝜈23𝑇) was measured from a transverse
tensile test. However, the plastic Poisson’s ratio in tension could not be obtained from
this test since no plastic strains were found. The test was carried out following the
ASTM-D3039M standard [98] and using DIC equipment. Three specimens with 25 mm ×
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175 mm in-plane dimensions with a stacking sequence of [90]11 were tested. Glass fibre
tabs 25 mm long were used at the ends of the specimens to prevent slippage between
the tester clamps and the specimens, ensuring a uniform stress field around the clamping
tool. The thickness and dimensions of the specimens were verified and accomplished the
ASTM-D3039M standard. Therefore, the dimensions and shape of the specimens ensure a
uniform strain field along their gauge length.

An electromechanical testing machine MTS Insight50 with a 50 kN capacity using manual
grips was employed for the transverse tensile test, see Fig. 4.1a. In addition, a 50 kN MTS
load cell calibrated at 100% was used. The tensile test was conducted under displacement
control at 2 mm/min at room temperature.

Figure 4.1.: Experimental setup of the transverse tensile (a) and compressive (b) tests.

The DIC equipment was located on the lateral surface of the specimens to measure the total
axial strain ( ̄𝜀𝐷𝐼𝐶

22 ) (the in-plane direction perpendicular to the fibre dominant direction)
and the total out-of-plane strain ( ̄𝜀𝐷𝐼𝐶

33 ), see Fig. 4.2a. In addition, two strain gauges
located on the in-plane surfaces of the specimens (one on the top face and the other
on the bottom face, see Fig. 4.2a) and aligned with the load direction were used. The
measurements from the strain gauges were employed to cross-validate the measurement of
𝜀22 from the DIC equipment. The specimens were loaded until their failure was reached
(see Fig. 4.2c), and the load, the gauge strains and the DIC displacement fields were stored
during the test.
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Figure 4.2.: Schematic representation of: a) and c) transverse tensile test, and b) and d) transverse
compressive test. 1 refers to the longitudinal direction, and 2 and 3 to the transverse
directions. All dimensions are in mm.

4.1.2 Transverse compressive test
The elastic transverse Poisson’s ratio in compression (𝜈23𝐶), as well as in the plastic region
(𝜈𝑝

23𝐶), from a transverse compressive test were measured. The in-plane dimensions of
the specimens were 13 mm × 140 mm, following the ASTM-6641M standard [99]. Three
specimens with a stacking sequence of [90]22 were tested. Glass fibre tabs 64 mm long and
located on the ends of the specimens to avoid the slippage between the tester clamps and
the specimens were added. The dimensions of the specimens meet the requirements of the
ASTM-6641M standard. Consequently, the dimensions and shape of the specimens ensure
a uniform strain field along their gauge length.

A servo-hydraulic test machine MTS Insight300 with a capacity of 300 kN and an MTS
300 kN load cell calibrated at 100% were used. In addition, the compressive plates and
the fixture system from the ASTM-D6641M standard [99] were employed, see Fig. 4.1b.
The compressive test was carried out under displacement control at 2 mm/min at room
temperature.

As with the tensile test, DIC equipment was located on the lateral surface of the specimens
to measure the total axial and out-of-plane strains, see Fig. 4.2b. The axial strain was
also measured using two strain gauges (one on the top face and the other on the bottom
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face, see Fig. 4.2b) to cross-validate the measurement of 𝜀22 from the DIC equipment but
also to quantify the percent bending.

In this test, the specimens were loaded under transverse compression until to the onset of
the plastic region (when the linearity in the axial stress (𝜎22) vs. axial strain curve was lost),
and the specimens were then unloaded. After that, the specimens were reloaded to increase
the plastic strains (𝜀𝑝

22 and 𝜀𝑝
33, axial and out-of-plane plastic strains, respectively), and

were then unloaded. This last cycle was repeated until the specimens failed, see Fig. 4.2d.
The load in the unloaded steps was not equal to zero. A residual load (aprox. 2% of the
peak load of the first cycle) was used to prevent readjustment and movements between
the specimen clamping tool and the test machine. Otherwise, the DIC measurements can
be affected since the relative position between the specimen and the DIC equipment can
change. This residual load produces an error relative less than 0.9% in the transverse
Poisson’s ratios compared with releasing the specimens. Furthermore, the effect of the
residual load can be seen in Fig. 4.11a where 𝜎22 ≈ 0 at the end of each unloading cycle.
In addition, the residual load was held for 15 s, which corresponds to 75 DIC images,
to avoid viscous effects due to dynamic loading conditions, see Fig. 4.3. No significant
relaxation of the material was observed when the specimens were in the unloaded steps
under the residual load, therefore, 15 s a conservative value.

Figure 4.3.: Schematic representation of load vs. time curve of the transverse compressive test.
The elastic transverse Poisson’s ratio was measured where the red circles are located,
and the plastic transverse Poisson’s ratio was measured where the green triangles
are located.
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4.1.3 Instrumentation and data reduction
The data acquisition system used in the proposed method can be divided into two main
groups: a QuantumX system to measure the load and the axial strain from strain gauges,
and a 2D DIC acquisition system to measure the axial and through-the-thickness strains.
The strain gauges used were HBM LY41-3/350. The DIC equipment was composed of a 5
megapixels camera with a 2/3 in. CCD sensor providing 14-bit grayscale images. The lens
was selected from the MachVis software for a field of view of 10 mm, resulting in a focal
length of 120 mm and two extension tubes of 24 mm and 12 mm. The lens aperture size
was set equal to f/11 to avoid lens distortions or diffraction limits [175]. The exposure
time was fixed to 8 ms, less than the inverse of the focal length [176]. The solutions2010vic
commercial software was used to post-process the data from the DIC equipment with a
subset of 77 and a step of 17. Different values of the subset and step were tested and no
significant differences were found in the analysed data.

The analysed area of the DIC equipment was similar to the measuring grid of the strain
gauges (3 mm × 2.5 mm). The measured strain from a strain gauge is the average value of
the strains under its measuring grid [177]. Furthermore, the DIC equipment was centered
with respect to the strain gauges, see Fig. 4.2a and b. Therefore, the average values of the
DIC axial strain field were compared with the measurements of the strain gauges. The
average strain from the DIC equipment was calculated as

̄𝜀𝐷𝐼𝐶
𝑖𝑗 = 1

𝐴𝐷𝐼𝐶
∫

𝐴
𝜀𝐷𝐼𝐶

𝑖𝑗 𝑑Ω𝐷𝐼𝐶, (4.1)

where 𝐴𝐷𝐼𝐶 is the DIC area analysed, Ω𝐷𝐼𝐶 refers to the DIC area domain, 𝜀𝐷𝐼𝐶
𝑖𝑗 is the

strain field in the 𝑖𝑗 direction in the Cartesian coordinate system.

The relative error of the DIC axial strain with respect to the average strain obtained
from the two strain gauges was calculated. This relative error in the elastic region was
used to test the reliability of the present methodology. In the present work, DIC strain
refers to the average value of the strain field obtained from the DIC equipment for the
corresponding loading state ( ̄𝜀𝐷𝐼𝐶

𝑖𝑗 ).

The elastic transverse Poisson’s ratios for both tensile and compressive tests were calculated
as

𝜈23 = −
𝜀𝑒

33

𝜀𝑒
22

, (4.2)

where 𝜀𝑒
22 and 𝜀𝑒

33 are the axial and out-of-plane elastic strains, respectively. Both strains
were obtained from the DIC equipment and the ratio was calculated. The elastic strains
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in the compressive test were captured in the first cycle of the 𝜎22 vs. 𝜀22 curves at the
straight part (red circles in Fig. 4.3).

The plastic transverse Poisson’s ratio under compression was calculated as

𝜈𝑝
23𝐶 = −

𝜀𝑝
33

𝜀𝑝
22

. (4.3)

Both plastic strains were obtained from the compressive test in the unloaded steps. DIC
strains measured at these unloaded steps were assumed to be plastic strains and used
in Eq. (4.3). Therefore, several 𝜈𝑝

23𝐶 at each plastic axial strain were measured (green
triangles in Fig. 4.3).

The proposed methodology is summarised in Fig. 4.4 for the transverse compressive test.
The specimen was loaded under transverse compressive loading stress state before reaching
the non-linear relationship in the 𝜎22 vs. 𝜀22 curve. The strain field of the lateral surface
of the specimen was then calculated from the displacement field measured by the DIC
equipment. Subsequently, the average of the strain field was calculated with Eq. (4.1) and
they were assumed to be elastic strains. Finally, the elastic transverse Poisson’s ratio in
compression was calculated from Eq. (4.2) and graphical represented as a function of 𝜀𝑒

22,
see Fig. 4.4a. Similar procedure was used for 𝜈𝑝

23𝐶 when the specimen was unloaded after
non-linear 𝜎22-𝜀22 relationship was observed, see Fig. 4.4b. In this case, the DIC strain
was assumed to be the plastic strain when no external load was applied. The last cycle
was repeated several times.

DIC

DIC

(a)

(b)

Figure 4.4.: Schematic representation of the procedure to measure the elastic (a) and plastic (b)
transverse Poisson’s ratios in compression.
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Once the tests were finished, the transverse Poisson’s ratios were also obtained by per-
forming a linear regression analysis of the corresponding axial strain vs. out-of-plane
strain curves. The absolute value of the slopes of the linear regression analyses from each
analysis was considered as the corresponding transverse Poisson’s ratio. The intercept of
the corresponding linear regression was forced equal to zero, since no out-of-plane strain is
expected when no axial strain is applied.

The random error of the measured strains from the strain gauges was calculated as

𝔼𝑆𝐺 = ±Δ𝔼𝑆𝐺, (4.4)

where Δ𝔼𝑆𝐺 is the accuracy from the data acquisition system plus that of the strain
gauges. This accuracy was obtained through a calibration certificate from an external
laboratory.

The source of uncertainty for the DIC strain measurements in the elastic region can be
divided into two main groups: random error (𝔼𝑟𝑎𝑛𝑑) and standard error (𝔼𝑠𝑡𝑑). The
random error may come from the DIC equipment, the speckle pattern, the lighting,
environmental influences, the correlation algorithm [178–180], etc., whereas the standard
error is related to the standard deviation of the corresponding strain field (𝑆�̄�𝐷𝐼𝐶

𝑖𝑗
) in each

interval time (DIC image).

The random error from the DIC equipment was quantified as

𝔼𝑟𝑎𝑛𝑑𝑖𝑗
= ±Δ𝔼𝑟𝑎𝑛𝑑𝑖𝑗

, (4.5)

where Δ𝔼𝑟𝑎𝑛𝑑 is the noise-floor of the DIC measurements. Δ𝔼𝑟𝑎𝑛𝑑𝑖𝑗
was estimated for

each specimen at the beginning of each test by acquiring the DIC strains over a time
period (aprox. 10 seconds, 50 DIC images) when the specimen was unloaded [181, 182].
Therefore, zero strains should be measured in this step since zero displacements were
applied. However, all measured DIC strains must result from random error. Consequently,
the average value of each DIC strain during this time period was considered to be 2Δ𝔼𝑟𝑎𝑛𝑑𝑖𝑗

for each direction (Δ𝔼𝑟𝑎𝑛𝑑22
for ̄𝜀𝐷𝐼𝐶

22 and Δ𝔼𝑟𝑎𝑛𝑑33
for ̄𝜀𝐷𝐼𝐶

33 ).

The standard error of the DIC strains in the elastic region was estimated as

𝔼𝑠𝑡𝑑𝑖𝑗
= ±𝑧𝛼/2

𝑆�̄�𝐷𝐼𝐶
𝑖𝑗

√𝑁𝑝𝑥

, (4.6)

4.1 Material and methods 73



where 𝑧𝛼/2 is the confidence range, and 𝑁𝑝𝑥 refers to the number of pixels of each analysed
area with the DIC equipment. A normal distribution of the samples and a level of
confidence equal to 95% were assumed (𝑧𝛼/2 =  1.960). Finally, the Euclidean norm of
𝔼𝑟𝑎𝑛𝑑𝑖𝑗

and 𝔼𝑠𝑡𝑑𝑖𝑗
was proposed to determine the uncertainty of each measured DIC strain

in the elastic region,
𝔼𝐷𝐼𝐶𝑖𝑗

= √𝔼2
𝑟𝑎𝑛𝑑𝑖𝑗

+ 𝔼2
𝑠𝑡𝑑𝑖𝑗

. (4.7)

The uncertainty of the elastic transverse Poisson’s ratios (𝜈23𝑇 and 𝜈23𝐶) from the DIC
equipment was estimated as

𝔼𝜈23
= ∣

𝜕𝜈23

𝜕𝜀𝑒
22

∣ Δ𝔼𝑟𝑎𝑛𝑑22
+ ∣

𝜕𝜈23

𝜕𝜀𝑒
33

∣ Δ𝔼𝑟𝑎𝑛𝑑33
, (4.8)

where 𝜀𝑒
22 and 𝜀𝑒

33 were measured from the tensile test for the uncertainty of 𝜈23𝑇 in 𝔼𝜈23𝑇
,

or from the compressive test for the uncertainty of 𝜈23𝐶 in 𝔼𝜈23𝐶
. The uncertainty of

𝜀𝑝
22 was estimated using Eq. (4.7), where the same noise-floors in Eq. (4.5) were used.

Moreover, the uncertainty of 𝜈𝑝
23 was also quantified using Eq. (4.8) replacing the elastic

strains by the plastic strains.

4.2 Results and discussion
The accuracy of the strain gauges and the noise-floor of the DIC equipment from each test
are summarised in Table 4.1. The accuracy of the strain gauges is better than that of the
DIC equipment. Moreover, there is no clear trend in the DIC accuracy according to the
test nor to the strain direction. As will be shown later, the accuracy of the equipments
were suitable for the measurements carried out in the present work. Three specimens per
each test were used, hence, the rows in the tables and the symbols in the figures represent
the results from each specimen tested. The error bars displayed in the figures correspond
to the errors explained in Section 4.1.3 and the no significant errors were omitted for the
sake of clarity.

Uniform lateral strain fields were observed during the tensile test, see the strain field of
𝜀𝐷𝐼𝐶

22 and 𝜀𝐷𝐼𝐶
33 at the same external load ( ̄𝜀𝐷𝐼𝐶

22 ≈ 0.5%) in Fig. 4.5a. However, non-
uniform strain fields were measured from the compressive test (see Fig. 4.5b) evidencing
that the specimens were undergoing some bending. This misalignment may come from
imperfections in the specimens, the test fixture, the testing procedure, etc. Nonetheless,
the percent bending for each specimen met the requirements of the ASTM-6641M standard
(they were less than 9.3% < 10%). Furthermore, the observed failure modes in the
compressive test accomplished the standard.
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Table 4.1.: Accuracy of the equipment used in the experimental tests, the different rows represent
different specimens.

Measurement instrument Test
Tensile Compressive

Strain gaugues Δ𝔼𝑆𝐺 (𝜇𝜀) 0.28
DIC Δ𝔼𝑟𝑎𝑛𝑑22

(𝜇𝜀) 13.26 24.07
5.89 4.05
6.79 55.90

Δ𝔼𝑟𝑎𝑛𝑑33
(𝜇𝜀) 33.65 1.94

19.56 2.78
7.75 21.53

The elastic axial strain (𝜀𝑒
22) was captured from 3000 𝜇m/m to 7500 𝜇m/m of the total

strain, see Fig. 4.6. The values of 𝜎22 in Fig. 4.6 have been omitted since the material
supplier has proprietary of the data. Within this range, there was enough strain to be
properly measured. In the present work, the relative error of the DIC equipment with
respect to the strain gauges significantly increases for 𝜀𝑒

22 less than 3000 𝜇m/m (relative
error greater than 12.5%). Furthermore, the relative error of the slope from the 𝜎22 vs.
𝜀22 curve (obtained from the cross-head load cell and the strain gauges, respectively)
with respect to the transverse Young’s modulus (provided by the material supplier) was
less than 6.1% in tension and 0.5% in compression. Therefore, axial strain within 3000
𝜇m/m and 7500 𝜇m/m in absolute terms can be assumed to be an elastic strain in both
loading states (tension and compression) for the selected material (no plastic strains were
considered within this range).

As explained in Section 4.1, the DIC axial strain was compared with the average strain
measured from two strain gauges located on the in-plane surfaces of the specimens. The
comparison demonstrated the ability of the DIC setup to capture the axial strain in the
transverse tensile test, see Fig. 4.7. The DIC axial strain measured from two of the three
specimens was greater than that measured from the strain gauges; being greater when
𝜀𝑒

22 increases. However, the DIC axial strain from the third specimen was under the
gage measurements; being smaller when 𝜀𝑒

22 decreases. The relative error of 𝜀𝑒
22 for each

specimen was calculated, and the highest relative error was less than 12.5%.
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Figure 4.5.: Lateral strain field from the transverse tensile (a) and compressive (b) tests using the
DIC equipment at abs( ̄𝜀𝐷𝐼𝐶

22 ) ≈ 0.5%. The specimens were loaded in the horizontal
direction (2-axis direction).
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Figure 4.6.: Stress vs. strain curve obtained from the transverse compressive (left) and tensile
(right) tests using the average strain from the two strain gauges, the different marks
represents different specimens. For the sake of clarity, the error bars are omitted
since no significant error was measured.
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Figure 4.7.: Goodness-of-fit plot of the DIC axial strain vs. average strain measured from the
two strain gauges from the transverse tensile test, the different marks represents
different specimens. For the sake of clarity, a dashed straight curve with slope equal
to 1 is shown and the error bars are omitted since no significant error was measured.

A clear trend of 𝜈23𝑇, obtained from Eq. (4.2), as a function of 𝜀𝑒
22 was found in the

transverse tensile test, see Fig. 4.8. The transverse Poisson’s ratio in tension (𝜈23𝑇)
decreases when elastic axial strain (𝜀𝑒

22) increases for two of the three specimens tested.
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A linear regression analysis using 𝜈23𝑇 as a function of 𝜀𝑒
22 from all three specimens was

performed. The obtained slope (-0.10) of this regression analysis confirms the trend, but
it is also noteworthy that a coefficient of variation of 𝜈23𝑇 less than 7.9% was observed.
This behaviour was also observed in the 𝜈12-longitudinal strain relationship of glass
FRP laminates [169, 170]. Yilmaz et al. [170] attributed the reduction of 𝜈12 when the
longitudinal strain increases due to transverse microcracking. In addition, the coefficient of
determination (𝑅2 = 1.00) indicates that 𝜈23𝑇 is linearly proportional to 𝜀𝑒

22 in the analysed
range of 𝜀𝑒

22. The measured errors of 𝜈23𝑇 and 𝜀𝑒
22 were not significant since the biggest

error of 𝜈23𝑇 was 𝔼𝜈23𝑇
= 5.06 × 10−3 and that of 𝜀𝑒

22 was 𝔼𝐷𝐼𝐶22
= 34.43 × 10−4%.
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Figure 4.8.: Elastic transverse Poisson’s ratio in tension vs. DIC elastic axial strain curve, the
different marks represents different specimens.

The DIC axial strain measured from the transverse compressive test was also compared
with the average strain from the strain gauges in Fig. 4.9. In all the specimens, the DIC
axial strain was higher vs. the strain measured using the strain gauges; being smaller
when the amount of the compressive 𝜀𝑒

22 increases. The highest relative error was less
than 6.2%. Therefore, the DIC equipment also properly measured 𝜀22 in the transverse
compressive test.

As for 𝜈23𝑇, a similar trend is obtained from the measured 𝜈23𝐶 using Eq. (4.2) in all three
specimens, see Fig. 4.10. The transverse Poisson’s ratio measured in compression (𝜈23𝐶)
decreases when the amount of compressive elastic axial strain (𝜀𝑒

22) increases. In addition,
a linear regression analysis was also carried out of 𝜈23𝐶 vs. 𝜀𝑒

22 using the measured values
from all three specimens. The slope (0.11) of this regression analysis confirms this trend,
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but it is also noteworthy that a coefficient of variation of 𝜈23𝐶 less than 4.3% was observed.
Furthermore, the coefficient of determination (𝑅2 = 1.00) also indicates that 𝜈23𝐶 is
linearly proportional to 𝜀𝑒

22 in the analysed range of 𝜀𝑒
22. Again, the measured errors of

𝜈23𝐶 and 𝜀𝑒
22 were not significant since the biggest error of 𝜈23𝐶 was 𝔼𝜈23𝐶

= 2.30 × 10−2

and that of 𝜀𝑒
22 was 𝔼𝐷𝐼𝐶22

= 26.26 × 10−4%. It is worth mentioning that the elastic
transverse Poisson’s ratio does not follow a linear dependency of the axial strain when
𝜀𝑒

22 = (−0.3, 0.3)%, since the intercepts of Figs. 4.8 and 4.10 are different.
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Figure 4.9.: Goodness-of-fit plot of the DIC axial strain vs. average strain measured from the
strain gauges from the transverse compressive test, the different marks represents
different specimens. For the sake of clarity, a dashed straight curve with slope equal
to 1 is shown and the error bars are omitted since no significant error was measured.

The elastic Poisson’s ratio in compression (𝜈23𝐶) was also measured from the rest of the
cycles performed in the transverse compressive tests, the results of Figs. 4.9 and 4.10
correspond to the elastic region of the first cycle under loading conditions. The elastic
transverse strains (𝜀𝑒

22 and 𝜀𝑒
33) of the remaining cycles were estimated by subtracting

the corresponding plastic strains from the total strains measured by the DIC equipment
under equal stress level, see Fig. 4.11a where the zoom corresponds to the referenced
stress range. No significant differences were observed in 𝜈23𝐶 between the different cycles
before to plastic strains, see Fig. 4.11b from the first cycle to the third cycle. A relative
error less than 5% was obtained of 𝜈23𝐶 from the remaining cycles with respect to 𝜈23𝐶

from the loading region of the first cycle when no significant plastic strains were observed.
Additionally, the value of 𝜈23𝐶 obtained from the loading region of each cycle was lower
than the that measured from the unloading region of the same cycle. Moreover, the latter
being much larger than 𝜈23𝐶 obtained in the loading region of the first cycle.
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Figure 4.10.: Elastic transverse Poisson’s ratio in compression vs. DIC elastic axial strain curve,
the different marks represents different specimens.

Figure 4.11.: Stress vs. strain curve from the transverse compressive test (a) and elastic transverse
Poisson’s ratio in compression vs. DIC elastic axial strain from different loading
cycles (b). The results presented correspond to values from a single specimen, and
𝐿 refers to loading region, 𝑈 refers to unloading region and the number to the
cycle.

Regarding 𝜈𝑝
23𝐶, plastic dilatancy was observed when the amount of compressive plastic

axial strain was significantly increased (𝜈𝑝
23𝐶 > 1 when 𝜀𝑝

22 < −1%) by assuming no plastic
strain in the longitudinal direction (𝜀𝑝

11 = 0) [124, 159, 160], see Fig. 4.12. Therefore,
the analysed material behaves as a frictional material since plastic dilatancy is evidenced,
i.e., volume increases due to the deviatoric plastic strain. A linear regression analysis
of 𝜈𝑝

23𝐶 vs. 𝜀𝑝
22 was performed. The intercept (1.00) of this regression analysis suggests
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that the analysed material presents no volumetric plastic strains (𝜈𝑝
23𝐶 ≈ 1) at small axial

plastic strain by assuming no plastic strain in the longitudinal direction. In addition, the
coefficient of determination (𝑅2 = 1.00) and the slope (-0.05) confirm that the plastic
transverse Poisson’s ratio (𝜈𝑝

23𝐶) linearly increases when the amount of the compressive
plastic axial strain (𝜀𝑝

22) increases, see Fig. 4.12.
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Figure 4.12.: Plastic transverse Poisson’s ratio in compression vs. DIC plastic axial strain curve
measured from the transverse compressive test, the different marks represents
different specimens. The error bars are omitted since no significant error was
measured

Table 4.2 summarises the transverse Poisson’s ratios obtained from the corresponding
linear regression analysis of the corresponding ̄𝜀𝐷𝐼𝐶

33 vs. ̄𝜀𝐷𝐼𝐶
22 curve. The comparison of

𝜈23𝐶 with 𝜈23𝑇 shows that 𝜈23𝐶 > 𝜈23𝑇, which indicates different behaviour depending on
the loading direction (compression or tension). In the elastic region, a higher expansion
was observed in compression than contraction in tension, which is in agreement with the
results reported by Khaled et al. [161]. In addition, the values of the elastic transverse
Poisson’s ratios (𝜈23𝐶 and 𝜈23𝑇) are similar to those reported in literature for CFRPs
[161].

All the studied Poisson’s ratios (𝜈23𝑇, 𝜈23𝐶 and 𝜈𝑝
23𝐶) in Table 4.2 are greater than the

longitudinal Poisson’s ratio (𝜈12 = 0.34) in the ranges of the corresponding analysed
axial strain. The same observation was found when the transverse Poisson’s ratios were
obtained using Eq. (4.2) or Eq. (4.3) (Figs. 4.8 and 4.10). As expected, the contraction in
tension is lower in the longitudinal direction than that obtained in the transverse direction
(𝜈12 < 𝜈23𝑇), due to the stiffness of the fibres.
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Table 4.2.: Transverse Poisson’s ratio obtained from the corresponding linear regression analysis
of ̄𝜀𝐷𝐼𝐶

33 vs. ̄𝜀𝐷𝐼𝐶
22 , the different rows represent different specimens.

𝝂𝟐𝟑𝐓 𝝂𝟐𝟑𝐂 𝝂𝐩
𝟐𝟑𝐂

(-) (-) (-)
0.39 0.61 1.16
0.44 0.63 1.15
0.46 0.66 1.12

Lempriere [183] established the thermodynamically admissible conditions for transversally
isotropic materials. The conditions prevent negative energy when the material is loaded.
The rules were defined as a function of the elastic material properties. The elastic transverse
Poisson’s ratios reported in this chapter met these thermodynamic requirements of positive
strain energy.
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5Failure envelope shape definition
The failure criteria developed for FRP laminates can be divided into two main groups: i)
polynomial criterion, and ii) failure criteria related to failure mechanisms. The polynomial
criterion cannot distinguish the failure mechanism and does not consider fibre-matrix
interface phenomena. In addition, the formulation of the polynomial criterion is reduced to a
mathematical expression as a function of different material properties such as unidirectional
strengths. However, the failure criteria related to failure mechanisms take into account
the possible failure mechanisms using a mathematical expression for each of them. Most
of them are developed by considering plane stress conditions at the lamina level.

Hill [184] generalised the Von Mises yield for anisotropic metallic materials and Tsai [185]
employed it in FRP laminates. This polynomial criterion (Tsai-Hill criterion) does not
distinguish between the tensile and compressive strengths. Therefore, Tsai-Hill criterion is
not adequate for materials with different tensile and compressive behaviours, such as FRP
structures. Tsai et al. [75] extended the Tsai-Hill criterion to account for different strengths
in tension and compression (Tsai-Wu criterion). This is the most general criterion and can
be particularised to obtain all the polynomial.

The maximum stress failure criteria predicts the failure at certain direction (longitudinal,
transverse, shear, etc.) when the stress state reaches the maximum allowable value. No
interaction between the stress components are considered and, thus, no accurate predictions
are obtained under multiaxial loading conditions. The maximum strain failure criteria is
comparable to the maximum stress but at the strain level.

The Hashin failure criteria, developed by Hashin [83], distinguish between different failure
mechanisms, including longitudinal tensile and compressive modes, as well as transverse
tensile and compressive modes. These failure criteria are quadratic criteria and were
developed based on the first four transverse isotropic stress invariants, as they are defined
in Eqs. (2.5)–(2.8). The quadratic failure criterion for matrix cracking implies that the
plane of fracture is the maximum transverse shear plane, which may not always be the
case.

The Puck [82] and LaRc [84, 85] failure criteria address the limitation of the Hashin
criteria. They are based on experimental observations and micro-mechanics models, as
well as the Mohr-Coulomb failure criteria [186], which combines normal and shear stresses
on the fracture plane. Under normal tensile stress conditions, fracture is caused by both
the tensile and shear stresses. However, the fracture plane is promoted at a certain
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fracture angle under normal compressive stress due to shear stresses. The Puck and LaRC
failure criteria distinguish between fibre failure and matrix cracking and require complex
experimental tests to fully calibrate their shape parameters.

Recently, Camanho et al. [123] proposed a quadratic failure criteria for unidirectional
FRP laminates based on the Puck and LaRC criteria. The criteria distinguish between
fibre failure and matrix cracking. The fracture plane under compression is oriented with
respect to the angle that maximises the fibre kinking failure index. The proposed criteria
are capable of fitting the available experimental data in the literature. Further analysis is
needed to demonstrate its capabilities under stress conditions where the criteria have not
been tested. For instance, the failure criteria is not tested under longitudinal compressive
loads combined with transverse compressive stress states.

Several failure criteria have been proposed for FRP laminates, but none have been identified
as optimal in terms of accurate predictions compared with others. All current criteria have
limitations that prevent generalisation to all types of composites, applications or loading
conditions. Most failure criteria have been formulated for unidirectional FRP laminates
(woven and textile laminates being considered as combinations of different unidirectional
plies).

Based on the previous literature observations, a numerical study is carried out to analyse
the influence of the failure criteria on the strength under complex loading conditions.
Section 5.1 presents the calibration guidelines for the failure shape envelope coefficients of
the constitutive model proposed in this thesis and their bounds are presented in Section 5.2.
Finally, different envelope shape coefficients are proposed and their effect on the remote
failure strength of FHC tests is analysed in Section 5.3.

5.1 Calibration of the envelope shape coefficients
The calibration of the envelope shape coefficients of the plasticity and damage model
for FRP laminates is described in this section. First, the identification of the failure
envelope shape coefficients is presented. Then, the same assumptions and approach can
be used to estimate the plastic envelope shape coefficients replacing the strengths by the
corresponding yield stresses.
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The envelope shape coefficient 𝜇𝑡 controls the failure in the transverse shear direction
(𝑆𝑇), but also in the biaxial tensile (𝑌𝑇 𝐵) and compressive (𝑌𝐶𝐵) directions, see Fig. 2.3a.
This parameter (𝜇𝑡) can be calculated using the following expressions:

𝜇𝑡(𝑆𝑇) = (
𝑆𝑇(𝑌𝐶 + 𝑌𝑇)

𝑌𝐶𝑌𝑇
)

2
− 1, (5.1)

𝜇𝑡(𝑌𝑇 𝐵) =
(𝑌𝐶𝑌𝑇 − 𝑌𝑇 𝐵(𝑌𝐶 − 𝑌𝑇))2

𝑌 2
𝑇 𝐵(𝑌𝐶 + 𝑌𝑇)2 − (𝑌𝐶𝑌𝑇 − 𝑌𝑇 𝐵(𝑌𝐶 − 𝑌𝑇))2 , (5.2)

or

𝜇𝑡(𝑌𝐶𝐵) =
(𝑌𝐶𝑌𝑇 − 𝑌𝐶𝐵(𝑌𝑇 − 𝑌𝐶))2

𝑌 2
𝐶𝐵(𝑌𝐶 + 𝑌𝑇)2 − (𝑌𝐶𝑌𝑇 − 𝑌𝐶𝐵(𝑌𝑇 − 𝑌𝐶))2 , (5.3)

where the expressions are obtained when 𝐹𝑡 = 0 and applying a pure transverse shear stress
state or the corresponding pure biaxial loading state, respectively. Significant difficulties
occur when testing composite materials under transverse shear or biaxial loading [69].
Fenner and Daniel [187] proposed a methodology for transverse shear loading using a
sandwich-beam under three-point bending test. Otherwise, 𝑆𝑇 can be estimated from [136]
as

𝑆𝑇 =
𝑌𝐶

2 tan(𝛼0), (5.4)

assuming that the damage (or plasticity) occurs in the plane of maximum longitudinal
shear stresses, where the value experimentally obtained of the angle of this plane (𝛼0) is
approximately equal to 53∘ [188].

The failure envelope for the �̃�22 − �̃�12 effective stress space is defined using 𝜇𝑠ℓ, see
Fig. 2.3b. This parameter can be calibrated by imposing that the slope at �̃�22 = 0 must
be equal to the longitudinal matrix friction coefficient 𝜂ℓ, as the Coulomb fracture line in
the Mohr-Coulomb criterion. Therefore, the coefficient reads

𝜇𝑠ℓ =
2𝜂ℓ𝑌𝐶𝑌𝑇 + 𝑆𝐿(𝑌𝐶 − 𝑌𝑇)

4𝜂ℓ𝑌𝐶𝑌𝑇
, (5.5)

𝜂ℓ can be approximated from [188] as

𝜂ℓ ≈ −
𝑆𝐿 cos(2𝛼0)
𝑌𝐶 cos(𝛼0) . (5.6)

Alternatively, 𝜇𝑠ℓ can be estimated from off-axis tests by fitting the failure envelope (or
yield surface) shape with the experimental data. Moreover, from the yield surfaces reported
by Daniel [80] and failure envelopes from [80, 123, 136], 𝜇𝑠ℓ and 𝜇𝑠ℓ𝑝 must be defined close
to one.
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The envelope shape coefficients 𝜂𝑡 and 𝜂𝑞
𝑡 are the coefficients of the linear and quadratic

terms, respectively, related to the hydrostatic transverse pressure ( ̃𝑝𝑡) in 𝜙ℓ𝐶. Therefore,
they define the failure envelope for the �̃�11 − �̃�22 effective stress space, see Fig. 2.3c. The
experiments carried out by Soden et al. [97] suggest that these two parameters can be
estimated for CFRPs as

𝜂𝑡 =
𝑋𝐶(𝑌𝐶 − 𝑌𝑇)

𝑌𝐶𝑌𝑇

𝜂𝑞
𝑡 = (

𝑋𝐶(𝑌𝐶 + 𝑌𝑇)
𝑌𝐶𝑌𝑇

)
2

.
(5.7)

Moreover, others envelopes can be defined, such as the slope equals to 𝑌𝑇/𝑋𝐶, where

𝜂𝑡 =
2𝑋𝐶
𝑌𝑇

𝜂𝑞
𝑡 =0.

(5.8)

The linear and quadratic terms related to the longitudinal shear stresses in 𝜙ℓ𝐶 are 𝜂𝑠ℓ

and 𝜂𝑞
𝑠ℓ, respectively. They define the failure envelope for the �̃�11 − �̃�12 effective stress

space, see Fig. 2.3d. They can be tuned for CFRPs from the experimental data reported
by Soden et al. [97] as

𝜂𝑠ℓ =
𝑋𝐶
2𝑆𝐿

𝜂𝑞
𝑠ℓ =0,

(5.9)

hence, the slope is defined as 2𝑆𝐿/𝑋𝐶. Furthermore, others envelopes can be defined:
with the slope equals to 𝑆𝐿/𝑋𝐶, where

𝜂𝑠ℓ =
𝑋𝐶
𝑆𝐿

𝜂𝑞
𝑠ℓ =0;

(5.10)

or with perfect parabolic curve, where

𝜂𝑠ℓ =0

𝜂𝑞
𝑠ℓ = (

𝑋𝐶
𝑆𝐿

)
2

.
(5.11)

Alternatively, the failure envelopes (or yield surfaces) can be estimated from the simulation
of a representative cell (modelling polymer and fibres) under multiple multi-axial loading
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conditions combined with a data-driven approach [189, 190]. After that, the envelope
shape coefficients can be adjusted.

5.2 Bounds of the envelope shape coefficients
The bounds of the shape coefficients of the failure envelope are presented in this section.
The bounds of the shape coefficients of the plasticity modelling can be calculated using
the same assumptions and approach. The loading functions in Eqs. (2.26)–(2.28) are
proposed to be used with null or positive values of the failure envelope shape coefficients.
Consequently, the shape coefficients of the �̃�22 − �̃�33 and �̃�22 − �̃�12 effective stress spaces
(𝜇𝑡 and 𝜇𝑠ℓ, respectively) must be defined equal to or greater than zero. Therefore,
the bounds of the plastic envelope shape coefficients 𝜇𝑡𝑝 and 𝜇𝑠ℓ𝑝 must be also defined
non-negative.

The shape coefficients 𝜂𝑡 and 𝜂𝑞
𝑡 define the failure envelope for the �̃�11 − �̃�22 effective

stress space. Specifically, 𝜂𝑡 and 𝜂𝑞
𝑡 correspond to the linear and quadratic coefficients,

respectively, of the terms of ̃𝑝𝑡 in 𝜙ℓ𝐶 defined in Eq. (2.27). The upper bound of 𝜂𝑡 is
determined by matching 𝜙ℓ𝐶 ≤ 𝜙𝑡 and evaluating it with all effective stress components
equal to zero except for �̃�22 > 0. This allows to prevent a discontinuity in the failure
envelope in the intersection of these loading functions at �̃�11 = 0 and �̃�22 > 0, see Fig. 5.1a.
Consequently, the upper bound of 𝜂𝑡 yields

𝜂𝑡 ≤
2𝑋𝐶
𝑌𝑇

− √𝜂𝑞
𝑡 . (5.12)

Subsequently, the lower bound of 𝜂𝑡 is also defined by matching 𝜙ℓ𝐶 ≤ 𝜙𝑡 but evaluating
it with all effective stress components equal to zero except for �̃�22 < 0. In this case, the
continuity of the failure envelope at �̃�11 = 0 and �̃�22 < 0 is ensured with

𝜂𝑡 ≥ √𝜂𝑞
𝑡 −

2𝑋𝐶
𝑌𝐶

, (5.13)

see Fig. 5.1b. Therefore, the bounds of 𝜂𝑡 are defined as a function of the strength material
properties and 𝜂𝑞

𝑡 .
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Figure 5.1.: Schematic representation of the failure envelope for the �̃�22 − �̃�33 effective stress
space with discontinuity: a) 𝜂𝑡 > 2𝑋𝐶

𝑌𝑇
− √𝜂𝑞

𝑡 , and b) 𝜂𝑡 < √𝜂𝑞
𝑡 − 2𝑋𝐶

𝑌𝐶
.

The failure envelope for the �̃�11 −�̃�12 effective stress space is defined by 𝜂𝑠ℓ and 𝜂𝑞
𝑠ℓ. These

shape coefficients correspond to the linear and quadratic coefficients, respectively, of the
terms of ̃𝜏ℓ in 𝜙ℓ𝐶 defined in Eq. (2.27). The bounds of 𝜂𝑠ℓ are defined by evaluating
𝜙ℓ𝐶 ≤ 𝜙𝑡 with all effective stress components equal to zero except for |�̃�12| > 0 due to the
symmetry of the failure envelope in this effective stress space. This avoids a discontinuity in
the failure envelope at the intersection of these loading functions at �̃�11 = 0 and |�̃�12| > 0,
see Fig. 5.2. Consequently, the bounds of 𝜂𝑠ℓ are

|𝜂𝑠ℓ| ≤
𝑋𝐶
𝑆𝐿

− √𝜂𝑞
𝑠ℓ, (5.14)

due to the symmetry of �̃�11 − �̃�12 effective stress space with respect to the �̃�11-axis.
Therefore, the bounds of 𝜂𝑠ℓ are defined as a function of the strength material properties
and 𝜂𝑞

𝑠ℓ.

Finally, the bounds of the plastic envelope shape coefficients are

𝜇𝑡𝑝 ∈ R+

𝜇𝑠ℓ𝑝 ∈ R+,
(5.15)

and the bounds of the plastic potential envelope shape coefficients are

̂𝜇𝑡𝑝 ∈ R+

0 ≤ ̂𝜇𝑠ℓ𝑝 ≤ 1.
(5.16)
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Figure 5.2.: Schematic representation of the failure envelope for the �̃�11 − �̃�12 effective stress

space with discontinuity |𝜂𝑠ℓ| > 𝑋𝐶
𝑆𝐿

− √𝜂𝑞
𝑠ℓ.

The condition of ̂𝜇𝑠ℓ𝑝 is defined to guarantee the convexity of the plastic potential function.
The bounds of the failure envelope shape coefficients are

𝜇𝑡 ∈ R+

𝜇𝑠ℓ ∈ R+

√𝜂𝑞
𝑡 −

2𝑋𝐶
𝑌𝐶

≤ 𝜂𝑡 ≤
2𝑋𝐶
𝑌𝑇

− √𝜂𝑞
𝑡

𝜂𝑞
𝑡 ∈ R+

|𝜂𝑠ℓ| ≤
𝑋𝐶
𝑆𝐿

− √𝜂𝑞
𝑠ℓ

𝜂𝑞
𝑠ℓ ∈ R+.

(5.17)

Therefore, the following constraints are also imposed in Eq. (5.17),

𝜂𝑞
𝑡 ≤ (

𝑋𝐶(𝑌𝐶 + 𝑌𝑇)
𝑌𝐶𝑌𝑇

)
2

𝜂𝑞
𝑠ℓ ≤ (

𝑋𝐶
𝑆𝐿

)
2

.
(5.18)

5.2 Bounds of the envelope shape coefficients 90



5.3 Influence of the failure envelope on the failure
strength of filled-hole compressive laminates

As explanied before, aeronautical components are usually certified following the building
block approach [2, 21, 22]. FHC tests are commonly conducted to characterise the
compressive strength with a filled-hole for determining the design allowable values that
drive the design at the higher levels [191]. These tests are complex due to the presence of
the bolt, which leads to significant out-of-plane stresses and complex failure mechanisms.
Therefore, the FHC test is selected in this analysis due to its importance in the design of
aeronautical structures and corresponds to a structural detail test.

Firstly, the experimental test campaign is described. Secondly, the FE modelling strategy is
presented. Finally, the numerical analysis is carried out by comparing numerical predictions
with different failure envelope shape coefficients and experimental data.

5.3.1 Experimental campaign
In this section, numerical predictions are compared to experimental data from Airbus’
database. The experimental test campaign consisted in FHC tests of a CFRP system. It
is important to note that the experimental test campaign were not carried out in this
thesis; only their experimental data are used. The experiments were carried out by Airbus
following the AITM 1-0008 internal standard. Firstly, the carbon/epoxy specimens were
assembled with the corresponding bolt and nut, and a preload to the bolt and nut was
then applied. After that, the assembly was installed in a universal testing machine, by
fixing the ends of the specimen. Tabs were used to prevent slippage between the tester
clamps and the specimens. Finally, a compressive load at the upper end was applied
until the assembly collapses. In all cases analysed in this work, the assembly failed due
to carbon/epoxy failure (the bolt and nut did not present any apparent damage at the
macro-scale level).

Different stacking sequences were tested to evaluate the robustness of the present analysis
and their conclusions. In addition, different laminate thickness, hole diameters, specimen
widths, bolt metrics and preloads were explored. The gauge length of the specimens
was as short as possible (between 21 mm and 32 mm, similar to the width) to avoid
buckling. The stacking sequences cannot be revealed due to confidentiality. Hence, for
better understanding, Table 5.1 presents the percentage of plies oriented at each angle
(𝜃). The 0∘ angle was oriented with the longitudinal axis of the specimen, which also
corresponds with the loading direction. Based on their stacking sequences, the specimens
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can be grouped as: i) quasi-isotropic laminates (QI), ii) laminates with a high number of
𝜃 = 0∘ plies (FI), and (iii) laminates with a high number of 𝜃 = ±45∘ plies (SH).

Table 5.1.: Configurations of the filled-hole compressive tests analysed.

Configuration 0°/ ± 45°/90° Hole diameter (mm) Width (mm) Number of plies Preload (N)
SH-12np 16/68/16 5.02 22 12 3247
SH-10np 20/40/40 5.02 22 10 3247
QI-W19 25/50/25 4.15 19 16 3805
QI-W22 25/50/25 5.02 22 16 3247
QI-W25 25/50/25 5.80 25 16 6498

QI-W22P 25/50/25 4.84 22 16 5338
FI-22np 45/55/0 6.35 32 22 12950
FI-24np 50/40/10 6.35 32 24 12950

All specimen configurations, following the nomenclature explained above, are defined in
Table 5.1. The same hole diameter, width and preload was used in the SH laminates, but
different stacking sequences and number of plies, with the SH-12np having more plies
(12np refers to 12 plies). The same stacking sequence was used in all the QI laminates,
but the hole diameter and preload were different. The QI-W19, QI-W22 and QI-W25
laminates have different hole diameters, widths and preloads. The QI-W22 and QI-W22P
configurations have the same width (22 mm), but higher preload was applied to the
QI-W22P case (here, W refers to the width and P to the higher preload compared with QI-
W22). The FI configurations were defined with the same hole diameter, width and preload,
but different stacking sequences and number of plies. A minimum of four specimens were
tested per configuration.

5.3.2 Finite element modelling strategy
In the present chapter, the failure strength and the failure pattern of the FHC tests are
predicted using FE models with the enhanced constitutive model presented in Chapter 3.
The FE models are developed following the approach explained in Section 2.4. Table 5.2
summarises the tests carried out to characterise the model input parameters of the selected
carbon/epoxy material. Note that the input values cannot be disclosed for confidentiality
reasons.

The constitutive model used requires five elastic material properties to reproduce the
elastic behaviour of composite materials: three elastic modulus and two elastic Poisson’s
ratios. They are measured from longitudinal and transverse tensile tests and an in-plane
shear tensile test, except for the transverse elastic Poisson’s ratio (𝜈23). No significant
effect of 𝜈23 on the failure strength of open-hole tests is observed in Section 2.4 and, thus,
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this material property for the analysed material is assumed here to be 𝜈23 = 0.45, which
is a common value for aeronautical CFRPs [161, 192].

Table 5.2.: Tests carried out to determine the model input parameters for the carbon/epoxy
unidirectional prepreg system used.

Description Symbol Test

El
as

tic

Longitudinal Young’s modulus 𝐸11 EN 2561B [193]
Transverse Young’s modulus 𝐸22 EN 2597B [194]
Longitudinal shear’s modulus 𝐺12 AITM 1.0002
Longitudinal Poisson’s ratio 𝜈12 EN 2561B [193]
Transverse Poisson’s ratio 𝜈23 Assumed

Pl
as

tic

Transverse compressive yield stress curve 𝑌𝐶𝑃 EN 2850B [195]††

Transverse tensile yield stress curve 𝑌𝑇 𝑃 EN 2597B [194]††

Longitudinal shear yield stress curve 𝑆𝐿𝑃 AITM 1.0002††

Plastic Poisson’s ratios 𝜈𝑝
23𝑇, 𝜈𝑝

23𝐶 and 𝜈𝑝
122 Assumed

D
am

ag
e

Longitudinal tensile strength 𝑋𝑇 EN 2561B [193]
Shape of the longitudinal tensile softening law 𝑓𝑋𝑇

and 𝑓𝒢𝑋𝑇
DENT [107]∗

Longitudinal tensile fracture toughness 𝒢𝑋𝑇
DENT [107]

Longitudinal compressive strength 𝑋𝐶 EN 2850B [195]
Longitudinal compressive fracture toughness 𝑓𝒢𝑋𝐶

𝒢𝑋𝐶
DENC [108]

Shape of the longitudinal compressive softening law 𝑓𝑋𝐶
and 𝑓𝒢𝑋𝐶

DENC [108]∗

Transverse tensile strength 𝑌𝑇 EN 2597B [194]
Transverse tensile fracture toughness 𝒢𝑌𝑇

AITM 1-0005‡

Transverse compressive strength 𝑌𝐶 EN 2850B [195]
Transverse compressive fracture toughness 𝒢𝑌𝐶

Assumed
Longitudinal shear strength 𝑆𝐿 AITM 1.0002
Longitudinal shear fracture toughness 𝒢𝑆𝐿

AITM 1-0006‡

†† Assuming no damage occurs until the specimen fails, the plastic strain can then be calculated by
subtracting the elastic strain, as the ratio of stress to Young’s modulus, from the total strain.

∗ Inversely identified using finite element simulations.
‡ Assuming that the intralaminar fracture toughness is equivalent to the interlaminar fracture toughness.

Three hardening curves are needed to predict the plastic strain, obtained from: a transverse
compressive test, a transverse tensile test and an in-plane shear tensile test. In addition,
the plastic Poisson’s ratios are also needed to define the evolution of the plastic strains. No
volumetric plastic strains are considered, therefore, the transverse plastic Poisson’s ratios
are defined equal to 1 and 𝜈𝑝

122 = 0 (no plastic strains are considered in the longitudinal
direction).

The ply strengths are obtained from: longitudinal compressive and tensile tests, transverse
compressive and tensile tests, and an in-plane shear tensile test. The longitudinal compres-
sive and tensile fracture toughnesses are obtained from double edge notched compressive
and tensile (DENC and DENT, respectively) tests [107, 108], respectively. The transverse
tensile fracture toughness, and the longitudinal shear fracture toughness are measured
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from interlaminar mode-I and mode II tests, respectively, both carried out based on Airbus
internal procedures. The transverse compressive fracture toughness is assumed equal to
IM7/8552 material system (𝒢𝑌𝐶

= 2.8N/mm)

The shape of the longitudinal softening laws (the shape of each softening segment in
Fig. 2.4) are fitted using the experimental data from the DENC and DENT tests. Different
specimen sizes were tested to properly calibrate these shapes. Firstly, FE models to predict
the failure strengths of DENC tests are defined. Eight-node 3D solid elements with reduced
integration (C3D8R) are employed. The in-plane mesh element size is defined equal to 0.5
mm around the notch, where the damage is expected to grow. This element size prevents
the snap-back effect in all softening laws defined [101], its value being more than three
times lower than the critical element size for the analysed material, see Appendix F. In
addition, three elements through-the-thickness of each ply are used, as in the previous
chapters. Then, the axial displacement is applied on the top face at low loading rate
to avoid dynamic effects during the simulation, while the opposite face is clamped, see
Fig. 5.3a. Finally, the shapes of the longitudinal compressive softening laws are adjusted to
match the experimental failure strengths. The same procedure is carried out to calibrate
the shapes of the longitudinal tensile softening law from the DENT tests.

(d)

Figure 5.3.: Schematic representation of the finite element models. a) Double edge notched
compressive test, b) filled-hole compressive preload step with boundary conditions
to avoid the rigid body motion, c) connection between the bolt and nut with a
virtual connector element to model the preload; a gap between the bolt and nut is
presented for the sake of clarity, and d) filled-hole compressive loading step with
boundary conditions.

The FE model for the FHC tests is defined using two types of material model: i) the
elastoplastic damage model (see Chapter 3) for the laminate and ii) linear elastic isotropic
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material for the bolt and nut. The in-plane element size of the specimen is defined equal
to 0.5 mm around the hole (more than three times lower than the critical element size
to prevent the snap-back effect), and three elements through-the-thickness of each ply
again. The bolt and nut are defined with an element size of 0.5 mm around the areas in
contact with the specimen and a coincident node mesh between all parts is imposed to
improve the contact interactions. C3D8R solid elements are employed in all the parts of
the assembly. All FE models use the same mesh element size and discretisation to perform
a fair comparison between FHC configurations.

The specimen length of the FE models is defined by the experimental gauge length of the
corresponding configuration. The bolt is modelled as two concentric cylinders, one with
the hole diameter and the thickness of the specimen plus the nut length, and the other
with the diameter and length of its head, see Fig. 5.3b. The nut is defined as a cylinder
with a concentric hole equal to the hole diameter. Therefore, there is no clearance between
the parts. General contact is defined with hard contact normal behaviour and tangential
behaviour given by frictional contact, with a friction coefficient of 0.15.

The simulation consists in two steps: preload and loading. In the first step, the assembly
is preloaded. The bolt preload is defined using a virtual connector element (CONN2D2
Abaqus element) to link the bolt with the nut, see Fig. 5.3c. The connector between these
two parts is defined as purely elastic, with a low stiffness (100 N/mm) to avoid modifying
the stiffness of the FE model in this direction. Then, a compressive axial load (axis 3 in
Fig. 5.3b) equal to the preload is defined in the virtual connector element using a smooth
step, while the bottom and top faces of the specimen are restricted to avoid rigid body
motion, see Fig. 5.3b. After that, the loading step starts, and the length of the virtual
connector element is fixed by setting its axial velocity equal to zero and removing its axial
load. This allows to keep the bolt preload, but also allows the parts to deform, altering
the contact force between parts as needed to reach equilibrium. In addition, an axial
compressive displacement is applied to the specimen top face, while the bottom face is
clamped, until catastrophic failure, see Fig. 5.3d. The model is run for each configuration,
and with different failure envelopes as explained next in Section 5.3.3.

The proposed FE modelling strategy allows to define the bolt preload with a single step in
Abaqus/Explicit solver. Another FE strategy is to define the preload using a thermal step;
the bolt/washer is defined with a thermal expansion coefficient in the preload direction
and a temperature is applied to contract or expand the bolt or washer, respectively [117,
196–201]. Hence, a calibration step must be carried out to determine the temperature to
be applied for the corresponding bolt preload. Thus, three steps have to be performed: i)

5.3 Influence of the failure envelope on the failure strength of filled-hole compressive laminates 95



calibration step, ii) bolt preload step and iii) loading step. Consequently, the proposed FE
strategy is efficient in terms of computational time in the pre-processing and solver FE
steps.

5.3.3 Failure envelopes definition
The failure envelope shape coefficient 𝜇𝑡 defines the 𝜎22 − 𝜎33 stress space and, thus,
controls transverse failure. In the present chapter, the failure envelope in this stress space
is adjusted based on the biaxial compressive strength of the material (𝑌𝐶𝐵 = 2𝑌𝐶 [202])
and Eq. (5.3), see Fig. 5.4a. The failure envelope for the 𝜎22 −𝜎12 stress space is controlled
by 𝜇𝑠ℓ. This value can be estimated from off-axis tests by fitting the failure envelope with
the experimental data. Here, 𝜇𝑠ℓ is assumed equal to 1 as with the IM7/8552 material
system, see Fig. 5.4b.

The failure envelope shape coefficients 𝜂𝑠ℓ and 𝜂𝑞
𝑠ℓ control the �̃�11 − �̃�12 effective stress

space. Unfortunately, there is uncertainty in this effective stress space due to the lack of
appropriate multiaxial tests. Consequently, 𝜂𝑠ℓ and 𝜂𝑞

𝑠ℓ are defined based on the results
from Soden et al. [203], and Eq. (5.9) is used to estimate these two parameters, see
Fig. 5.4d.

The largest uncertainty in the failure envelope is the �̃�11 − �̃�22 effective stress space due to
the lack of experimental data. This space governs the onset of damage in the longitudinal
compressive direction and its propagation. The failure envelope in this effective stress
space can be defined by adjusting the shape coefficients 𝜂𝑡 and 𝜂𝑞

𝑡 .

In this chapter, the influence of the failure envelope in the �̃�11 − �̃�22 effective stress space
on the FHC strength is explored. Fig. 5.4c presents the different envelopes that will be
explored. The Quadratic envelope is adjusted based on the failure criteria presented by
Camanho et al. [123], and is less conservative than the rest of the envelopes, note that this
is an approximate adjustment. The LaRC03 mod. envelope is defined from the modified
LaRC03 failure criterion proposed by Maimí et al. [49] in which the misalignment angle
of the kinking failure mechanism is assumed to be constant. Notice that the Quadratic
envelope is purely a quadratic function in the effective stress space presented in Fig. 5.4c,
while LaRC03 mod. envelope is purely a linear function. Therefore, two new envelopes
are defined in this effective stress space by combining linear (𝜂𝑡) and quadratic (𝜂𝑞

𝑡 ) terms
of 𝜙ℓ𝐶. The 52𝑋𝐶Q envelope crosses the transverse tensile strength (𝑌𝑇) at 52% of the
longitudinal compressive strength (𝑋𝐶) and with a greater weight in the quadratic term
compared with 53𝑋𝐶L envelope, which crosses 𝑌𝑇 at 53% of 𝑋𝐶.
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Figure 5.4.: Schematic representation of the failure envelopes for the effective stress space at
the onset of damage: (a) �̃�22 − �̃�33, (b) �̃�22 − �̃�12, (c) �̃�11 − �̃�22, and (d) �̃�11 − �̃�12.
Note that, b) and d) are symmetric with respect to their X-axis.

5.3.4 Results and discussion
This section analyses the failure strength of the FHC configurations in Table 5.1 obtained
with each failure envelope of Fig. 5.4. After that, the influence of the failure envelope on
the failure strength and failure mechanisms of the FHC tests is analysed. Please note that
all results are normalised for confidentiality reasons.

Fig. 5.5 presents the failure strength predictions for each FHC configuration and for each
failure envelope. Overall, changing the failure envelope leads to a massive effect on the
failure strength for all tested configurations, and tendencies are also not obvious as will
now be analysed.

For the SH-12np case, the 52𝑋𝐶Q and 53𝑋𝐶 failure envelopes underpredict the experimen-
tal failure strength (with a relative error between 12% and 14%), while the Quadratic case,
underestimates the experimental data with an error of 21%. Opposite to this, the LaRC03
mod. envelope overpredicts with an error of 16%. The SH-10np specimen is identical to the
previous one, but with a different stacking sequence (see Table 5.1). Completely opposite
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to before, in this case the Quadratic envelope is the one closest to the experimental data,
while the LaRC03 mod. envelope (which was reasonably close previously) is now heavily
overpredicting, with an error of 50%.
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Figure 5.5.: Normalised strength for each FHC configuration and for each failure envelope.
Results are all normalised by the experimental average strength of FI-24np.

Similar findings are observed with the quasi-isotropic specimens (QI-W19, QI-W22, QI-
W25 and QI-W22P). All these cases have the same stacking sequence, but different preload
and geometrical dimensions (see Table 5.1). Here, the LaRC03 mod. envelope overpredicts
the experimental data (with relative errors between 20% and 52%), while the Quadratic
envelope underestimates all cases, with relative errors between 10% and 30%, except for
the QI-W22. The intermediate envelopes (52𝑋𝐶Q and 53𝑋𝐶L) are in good agreement
with the experimental data, with errors lower than 8% overall, although there is a slight
underprediction for the QI-W22P (16% for both envelopes).

Finally, the FI-22np and FI-24np cases both have the same width, bolt and preload,
but different stacking sequences. Note that these laminates are much thicker than the
laminates analysed before (see Table 5.1). In these cases, the LaRC03 mod. envelope
again overestimates the test results by 32% and 50% for the FI-22np and FI-24np cases,
respectively. The Quadratic one underestimates the strength by 10% for the FI-22np
configuration, but captures well the experimental value for the FI-24np case. The interme-
diate envelopes are again in good agreement with the experimental data, with a relative
error lower than 5%. These findings prove that numerical predictions may be accurate for
a specific test case, but they may fail to reproduce the experiments as soon as something
is modified (such as the stacking sequence or the bolt diameter).
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Taking into account all results, the 53𝑋𝐶L and 52𝑋𝐶Q failure envelopes are the most
representative of this material, since these envelopes presented a lower relative error
compared to the experimental data. Nonetheless, the shape of these two envelopes is
very different, see Fig. 5.4c. This indicates that for the analysed FHC configurations,
failure occurred when the longitudinal direction was under compression and the transverse
hydrostatic pressure was under tension (with �̃�22 or �̃�33 ≥ 0 and −𝑋𝐶 ≤ �̃�11 ≤ 0), since
these envelopes are quite similar in this area. Depending on the specimen case, the effective
stress state can be slightly more to the right or to the left of this quadrant, which causes
the Quadratic or the LaRC03 mod. envelopes to have better predictions or not. This can
be observed by analysing the trends from Fig. 5.5 and comparing it with the envelopes
from Fig. 5.4c. For example, in the SH-12np configuration, the LaRC03 mod. predicted
higher strength than the 53𝑋𝐶L and 52𝑋𝐶Q envelopes, while the quadratic prediction was
the lowest. Therefore, the stress state that led to failure must be located in a region where
the LaRC03 mod. is the least restrictive, the 53𝑋𝐶L and 52𝑋𝐶Q envelopes coincide, and
the quadratic surface is the most restrictive.

The large difference in strength, by slightly modifying the envelope, also suggests that
the failure mechanisms are different. This will be analysed by comparing the failure
mechanisms in the onset of damage (where and how failure started to develop) in the
QI-W25 specimen. This configuration is selected, since here both LaRC03 mod. and
Quadratic envelopes are quite far from the experiments.

Fig. 5.6 presents the stress vs. strain curve predicted by each failure envelope for the
QI-W25 specimen, as well as a picture of the transverse and longitudinal damage initiation
with each failure envelope. Note this representation is done by plotting all the elements
within the laminate with a damage value equal to or larger than 0.99, and giving all
these elements one colour or another accordingly to the failure envelope. The transverse
damage initiation is shown at the instant indicated by the cross point in the stress vs.
strain curve, while the bullet dot indicates the instant at which the longitudinal damage
is shown. Before deeper analysis, note that in all cases there is some damage caused by
the bolt pretension, which can be seen around the edges of the hole and bolt head. All
experimental and numerical stress vs. strain curves are mostly linear up to catastrophic
failure, with no significant loss of stiffness.

With the Quadratic envelope, transverse damage starts to grow perpendicular to the
loading direction at plies 3 and 5 (which are 0° plies), just from the bolt head diameter.
Notice that damage starts from the bolt head rather than the hole, due to the presence of
the pretension. This happened with all models, however the longitudinal damage starts to
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grow with a slightly higher strain (see Fig. 5.6a) propagated from the edges parallel to the
loading axis at the centre, again in plies 3 and 5, see Fig. 5.6c.

(c)(b)(a) Transverse damage Longitudinal damage

Figure 5.6.: Comparison of the failure mechanisms, at the onset of damage, with each failure
envelope for the QI-W25 configuration. a) Normalised stress vs. strain curve, b)
transverse damage and c) longitudinal damage. The cross and bullet points indicate
the instant when transverse and longitudinal damage, respectively, are shown.

The LaRC03 mod. envelope shows a different mechanism, the stress state caused transverse
damage to start at the edges, oriented with a 45° angle, at plies 12 and 14 (0° plies). As
with the transverse damage, the longitudinal damage from the LaRC03 mod. envelope
begins to propagate slightly later in the same location and orientation, but in layers 3 and
5. Therefore, this complete difference in damage explains why the two models provide
different results.

Similar failure mechanisms from the 52𝑋𝐶Q envelope are observed. Transverse damage
starts around the bolt head diameter, perpendicular to the loading direction, in plies 3
and 5, like the Quadratic case. Longitudinal damage again grows from the edges at the
centre in all 0° plies. Finally, the model with failure envelope 53𝑋𝐶L provided completely
different failure pattern, and the transverse damage initiated at the right hand side of
the bolt head diameter in plies 3 and 5, thus, parallel to the loading axis. Longitudinal
damage is more in-line with the Quadratic and the 52𝑋𝐶Q envelopes, growing from the
edges at the centre in plies 3 and 5 again.

While some aspects are common in all models (damage mainly started in the 0° plies and
especially in plies 3 and 5, which are 0° plies), matrix cracking evolution is completely
different in all cases. Firstly, this may look unreasonable, since the different failure
envelopes here considered (see Fig. 5.4c) only alter the onset of damage in the longitudinal
direction and its propagation and do not affect the transverse damage. However, this can
be explained as follows. The bolt preload promotes localised longitudinal damage around
the hole. This damage is different for each defined failure envelope. As a consequence, this
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changed the stress redistribution in the matrix, inducing a different transverse damage
development. Eventually, this caused catastrophic transverse damage in a different location,
despite the fact that only the longitudinal failure criterion is modified.

A further interesting point to highlight is that longitudinal failure developed at the free
edges, and not at the hole. This may be because the fibres are confined by the presence of
the preloaded bolt, which delays fibre damage from developing around the hole. However, in
open-hole tests, damage often initiates from the hole edge, and the shape of the longitudinal
softening law has a greater influence on predicting the open-hole failure strength [204]. In
line with this, the influence of modifying 𝑓𝑋𝐶

and 𝑓𝒢𝑋𝐶
on the FHC strength predicted is

analysed and no significant effect is found.

The influence the preload on the failure strength is analysed by modifying the bolt preload
in the SH-10np configuration. Increasing or decreasing the preload by 20% led to a
relative difference less than 0.5% compared with the failure strength obtained with the
default preload and, thus, there is no significant influence on the predicted FHC strength.
Moreover, the influence of modifying 𝜂𝑠ℓ and 𝜂𝑞

𝑠ℓ (�̃�11 − �̃�12 or �̃�13 effective stress space)
on the FHC predictions is analysed and no significant influence is found for the cases
analysed.

These results highlight that the failure envelope not only changes the predicted failure
strength, but also the predicted failure mechanisms. While there are multiple failure
criteria (or damage onset criteria) in the literature, some of them even physically based
(LaRC, Puck, Hashin, etc.), it is well known that these criteria do not work well in many
regions of the failure envelopes. Especially, the �̃�11 − �̃�22 or �̃�11 − �̃�33 stress spaces have
not been greatly studied due to the lack of appropriate multiaxial tests. A big part of the
physics of the problem (i.e., what happens under multiaxial loads) is not well understood
and, thus, the models are not well adjusted for all the domain. Consequently, to properly
understand the physical behaviour of the material, it is key to design new multiaxial tests
to obtain the failure envelopes accurately, such as the VERTEX test rig [205].

The failure envelopes that accurately predict the FHC strength (53𝑋𝐶L and 52𝑋𝐶Q) may
not be reproducible with some typical failure criterion, e.g. Hashin, LaRC03, etc. Thus,
developing models where the envelopes can be adjusted, as in the present model, could be
convenient. It is worth mentioning that the authors also verified the failure initiation in
the rest of the specimens and found very similar conclusions to the ones reported with the
QI-W25 specimen. Despite the differences in failure development between failure envelopes
and configurations, the transverse failure pattern in all configurations and envelopes mainly
grows parallel to the longitudinal direction, similar to a delamination pattern. Therefore,
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this indicates that fibre kinking and delamination are the predominant failure mechanisms
of the analysed configurations.

A further interesting point is to verify that the predicted failure pattern resembles the
experimental data. The 53𝑋𝐶L failure envelope is selected, since this envelope provided
accurate strength prediction for all specimen configurations. Fig. 5.7 compares the predicted
failure patter after failure strength with a photo of one specimen of the QI-W25, QI-W22P
and QI-W19 configurations. The comparison in Fig. 5.7 highlights that the model predicts
a similar failure pattern to the experiments. In the QI-W25 case, the FE model predicts
the experimental crack growing in a -45∘ angle from the bolt, together with visible damage
around all the bolt perimeter. Some delaminations can also be seen in the experiment,
comparable to the out-of-plane transverse damage observed in the numerical results. In
the QI-W22P virtual case, two cracks can be seen growing again from the bolt to the
edges with a -45∘ orientation, which are in good agreement with the experimental data. In
line with this, the QI-W19 specimen again shows two cracks from the bolt to the edges,
together with some damage around the bolt; this failure pattern is properly predicted
by the FE model. Delaminations can also be observed experimentally, while the model
predicts a similar pattern with the transverse damage growing at the vicinity between
plies. Therefore, by adjusting the failure envelope properly, the FE model predicts multiple
configurations with different conditions (stacking sequence, preload, dimension, etc.) and
obtains similar failure patterns compared with the experiments.
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Figure 5.7.: Comparison of the failure pattern between the experiments and FE model for three
different configurations: a) QI-W25, b) QI-W22P and c) QI-W19.





6Complex simulations under
multiaxial loading conditions
Numerical-experimental comparisons of different loading cases are carried out in this
chapter. The main objective is to demonstrate the capabilities of the enhanced constitutive
model for predicting the failure mechanisms of CFRP laminates under complex loading
conditions. An end-notched flexural (ENF) test is conducted to show the ability of the
model to predict the failure mechanism of a unidirectional CFRP laminate under pure mode-
II loading conditions. Subsequently, two different CFRP configurations under four-point
bending test using L-shaped specimens and another two different CFRP configurations
under single-lap shear (SLS) composite bolted joints are used. The aim of the latter cases
is to demonstrate the capabilities of the enhanced constitutive model under 3D complex
loading conditions.

6.1 End-notched flexure test
The ENF test carried out by Jiménez and Miravete [206] is employed to demonstrate the
ability of the enhanced constitutive model to properly capture the failure mechanism under
mode-II loading conditions. The specimen was manufactured using the IM7/8552 material
system; the material properties used in this FE analysis are summarised in Table 2.3. The
dimensions of the specimen are 25 mm × 150 mm with 28 plies oriented along the length
direction of the specimen.

To generate the initial delamination during the experimental test, a 50 mm film insert was
located in the midplane of the specimen, see Fig. 6.1. This initial delamination is modelled
by creating two laminates with half the number of plies as of the specimen (14 plies instead
of 28 plies). The contact interfaces of these two laminates are then bonded together
using tie constraints, except in the region where the film insert would be positioned, see
Fig. 6.2. Therefore, the film insert is not explicitly modelled, but the initial delamination
is defined.

The fixture tools are modelled with rigid shell elements: two rollers are located on the
bottom surface of the specimen with a span length of 110 mm and another roller is
positioned on the top surface. Only a quarter of the rollers are defined in the FE model
with a 25 mm diameter and a mesh element size of 0.2 mm × 0.2 mm. 3D eight-node
C3D8R solid elements are employed to model the laminate using the enhanced constitutive
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model. The in-plane mesh element size of the specimen is defined equal to 0.2 mm around
the area where the damage is expected to occur in order to prevent snap-back effect,
as explained in Appendix F. In this case, the refined mesh is located from the initial
delamination to the centre of the specimen. Additionally, three elements through-the-
thickness of each ply are used, thus minimising the hourglass effects caused by the use of
reduced integration elements.

Figure 6.1.: Schematic representation of the assembly of the end-notched flexure finite element
model. All dimension are in mm.

A vertical displacement is applied to the top roller at low velocity to prevent kinetic effects
while fixing their remaining degrees of freedom. The two bottom rollers are clamped and
additional boundary conditions are defined in the specimen to avoid rigid body motions,
see Fig. 6.2. General contact is defined by normal hard contact and friction contact in the
tangential direction with a coefficient of friction of 0.30 [206].

The predicted failure load is in good agreement with the experimental data, see Fig. 6.3.
In addition, the model is able to capture the rise in load after the peak load has been
reached. The oscillations observed in the numerical curve are possibly caused by the
applied loading rate. The vertical displacement rate in the simulation is higher than that
of the experimental test, but is maintained at a low level to prevent kinetic effects. This
enables a satisfactory balance between the loading rate and computational time.
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Figure 6.2.: Schematic representation of the applied boundary conditions of the end-notched
flexure finite element model. The dimension of the film insert is in mm.

Figure 6.3.: Numerical-experimental comparison of reaction force vs. cross-head displacement of
the end-notched flexure test carried out by Jiménez and Miravete [206].

The onset of damage occurs at the film tip in the upper elements of the lower laminate
(central interface of the specimen), the same interface where the film insert is positioned
in the experimental test, see Fig. 6.4a. The damage propagates then through that row of
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elements during the simulation. The failure pattern after the peak load is presented in
Fig. 6.4b. Note that the elements located at the interface between the upper and lower
laminates show the typical delaminated failure pattern, although no cohesive elements
are used at the ply interfaces to model delamination. In addition, the sliding deformation
after the peak load between the laminates can be observed at the end of the specimen
where the film insert is located.

Figure 6.4.: Numerical-experimental comparison of the end-notched flexure test carried out by
Jiménez and Miravete [206]: a) failure pattern at the onset of damage and b) failure
pattern at after the peak load. 𝑑𝑠ℓ is damage variable associated to the in-plane
mode-II matrix cracking.

6.2 Four-point bending tests using L-shaped
specimens

The ability of the enhanced constitutive model to predict failure load and patterns under
non-uniform out-of-plane stress states is demonstrated through four-point bending tests
using L-shaped specimens. The curved section of these specimens is loaded under a
bending moment inducing non-regularised stresses [207, 208]. These tests were carried out
by Airbus in accordance with the AITM 1-0069 internal standard.

The L-shaped specimens were manufactured with the CFRP system presented in Chapter 5.
The total length of each leg of the specimen in the FE models is defined as 71 mm, see
Fig. 6.5. This length is less than the experimental one, allowing the FE models to be
reduced and, thus, the computational time. The stiffness of the assembly and the stress
state in the corner radius of the L-shaped specimens are not affected by this simplification.
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In this case, the critical dimensions are: the corner radius and its angle, the distance
between the support rollers (bottom cylinders), the distance between the loading rollers
(top cylinders), and the thickness and width of the specimen [209]. These dimensions are
correctly modelled, allowing the stress state in the corner radius of the L-shaped specimens
to be properly predicted.

Figure 6.5.: Dimensions of the the four-point bending test on L-shaped specimens. All dimension
are in mm.

Two different stacking sequences were made with the following ratios of the orientated angle
of plies (0∘/ ± 45∘/90∘): a quasi-isotropic laminate (25/50/25) and a highly disoriented
laminate (11/67/22). The dimensions of the test assembly are presented in Fig. 6.5. Both
configurations have identical dimensions with the exception of the laminate thickness,
which is significantly greater in the quasi-isotropic laminate (nearly twice the thickness).
The failure patterns obtained with these two configurations are different, as presented
below, allowing a better demonstration of the capabilities of the enhanced constitutive
model.

The four rollers of the assembly are modelled using purely elastic shell elements with
an approximate mesh element size of 0.6 mm × 0.6 mm. Their material properties are
summarised in Table 6.1 (standard steel with elastic isotropic behaviour). They are defined
with a diameter of 7.5 mm with the distances between the two cylindrical loading bars
(top rollers) equal to 26 mm and the distances of the support bars (bottom rollers) of
40 mm. The specimens are modelled using 3D eight-node C3D8R solid elements using
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the enhanced constitutive model. The in-plane mesh element size of the CFRP laminates
is approximately of 0.6 mm × 0.6 mm in the in-plane directions. This dimensions are
approximately three times less of the critical element size for the analysed material to
prevent the snap-back effect, see Appendix F. In addition, three elements through-the-
thickness of each ply are used, thereby reducing the hourglass effects resulting from the
use of reduced integration elements.

Table 6.1.: Material properties for steel and titanium alloy.

Description Steel Titanium alloy Unit
Density 7.80 4.42 kg/m3

Elastic Young’s modulus 210000 110000 MPa
Poisson’s ratio 0.3 0.28 -

As with the ENF FE model, a vertical displacement is applied to the top rollers at low
velocity to prevent kinetic effects and fixing their remaining degrees of freedom. The
bottom rollers are clamped and additional boundary conditions are defined in the specimen
to avoid rigid body motions, see Fig. 6.6. General contact is defined by normal hard
contact and frictionless contact in the tangential direction, as the rollers can rotate on
ball bearings minimising the friction.

Figure 6.6.: Schematic representation of the applied boundary conditions of the four-point
bending finite element model with a L-shaped specimen.
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The failure load is properly predicted by the numerical model for both stacking sequences,
see Fig. 6.7. Note that these results are normalised with respect to its average value of
the failure load. In both cases, the onset of damage appears in the numerical models just
as the peak load is reached. As with the ENF FE results, the oscillations in the curves
from the numerical models may be attributed to the loading rate applied. The rate of the
vertical displacement applied in the simulation is greater than that in the experimental
test, but low enough to prevent kinetic effects. This achieves a suitable balance between
the loading rate and computational time.
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Figure 6.7.: Numerical-experimental comparison of the four-point bending test using L-shaped
specimens with the quasi-isotropic laminate (25/50/25) (left) and the highly dis-
oriented laminate (11/67/22) (right) carried out by Airbus. The reaction force is
normalised with respect to its experimental average value.

Two main failure mechanisms are observed in the quasi-isotropic specimens from the
experimental tests (see Fig. 6.8a.): delaminations and matrix cracking. The delaminations
are located near and below to the mean corner radius and the matrix cracking spread
through-the-thickness linking certain delaminated planes. The numerical model predicts
three main fracture planes, which are in good agreement with the to the experimental
delaminated areas, located at the mean corner radius and below it (see Fig. 6.8b): one
plane in the elements of a 45∘ ply in contact with a -45∘ ply, another in the elements of
another 90∘ ply in contact with a 0∘ ply and the last in the elements of a -45∘ ply in contact
with a 0∘ ply. In addition, matrix cracking is predicted; however, no connection between
the above-mentioned fracture planes is observed in the FE results. Nevertheless, a link is
noted between two fracture planes in the right arm.
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Figure 6.8.: Numerical-experimental comparison of the external failure pattern at the peak
load from the quasi-isotropic laminate (25/50/25): a) experimental data, and b)
numerical results. 𝑑𝑡 is damage variable associated to the mode-I matrix cracking.

A single delamination is observed in the highly disoriented configuration from the experi-
mental tests, Fig. 6.9a. The fracture plane of this delamination is located near to the inner
corner radius. The FE model also predicts a single fracture plane situated in a comparable
position to the experimental one, see Fig. 6.9b. In the FE model, this plane is located
in the elements of a 90∘ ply in contact with a 45∘ ply. No matrix cracking is observed in
either experimental or numerical tests.

Figure 6.9.: Numerical-experimental comparison of the external failure pattern at the peak load
from the highly disoriented laminate (11/67/22): a) experimental data, and b)
numerical results. 𝑑𝑡 is damage variable associated to the mode-I matrix cracking.

6.3 Single-lap shear composite bolted joint tests
Failure prediction in bolted composite joints is a challenging problem due to the combination
of different failure mechanisms, different interactions between parts (composite and/or
metallic laminates, bolt, nut, washer, fastener, etc.), the bolt preload, clearance, etc. The
failure modes depends on the material, stacking sequence, joint geometry, bolt preload
[210–213]. The macroscopic failure mechanisms in bolted composite joints can divided
in: net-tension, shear-out, bearing, cleavage-tension, bolt pulling though laminate and
bolt failure [211–214]. They can occur individually or as a combination of several of the
previously listed failure modes.
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The SLS composite bolted joint presented by Zhuang et al. [201] are employed to compare
the numerical predictions of the failure strength and failure mechanisms with those
observed in the experimental tests. Two configurations are selected to demonstrate
the capabilities of the enhanced model to predict the mechanical behaviour of SLS
composite bolted joints. The selected configurations exhibited different macroscopic failure
modes: SLS-Net specimens failed as a result of net-tension failure mechanism, while SLS-
Bearing configuration showed a bearing failure mode. Net-tension failure is a catastrophic
mechanism due to the high tensile stress in the net area of the hole, whereas bearing failure
is governed by the compressive stress in the inner area of the hole and is a progressive
failure mode [211–213].

The assembly is composed by: a CFRP laminate, a steel plate, and a bolt with its
corresponding nut and washer. The geometry and dimensions of each configuration are
presented in Fig. 6.10 and summarised in Table 6.2. Both configurations were manufactured
with the same layup [(90/0/45/-45)3]s, the significant difference between them is their
width (W𝑠), edge-to-hole distance (e𝑠) and length of the supplementary metal plate (L𝑠).
The IM7/8852 composite material system was employed in the experimental tests. A
supplementary plate was added to the CFRP laminate with the same material and stacking
sequence. The nut, washer and steel plate were made in CK45 steel and the bolt with
titanium alloy. A ”finger-tight” torque (2.2 Nm) was applied to the bolted joint.

0º

Figure 6.10.: Geometry and dimensions of the single-shear bolted joints. All dimensions are in
mm.
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Table 6.2.: Dimensions of the single-lap shear tests [201].

Configuration W𝑠 e𝑠 L𝑠
(mm) (mm) (mm)

SLS-Net 12 2 78
SLS-Bearing 36 6 84

The steel plate, nut and bolt are simplified from the experimental test. The bolt is
modelled as two concentric cylinders, one with the hole diameter (6 mm) and the thickness
of the specimen plus the nut length, and the other with the diameter (12 mm) and length
of its head, see Fig. 6.11. The nut is defined as a cylinder with a concentric hole equal to
the hole diameter, therefore, there is no clearance between the parts. The left hole of the
metal plate in Fig. 6.10 is not modelled. This hole was used in the experimental test to fix
the assembly. In the FE model, the metal plate is fixed on the left face of Fig. 6.10 based
on the Saint-Venant’s principle.

The material behaviour of the CFRP laminates is defined with the enhanced constitutive
model in the region where damage is expected (around the hole, see Fig. 6.11) with an
in-plane mesh element size of approximately 0.24 mm × 0.24 mm. This element size
prevent snap-back effect, as explained in Appendix F. The rest of the regions of the CFRP
laminate are defined purely elastic with an element size of 0.6 mm × 0.6 mm. Three
elements through-the-thickness per ply are used to define the CFRP laminate.

The metal parts are defined using purely elastic elements, their material properties are
defined in Table 6.1. The mesh element dimensions of the plate are defined equal to those
of the CFRP part to obtain coincident mesh between these two components with five
elements through-the-thickness per plate. The bolt and nut are modelled with similar
mesh strategy of the CFRP laminate and metal plate to also obtain an approximately
coincident mesh, see Fig. 6.11. All components are defined using 3D eight-node C3D8R
solid elements.

As in the FHC FE model, the simulation is defined with two steps: preload and loading.
The bolt preload is applied using a virtual connector with axial load between the bolt
and nut, see Section 5.3.2. After that, an axial tensile displacement is applied on the top
face of the CFRP laminate, while the bottom face of the metal plate is clamped, until
catastrophic failure, see Fig. 6.11. Additionally, general contact is defined in both steps
using hard contact normal behaviour and tangential behaviour given by frictional contact,
with a friction coefficient of 0.2 [201].
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Figure 6.11.: Schematic representation of the mesh and boundary conditions applied on the
single-lap shear FE model.

The enhanced model is able to properly predict the failure strength of SLS-Net specimen,
as well as its failure pattern, see Fig. 6.12a and b. As is reported by Zhuang et al.
[201], the net-tension failure mechanism was observed in the SLS-Net specimens. In the
numerical model, fibre damage is first observed in the outer 0 ply located close to the
plane between the laminate and the steel plate. Matrix cracking then develops in the 90
plies in combination with fibre damage in the 0 plies until catastrophic failure is reached.
This behaviour is in concordance with the numerical observation of Zhuang et al. [201].
Additionally, the deformed shape after the peak load is presented in Fig. 6.12c, the bolt
and nut rotate as well as the free end of the composite laminate and steel plate, being
larger in the end laminate as its stiffness has been lost.
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Figure 6.12.: Predicted results of the SLS-Net configuration: a) numerical-experimental com-
parison of the stress vs. cross-head displacement curve, b) failure pattern, and c)
deformed shape at 1.05 mm. The fully damaged elements in (b) are represented
with dark transparent colour.

In contrast, the constitutive model predicts the onset of damage (”knee point”) of the
SLS-Bearing specimens but not its propagation, see Fig. 6.13a. In the numerical model,
the onset of matrix cracking is reached and the catastrophic failure is observed in the
stress vs. cross-head displacement curve. However, the bearing failure mechanism reported
in the experiments is properly predicted, see Fig. 6.13b. The friction effects dominates the
bearing failure mode since the out-of-plane confinement applied by th preload and the
compressive load due to the bolt in the hole area induce fibre kinking, transverse and shear
failure mechanisms [201, 212]. Therefore, the numerical prediction can be improved by
considering friction effects in the constitutive model, see Section 8.2. The lateral deformed
shape shows how the bolted joint rotates after the numerical peak load is reached, see
Fig. 6.13c.
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Figure 6.13.: Predicted results of the SLS-Bearing configuration: a) numerical-experimental
comparison of the stress vs. cross-head displacement curve, b) front deformed
shape, and c) lateral deformed shape at 1.8 mm.



7Viscoelastic-viscoplastic
viscodamage constitutive model
FRP structures are often subjected to dynamic loadings such as impacts in the aeronautical
and automotive sectors [215–218]. Numerous experimental investigations have been carried
out to understand the dynamic effects on the material properties and the stress-strain
relationships of CFRPs. Hsiao et al. [219] performed off-axis compressive tests under
quasi-static and dynamic loading conditions using a CFRP laminate. The authors observed
a strain rate dependency on the stress-strain behaviour, along with an increase in off-axis
compressive strength and modulus of elasticity at high strain rates. In addition, with
increasing the loading rate, the plastic hardening response in compression also increases.
However, the ultimate compressive strain decreases for off-axis angles less or equal to
45∘. No significant strain rate dependency on the ultimate strain was found in off-axis
compressive tests for off-axis angles greater than 60∘ [8, 220, 221]. Vinson and Woldesenbet
[222] observed that the strain rate sensitivity of the failure compressive strength decreases
as the off-axis angle increases because the failure mode changes. The off-axis tensile
strength and its elastic modulus also increases with increasing loading rates [9, 221]. As
with the off-axis behaviour, the longitudinal shear modulus, yielding stress and strength
also increase in the in-plane shear test at higher strain rates [223, 224].

Ploeckl et al. [225] carried out compressive tests using a quasi-isotropic laminate with a
CFRP under different loading rates. Although the authors reported no significant strain
rate effects on the elastic modulus, but the compressive strength and the ultimate strain do
increase with higher loading rates. Similar behaviour is observed for unidirectional CFRP
laminates under longitudinal compressive loading conditions [225–229]. In contrast, no
significant strain rate dependency on the stress-strain response under longitudinal tensile
conditions has been found for unidirectional CFRP laminates [230, 231]. Jacob et al. [232]
reported no significant difference from quasi-static to dynamic loading conditions for the
longitudinal tensile and compressive strengths. Cheng et al. [233] carried out quasi-static
and dynamic compact tensile tests in a cross-ply CFRP laminate, finding no clear trend of
the longitudinal tensile fracture toughness as a function of the strain rate. However, other
authors have reported a significant effect of the strain rate on the longitudinal tensile
fracture toughness (this material property decreased with increasing strain rate) [234, 235].
Depending on the data reduction method and testing techniques, the fracture toughness
increased or decreased as a function of the loading rate conditions.
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Kuhn et al. [236] performed DENC tests using different loading rates and specimen sizes
on cross-ply CFRP laminates. The authors reported a strong dependency of the strain
rate on the longitudinal compressive fracture toughness, with its value being greater at
higher strain rates. In addition, the cross-ply CFRP laminates exhibited a strain rate
effect on the elastic stiffness, where its value increases with strain rate increases, but the
ultimate strain decreases with increasing the loading rate [237, 238]. Perry and Walley
[229] observed an increase in the cross-ply elastic modulus in compression with increasing
loading rates, but no significant strain rate effect was found in tension [237].

Consequently, the dynamic effects must be considered in constitutive models for CFRPs to
predict the inelastic deformation and fracture under dynamic loading conditions. Koerber
et al. [9] developed a 3D constitutive model for CFRPs which considers plastic deformations
with a failure criterion for the onset of damage (no damage propagation was considered).
A non-associative plastic flow rule was defined using the overstress function proposed by
Perzyna [239]. The strain rate effects in the elastic and strength properties were considered
by introducing experimentally-obtained scaling functions. Kang et al. [240] presented a
3D constitutive model to predict the inelastic deformation in a dynamic tensile biaxial
test using a CFRP laminate. An isotropic yield function was defined by combining the
Tsai-Hill equivalent stress criterion and the Voce-type strain-hardening law. The strain
rate dependency was introduced by scaling the isotropic term of the yield criterion as a
function of the strain rate. In numerous studies of constitutive models for CRPF materials,
scaling functions are applied to the material properties to account for the strain rate
dependency on the elastic region [241–244], as well as on the plastic and damage regions
[80, 245–247].

Chang et al. [248] developed a viscoelastic constitutive model based on the generalised
Maxwell model. The non-linear stress-strain relationships of CFRPs in the elastic region
due to different loading rate and temperature conditions were predicted. Gerbaud et
al. [249] proposed a 3D viscoelastic-viscoplastic model for CFRPs, and the model was
extended to Finite Strain theory [250]. The generalised Maxwell model was employed to
consider the viscous effects in the elastic region due to strain rates. The loading strain
rate dependency on the plastic region was introduced by a non-associative plastic flow
rule using the Overstress model [239]. Hegde and Mulay [251] developed a 1D viscoleastic
damage model for viscoelastic matrix materials. The generalised Maxwell model was also
used and coupled to a damage model. A single damage variables were employed to degrade:
i) the quasi-static stiffness and ii) the stiffness of the Maxwell element.
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From observations in the literature, no 3D constitutive model addressees modelling of
CFRPs by considering the viscoelastic-viscoplastic behaviour to account for viscodamage
evolution and fracture toughness. Table 7.1 summarises the features of the published
constitutive models addressed to the strain rate dependency. Currently, there are only
two constitutive models which account for the viscoelastic, viscoplastic and viscodamage
effects of CFRPs [9, 241], but the scale functions being used in the viscoelastic region can
induce thermodynamic inconsistencies as strain rates change. Furthermore, Koerber et al.
[9] only modelled the initiation, not the propagation of the failure.

Table 7.1.: Modelling strategies used in the literature to address the dynamic effects in CFRP
laminates, where V refers to a strain-rate dependent (viscous) procedure and I refers
to a strain-rate independent approach.

Authors Elasticity Plasticity Damage
Initiation Propagation

Koerber et al. [9] V1 V2 V1 -
Kang et al. [240] I V1 -
Eskandari et al. [241] V1 V2 V1

Tan and Liu [242] V1 V1 -
Shi et al. [243] V1 - V1

Jin et al. [244] V1 - V1

Raimondo et al. [245] I V1 V1

Daniel [246] I - V1

Daniel [80] I V1 V1

Ma et al. [247] I - V1

Chang et al. [248] V3 - -
Gerbaud et al. [249] V3 V2 -
Lopes et al. [250] V3 V2 -
Hegde and Mulay [251] V3 - I

1 Using scale functions.
2 Using the overstress model [239].

3 Using the Generalised Maxwell model.

In the present chapter, a 3D viscoelastic-viscoplastic and viscodamage model is proposed
to predict the constitutive behaviour of CFRPs under dynamic loading conditions. The
proposed constitutive model is based on the generalised Maxwell viscoelastic model and the
Overstress viscoplastic model [239]. The onset of damage is developed using experimental
scale functions. Failure propagation is defined by softening laws which take into account
the energy dissipated by the corresponding viscodamage process. The constitutive model is
described in Section 7.1 and its thermodynamic consistency is demonstrated in Section 7.2.
A simple longitudinal shear virtual test at different loading rates and a relaxation test are
carried out in Section 7.3 to verify the stress-strain response of the presented constitutive
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model at the Gauss-point level. In addition, a numerical-experimental comparison of the
off-axis compressive tests at different loading rates is performed to show the predictive
capabilities of the model.

7.1 Constitutive model
The 3D elastoplastic damage model developed in Chapter 3 is extended to include the
viscous effects due to the dynamic loading conditions. Different hypothesis have been
considered to develop the constitutive model from the experimental observations available
in the literature: i) the longitudinal direction (fibre dominated direction) is strain rate-
independent except its strength; ii) a viscoelastic and viscoplastic behaviour is considered
in the directions governed by the matrix; iii) damage related properties, strengths and
fracture toughnesses can be defined as strain rate-dependent; iv) bilinear softening laws
are considered in the longitudinal compressive and tensile directions and linear for the
rest of the directions (as in the original model).

The additive decomposition of the infinitesimal strain tensor is considered as

𝜺 = 𝜺𝑣𝑒 + 𝜺𝑣𝑝, (7.1)

where 𝜺𝑣𝑒 is the viscoelastic strain tensor which contains the cracking strains and 𝜺𝑣𝑝

is the viscoplastic strain tensor. The model assumes purely elastic response before the
onset of damage in the longitudinal direction. No significant dependence of the strain
rates in neither the longitudinal Young’s modulus, or in the inelastic deformation was
observed in the literature for CFRP laminates for both tensile and compressive loading
directions [225–231] (see Fig. 7.1.a). However, in the transverse directions, strong strain
rate dependency on the elastic modulus and during the hardening process in CFRPs was
observed [8, 9, 219, 221, 223, 224]. Then, a viscoelastic response followed to a viscoplastic
behaviour in the directions governed to the matrix is considered. After that, the onset of
damage can be reached in any direction and develops without increasing the viscoplastic
strains at the Gauss-point level, see Fig. 7.1.
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Figure 7.1.: Schematic representation of uniaxial stress vs. strain curve response at the Gauss-
point level: a) in the longitudinal direction, and b) in the directions governed by
the matrix.

7.1.1 Modelling Viscoelasticity
The viscoelastic effects of CFRPs under different loading rate conditions is modelled using
the generalised Maxwell model. The 1D rheological scheme of the viscoelastic part can
be divided into two main elements connected in parallel (see Fig. 7.2): i) a Hookean
element and ii) a Maxwell element, which consists of a Hookean element and a Newtonian
dashpot connected in series. The Hookean element (top left branch in Fig. 7.2) provides
the quasi-static stiffness that remains after the dynamic effects have relaxed as the dashpot
releases the Maxwell element (bottom left branch in Fig. 7.2).

Figure 7.2.: Schematic representation of the 1D rheological scheme of the proposed constitutive
model.
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The Helmholtz free-energy density function proposed in Voigt notation reads

Ψ ∶= 1
2(𝜺 − 𝜺𝑣𝑝)𝑇ℂ𝑒(𝜺 − 𝜺𝑣𝑝) + 1

2(𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖)𝑇ℂ𝑣𝑒(𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖), (7.2)

where 𝜺𝑖 is the inelastic strain tensor due to viscoelastic effects, and ℂ𝑒 and ℂ𝑣𝑒 are
the quasi-static and Maxwell elasticity tensors, respectively, see Fig. 7.2. The quasi-
static elasticity tensor is defined using the compliance tensor (ℍ = ℂ−1

𝑒 ) presented in
Eq. (2.10).

The viscoelastic effects in CFRP laminates are only observed in the directions governed
by the matrix (in the transverse isotropic plane with respect to the longitudinal direction).
Therefore, ℂ𝑣𝑒 is defined proportional to ℂ𝑒 in the direction governed by the matrix as

ℂ𝑣𝑒 ∶= 𝚪ℂ𝑒𝚪 (7.3)

with
𝚪 = ̄𝛾𝑣𝑒𝕀𝑣𝑒, (7.4)

where ̄𝛾𝑣𝑒 is a viscoelastic parameter and 𝕀𝑣𝑒 is the identity matrix with the first component
equal to zero (longitudinal direction). Based on this hypothesis, a single relaxation time of
the Newtonian dashpot of the Maxwell element (𝜏𝑣𝑒) is defined for the directions governed
by the matrix [249]. Consequently, the stress equilibrium in the Maxwell element (bottom
left branch in Fig. 7.2) reads

𝚪ℂ𝑒𝚪(𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖) = 𝚪ℂ𝑒𝚪𝕋𝑣𝑒 ̇𝜺𝑖, (7.5)

where 𝕋𝑣𝑒 = 𝜏𝑣𝑒I (I is the identity matrix). These two assumptions allow the imple-
mentation of the constitutive model to be simplified. The use of a single 𝜏𝑣𝑒 allows the
differential equation for the stress (or strain) on the Maxwell element in on-dimensional
(1D) to be solved and extending it to 3D directly [249]. Furthermore, the viscoelastic strain
rate dependence of CFRP plies can be characterised by two viscoelastic parameters.

The mechanical energy dissipated is defined from the Clausius-Duhem inequality to ensure
the thermodynamically consistency of the model and the irreversibility of the dissipated
processes [88]. Considering an isothermal state, an energy dissipation carried out in an
adiabatic manner, and a constant density, the Clausius-Duhem inequality reads

Ξ = 𝝈 ̇𝜺 − Ψ̇ ≥ 0, (7.6)

7.1 Constitutive model 123



where Ξ is the mechanical energy dissipated per unit volume. Applying the corresponding
chain rules in Eq. (7.2), the inequality of Eq. (7.6) yields

(𝝈 −
𝜕Ψ
𝜕𝜺 ) ̇𝜺 −

𝜕Ψ
𝜕𝜺𝑖 ̇𝜺𝑖 −

𝜕Ψ
𝜕𝜺𝑣𝑝 ̇𝜺𝑣𝑝 − ∑

𝑀

𝜕Ψ
𝜕𝑑𝑀

̇𝑑𝑀 ≥ 0. (7.7)

The expression in parenthesis of the first term in Eq. (7.7) must be equal to zero to guarantee
this inequality since the strains can freely vary, yielding the constitutive equation:

𝝈 ∶=
𝜕Ψ
𝜕𝜺 , (7.8)

where 𝝈 is the stress tensor that can be rewritten from the generalised Maxwell model
as

𝝈 = ℂ𝑒(𝜺 − 𝜺𝑣𝑝) + 𝚪ℂ𝑒𝚪(𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖). (7.9)

The demonstration of the non-negativity of the rest of the terms of Eq. (7.7) is presented
in Section 7.2.

The relaxation time of the Newtonian dashpot of the Maxwell element (𝜏𝑣𝑒) can be
measure through a relaxation test from the tangent line where the material starts to relax
(𝜎22) and the stress relaxed (𝐸22𝜀𝑣𝑒

22) [252], see Fig. 7.3. Additionally, for a given 𝜏𝑣𝑒, the
viscoelastic parameter ( ̄𝛾𝑣𝑒) can be fitted from an experimental transverse tensile test
at constant loading rate. The transverse stress Cartesian component applying uniaxial
transverse stress state conditions in Eq. (7.9) at constant strain rate yields

𝜎22 = 𝐸22(1 + 𝛾𝑣𝑒𝜏𝑣𝑒 ̇𝜀𝑣𝑒
22(1 − exp (

−𝜀𝑣𝑒
22

𝜏𝑣𝑒�̇�𝑣𝑒
22

)))𝜀𝑣𝑒
22, (7.10)

where 𝛾𝑣𝑒 is the uniaxial viscoelastic parameter. Therefore, 𝛾𝑣𝑒 can be fitted from a pure
transverse test using Eq. (7.10) and, thus, ̄𝛾𝑣𝑒 in Eq. (7.4) can be rewritten as a function
of the uniaxial viscoelastic parameter as

̄𝛾𝑣𝑒 =
√√√
⎷

𝛾𝑣𝑒 (1 −
𝐸22

𝐸11
𝜈2

12). (7.11)
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Figure 7.3.: Schematic representation of a transverse tensile test to measure the relaxation time
of the Newtonian dashpot of the Maxwell element (𝜏𝑣𝑒).

7.1.2 Modelling Viscoplasticity
A non-associative viscoplastic flow rule is employed allowing the volumetric viscoplastic
strains and the plastic Poisson’s ratios to be imposed,

̇𝜺𝑣𝑝 ∶= 𝜆𝑣𝑝 𝜕𝜑𝑝

𝜕𝝈 , (7.12)

where 𝜆𝑣𝑝 is the viscoplastic multiplier parameter and 𝜑𝑝 is the viscoplastic potential
function defined in Eq. (2.21). The main difference in modelling plasticity between the
model developed in the previous chapters (the original and enhanced elastoplastic damage
models) and the one proposed in the present chapter is the definition of 𝜆𝑣𝑝.

The explicit function for 𝜆𝑣𝑝 proposed by Perzyna [239], and used in many previously-
developed constitutive models [241, 249, 250], is adopted. The Overstress model [239]
allows the yield function to become larger than zero for describing the viscoplastic strain.
In addition, the loading-unloading hysteresis observed in the stress-strain relationships
in CFRP laminates, which can be attributed to a viscoplastic behaviour of matrix rich
zones [253], can be predicted from the Overstress model [254]. The viscoplastic multiplier
parameter is defined as

𝜆𝑣𝑝 ∶=
⟨(𝜙𝑝)1/𝛽𝑣𝑝⟩

𝜂𝑣𝑝 , (7.13)

where 𝜙𝑝 is the yield function defined in Eq. (2.12), 𝜂𝑣𝑝 ∈ (0, ∞) is the viscoplasticity-
related parameter, and 𝛽𝑣𝑝 is the rate sensitivity parameter. Then, the proposed model
matches the previous elastoplastic damage models with vanishing viscosity (𝜂𝑣𝑝 → 0)
in Eq. (7.13) since ̇𝜺𝑣𝑝 → ∞. However, the Overstress model does not reproduce the
quasi-static plastic response with vanishing 𝛽𝑣𝑝 → 0. For example, under uniaxial
transverse compressive loading conditions using a quasi-static strain rate and 𝛽𝑣𝑝 → 0,
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the viscoplasticity modelling produces two times the transverse compressive yield stress
(𝜎22 = −2𝑌𝐶𝑃) [255]. This behaviour can be avoided by modifying Eq. (7.13) as in
[255–257].

The yield function is defined as a function of the yield stresses in Eq. (2.12), and they
are defined as a function of the equivalent viscoplastic strain ( ̄𝜀𝑣𝑝) (viscoplastic internal
variable). In the proposed model, the yield stress-equivalent viscoplastic strain relationships
are defined using an experimental curve for each of them, as in the previous models, and
the rate of the viscoplastic internal variable is then defined as

̇̄𝜀𝑣𝑝 ∶= √1
2 ∥ ̇𝜺𝑣𝑝∥ . (7.14)

7.1.3 Modelling Viscodamage
An undamaged domain, in which the material response is viscoelastic and viscoplastic
under loading states, is defined to account for the longitudinal failure and matrix cracking.
Three loading functions are defined to enclose the undamaged domain. The viscodamage
activation functions associated to the longitudinal and transverse failure mechanisms are
defined using Eqs. (2.29) and (3.2), respectively, and the longitudinal viscoelastic domains
by using Eq. (2.30) and the transverse viscodamage domain as Eq. (3.10).

The loading functions proposed by Quintanas-Corominas et al. [86], which where used in
the previous proposed constitutive models, are also used in the present model. However,
the quasi-static strengths are replaced with the viscous strengths. Therefore, the non-
interacting maximum allowable strain criteria is employed in the longitudinal tensile
as

𝜙ℓ𝑇 ∶=
𝜀𝑣𝑒

11𝐸11

𝑋𝑣
𝑇

, (7.15)

where 𝑋𝑣
𝑇 is the viscous longitudinal tensile strength. The longitudinal compressive loading

function reads

𝜙ℓ𝐶 ∶= 1
𝑋𝑣

𝐶
(√�̃�2

11 + 𝜂𝑞
𝑡 ̃𝑝2

𝑡 + 𝜂𝑞
𝑠ℓ ̃𝜏2

ℓ + 𝜂𝑡 ̃𝑝𝑡 + 𝜂𝑠ℓ ̃𝜏ℓ) , (7.16)

where 𝑋𝑣
𝐶 is the viscous longitudinal compressive strength. The transverse loading function

reads

𝜙𝑡 ∶= √(
𝑌 𝑣

𝐶 + 𝑌 𝑣
𝑇

𝑌 𝑣
𝑇 𝑌 𝑣

𝐶
)

2 𝜏2
𝑡 + 𝜇𝑡𝑝2

𝑡
1 + 𝜇𝑡

+ (
𝜇𝑠ℓ
𝑆𝑣

𝐿
𝜏ℓ)

2
+

𝑌 𝑣
𝐶 − 𝑌 𝑣

𝑇
𝑌 𝑣

𝑇 𝑌 𝑣
𝐶

𝑝𝑡 +
1 − 𝜇𝑠ℓ

𝑆𝑣
𝐿

𝜏ℓ, (7.17)
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where 𝑌 𝑣
𝐶 and 𝑌 𝑣

𝑇 are the viscous transverse compressive and tensile strengths, respectively,
𝑆𝑣

𝐿 is the viscous longitudinal shear strength. The viscous strengths in Eqs. (7.15)–(7.17)
can be defined by considering the dynamic effects using experimental expressions as a
function of the: strain rate [9, 80, 241–247], viscoplastic strains as in metallic material
models [258, 259], strain rate, and ultimate strain as in concrete constitutive models [260],
etc.

The softening law of each transverse viscodamage variable is defined in the equivalent
viscoelastic domain to simplify the implementation. The stress tensor in Eq. (7.9) can be
rewritten as

𝝈 = ℂ𝑒�̄�𝑣𝑒, (7.18)

where the equivalent viscoelastic strain tensor yields

�̄�𝑣𝑒 = 𝜺𝑣𝑒 + ℍ𝚪ℂ𝑒𝚪(𝜺𝑣𝑒 − 𝜺𝑖). (7.19)

Therefore, the definition of the viscodamage evolution functions match those of the original
constitutive model since Eq. (7.18) has the same form to the quasi-satic model (𝝈 = ℂ𝑒𝜺𝑒)
replacing �̄�𝑣𝑒 by 𝜺𝑒. Additionally, the softening laws follow the same shape in the proposed
domain (�̄�𝑣𝑒) as opposed to the 𝜺𝑣𝑒 domain in the previous models. However, the correct
amount of energy dissipated by viscodamage is guaranteed in the 𝜺𝑣𝑒 domain.

The outcome of this simplification on the softening response is analysed in Fig. 7.4, and
no significant effect is observed. The transverse viscodamage variables can be explicitly
obtained following the approach presented in Chapter 3. The relationship of the longitudinal
viscodamage variables with the corresponding viscoelastic threshold domain is described
in Chapter 2. The fracture toughnesses can be also defined as a function of the strain
rate using experimental expressions. Finally, a bilinear softening law is defined for the
longitudinal direction and a linear softening law in the directions governed by the matrix.

7.2 Thermodynamic consistency of the
viscoelastic-viscoplastic viscodamage model

The demonstration of the thermodynamic consistency of the viscoelastic-viscoplastic visco-
damage model is presented in this section. To ensure the thermodynamically irreversibility
of dissipation processes, the energy dissipated must be positive or at least null. The
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mechanical energy dissipated of the present constitutive model can be rewritten from
Eq. (7.6) as

Ξ = −
𝜕Ψ
𝜕𝜺𝑖 ̇𝜺𝑖 −

𝜕Ψ
𝜕𝜺𝑣𝑝 ̇𝜺𝑣𝑝 − ∑

𝑀

𝜕Ψ
𝜕𝑑𝑀

̇𝑑𝑀 ≥ 0. (7.20)

Then, if each term in Eq. (7.20) is equal to or greater than zero, the thermodynamic
irreversibility of dissipation processes will be ensured. The following subsections describe
the demonstration that the present constitutive model fulfils the inequality of Eq. (7.20).

7.2.1 Thermodynamic consistency of the viscoelastic energy
dissipated

The mechanical energy dissipated due to a viscoelastic process from Eq. (7.20) reads

−
𝜕Ψ
𝜕𝜺𝑖 ̇𝜺𝑖 = (ℂ𝑣𝑒(𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖))

𝑇
̇𝜺𝑖, (7.21)

where 𝜕𝜺𝑖(Ψ) is the stress tensor of the Hookean element of the Maxwell component
(bottom left branch in Fig. 7.2, left hand side of Eq. (7.5)). Therefore, by introducing the
right hand side of Eq. (7.5) into Eq. (7.21), the viscoelastic mechanical energy dissipated
yields

−
𝜕Ψ
𝜕𝜺𝑖 ̇𝜺𝑖 = (𝚪ℂ𝑒𝚪𝕋𝑣𝑒 ̇𝜺𝑖)𝑇 ̇𝜺𝑖. (7.22)

The non-negativity of ℂ𝑒 can be demonstrate by the definition of ℍ, since the inverse
of a positive semi-definite matrix is also a positive semi-definite matrix, Condition v) in
Appendix H. Therefore, the non-negativity of ℍ can be demonstrate by the product of an
arbitrary vector (𝝈) with ℍ, Condition ii) in Appendix H, as

𝝈𝑇ℍ𝝈 =
𝜎2

ℓ
(1 − 𝑑ℓ)𝐸11

−
4𝜈12𝜎ℓ𝑝𝑡

𝐸11
+

𝑝2
𝑡

(1 − 𝑑𝑡)𝐸𝑡
+

𝜏2
𝑡

(1 − 𝑑𝑠𝑡)𝐺𝑡
+

𝜏2
ℓ

(1 − 𝑑𝑠ℓ)𝐺12
. (7.23)

Applying the thermodynamic restrictions of the elastic material properties of transversely
isotropic materials [90],

𝐸11, 𝐸22, 𝐺12 > 0

|𝜈23| < 1

|𝜈12| < √
𝐸11

𝐸22

−1 < 𝜈23 < 1 − 2𝜈2
12

𝐸11

𝐸22
,

(7.24)
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and by setting the range of the damage variables to 𝑑𝑀 ∈ [0, 1], the expression in Eq. (7.23)
is always non-negative,

𝝈𝑇ℍ𝝈 ≥ 0. (7.25)

Therefore, ℍ is a positive semi-definite matrix and its inverse matrix (ℂ𝑒) is also a positive
semi-definite matrix.

The non-negativity of 𝚪ℂ𝑒𝚪𝕋𝑣𝑒 can be demonstrated because the product of positive
semi-definite matrices is equal to its transpose, Condition iv) in Appendix H, thereby
resulting also in a positive semi-definite matrix,

𝜏𝑣𝑒 ̄𝛾𝑣𝑒2𝕀𝑣𝑒ℂ𝑒𝕀𝑣𝑒 = 𝜏𝑣𝑒 ̄𝛾𝑣𝑒2(𝕀𝑣𝑒ℂ𝑒𝕀𝑣𝑒)𝑇. (7.26)

Therefore, 𝚪ℂ𝑒𝚪𝕋𝑣𝑒 is a positive semi-definite matrix for all 𝜏𝑣𝑒 ≥ 0. Finally, Eq. (7.22)
can be rewritten as

−
𝜕Ψ
𝜕𝜺𝑖 ̇𝜺𝑖 = ̇𝜺𝑖𝑇(𝚪ℂ𝑒𝚪𝕋𝑣𝑒)𝑇 ̇𝜺𝑖, (7.27)

where the right hand side of Eq. (7.27) yields the condition of the product of a positive
semi-definite matrix by a non-negative vector ( ̇𝜺𝑖), Condition ii) in Appendix H. Hence,
the mechanical energy dissipated due to a viscoelastic process is always positive or at least
null.

7.2.2 Thermodynamic consistency of the viscoplastic energy
dissipated

The mechanical energy dissipated due to a viscoplastic process from Eq. (7.20) yields

−
𝜕Ψ

𝜕𝜺𝑣𝑝 ̇𝜺𝑣𝑝 = (ℂ𝑒(𝜺 − 𝜺𝑣𝑝) + ℂ𝑣𝑒(𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖))
𝑇

̇𝜺𝑣𝑝. (7.28)

Then, Eq. (7.28) can be rewritten by inserting Eq. (7.9) and Eq. (7.12) as

−
𝜕Ψ

𝜕𝜺𝑣𝑝 ̇𝜺𝑣𝑝 = 𝜆𝝈𝑇 𝜕𝜑𝑝

𝜕𝝈 . (7.29)

Therefore, the mechanical energy dissipated of Eq. (7.28) yields

−
𝜕Ψ

𝜕𝜺𝑣𝑝 ̇𝜺𝑣𝑝 =𝜆
√√√

⎷
(

̂𝑌𝐶𝑃 + ̂𝑌𝑇 𝑃
̂𝑌𝑇 𝑃

̂𝑌𝐶𝑃
)

2 𝜏2
𝑡 + ̂𝜇𝑡𝑝𝑝2

𝑡

1 + ̂𝜇𝑡𝑝
+ (

̂𝜇𝑠ℓ𝑝
̂𝑆𝐿𝑃

𝜏ℓ)
2

+ 𝜆(
̂𝑌𝐶𝑃 − ̂𝑌𝑇 𝑃

̂𝑌𝑇 𝑃
̂𝑌𝐶𝑃

𝑝𝑡 +
1 − ̂𝜇𝑠ℓ𝑝

̂𝑆𝐿𝑃
𝜏ℓ).

(7.30)
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Hence, the first and third terms in parenthesis of Eq. (7.30) will always be non-negative
for all ̂𝜇𝑠ℓ𝑝 ≤ 1. Then, the right hand side of Eq. (7.30) only will be negative if 𝑝𝑡 < 0,
since 𝜆 ≥ 0 from the Kuhn-Tucker conditions and all viscoplastic potential parameter
must be defined positive. The worst case scenario to meet the negativity of the mechanical
energy dissipated due to a viscoplastic process is

𝜎23 = 𝜎13 = 𝜎12 = 0

𝜎22 = 𝜎33 < 0.
(7.31)

Hence, by introducing the conditions of Eq. (7.31) in Eq. (7.30), the viscoplastic mechanical
energy dissipated yields

(−
𝜕Ψ

𝜕𝜺𝑣𝑝 ̇𝜺𝑣𝑝) ∣
𝐸𝑞. (7.31)

=
𝜆

̂𝑌𝑇 𝑃
̂𝑌𝐶𝑃

(( ̂𝑌𝐶𝑃 + ̂𝑌𝑇 𝑃)√
̂𝜇𝑡𝑝

1 + ̂𝜇𝑡𝑝
− ( ̂𝑌𝐶𝑃 − ̂𝑌𝑇 𝑃))|𝑝𝑡|. (7.32)

Therefore, the following conditions are imposed to ensure the non-negativity of the
mechanical energy dissipated by a viscoplastic process:

̂𝜇𝑠ℓ𝑝 ≤ 1
̂𝑌𝑇 𝑃 ≤ ̂𝑌𝐶𝑃

1 +
�̂�𝑡𝑝

1+�̂�𝑡𝑝

1 −
�̂�𝑡𝑝

1+�̂�𝑡𝑝

≤
̂𝑌𝐶𝑃
̂𝑌𝑇 𝑃

.

(7.33)

7.2.3 Thermodynamic consistency of the viscodamage energy
dissipated

The mechanical energy dissipated due to a viscodamage process defined in Eq. (7.20) can
be rewritten knowing that ℂ𝑒(𝑑𝑀) (its inverse is defined in Eq. (2.10)) and applying the
corresponding chain rule as

− ∑
𝑀

𝜕Ψ
𝜕𝑑𝑀

̇𝑑𝑀 = − 1
2((𝜺 − 𝜺𝑣𝑝)𝑇 ∑

𝑀
(

𝜕ℂ𝑒
𝜕𝑑𝑀

̇𝑑𝑀)(𝜺 − 𝜺𝑣𝑝))

− 1
2((𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖)𝑇𝚪 ∑

𝑀
(

𝜕ℂ𝑒
𝜕𝑑𝑀

̇𝑑𝑀)𝚪(𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖)).
(7.34)
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The derivative of ℂ𝑒 with respect to 𝑑𝑀 can be rewritten as

𝜕ℂ𝑒
𝜕𝑑𝑀

= −ℂ𝑒
𝜕ℍ
𝜕𝑑𝑀

ℂ𝑒, (7.35)

therefore, Eq. (7.34) yields

− ∑
𝑀

𝜕Ψ
𝜕𝑑𝑀

̇𝑑𝑀 =1
2((𝜺 − 𝜺𝑣𝑝)𝑇 ∑

𝑀
(ℂ𝑒

𝜕ℍ
𝜕𝑑𝑀

ℂ𝑒
̇𝑑𝑀)(𝜺 − 𝜺𝑣𝑝))

+ 1
2((𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖)𝑇𝚪 ∑

𝑀
(ℂ𝑒

𝜕ℍ
𝜕𝑑𝑀

ℂ𝑒
̇𝑑𝑀)𝚪(𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖)),

(7.36)

where ℂ𝑒 is a positive semi-definite matrix as proved in Section 7.2.1. The non-negativity
of 𝜕𝑑𝑀

(ℍ) can be demonstrated by the non-negativity of their eigenvalues, Condition i)
in Appendix H. The eigenvalues of 𝜕𝑑ℓ

(ℍ) are

𝜆𝜕𝑑ℓ
(ℍ)1

= 1
𝐸11(1 − 𝑑ℓ)2 > 0

𝜆𝜕𝑑ℓ
(ℍ)2−6

= 0,
(7.37)

the eigenvalues of 𝜕𝑑𝑡
(ℍ) are

𝜆𝜕𝑑𝑡
(ℍ)1

= 1
𝐸𝑡(1 − 𝑑𝑡)2 > 0

𝜆𝜕𝑑𝑡
(ℍ)2−6

= 0,
(7.38)

the eigenvalues of 𝜕𝑑𝑠𝑡
(ℍ) are

𝜆𝜕𝑑𝑠𝑡
(ℍ)1

= 1
𝐺𝑡(1 − 𝑑𝑠𝑡)2 > 0

𝜆𝜕𝑑𝑠𝑡
(ℍ)2

= 1
2𝜆𝜕𝑑𝑠𝑡

(ℍ)1
> 0

𝜆𝜕𝑑𝑠𝑡
(ℍ)3−6

= 0,

(7.39)

and the eigenvalues of 𝜕𝑑𝑠ℓ
(ℍ) are

𝜆𝜕𝑑𝑠ℓ
(ℍ)1−2

= 1
𝐺12(1 − 𝑑𝑠ℓ)2 > 0

𝜆𝜕𝑑𝑠ℓ
(ℍ)3−6

= 0.
(7.40)
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Therefore, 𝜕𝑑𝑀
(ℍ) is a positive semi-definite matrix:

𝜕ℍ
𝜕𝑑𝑀

≥ 0. (7.41)

The non-negativity of the first summand term in Eq. (7.36) can be demonstrate since the
transpose matrix of a symmetric matrix is equal to the matrix itself, Condition iv) in
Appendix H,

ℂ𝑒
𝜕ℍ
𝜕𝑑𝑀

ℂ𝑒 = (ℂ𝑒
𝜕ℍ
𝜕𝑑𝑀

ℂ𝑒)
𝑇
, (7.42)

then,
ℂ𝑒

𝜕ℍ
𝜕𝑑𝑀

ℂ𝑒
̇𝑑𝑀 ≥ 0, (7.43)

since ̇𝑑𝑀 ≥ 0 because the damage is irreversible. Using the same procedure, the non-
negativity of the second summand term in Eq. (7.36) yields

𝚪ℂ𝑒
𝜕ℍ
𝜕𝑑𝑀

ℂ𝑒𝚪 = (𝚪ℂ𝑒
𝜕ℍ
𝜕𝑑𝑀

ℂ𝑒𝚪)
𝑇
, (7.44)

and, therefore,
𝚪ℂ𝑒

𝜕ℍ
𝜕𝑑𝑀

ℂ𝑒𝚪 ̇𝑑𝑀 ≥ 0. (7.45)

Finally, the mechanical energy dissipated by a viscodamage process is a product of a
positive semi-definite matrices and an arbitrary vector, Condition ii) in Appendix H. For
example, the left hand side terms in Eq. (7.42) is positive semi-definite matrix multiplied
by (𝜺 − 𝜺𝑣𝑝), then,

(𝜺 − 𝜺𝑣𝑝)𝑇 ∑
𝑀

(ℂ𝑒
𝜕ℍ
𝜕𝑑𝑀

ℂ𝑒
̇𝑑𝑀)(𝜺 − 𝜺𝑣𝑝) ≥ 0. (7.46)

Similar, the left hand side terms in Eq. (7.44) is positive semi-definite matrix multiplied
by (𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖), hence,

(𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖)𝑇𝚪 ∑
𝑀

(ℂ𝑒
𝜕ℍ
𝜕𝑑𝑀

ℂ𝑒
̇𝑑𝑀)𝚪(𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖) ≥ 0. (7.47)

Therefore, the mechanical energy dissipated due to a viscodamage process is equal to or
greater than zero.
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7.2.4 Thermodynamic restrictions of the material properties
The thermodynamic restrictions to ensure the non-negativity of the mechanical energy
dissipated presented in Eq. (7.20) can be divided in three main groups: viscoelastic
restrictions, viscoplastic restrictions and viscodamage restrictions. They are presented
in the previous subsections. Then, the restrictions are summarised, the one from the
viscoelastic mechanical energy dissipated reads

𝜏𝑣𝑒 ≥ 0

𝐸11, 𝐸22, 𝐺12 > 0

|𝜈23| < 1

|𝜈12| < √
𝐸11

𝐸22

−1 < 𝜈23 < 1 − 2𝜈2
12

𝐸11

𝐸22
.

(7.48)

The restrictions from the viscoplastic mechanical energy dissipated are

̂𝑌𝐶𝑃, ̂𝑌𝑇 𝑃, ̂𝑆𝐿𝑃, ̂𝜇𝑡𝑝 ≥ 0

0 ≤ ̂𝜇𝑠ℓ𝑝 ≤ 1
̂𝑌𝑇 𝑃 ≤ ̂𝑌𝐶𝑃

1 +
�̂�𝑡𝑝

1+�̂�𝑡𝑝

1 −
�̂�𝑡𝑝

1+�̂�𝑡𝑝

≤
̂𝑌𝐶𝑃
̂𝑌𝑇 𝑃

.

(7.49)

Finally, the restrictions imposed from a viscodamage process are those defined in Eq. (7.48),
except the first conditions, and

0 ≤ 𝑑𝑀 ≤ 1. (7.50)

7.3 Numerical predictions
Several tests are performed to demonstrate the capabilities of the proposed constitutive
model at the Gauss-point level. In addition, the off-axis compressive experimental tests
carried out by Koerber et al. [8] are used to demonstrate the ability of the present model to
predict the inelastic deformation and fracture of CFRPs under different loading rates. In
both cases, the IM7/8552 unidirectional prepreg system is employed with the quasi-static
model input parameters listed in Table 2.3. The dynamic model input parameters are
listed in Table 7.2 and their calibration is explained in detail in Section 7.3.3. Note that,
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only four dynamic parameters are required in the viscoelastic and viscoplastic regions due
to the isotropy of the CFRP laminates in the directions governed by the matrix.

Table 7.2.: Dynamic model input parameters for a unidirectional IM7/8552 prepreg system.

Symbol Value Unit
Density - 1570 [261] kg/m3

Viscoelastic 𝛾𝑣𝑒 0.35 -
𝜏𝑣𝑒 10−4 s

Viscoplastic 𝛽𝑣𝑝 1.00 -
𝜂𝑣𝑝 2.25×10−5 s

Viscodamage 𝜂𝑣𝑑 4.00×10−5 s

7.3.1 Calibration of the strengths under dynamic conditions
Based on the experimental observations reported in the literature, the transverse strengths
and the longitudinal compressive strength for the selected material (IM7/8552) can be
defined as

𝜎𝑑𝑦𝑛
𝑢 ∶= 𝜎𝑢 (1 + (1.13 × 10−4 ̇𝜀𝑣𝑒

𝑖𝑗 )
1
4 ) , (7.51)

where 𝜎𝑢 is the strength under quasi-static loading conditions (e.g. the longitudinal
compressive strength is 𝜎𝑑𝑦𝑛

𝑢 (𝜎𝑢 = 𝑋𝐶) = 𝑋𝑑𝑦𝑛
𝐶 ). Eq. (7.51) is proposed by Wiegand

[262] and calibrated for the selected material in [9, 220] for a 1D strain rate state, thus
Eq. (7.51) must be extended to a 3D state to be employed in the present constitutive
model. The following norm is defined to evaluate Eq. (7.51) under a 3D state for the
longitudinal compressive strength,

�̇�𝑞𝑠
ℓ𝐶 ∶=

𝑑𝜙𝑞𝑠
ℓ𝐶

𝑑𝜺𝑣𝑒 ̇𝜺𝑣𝑒, (7.52)

where 𝜙𝑞𝑠
ℓ𝐶 is the longitudinal compressive loading function defined in Eq. (7.16), and

evaluated by replacing 𝑋𝑣
𝐶 with 𝑋𝐶 and 𝑑𝑀 = 0. Therefore, 𝜎𝑑𝑦𝑛

𝑢 can be rewritten using
�̇�𝑞𝑠

ℓ𝐶 under a pure uniaxial loading state (as with Eq. (7.51) was obtained) and yields

𝑋𝑑𝑦𝑛
𝐶 = 𝑋𝐶

⎛⎜⎜
⎝

1 + (1.13 × 10−4
�̇�𝑞𝑠

ℓ𝐶𝑋𝐶

𝐸11
)

1
4
⎞⎟⎟
⎠

. (7.53)
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The norm to obtain the transverse strengths (�̇�𝑞𝑠
𝑡 ) is defined as Eq. (7.52) by replacing

𝜙𝑞𝑠
ℓ𝐶 by 𝜙𝑞𝑠

𝑡 in Eq. (7.17) and using the quasi-static strengths. Therefore, Eq. (7.52) can
be rewritten for 𝑌 𝑑𝑦𝑛

𝐶 as

𝑌 𝑑𝑦𝑛
𝐶 = 𝑌𝐶

⎛⎜⎜
⎝

1 + (1.13 × 10−4
�̇�𝑞𝑠

𝑡 𝑌𝐶

𝐸22
)

1
4
⎞⎟⎟
⎠

. (7.54)

The rest of the transverse strengths (𝑌 𝑑𝑦𝑛
𝑇 and 𝑆𝑑𝑦𝑛

𝐿 ) have the same form of Eq. (7.54) by
replacing 𝑌𝐶 and 𝐸22 with the corresponding quasi-static strength and Young’s modulus,
respectively. Explicit FE solver is used to obtain the numerical predictions, and both
norms (�̇�𝑞𝑠

ℓ𝐶 and �̇�𝑞𝑠
𝑡 ) are numerically integrated using the backward Euler method. No

significant error is found in the numerical integration process of �̇�𝑞𝑠
ℓ𝐶 and �̇�𝑞𝑠

𝑡 since the
increment of the time in the explicit FE solver is less than 10−8s.

In the present model, the longitudinal tensile strength is defined strain rate-independent
since no experimental data on the strength-strain rate relationship are available for the
selected material. As with the longitudinal tensile strength, the fracture toughnesses are
defined constants since no clear trend or experimental data were found.

A viscosity regularisation of the strengths is considered to prevent high strength rates with
high strain rate. The viscous strength rate is defined as

�̇�𝑣
𝑢 ∶=

𝜎𝑑𝑦𝑛
𝑢 − 𝜎𝑣

𝑢
𝜂𝑣𝑑 , (7.55)

where 𝜂𝑣𝑑 is a viscodamage-related parameter. This viscous regularisation is applied at
all strengths defined in Eqs. (7.16) and (7.17). For example, the viscous longitudinal
compressive strength (𝑋𝑣

𝐶) is obtained using Eq. (7.53) and then its viscous regularisation
(�̇�𝑣

𝑢(𝜎𝑑𝑦𝑛
𝑢 = 𝑋𝑑𝑦𝑛

𝐶 ) = ̇𝑋𝑣
𝐶) is applied based on Eq. (7.55).

7.3.2 Gauss-point level tests
Virtual tests at the Gauss-point level are carried out to verify that the present constitutive
model complies with the assumptions made in its development (see Section 7.1). A single
Gauss-point is loaded under simple longitudinal shear conditions (see Fig. 7.4a) at a high
loading rate ( ̇𝜀

12
= 200 s−1), as well as at a quasi-static loading rate ( ̇𝜀

12
= 10−4 s−1).

The Gauss-point is defined as a cube of 0.24 mm × 0.24 mm × 0.24 mm (the same in-plane
mesh element size is used in the off-axis compressive FE models of Section 7.3.3).
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The schematic representation of the deformed shape of the simple longitudinal shear test
is presented in Fig. 7.4b. The stress-strain response obtained from the high strain rate
in the viscoelastic region is stiffer than that obtained from the quasi-static loading rate
conditions, see Fig. 7.4c. The stress component from the Maxwell element in that region
is linear since 𝜏𝑣𝑒 of the selected material is large enough compared with the time when
the viscoplastic process starts (𝜏𝑣𝑒 ≫2.10×10−5 s). The viscoplastic hardening from the
dynamic case starts with a smaller 𝜀12 compared with the quasi-static simulation, but at
similar 𝜎12 (see cross markers in Fig. 7.4c). Furthermore, the hardening process is also
stiffer at the high strain rate, which can be observed by comparing the two responses
with no damage (𝑑𝑠𝑡 = 0) in Fig. 7.4c. This indicates a high strain rate dependency of
the analysed material on both the viscoelastic and viscoplastic hardening processes under
simple longitudinal shear loading conditions.

The increase in the strength with the high strain rate obtained from Eq. (7.51) using
𝜎𝑢 = 𝑆𝐿 at ̇𝜀

12
= 200 s−1 (𝑆𝑣

𝐿 = 𝑆𝑑𝑦𝑛
𝐿 = 128.09 MPa) is properly predicted from the

dynamic simulation in Fig. 7.4c. Equivalent energy dissipated by the viscodamage process
is obtained from both loading rate conditions (0.8 N/mmm, grey area in Fig. 7.4c) since
the fracture toughness is defined as strain rate-independent for the selected material which
match 𝒢𝑆𝐿

. Therefore, the absolute value of the slope of the softening law increases with
a high strain rate.

The effect of implementing the equivalent viscoelastic domain (see Eq. (7.18)) on the
viscodamage softening response is analysed using a linear regression analysis in the softening
region. Although the softening is not a straight line due to the non-linearities contributed
by the Maxwell element, but this is not significant. The coefficient of determination from
the linear regression analysis conducted in the viscodamage softening region is equal to
one (R2 = 1.00, linear stress-strain relationship in the viscodamage softening).

A relaxation test is also carried out applying simple longitudinal shear loading conditions.
A Gauss-point is loaded to a prescribed strain (𝜀12 = 4%) at ̇𝜀

12
= 200 s−1 and, then,

maintained it loaded at ̇𝜀
12

= 0 over a long period of time, see Fig. 7.5a. In this case, a
time-dependent response is observed. Firstly, the nominal longitudinal shear stress (𝜎12)
increases with the increasing of 𝜀12. Then, 𝜀12 remains constant and 𝜎12 slowly decreases
since the stress component of the Maxwell element decreases and the viscoplastic process
relaxes until they vanish, see Fig. 7.5b. Finally, the material is damaged without increasing
𝜀12 but due to how 𝑆𝑣

𝐿 is relaxed. The viscodamage variable 𝑑𝑠ℓ is activated after 𝜀12

is fixed since 𝑆𝑣
𝐿 relaxes faster than 𝜎12. Therefore, 𝜎12 decreases at the end of the test

not only because the material relaxes, but also because a failure mechanism is initiated
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(𝑑𝑠ℓ > 0). Note that, less than 30% of 𝒢𝑆𝐿
is dissipated during the relaxation test. In

addition, the longitudinal shear strength is also strain rate-dependent and its viscous
regularisation is observed in Fig. 7.5b; 𝑆𝑣

𝐿 tends to 𝑆𝐿 at the end of the test.

Figure 7.4.: Simple longitudinal shear virtual test at the Gauss-point level at two different
strain rate conditions: a) boundary conditions, b) deformed shape, and c) stress vs.
strain curve. The cross markers in the stress vs. strain curve represent when the
viscoplastic process starts. The dotted black straight line in the stress vs. strain
curve represents the linear regression analysis curve applied to the viscodamage
softening behaviour of the dynamic response, and the grey areas refer to the energy
dissipated by viscodamage.
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Figure 7.5.: Relaxation virtual test under simple longitudinal shear loading conditions at the
Gauss-point level: a) strain applied and b) nominal longitudinal shear stress, evolu-
tion of the longitudinal shear strength and viscodamage variable.
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The stress-strain relationship obtained from the relaxation case until to fix 𝜀12 = 4%
matches the one obtained from the monotonic virtual test under simple longitudinal
shear conditions at high strain rate, see Fig. 7.6. However, the stress vertically drops
during the relaxation step but does not reach the stress from the quasi-static test at
𝜀12 = 4%. In both cases (quasi-static and relaxation tests), the stress remains constant at
𝜎12 = (1 − 𝑑𝑠ℓ)𝐸12𝜀𝑣𝑒

22 but with different viscoplastic and viscodamage states due to how
the material has been loaded over time.
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Figure 7.6.: Comparison between the relaxation test and the monotonically increasing tests at
different strain rates applying simple longitudinal shear loading conditions.

7.3.3 Off-axis compressive tests
The mechanical response of the off-axis compressive tests carried out by Koerber et al. [8] un-
der different loading rates with the fibre angle orientation 𝜃 = 15∘, 30∘, 45∘, 60∘, 75∘ and 90∘

is predicted using FE models. The present constitutive model is implemented in a user
material subroutine (VUMAT) and the Abaqus/Explicit solver [137] is used to obtain
the FE results, employing 3D eight-node C3D8R solid elements with reduced integration.
The in-plane element size is defined equal to 0.24 mm to prevent the snap-back of the
constitutive softening laws for each failure mechanism [101]. In addition, three elements
through-the-thickness of each ply are used.

The in-plane dimensions of the specimens are 10 mm × 20 mm with 32 plies. Vertical
displacement is applied on the top face of the FE models and the bottom face is fixed
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in this direction, see Fig. 7.7a. The quasi-static FE simulations are performed applying
the vertical displacement at constant low velocity to prevent kinetic effects. However,
the loading rates applied during the dynamic experimental tests are employed in the
dynamic simulations, see Fig. 7.7b. In addition, the remaining boundary conditions shown
in Fig. 7.7a are defined to prevent rigid body motions.

Figure 7.7.: Schematic representation of the boundary conditions (a), and the displacement vs.
time curves applied to the dynamic tests in the off-axis compressive tests [8] (b).

Because no experimental data were found in the literature, the dynamic model input
parameters summarised in Table 7.2 are fitted by tuning these parameters. Eq. (7.10)
cannot be employed with the experimental data measured from [8] since the loading rate
in the elastic region is not constant, see the first sections of the curves in Fig. 7.7b. The
45∘ dynamic test is used to compare the numerical stress vs. strain curve with those exper-
imentally obtained since the highest experimental ultimate strain was obtained from this
test. Firstly, the viscoelastic input parameters (𝜏𝑣𝑒, 𝛾𝑣𝑒) are varied with pure viscoelastic
FE response (the viscoplastic and viscodamage model are disabled in this step) to properly
capture the initial slope of the experimental data. Then, the viscoplastic parameters
(𝛽𝑣𝑝, 𝜂𝑣𝑝) are fitted using the fully constitutive model to reproduce the hardening response.
Finally, the viscodamage-related parameter (𝜂𝑣𝑑) is set equal to 4.00×10−5. The effect
of 𝜂𝑣𝑑 on the failure strength is not significant since the loading rate is almost constant
when the specimen fails and this stabilisation time is large enough compared with 𝜂𝑣𝑑, see
Fig. 7.7b.

The stress vs. strain curves from the present constitutive model and the strain rate-
independent constitutive model presented in Chapter 2 are compared to the experimental
data reported by Koerber et al. [8] in Fig. 7.8. The initial slope of the dynamic tests are
properly predicted from the present constitutive model for 𝜃 = 15∘, 30∘, 45∘ and 60∘ and a
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slightly stiffer elastic response is observed for 𝜃 = 75∘ and 90∘. The hardening response of
the dynamic simulations is in good agreement with the experimental data. Furthermore,
the failure strength of the specimens from the high strain rate numerical models is also
in good agreement with the experimental data, with its highest relative error being less
than 7.81% for 𝜃 = 60∘. Good agreement is also found in the ultimate strain between the
numerical and experimental dynamic results except for 𝜃 = 30∘ and 45∘ in which a small
change in stress produces a significant increase in axial strain.

The quasi-static numerical results from the compressive off-axis tests are also compared to
the corresponding experimental data. The elastic and hardening response are properly
predicted from the present constitutive model. In addition, the numerical failure strength
is also in good agreement with the experimental data, except for 𝜃 = 45∘ and 60∘. Similar
predictions are obtained from the strain rate-independent constitutive model proposed in
Chapter 2. The failure strength predictions in the quasi-static results can be improved
by experimentally measuring 𝑆𝐿 as explained in Section 2.4.1. This material property
has a significant influence on the 𝜎22 − 𝜎12 stress space of the failure envelope and is not
experimentally obtained in the present work. 𝑆𝐿 is assumed from an in-plane shear test
following the ASTM D 3518/3518M-94 test standard [104] and, thus, 𝑆𝐿 is estimated when
5% of the axial strain is reached. Note that, the present constitutive model overpredicts
the failure strength from the quasi-static tests compared with those obtained from the
original model (refers to Chapter 2). This is due to using the definition of the material
strengths as a function of the strain rate as described by Eq. (7.51).
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Figure 7.8.: Numerical-experimental comparison of the remote stress vs. axial strain curves of
the off-axis compressive tests performed by Koerber et al. [8].





8Numerical limitations of the
constitutive model
The proposed constitutive model is based on the Infinitesimal Strain theory (see Eqs. (2.1)
and (7.1)). The model assumes that the material and spatial descriptions are equivalent
and that the displacement gradients are very small [263]. For instance, rigid body
rotations (and motions) at the Gauss-point level affect the strain tensor, as demonstrated
in Section 8.1.1. Another important aspect is that the model cannot differentiate between
the simple longitudinal shear loading conditions applied parallel to the fibres and one
applied perpendicular to the fibres, as reported in Section 8.1.2.

As discussed in Section 6.3, the constitutive model does not fully predict the mechanical
behaviour of FRPs that are dominated by the bearing failure mechanism. The friction
effects significantly influence on the bearing failure mode and, therefore, considering friction
effects in the constitutive model may improve the numerical prediction of the SLS-Bearing
configuration, see Fig. 6.13. Section 8.2 explores the potential numerical results when the
friction effects are considered in the softening laws.

8.1 Infinitesimal Strain theory

8.1.1 Rigid body rotation virtual test
In the Infinitesimal Strain theory, the rigid body rotations and motions can generate ficti-
tious strain values. As a result, the numerical predictions may diverge from experimental
observations when significant rotations and/or displacements are applied. To demonstrate
this limitation, a FE analysis is carried out.

A FE model is defined at the Gauss-point level using two steps: i) a rigid body rotation of
an angle of 𝜓 = 2.5∘ is applied, and ii) a small displacement is applied in the longitudinal
direction to be in the elastic region, see Fig. 8.1a. The longitudinal direction is oriented with
respect to the horizontal axis (1-axis in the global coordinate system). The displacement-
to-element size ratio is defined equal to 0.1%, which represents the expected longitudinal
strain value. The loading conditions are applied at constant low velocity to prevent kinetic
effects.
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Figure 8.1.: Comparison of the longitudinal strain from the Infinitesimal Strain theory with that
obtained from Green-Lagrange strain tensor (Finite Strain theory) when a rotation
and a small longitudinal displacement is applied: a) schematic representation of
the loading case, and b) longitudinal strain vs. step number curves. Note that the
rotation and displacement in (a) are exaggerated for the sake of its understanding.

The longitudinal strain component obtained from the Infinitesimal Strain theory is affected
by the rigid body rotation in the first step, see Fig. 8.1b. The infinitesimal strain tensor
reads

𝜺 = 1
2 (𝐅 + 𝐅𝑇) − I. (8.1)

In the rotation step, the longitudinal strain component yields

𝜀11 = cos(𝜓) − 1, (8.2)

and at the end of the virtual test reads

𝜀11 =
−𝑑𝑆11 + (𝑈11 + 𝑑𝑆11) cos (𝜓)

𝑑𝑆11
, (8.3)

where 𝑑𝑆11 and 𝑈11 are the initial length and total displacement applied, respectively,
see Fig. 8.1a. Consequently, the longitudinal strain calculated in the rotation step is not
null, which affects the total longitudinal strain applied at the end of the virtual test, see
Fig. 8.1b. The obtained longitudinal strain at the end of the virtual test differs from the
expected value (𝑈11/𝑑𝑆11 = 0.1%).

The fictitious strain values due to the rigid body rotation and motion can be prevent
using the Finite Strain theory. The same FE analysis is conducted using the Green-
Lagrange strain tensor and its results are also presented in Fig. 8.1b. In this case, the final
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longitudinal strain is approximately equal to 0.1%, which is the expected value (𝑈11/𝑑𝑆11).
The Green-Lagrange strain tensor reads

𝐄 = 1
2 (𝐅𝑇𝐅 − I) . (8.4)

Therefore, the longitudinal strain component in the rotation step yields

𝐸11 = 0, (8.5)

and at the end of the virtual test reads

𝐸11 = 1
2

𝑑𝑠2
11 − 𝑑𝑆2

11

𝑑𝑆2
11

, (8.6)

where 𝑑𝑠11 is equal to the final longitudinal length, in this case 𝑑𝑠11 = 𝑑𝑆11 + 𝑈11.
For the small displacement-to-element size ratio applied in the virtual test, Eq. (8.6) is
approximately equal to 𝑈11/𝑑𝑆11.

8.1.2 Simple longitudinal shear virtual test
The mechanical behaviour of FRPs under simple longitudinal shear loading conditions
is expected to differ depending on the loading direction. Under shear conditions parallel
to the fibres, failure propagates only through the matrix, while the fibre length remains
constant and unloaded, see Fig. 8.2a. In contrast, in the shear conditions perpendicular
to the fibres, failure initiates in the matrix and the fibres rotate supporting the load and
preventing instantaneous failure propagation until the fibre pull-out and fibre failure occur
[264, 265], see Fig. 8.2b.

Two numerical FE models are defined at the Gauss-point level. A material point is loaded
applying a simple shear loading condition in the 12-axis (parallel to the fibres) and other
in the 21-axis (perpendicular to the fibres) to compare its numerical response, see Fig. 8.3a.
The longitudinal directions of each Gauss-point is oriented to the horizontal axis (1-axis
in the global coordinate system). The displacement is applied at constant low velocity
to prevent kinetic effects. The FE analysis is carried out by only considering damage
modelling, the plasticity model is disable.
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Figure 8.2.: Schematic representation of the deformed shape of unidirectional FRP laminates
under longitudinal shear conditions applying in: a) parallel to the fibres, and b)
perpendicular to the fibres.

Same numerical predictions are obtained from both the longitudinal shear tests (parallel
and perpendicular to the fibres) using the proposed constitutive model based on the
Infinitesimal Strain theory, see Fig. 8.3b. The longitudinal shear component in the 12-axis
is

𝜀12 = 𝐹12 + 𝐹21, (8.7)

and is independent to the principal components of 𝐅. Therefore, in this case, the fibre
rotation cannot be captured since 𝜀12 is independent of 𝐹11. However, the shear components
of the Green-Lagrange strain tensor are calculated as a function of the shear components
of 𝐅, as well as but also with their principal components,

𝐸12 = 1
2 (𝐹11𝐹12 + 𝐹22𝐹21 + 𝐹32𝐹31) . (8.8)

Therefore, 𝐸12 take into account the fibre rotation. The damage modelling is implemented
using 𝐄 and the implementation algorithm is summarised in Algorithm 3. The predicted
response from the constitutive model based on the Finite Strain theory is presented in
Fig. 8.3c. The results are consistent with the expected behaviour. The model with the
fibres parallel to the onset of damage is reached and the load decreases. However, under
longitudinal shear conditions perpendicular to the fibres, the model can support load after
the onset of damage. Further analysis is required to determine whether the numerical
response from the finite strain formulation agrees with experimental observations in FRP
laminates.
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Figure 8.3.: Simple longitudinal shear virtual test: a) schematic representation of the boundary
conditions, and b) stress vs. engineering strain curves.
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Algorithm 3: Algorithm of the damage modelling based on the finite strain theory at
time 𝑡

(𝑛+1)

Input:
deformation gradient tensor at 𝑡

(𝑛+1)
: 𝐅

internal variables at 𝑡
(𝑛+1)

: 𝑟ℓ𝑇(𝑛)
, 𝑟ℓ𝐶(𝑛)

, 𝑟𝑡(𝑛)

Initialisation:
Green-Lagrange strain tensor Eq. (8.4)
Second-Piola effective stress tensor: �̃� = ℂ̃𝑒𝐄
Effective stress invariants as a function of �̃� Eqs. (2.5)–(2.8)
Loading functions Eqs. (2.26)–(2.28)
Elastic domain threshold Eq. (2.30)
Damage variables Eqs. (2.31)–(2.33)
Second-Piola stress tensor: 𝐒 = ℂ𝑒𝐄
Cauchy stress tensor: 𝝈 = 1

|𝐅|𝐅 ⋅ 𝐒 ⋅ 𝐅𝑇

Corotational Cauchy stress tensor [266]†: 𝝈𝑐𝑜𝑟 = 𝐑𝑇𝝈𝐑

† Step required for the Abaqus/Explicit solver [111].

8.2 Friction effects
The purpose of this section is to analyse a potential solution for improving the prediction
of the SLS-Bearing test by introducing friction effects on the damage modelling. Alfano
and Sacco [267] developed a cohesive zone model by combining progressive elastic interface
damage with a unilateral friction law for the debonding process and complete decohesion.
Based on this model, Catalanotti et al. [268] extended the interface damage model developed
by Turon et al. [53, 55] with a simple Coulomb friction law. Under compressive out-of-plane
loading conditions, the stress-crack opening displacement relationship of the proposed
interface damage model can be divided into four main regions. Firstly, there is a linear
behaviour until the material strength with no compressive loads is reached (e.g. 𝑆𝐿 under
longitudinal shear loading conditions). Secondly, the stress non-linearly increases until the
strength is reached. Thirdly, stress decreases, and finally the Gauss-point is fully damaged
and a plateau stress is reached, in which the load-carrying capacity is due to the friction
effect, see Fig. 8.4.

According to the literature observations, the transverse strengths related to compressive
shear loadings (𝑆𝐿 and 𝑌𝐶) have increased by 5% as well as their corresponding fracture
toughnesses (𝒢𝑆𝐿

and 𝒢𝑌𝐶
). Additionally, the upper bound of the transverse damage

variables associated to compressive shear loadings (𝑑𝑠ℓ and 𝑑𝑠𝑡) has been set equal to 0.85.
The main objective of these modifications is to define the softening laws similar to the one
presented in Fig. 8.4. These modifications are made with the aim of keeping the model

8.2 Friction effects 149



simple and to analyse a possible improvement. It is important to remark that a correct
formulation is necessary to account for friction effects in the damage modelling.

Figure 8.4.: A schematic representation of the stress vs. crack opening displacement curve under
longitudinal shear loading conditions for different compressive loads.

The SLS-Bearing FE model presented in Section 6.3 is now carried out with the described
modifications in the softening laws. The predicted stress vs. cross-head displacement
curve obtained from the modified constitutive model to account for friction effects shows
two main regions, see Fig. 8.5. Firstly, the stress monotonically increases and the ”knee
point” is reached. Secondly, the initial stiffness decreases but the load-carrying capacity
continues to increase. This mechanical response is comparable to the experimental data.
Again, note that the modifications in the constitutive model are simplifications and further
analysis is required to introduce the friction effect into the damage modelling.
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Figure 8.5.: Comparison of the predicted stress vs. cross-head displacement curve of the SLS-
Bearing configuration obtained using both the enhanced model and the enhanced
model with friction effects.





9Conclusions

9.1 Concluding remarks
A new 3D constitutive model to predict the plastic deformation and the progressive
failure of unidirectional laminated composite materials was developed in the Chapter 2.
The model is thermodynamically consistent to ensure irreversibility of the dissipative
material processes. The Infinitesimal Strain theory has been followed and new yield and
plastic potential functions were proposed in conjunction with existing loading functions.
The shape of the yield envelope can be modified by setting the plastic envelope shape
coefficients. The new non-associative flow rule used in the plasticity modelling enables
the plastic Poisson’s ratios and the volumetric plastic strains to be imposed. In addition,
the failure criteria can be modified by setting the failure envelope shape coefficients. The
model is based on the framework of 3D continuum damage mechanics, and the objectivity
of the damage model is ensured by regularising the dissipated energy by damage with the
characteristic element size (Crack Band model [89]).

The constitutive model was implemented in a commercial finite element code using a
user-defined material subroutine. A VUMAT Fortran subroutine was developed to be
used with the Abaqus/Explicit solver. The implementation was verified by applying
different loading cases at the Gauss-point level. The numerical results of this verification
analysis were compared to the known data, and good agreement was found between them.
Therefore, the implementation of the constitutive model in a user material subroutine was
satisfactorily validated.

A methodology to prevent spurious damage generated in continuum damage mechanics
constitutive models which use the effective stress tensor was presented in Chapter 3. The
proposed model (enhanced model) can be straightforwardly implemented in previously
developed constitutive models. An explicit implementation of the damage modelling to
be used with a finite element explicit solver was also presented. The numerical results
obtained from the enhanced constitutive model and those obtained from a model which
use the effective stress tensor were compared with the experimental data obtained from an
open-hole compressive test using a quasi-isotropic laminate. The comparison demonstrated
the improvements that the enhanced model provides to predict failure mechanisms. Good
agreement on the failure patterns between the enhanced model and the experimental data,
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as well as on the failure strength, were found. However, the model which use the effective
stress tensor does not properly capture the failure pattern after the failure strength.

Moreover, two unidirectional virtual tests were carried out to explain the improvements
of the enhanced model seen on the open-hole compressive test with a quasi-isotropic
laminate. Discrepancies on the failure strength on 90∘ laminate was found between the
models. The enhanced constitutive model predicted the expected deformed shape and
failure propagation. However, the model which use the effective stress tensor becomes
unstable in terms of failure propagation after the failure remote load, and its deformed
shape was inconsistent with the expected shape.

Guidelines were provided to calibrate the numerical parameters of the model. The remain-
ing input model parameters can be experimentally obtained from standard tests. In this
sense, a new methodology to measure the transverse Poisson’s ratios for characterising
a unidirectional fibre-reinforced polymer composite material at room temperature under
quasi-static loading conditions was proposed in Chapter 4. A thermoplastic-based compos-
ite material (carbon fibre/poly-ether-ether-ketone) was used to illustrate how the proposed
procedure was employed to measure the elastic transverse Poisson’s ratios in tension and
compression, as well as the plastic transverse Poisson’s ratio in compression.

Transverse tensile and transverse compressive tests were carried out using digital image
correlation (DIC) equipment to measure the strain field on the lateral surface of the
specimens. The average axial strain obtained from the DIC was compared with the
one measured from two strain gauges and good agreement was found. Accordingly, the
corresponding transverse Poisson’s ratio was then calculated from the DIC measurements.

There is a clear trend of the elastic transverse Poisson’s ratio in tension to decrease
when the elastic axial strain increases in two of the three specimens tested. In the same
way, the elastic transverse Poisson’s ratio in compression decreases when the amount of
the compressive elastic axial strain increases. The comparison of the elastic transverse
Poisson’s ratios suggested more contraction in compression than expansion in tension.
Assuming no plastic strain in the longitudinal direction, the plastic transverse Poisson’s
ratio in compression indicates no volumetric plastic strains for small axial plastic strains,
whereas plastic dilatancy was observed as the amount of compressive plastic axial strain
increased.

The novelty of the proposed methodology of Chapter 4, compared to those proposed in the
literature, lies in the use of standard tests with additional measuring equipment and a novel
data reduction method to obtain the transverse Poisson’s ratio. The proposed method
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does not increase the overall number of experimental tests required for characterising a
fibre-reinforced polymer composite material. Furthermore, there is no requirement for
additional specimens or fixture tools.

Guidelines were provided to calibrate the plastic and failure envelope shape coefficients
in Chapter 5, and their bounds were presented. Additionally, the influence of the failure
envelope shape coefficients on the failure strength of filled-hole compressive tests was
analysed. Different stacking sequences, bolt metric, specimen width, thickness and preloads
of filled-hole compressive experimental tests of carbon fibre-reinforced polymer (CFRP)
laminates were employed in this analysis. The enhanced constitutive model was used and
different shapes of the failure envelope in the 11-22 effective stress space were analysed.
This effective stress space is the one whose definition has higher uncertainty due to the lack
of appropriate multiaxial tests. In total, four envelopes were explored: one based on LaRC
failure criteria [84, 85] modified by Maimí et al. [49], a Quadratic envelope based on the
failure criteria proposed by Camanho et al. [123], and two envelopes adjusted in-between
the previous two envelopes.

The results obtained showed that the failure envelope definition has a significant effect on
the prediction of the filled-hole failure strength and their failure mechanisms. By varying
the failure criteria, damage started to develop and propagate differently, eventually altering
significantly the predicted failure strength. In addition, the same failure criteria led to
a good prediction of some filled-hole configurations, but led to overpreditions/underpre-
dictions with other tests. This highlights the importance of validating models against
different of experimental configurations. By adjusting properly the failure envelope shape,
it was possible to reproduce all the tests consistently.

The findings of Chapter 5 indicate that determining the failure envelope shape experi-
mentally is important; it is necessary to develop further multiaxial test methods, or other
suitable approaches, for obtaining the failure envelopes. The results also prove that even
some well established failure theories may not be able to be adjusted to the envelopes here
found, indicating that they may not be appropriate for predicting some loading states.
These results also emphasise the importance of accurately establishing failure envelope,
rather than overemphasising the development of complex models.

The predictive capabilities of the constitutive model proposed in Chapters 2 and 3
were demonstrated by comparing the numerical predictions with experimental data from
different tests. In most of the numerical-experimental comparisons, the same material
system was used to demonstrate that good predictions can be obtained with the correct
characterisation of the model input parameters. The numerical-experimental comparison
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from off-axis tests showed a satisfactory agreement of the plastic deformation and the
failure strength in Chapter 2. In addition, the model properly predicted the fracture plane
from off-axis compressive tests. The model also was employed to predict the failure strength
of open-hole tensile and compressive tests in Chapters 2 and 3, good agreement between
the numerical-experimental data was found. Furthermore, the model was employed to
predict the mechanical response of CRFP laminates under out-of-plane loading conditions
in Chapter 6.

A numerical-experimental comparison of an end-notched flexure test was conducted to
demonstrate the capabilities of the model to predict a failure pattern similar to delamination
under mode-II loading conditions. The model accurately predicted the load vs. cross-head
displacement curve and the failure pattern. Additionally, four-point bending tests using
L-shaped specimens were performed to show the ability of the model to predict failure load
and patterns under non-uniform out-of-plane stress states. Good predictions were found
in the load vs. cross-head displacement curve and fracture plane localisation. Finally,
single-lap shear composite bolted joint tests were used in the numerical-experimental
comparisons. The model was able to accurately predict the mechanical response in case of
net-tension failure mechanism and the ”knee points” when bearing failure occurs.

The enhanced constitutive model was extended in Chapter 7 to account for the strain
rate dependence of CFRP laminates. The generalised Maxwell model was employed to
predict the viscoelastic response under dynamic loading conditions. An overstress model
was used to account for the viscoplastic strains of CFRPs. In addition, a new viscodamage
model was proposed to account for the onset of damage as well as its propagation under
different loading rates. The viscodamage modelling was based on enhanced model and
was extended to dynamic conditions using experimental strength-strain rate relationships.
In addition, the Crack Band model was used to ensure the proper dissipation of energy
due to damage.

The viscous constitutive model was implemented to be used with the Abaqus/Explicit
solver to demonstrate its predictive capabilities. The constitutive model successfully
replicated the stiffer stress-strain response of CFRPs at high strain rates. Furthermore,
the response of a relaxation test illustrated how the material relaxes and how the onset
and propagation of viscodamage occurs without increasing the strains, since the strength
relaxes faster than the stresses.

A numerical-experimental comparison of off-axis compressive tests at different loading
rates was also carried out to demonstrate the ability of the viscous constitutive model
to predict the mechanical response of CFRP laminates. The comparison of the dynamic
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tests showed good agreement in the viscoelastic, viscoplastic and viscodamage regions.
In addition, quasi-static tests were properly predicted by the viscous constitutive model
and showed good agreement with the previously strain rate-independent model (enhanced
model).

Three limitations of the proposed constitutive model were presented in Chapter 8. The first
limitation is the use of Infinitesimal Strain theory when rigid body rotations occur. The
second limitation is the inability to distinguish between simple longitudinal shear loading
conditions applied parallel to the fibres and those applied perpendicular to the fibres.
The third limitation is the inability to fully predict the mechanical response of CFRP
laminates when bearing failure occurs. Additionally, possible solutions were proposed to
these limitations. The model can be extended to Finite Strain theory and consider the
friction effects in the softening laws.

The material model can be used to predict the mechanical response of thermoset-based
composite materials under quasi-static and dynamic loading conditions, as well as for
thermoplastic-based composites at which the plastic behaviour could be more significant.
The presented constitutive model can also be applied for the prediction of cases where
the out-of-plane stress state governs the mechanical response of the structure, such as
filled-hole specimens with a preloaded bolt, interlaminar shear strength tests, etc. These
capabilities have been widely demonstrated.

This thesis has focused on CFRP laminates, but the proposed constitutive model can
predict the mechanical response of other homogeneous transversally isotropic materials
by applying the corresponding material characterisation. The yield function, the non-
associative flow rule and the loading functions make the model more flexible to predict
the plastic deformation and fracture of a large range of materials. Furthermore, the
softening laws can be modified according to the selected material response. Additionally,
the strain rate dependency of the viscodamage parameters can be also modified to align
with corresponding experimental evidence for the selected material.

In conclusion, the main objective of this thesis, as well as the partial objectives, have been
achieved. Five scientific articles have already been published on the subject of this thesis.
The present work has contributed to the improvement of computational and experimental
methods for predicting the plastic deformation and fracture of CFRP laminates under
quasi-static and dynamic loading conditions. Further work is required to enhance the
reliability of computational tools. Furthermore, new experimental tests are necessary to
gain a better understanding of the mechanical response of CFRP laminates.
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9.2 Perspectives and future work
The present thesis represents progress in predicting the plastic deformation and fracture
of fibre-reinforced polymer structures under quasi-static and dynamic loading conditions.
However, there are limitations detected from both experimental and numerical perspectives
which can be suggested as future works.

The main limitation encountered during the development of this thesis concerns to obtain
experimental evidence regarding the mechanical behaviour of FRP laminates. The literature
lacks information on the shape of the failure envelope under specific loading conditions,
particularly with regards to FRPs under longitudinal compressive loads. Further multiaxial
test methods or other suitable approaches are needed to obtain the failure envelope of
FRPs. From the numerical point of view, an inverse method can be proposed using
optimisation algorithms to fit the shapes of the plastic and failure envelopes. The objective
function of the optimisation approach can be defined as a function of the experimental data
under different loading conditions and the envelope shape coefficients as the independent
variables.

Another significant limitation detected is about to experimental evidence on the mechanical
behaviour of FRPs under dynamic loading conditions. The literature does not provide a
clear consensus on the strain rate effects on the failure response of FRPs. For instance, there
is no clear relationship between fracture toughness and strain rate. Some experimental
investigations suggest that fracture toughness increases with higher strain rates. However,
other experimental observations conclude that fracture toughness is independent of the
strain rate. Robust test methods including data reduction procedures are needed to better
understand the mechanical response of FRPs under dynamic loading conditions.

The capabilities of the viscoelastic-viscoplastic and viscodamage model presented in Chap-
ter 7 are demonstrated by a numerical-experimental comparison of off-axis compressive
tests at different strain rates. An interesting future consideration is to extend the compar-
ison/validation of the proposed constitutive model to better determine its full capabilities
and limitations. This validation could also be performed at different levels, such as the
structural or sub-component level of the building block approach.

The proposed constitutive model is based on the Infinitesimal Strain theory (see Eqs. (2.1)
and (7.1)). The model assumes that the material and spatial descriptions are equivalent
and that the displacement gradients are very small [263]. For instance, rigid body rotations
(and motions) at the Gauss-point level affect the strain tensor. Another important aspect to
consider is that the proposed model cannot distinguish between a simple longitudinal shear
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loading condition applied parallel to the fibres and one applied perpendicular to the fibres.
These two limitations are discussed in Section 8.1. The proposed constitutive model could
be extended to Finite Strain theory based on the model proposed by Eidel and Gruttmann
[269]. The authors developed an elastoplastic constitutive model for orthotropic metallic
materials at the finite plastic strains [269, 270]. The model was modified to account for
FRPs laminates [271] and extended to account for viscoelastic-viscoplastic finite strains
[250].

The proposed constitutive model could be extended to incorporate friction effects during
transverse failure mechanisms, as discussed in Section 8.2. This could be achieved by
adopting the model proposed by Alfano and Sacco [267], which is commonly used in
interface damage models for FRPs [268, 272]. A simple Coulomb friction law could be
introduced in the softening laws governed by the matrix under compressive normal and
sliding loading conditions.
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ADetermination of the parameters of
the plastic flow potential function
The evolution of the plastic strains is defined as a function of the derivative of the plastic
potential function with respect to the stress tensor 𝜕𝝈(𝜑𝑝), as a non-associative flow rule
is used, see Eq. (2.14). The parameters of the plastic potential function of the plasticity
model are defined in this appendix. These parameters do not have a physical sense, they
are used to control the plastic dilatancy or contractility in the plastic zone. In addition,
they define the direction of the plastic flow. For this reason, the ratios between them are
relevant and not their absolute values.

The volumetric plastic strain rate is defined as

̇𝜺𝑝
𝑣𝑜𝑙 ∶= 1

2tr ̇𝜺𝑝, (A.1)

and combining it with Eq. (2.14), ̇𝜺𝑝
𝑣𝑜𝑙 in Voigt notation reads
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(
2 ̂𝜇𝑡𝑝

̂𝜇𝑡𝑝 + 1) ], (A.2)

where ̂𝑌𝐶𝑃, ̂𝑌𝑇 𝑃 and ̂𝑆𝐿𝑃 are the plastic potential stresses and ̂𝜇𝑡𝑝 and ̂𝜇𝑠ℓ𝑝 are the plastic
potential curvature parameters, all of them are defined as constant parameters. In addition,
𝜆 is the plastic multiplier and �̂� is the second order tensor that contains the coefficients of
the non-linear terms of the plastic potential function Eq. (2.21); �̂� is defined in Eq. (C.2)
replacing the yield stresses by the corresponding plastic potential parameters (e.g. 𝑌𝐶𝑃 by

̂𝑌𝐶𝑃).

The volumetric plastic strain rate can be

̇𝜺𝑝
𝑣𝑜𝑙

⎧{{
⎨{{⎩

< 0, → plastic compressibility,

= 0, → no volumetric plastic strains,

> 0, → plastic dilatancy.

(A.3)

The plastic potential parameters can be adjusted by three tests to impose the plastic
dilatancy or compressibility: pure transverse tensile test, pure transverse compressive
test and pure longitudinal shear test. Note that these tests are used to adjust the yield
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function, hence, the total number of tests required to calibrate the plasticity model is not
increased. The plastic Poisson’s ratio from the transverse tensile test must be defined as

𝜈𝑝
23𝑇 ∶= −

𝜀𝑝
33

𝜀𝑝
22

, (A.4)

where 𝜀𝑝
𝑖𝑗 is obtained from the transverse tensile test. Similarly, the plastic Poisson’s ratio

from the transverse compressive test 𝜈𝑝
23𝐶 must be defined as Eq. (A.4) replacing 𝜀𝑝

𝑖𝑗 with
those obtained from the transverse compressive test. Therefore, 𝜈𝑝

23𝑇 and 𝜈𝑝
23𝐶 can be

rewritten as a function of 𝜺𝑝. Firstly, the Backward Euler integration method is applied
in Eq. (A.1),

𝜺𝑝 ∶= 𝛾 𝜕𝜑𝑝

𝜕𝝈 , (A.5)

where 𝛾 is the consistency parameter. Finally, each plastic strain component of 𝜈𝑝
23𝑇 and

𝜈𝑝
23𝐶 can be calculated from Eq. (A.5) by applying the corresponding loading conditions.

They yield

𝜈𝑝
23𝑇 =

̂𝑌𝑇 𝑃 − ̂𝜇𝑡𝑝
̂𝑌𝐶𝑃

̂𝑌𝐶𝑃( ̂𝜇𝑡𝑝 + 1)
, (A.6)

and

𝜈𝑝
23𝐶 =

̂𝑌𝐶𝑃 − ̂𝜇𝑡𝑝
̂𝑌𝑇 𝑃

̂𝑌𝑇 𝑃( ̂𝜇𝑡𝑝 + 1)
. (A.7)

In addition, the following ratio is defined as

𝜈𝑝
122 ∶= −

𝜀𝑝
22

𝜀𝑝
12

, (A.8)

using 𝜀𝑝
𝑖𝑗 from the longitudinal shear test, and applying the corresponding loading conditions

in Eq. (A.5), 𝜈𝑝
122 yields

𝜈𝑝
122 = −

( ̂𝑌𝑇 𝑃 − ̂𝑌𝐶𝑃) ̂𝑆𝐿𝑃

2 ̂𝑌𝐶𝑃
̂𝑌𝑇 𝑃

. (A.9)

Finally, the relationships between the plastic potential parameters can be found by
combining Eqs. (A.6), (A.7) and (A.9) as

̂𝑌𝐶𝑃
̂𝑌𝑇 𝑃

=
𝜈𝑝

23𝐶 + 1
𝜈𝑝

23𝑇 + 1 , (A.10)

̂𝑆𝐿𝑃
̂𝑌𝑇 𝑃

=
2𝜈𝑝

122(𝜈𝑝
23𝐶 + 1)

𝜈𝑝
23𝑇 − 𝜈𝑝

23𝐶
, (A.11)
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and

̂𝜇𝑡𝑝 =
1 − 𝜈𝑝

23𝐶𝜈𝑝
23𝑇

(𝜈𝑝
23𝐶 + 1)(𝜈𝑝

23𝑇 + 1). (A.12)

Therefore, the no volumetric plastic strains (𝜈𝑝
23𝑇 = 𝜈𝑝

23𝐶 = 1 and 𝜈𝑝
122 = 0) are imposed

by the following relationships
̂𝑌𝐶𝑃
̂𝑌𝑇 𝑃

= 1, (A.13)

and
̂𝜇𝑡𝑝 = 0. (A.14)
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BDamage variables
The evolution of the damage variables 𝑑𝑀 as a function of the corresponding elastic domain
threshold 𝑟𝑁 are described in this appendix. The damage constitutive model used in this
study is based on the model developed by Quintanas-Corominas et al. [86]. The model
uses four damage variables to define the degradation of the elastic properties:

i) 𝑑ℓ(𝑟ℓ𝑇, 𝑟ℓ𝐶): fibre breakage (𝜎ℓ > 0) or fibre kinking (𝜎ℓ < 0) associated to the first
stress invariant 𝜎ℓ Eq. (2.5).

ii) 𝑑𝑡(𝑟𝑡): mode-I matrix cracking associated to the second stress invariant 𝑝𝑡 Eq. (2.6).

iii) 𝑑𝑠𝑡(𝑟𝑡): mode-II matrix cracking associated to the third stress invariant 𝜏𝑡 Eq. (2.7).

iv) 𝑑𝑠ℓ(𝑟ℓ𝑇, 𝑟𝑡): longitudinal tensile and matrix failure mechanisms associated to the
fourth stress invariant 𝜏ℓ Eq. (2.8).

B.1 Longitudinal damage variable 𝑑ℓ
The longitudinal damage variables 𝑑ℓ is defined as

𝑑ℓ ∶= 𝑑ℓ𝑇
⟨𝜎ℓ⟩
|𝜎ℓ|

+ 𝑑ℓ𝐶
⟨−𝜎ℓ⟩
|𝜎ℓ|

, (B.1)

where ⟨𝑥⟩ ∶= (𝑥+|𝑥|)/2 is the McCauley operator. Therefore, if the first stress invariant is
positive (𝜎ℓ > 0), then, 𝑑ℓ = 𝑑ℓ𝑇, otherwise 𝑑ℓ = 𝑑ℓ𝐶. This allows a different longitudinal
damage evolution in tension (𝑑ℓ𝑇) than in compression (𝑑ℓ𝐶).

B.1.1 Longitudinal tensile damage variable 𝑑ℓ𝑇

The longitudinal tensile damage variable (𝑑ℓ𝑇) as a function of the elastic domain threshold
in the longitudinal tensile direction (𝑟ℓ𝑇) is obtained using a uniaxial longitudinal tensile
test. Therefore, the Cartesian components of the stress tensor (𝝈) read

𝜎11 > 0

𝜎22 = 𝜎33 = 𝜎23 = 𝜎13 = 𝜎12 = 0.
(B.2)
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Furthermore, the elastic strain tensor yields

𝜺𝑒 = ℍ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜎11

0
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B.3)

where ℍ is the compliance tensor defined in Eq. (2.10). The effective stress tensor can be
calculated as

�̃� = ℂ𝑒0𝜺𝑒, (B.4)

where ℂ𝑒0 is the elasticity tensor without damage (ℂ𝑒0 = ℍ−1(𝑑𝑀 = 0)). Consequently,
by combining Eqs. (B.3) and (B.4), the shear effective stresses are equal to zero and the
principal effective stresses yield

�̃�11 =
𝐸11 − 4𝐸𝑡𝜈2

12(1 − 𝑑ℓ)
(𝐸11 − 4𝐸𝑡𝜈2

12)(1 − 𝑑ℓ)𝜎11

�̃�22 =
2𝐸𝑡𝜈12𝑑ℓ

(𝐸11 − 4𝐸𝑡𝜈2
12)(1 − 𝑑ℓ)𝜎11

�̃�33 = �̃�22,

(B.5)

where 𝐸11 is the longitudinal Young’s modulus, 𝐸𝑡 is the bulk elastic stiffness in the
transverse isotropic plane (see Eq. (2.3)), and 𝜈12 is the longitudinal Poisson’s ratio. Hence,
the loading function in the longitudinal tensile direction in Eq. (2.26) reads

𝜙ℓ𝑇 = 1
(1 − 𝑑ℓ)𝑋𝑇

𝜎11, (B.6)

where 𝑋𝑇 is the longitudinal tensile strength.

The softening law in the longitudinal tensile direction is defined using a bilinear law [101,
102]. The first segment is defined with a large drop stress due to the fibre breakage followed
by a large tail related to the fibre pull-out, see Fig. B.1. Hence, the Cartesian component
of 𝝈 referring to the longitudinal direction is defined for each segment as

𝜎11 ∶= 𝑎𝑖𝑠𝑀𝜔11 + 𝑏𝑖𝑠𝑀, (B.7)
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where 𝜔11 is the longitudinal crack opening displacement, 𝑎𝑖𝑠𝑀 and 𝑏𝑖𝑠𝑀 are the slope
and intercept, respectively, of the corresponding segment 𝑖𝑠 in the stress-crack opening
displacement relationship. According to the Crack Band model [89], the average elastic
strain of a mesh finite element (𝜀𝑒

𝑖𝑗) can be related with the crack opening displacement
(𝜔𝑖𝑗) through

𝜔𝑖𝑗 = 𝑑𝑀𝑙∗𝑀𝜀𝑒
𝑖𝑗, (B.8)

where 𝑙∗𝑀 is the characteristic element length, see Appendix I for more details on the elastic
strain-crack opening displacement relationship.

Figure B.1.: Softening law in the longitudinal tensile direction: a) stress vs. crack opening
displacement curve and b) stress vs. elastic strain curve.

Finally, the damage variables 𝑑ℓ𝑇 as a function of 𝑟ℓ𝑇 is obtained by introducing Eq. (B.8)
into Eq. (B.7) and, then, combining it with Eqs. (B.3) and (B.6), and assuming that
𝑟ℓ𝑇 = 𝜙ℓ𝑇 and 𝑑ℓ = 𝑑ℓ𝑇. Hence, the longitudinal tensile damage variable for each segment
yields

𝑑
𝑖𝑠ℓ𝑇 =

𝐸11(𝑋𝑇𝑟ℓ𝑇 − 𝑏𝑖𝑠ℓ𝑇)
(𝐸11 + 𝑎𝑖𝑠ℓ𝑇𝑙∗ℓ)𝑋𝑇𝑟ℓ𝑇

, (B.9)

where the intercept of the first segment (𝑏1ℓ𝑇) is equal to 𝑋𝑇 and its corresponding slope
reads

𝑎1ℓ𝑇 =
𝑓𝑋𝑇

𝑋𝑇 − 𝑋𝑇

𝜔1ℓ𝑇
, (B.10)

where 𝜔1ℓ𝑇 is the longitudinal crack opening displacement when the area under the softening
law match the first portion of the longitudinal tensile fracture toughness (𝑓𝒢𝑋𝑇

𝒢𝑋𝑇
).

Therefore, 𝜔1ℓ𝑇 is obtained by solving the following equation

𝑓𝒢𝑋𝑇
𝒢𝑋𝑇

= 1
2𝜔1ℓ𝑇𝑋𝑇, (B.11)
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where 𝒢𝑋𝑇
is the longitudinal tensile fracture toughness. Hence, 𝜔1ℓ𝑇 reads

𝜔1ℓ𝑇 =
2𝑓𝒢𝑋𝑇

𝒢𝑋𝑇

𝑋𝑇
, (B.12)

and the first slope yields

𝑎1ℓ𝑇 =
𝑋2

𝑇(𝑓𝑋𝑇
− 1)

2𝑓𝒢𝑋𝑇
𝒢𝑋𝑇

. (B.13)

The slope of the second segment is calculated as

𝑎2ℓ𝑇 =
−𝑓𝑋𝑇

𝑋𝑇

𝜔2ℓ𝑇 − 𝜔1ℓ𝑇
, (B.14)

where 𝜔2ℓ𝑇 is the longitudinal crack opening displacement when the area under the
softening law match the second portion of the longitudinal tensile fracture toughness
((1 − 𝑓𝒢𝑋𝑇

)𝒢𝑋𝑇
), therefore, 𝜔2ℓ𝑇 is obtained by solving the following equation

(1 − 𝑓𝒢𝑋𝑇
)𝒢𝑋𝑇

= 1
2𝜔2ℓ𝑇𝑓𝑋𝑇

𝑋𝑇, (B.15)

hence, the second slope yields

𝑎2ℓ𝑇 = −
𝑓2

𝑋𝑇
𝑋2

𝑇

2𝒢𝑋𝑇
(1 − 𝑓𝒢𝑋𝑇

− 𝑓𝒢𝑋𝑇
𝑓𝑋𝑇

). (B.16)

The intercept of the second segment reads

𝑏2ℓ𝑇 =
𝑓𝑋𝑇

𝑋𝑇(1 − 𝑓𝒢𝑋𝑇
)

(1 − 𝑓𝒢𝑋𝑇
− 𝑓𝒢𝑋𝑇

𝑓𝑋𝑇
). (B.17)

The active segment in Eq. (B.9) depends on 𝑟ℓ𝑇 in the inflection point (𝑟1ℓ𝑇) and is
calculated matching both segments as

𝑟1ℓ𝑇 =
2𝑓𝒢𝑋𝑇

𝒢𝑋𝑇
𝐸11 + 𝑓𝑋𝑇

𝑋2
𝑇𝑙∗ℓ

𝑋2
𝑇𝑙∗ℓ

. (B.18)
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Finally, the longitudinal tensile damage variable in Eq. (B.9) yields

𝑑ℓ𝑇 =

⎧{{{
⎨{{{⎩

2𝑓𝒢𝑋𝑇
𝒢𝑋𝑇

𝐸11(𝑟ℓ𝑇 − 1)

(2𝑓𝒢𝑋𝑇
𝒢𝑋𝑇

𝐸11 + 𝑋2
𝑇𝑙∗

ℓ(𝑓𝑋𝑇
− 1))𝑟ℓ𝑇

, if 𝑟ℓ𝑇 ≤ 𝑟1ℓ𝑇

2𝒢𝑋𝑇
𝐸11((1−𝑓𝒢𝑋𝑇

− 𝑓𝒢𝑋𝑇
𝑓𝑋𝑇

)𝑟ℓ𝑇−𝑓𝑋𝑇
(1−𝑓𝒢𝑋𝑇

))

(2𝒢𝑋𝑇
𝐸11(1−𝑓𝒢𝑋𝑇

− 𝑓𝒢𝑋𝑇
𝑓𝑋𝑇

) − 𝑓2
𝑋𝑇

𝑋2
𝑇𝑙∗

ℓ)𝑟ℓ𝑇

, otherwise.
(B.19)

B.1.2 Longitudinal compressive damage variable 𝑑ℓ𝐶

The longitudinal compressive damage variable (𝑑ℓ𝐶) as a function of the elastic domain
threshold in the longitudinal compressive direction (𝑟ℓ𝐶) is obtained using a uniaxial
longitudinal compressive test. The Cartesian components of 𝝈 under this loading state
read

𝜎11 < 0

𝜎22 = 𝜎33 = 𝜎23 = 𝜎13 = 𝜎12 = 0.
(B.20)

The effective stress tensor is obtained by combining Eqs. (B.3) and (B.4), therefore, the
effective stresses in Eq. (B.5) are obtained where 𝜎11 is replaced by −𝜎11. Then, the
damage softening law in longitudinal compressive direction is defined as a bilinear function
[101, 102]. The first segment defines the onset of kink-band using a large drop followed the
horizontal asymptote related to kink-band broadening and contact frictional, see Fig. B.2.
Therefore, Eq. (B.7) is used to define each segment.

Figure B.2.: Softening law in the longitudinal compressive direction: a) stress vs. crack opening
displacement curve and b) stress vs. elastic strain curve.

Subsequently, the loading function in the longitudinal compressive direction (𝜙ℓ𝐶) in
Eq. (2.27) is evaluated assuming that 𝑟ℓ𝐶 = 𝜙ℓ𝐶 and 𝑑ℓ = 𝑑ℓ𝐶. Hence, the longitudinal

B.1 Longitudinal damage variable 𝑑ℓ 170



compressive damage variable for each segment (𝑑
𝑖𝑠ℓ𝐶) is obtained as a function of the

elastic domain threshold 𝑟ℓ𝐶 as

𝑑
𝑖𝑠ℓ𝐶 =

𝜅1𝑖𝑠ℓ𝐶

2𝜅0𝑖𝑠ℓ𝐶

−
√√√

⎷
(

𝜅1𝑖𝑠ℓ𝐶

2𝜅0𝑖𝑠ℓ𝐶

)
2

−
𝜅2𝑖𝑠ℓ𝐶

𝜅0𝑖𝑠ℓ𝐶

(B.21)

with:

𝜅0𝑖𝑠ℓ𝐶
= 𝜅2

4𝑖𝑠ℓ𝐶
− (ℍ011

ℍ012
𝑏𝑖𝑠ℓ𝐶)2𝜂𝑞

𝑡 − ℍ2
012

𝜅5𝑖𝑠ℓ𝐶

𝜅1𝑖𝑠ℓ𝐶
= (2𝑋𝐶𝜅4𝑖𝑠ℓ𝐶

𝑟ℓ𝐶 + 𝜅5𝑖𝑠ℓ𝐶
) 𝜅3𝑖𝑠ℓ𝐶

𝜅2𝑖𝑠ℓ𝐶
= (𝑋2

𝐶𝑟2
ℓ𝐶 − 𝑏2

ℓ𝐶) 𝜅2

3𝑖𝑠ℓ𝐶

𝜅3𝑖𝑠ℓ𝐶
= ℍ011

(ℍ022
+ ℍ023

) − 2ℍ2
012

𝜅4𝑖𝑠ℓ𝐶
= ℍ011

ℍ012
𝑏𝑖𝑠ℓ𝐶𝜂𝑡 − 𝑋𝐶𝑟ℓ𝐶 (ℍ011

𝑎𝑖𝑠ℓ𝐶𝑙∗ℓ − 1) 𝜅3𝑖𝑠ℓ𝐶

𝜅5𝑖𝑠ℓ𝐶
= (2ℍ012

𝑏𝑖𝑠ℓ𝐶)2,

(B.22)

where 𝑖𝑠 refers to the corresponding segment of the softening law, 𝑎𝑖𝑠ℓ𝐶 and 𝑏𝑖𝑠ℓ𝐶 are
the slope and intercept, respectively, of the corresponding segment and ℍ0𝑖𝑗

are the
components of the compliance tensor without damage (ℍ0 = ℍ(𝑑𝑀 = 0)). The intercept
of the first segment (𝑏1ℓ𝐶) is equal to longitudinal compressive strength (𝑋𝐶) and its
corresponding slope is obtained from Eq. (B.13) where the slope has positive sign and
yields

𝑎1ℓ𝐶 =
𝑋2

𝐶(1 − 𝑓𝑋𝐶
)

2𝑓𝒢𝑋𝐶
𝒢𝑋𝐶

, (B.23)

where 𝑓𝒢𝑋𝐶
𝒢𝑋𝐶

is the longitudinal compressive fracture toughness of the first segment,
see Fig. B.2. The slope of the second segment 𝑎2ℓ𝐶 is equal to zero and its intercept is
𝑏2ℓ𝐶 = 𝑓𝑋𝐶

𝑋𝐶.

Finally, the longitudinal compressive damage variable in Eq. (B.21) yields

𝑑ℓ𝐶 =

⎧{{
⎨{{⎩

𝑑1ℓ𝐶 (𝑎1ℓ𝐶, 𝑏1ℓ𝐶 = 𝑋𝐶) , if 𝑟ℓ𝐶 ≤ 𝑟1ℓ𝐶

𝑑2ℓ𝐶 (𝑎2ℓ𝐶 = 𝑓𝑋𝐶
𝑋𝐶, 𝑏2ℓ𝐶 = 0) , otherwise.

(B.24)

The active segment in Eq. (B.24) depends on 𝑟ℓ𝐶 in the inflection point (𝑟1ℓ𝐶) and is
calculated matching both segments.
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B.2 Transverse damage variable 𝑑𝑡
The transverse damage variable (𝑑𝑡) is defined equal to the transverse shear damage
variable (𝑑𝑠𝑡) when the second invariant 𝑝𝑡 is positive and equal to zero when the second
invariant is negative, therefore,

𝑑𝑡 ∶= 𝑑𝑠𝑡
⟨𝑝𝑡⟩
|𝑝𝑡|

. (B.25)

The model assumes that the degradation of the matrix stiffness due to mode-I matrix
cracking is the same that generated by mode-II matrix cracking when the crack opens
(𝑝𝑡 > 0 → 𝑑𝑡 = 𝑑𝑠𝑡). However, degradation of the matrix stiffness in mode-I is not
considered when the crack closes (𝑝𝑡 < 0 → 𝑑𝑡 = 0).

B.3 Transverse shear damage variable 𝑑𝑠𝑡
The same stiffness degradation due to a mode-II matrix cracking is considered as that due
to mode-I matrix cracking. Therefore, the damage softening law in the transverse shear
direction (𝑑𝑠𝑡) as a function of the elastic domain threshold in the transverse direction (𝑟𝑡)
can be obtained using a uniaxial transverse tensile test. Under these loading conditions,
the Cartesian components of 𝝈 yield

𝜎22 > 0

𝜎11 = 𝜎33 = 𝜎23 = 𝜎13 = 𝜎12 = 0,
(B.26)

and the elastic strain tensor reads

𝜺𝑒 = ℍ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
𝜎22

0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B.27)
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Therefore, the shear effective stresses are equal to zero and the principal effective stresses
are obtained by combining Eqs. (B.4) and (B.27) as

�̃�11 =
𝐸11𝜈12𝑑𝑡

(𝐸11 − 4𝐸𝑡𝜈2
12)(1 − 𝑑𝑡)

𝜎22

�̃�22 =
𝐸11(2 − 𝑑𝑡 − 𝑑𝑠𝑡) − 4𝐸𝑡𝜈2

12(2 + 𝑑𝑠𝑡𝑑𝑡 − 2𝑑𝑡 − 𝑑𝑠𝑡)
(2𝐸11 − 8𝐸𝑡𝜈2

12)(1 + 𝑑𝑠𝑡𝑑𝑡 − 𝑑𝑡 − 𝑑𝑠𝑡)
𝜎22

�̃�33 =
𝐸11(𝑑𝑡 − 𝑑𝑠𝑡) − 4𝐸𝑡𝜈2

12(𝑑𝑠𝑡𝑑𝑡 − 𝑑𝑠𝑡)
(2𝐸11 − 8𝐸𝑡𝜈2

12)(1 + 𝑑𝑠𝑡𝑑𝑡 − 𝑑𝑡 − 𝑑𝑠𝑡)
𝜎22.

(B.28)

The softening law is defined using a linear law as

𝜎22 ∶= 𝑎𝑌𝑇
𝜔22 + 𝑏𝑌𝑇

, (B.29)

where 𝑎𝑌𝑇
and 𝑏𝑌𝑇

are the slope and intercept, respectively, of the transverse tensile
stress-crack opening displacement softening law, see Fig. B.3a.

Figure B.3.: Stress vs. crack opening displacement curve of the softening law in: a) transverse
tensile direction and b) longitudinal shear direction.

After that, the transverse loading function (𝜙𝑡) in Eq. (2.28) is evaluated assuming that
𝑟𝑡 = 𝜙𝑡 and 𝑑𝑡 = 𝑑𝑠𝑡. Hence, the damage variable reads

𝑑𝑠𝑡 = −√−
𝜅2𝑠𝑡

𝜅0𝑠𝑡

+
𝜅2

1𝑠𝑡

4𝜅2
0𝑠𝑡

−
𝜅1𝑠𝑡

2𝜅0𝑠𝑡

(B.30)
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with:

𝜅0𝑠𝑡
=ℍ2

012
𝜅5𝑠𝑡

(ℍ022
− ℍ023

) + 4𝑆2
𝑇𝜅2

4𝑠𝑡

𝜅1𝑠𝑡
=𝜅5𝑠𝑡

𝜅6𝑠𝑡
− 4𝑆2

𝑇𝜅4𝑠𝑡
𝜅3𝑠𝑡

𝜅2𝑠𝑡
= (𝑆𝑇𝜅3𝑠𝑡

)
2

− (𝜇𝑡 + 1) (𝑌𝐶𝑌𝑇𝑏𝑌𝑇
𝜅6𝑠𝑡

)
2

𝜅3𝑠𝑡
=2𝑌𝐶𝑌𝑇𝜅6𝑠𝑡

𝑟𝑡 + 𝑏𝑌𝑇
𝜅7𝑠𝑡

(𝑌𝐶 − 𝑌𝑇)

𝜅4𝑠𝑡
=ℍ2

012
𝑏𝑌𝑇

(ℍ022
− ℍ023

) (𝑌𝐶 − 𝑌𝑇) + 𝑌𝐶𝑌𝑇𝜅6𝑠𝑡
𝑟𝑡 (ℍ022

𝑎𝑌𝑇
𝑙∗𝑡 + 1)

𝜅5𝑠𝑡
=𝜇𝑡 (ℍ023

− ℍ022
) (2ℍ012

𝑌𝐶𝑌𝑇𝑏𝑌𝑇
)

2

𝜅6𝑠𝑡
=ℍ011

(ℍ2
022

− ℍ2
023

) + 2ℍ2
012

(ℍ023
− ℍ022

)

𝜅7𝑠𝑡
=2ℍ2

012
(ℍ022

− ℍ023
) + (ℍ022

+ ℍ023
) (ℍ011

ℍ023
− ℍ011

ℍ022
) ,

(B.31)

where 𝒢𝑌𝑇
is the mode-I intralaminar fracture toughness and 𝑙∗𝑡 is the transverse character-

istic element length. The transverse shear strength (𝑆𝑇) can be obtained from Eq. (5.1) for
a given 𝜇𝑡. The intercept of the softening law (𝑏𝑌𝑇

) is equal to 𝑌𝑇 and its corresponding
slope reads

𝑎𝑌𝑇
=

−𝑌𝑇
𝜔22

, (B.32)

and the crack opening displacement (𝜔22) when the area under the softening law match
(𝒢𝑌𝑇

) is obtained by solving the following equation

𝒢𝑌𝑇
= 1

2𝜔22𝑌𝑇, (B.33)

therefore,

𝑎𝑌𝑇
= −

𝑌 2
𝑇

2𝒢𝑌𝑇

. (B.34)

B.4 Longitudinal shear damage variable 𝑑𝑠ℓ
The longitudinal shear damage variable is defined as

𝑑𝑠ℓ ∶= 1 − (1 − 𝑑𝑠ℓ∗)(1 − 𝑑ℓ𝑇), (B.35)

which allows to introduce a degradation of the stiffness in the longitudinal shear direction
due to longitudinal shear effective stresses (�̃�12 and �̃�13), but also due to longitudinal
tensile effective stress (�̃�11). The damage variable 𝑑𝑠ℓ∗ related to the longitudinal shear
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stresses is defined as a function of 𝑟𝑡 using a uniaxial longitudinal shear test. Therefore,
the Cartesian components of 𝝈 yield

𝜎12 ≠ 0

𝜎11 = 𝜎22 = 𝜎33 = 𝜎23 = 𝜎13 = 0,
(B.36)

and all the Cartesian components of the elastic strain tensor are equal to zero except

𝜀𝑒
12 = 1

(1 − 𝑑𝑠ℓ)𝐺12
𝜎12. (B.37)

Then, the effective stresses in Eq. (B.4) are equal to zero except

�̃�12 = 1
(1 − 𝑑𝑠ℓ)𝜎12, (B.38)

and the transverse loading function in Eq. (2.28) reads

𝜙𝑡 = 1
(1 − 𝑑𝑠ℓ)𝑆𝐿

𝜎12. (B.39)

The softening law of 𝑑𝑠ℓ∗ is defined using a linear function as

𝜎12 ∶= 𝑎𝑠ℓ
𝜔12 + 𝑏𝑠ℓ

, (B.40)

where 𝑎𝑠ℓ
and 𝑏𝑠ℓ

are the slope and intercept, respectively, of the longitudinal shear
stress-crack opening softening law, see Fig. B.3b.

The damage variable 𝑑𝑠ℓ∗ is obtained by introducing Eq. (B.8) into Eq. (B.40) and, then,
combining it with Eqs. (B.37) and (B.39) and assuming only matrix cracking (𝑑ℓ𝑇 = 0)
and 𝑟𝑡 = 𝜙𝑡. Therefore, the damage variables yields

𝑑𝑠ℓ∗ =
𝐺12(𝑆𝐿𝑟𝑡 − 𝑏𝑠ℓ

)
(𝐺12 + 𝑎𝑠ℓ

𝑙∗𝑠ℓ
)𝑆𝐿𝑟𝑡

, (B.41)

where the intercept in the stress vs. crack opening displacement curve (𝑏𝑠ℓ
) is equal to 𝑆𝐿

and the slope reads
𝑎𝑠ℓ

=
−𝑆𝐿
𝜔12

, (B.42)
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see Fig. B.3b. The crack opening displacement (𝜔12) when the area under the softening
law match the total mode-II intralaminar fracture toughness (𝒢𝑆𝐿

) is obtained by solving
the following equation

𝒢𝑆𝐿
= 1

2𝜔12𝑆𝐿, (B.43)

therefore,

𝑎𝑠ℓ
= −

𝑆2
𝐿

2𝒢𝑆𝐿

, (B.44)

and the damage variable related to the longitudinal shear stresses yields

𝑑𝑠ℓ∗ =
2𝒢𝑆𝐿

𝐺12(𝑟𝑡 − 1)
(2𝒢𝑆𝐿

𝐺12 − 𝑆2
𝐿𝑙∗𝑠ℓ

)𝑟𝑡
. (B.45)
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CCalculus of the increment of the
consistency parameter of the
plasticity model (Δ𝛾

(𝑘)

(𝑛+1)
)

The calculus of the increment of the consistency parameter of the plasticity model (Δ𝛾(𝑘)

(𝑛+1)
)

(see Eq. (2.36)) is presented in this appendix. This parameter is used to update the
plastic strain tensor in the return mapping of plasticity modelling which is solved using
the Newton-Raphson method. The procedure to obtain Δ𝛾(𝑘)

(𝑛+1)
is presented at time 𝑡

(𝑛+1)

and in the Newton-Raphson iteration of 𝑘. Subscripts and superscripts referring to time
and the Newton-Raphson method are avoided in this appendix, only those different from
the current time step and Newton-Raphson iteration ((⋅)(𝑘)

(𝑛+1)) are shown.

The procedure is presented in general form to simplify the notation. Then, the yield
function defined in Eq. (2.21) can be rewritten in Voigt notation as

𝜙𝑝 = √𝝈𝑇𝕂𝝈 + 𝕃𝑇𝝈 + 𝑚√𝝈𝑇𝕄𝝈 − 1 ≤ 0, (C.1)

where 𝝈 is the stress tensor, 𝕂, 𝕄 and 𝑚 are second order tensors and a scalar value,
respectively, that contain the coefficients of the non-linear terms in Eq. (2.21), and 𝕃 is
a first order tensor that contains the coefficients of the linear terms of Eq. (2.21). They
read

𝕂 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 𝐾22 𝐾23 0 0 0
0 𝐾23 𝐾22 0 0 0
0 0 0 𝐾44 0 0
0 0 0 0 𝐾55 0
0 0 0 0 0 𝐾55

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(C.2)

with:

𝐾22 = (
𝑌𝑇 𝑃 + 𝑌𝐶𝑃
2𝑌𝑇 𝑃𝑌𝐶𝑃

)
2

(C.3)

𝐾23 = 𝐾22
𝜇𝑡𝑝 − 1
𝜇𝑡𝑝 + 1 (C.4)

𝐾44 = 𝐾22
4

𝜇𝑡𝑝 + 1 (C.5)
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𝐾55 = (
𝜇𝑠ℓ𝑝

𝑆𝐿𝑃
)

2
, (C.6)

where 𝑌𝑇 𝑃 and 𝑌𝐶𝑃 are the transverse tensile and compressive yield stresses, respectively,
and 𝑆𝐿𝑃 is the longitudinal shear yield stress. They are defined as a function of the
plastic equivalent strain ̄𝜀𝑝. The parameters 𝜇𝑠ℓ𝑝 and 𝜇𝑡𝑝 are the plastic envelope shape
coefficients. The rest of tensors and the scalar value of 𝜙𝑝 in Eq. (C.1) read

𝕃 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
𝐿22

𝐿22

0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(C.7)

with:
𝐿22 =

𝑌𝐶𝑃 − 𝑌𝑇 𝑃
2𝑌𝑇 𝑃𝑌𝐶𝑃

, (C.8)

𝑚 = 1 − 𝜇𝑠ℓ𝑝, (C.9)

and

𝕄 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 𝑀55 0
0 0 0 0 0 𝑀55

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(C.10)

with:
𝑀55 = 1

𝑆2
𝐿𝑃

. (C.11)

The increment of the consistency parameter reads

Δ𝛾 = −
𝜙𝑝

𝑑𝜙𝑝

𝑑𝛾

, (C.12)

see Eq. (2.36). Hence, the calculus of the derivative of the yield function (𝜙𝑝) with
respect to the consistency parameter (𝛾) is required to update Δ𝛾 in each iteration of the
Newton-Raphson algorithm. The yield function defined in Eq. (C.1) reads

𝜙𝑝 = 𝑓(𝝈,𝕂,𝕃, 𝑚,𝕄), (C.13)
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where each variable of the right hand side of Eq. (C.13) are defined as

𝝈 = 𝑓(𝛾)

𝕂 = 𝑓( ̄𝜀𝑝(𝛾, 𝝈))

𝕃 = 𝑓( ̄𝜀𝑝(𝛾, 𝝈))

𝑚 = 𝑓(𝜇𝑠ℓ𝑝)

𝕄 = 𝑓( ̄𝜀𝑝(𝛾, 𝝈)),

(C.14)

where ̄𝜀𝑝 is the equivalent plastic strain defined in Eq. (2.13). Therefore, applying the
corresponding chain rules, 𝑑𝛾(𝜙𝑝) yields

𝑑𝜙𝑝

𝑑𝛾 =
𝜕𝜙𝑝

𝜕𝝈
𝑑𝝈
𝑑𝛾 + (

𝜕𝜙𝑝

𝜕𝕂
𝑑𝕂
𝑑 ̄𝜀𝑝 +

𝜕𝜙𝑝

𝜕𝕃
𝑑𝕃
𝑑 ̄𝜀𝑝 +

𝜕𝜙𝑝

𝜕𝕄
𝑑𝕄
𝑑 ̄𝜀𝑝 )

𝑑 ̄𝜀𝑝

𝑑𝛾 . (C.15)

The terms of Eq. (C.15) are developed in the following sections. Finally, a compari-
son between the numerical approximation of Eq. (C.15) with its analytical solution is
presented.

C.1 Derivatives as a function of 𝝈
The partial derivative of the yield function with respect to the stress tensor in Eq. (C.15)
reads

𝜕𝜙𝑝

𝜕𝝈 =
𝕂𝝈

√𝝈𝑇𝕂𝝈
+ 𝕃 + 𝑚

𝕄𝝈

√𝝈𝑇𝕄𝝈
, (C.16)

and the derivative of the stress tensor with respect to the consistency parameter from
Eq. (2.34) yields

𝑑𝝈
𝑑𝛾 = −ℂ𝑒

𝜕𝜑𝑝

𝜕𝝈 , (C.17)

where ℂ𝑒 is the elasticity tensor (its inverse matrix (ℂ𝑒 = ℍ−1) is defined in Eq. (2.10))
and 𝜑𝑝 is the plastic potential function from Eq. (2.21) and is defined in general form as

𝜑𝑝 = √𝝈𝑇�̂�𝝈 + �̂�
𝑇
𝝈 + �̂�√𝝈𝑇�̂�𝝈 − 1 ≤ 0, (C.18)

where �̂�, �̂� and �̂� are second order tensors and a scalar value, respectively, that contain
the coefficients of the non-linear terms in Eq. (2.21), and �̂� is a first order tensor that
contains the coefficients of the linear terms in Eq. (2.21). They are defined from Eq. (C.2)
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to Eq. (C.11) by replacing the yield parameters with the plastic potential parameters (e.g.
𝑌𝐶𝑃 by ̂𝑌𝐶𝑃). Therefore, 𝜕𝝈(𝜑𝑝) yields

𝜕𝜑𝑝

𝜕𝝈 =
�̂�𝝈

√𝝈𝑇�̂�𝝈
+ �̂� + �̂�

�̂�𝝈

√𝝈𝑇�̂�𝝈
. (C.19)

C.2 Derivatives as a function of 𝕂
The partial derivative of the yield function with respect to 𝕂 from Eq. (C.15) reads

𝜕𝜙𝑝

𝜕𝕂 =
𝝈𝑇𝝈

2√𝝈𝑇𝕂𝝈
. (C.20)

The derivative of 𝕂 with respect to the equivalent plastic strain is obtained by applying
the chain rule as

𝑑𝕂
𝑑 ̄𝜀𝑝 = 𝜕𝕂

𝜕𝑌𝐶𝑃

𝑑𝑌𝐶𝑃
𝑑 ̄𝜀𝑝 + 𝜕𝕂

𝜕𝑌𝑇 𝑃

𝑑𝑌𝑇 𝑃
𝑑 ̄𝜀𝑝 + 𝜕𝕂

𝜕𝑆𝐿𝑃

𝑑𝑆𝐿𝑃
𝑑 ̄𝜀𝑝 . (C.21)

The yield stresses (𝑌𝐶𝑃, 𝑌𝑇 𝑃 and 𝑆𝐿𝑃) are defined as a function of ̄𝜀𝑝 by introducing the
corresponding yield stress vs. ̄𝜀𝑝 curve. Hence, the derivatives of the yield stress with

respect to ̄𝜀𝑝 (𝑑�̄�𝑝(𝑌𝐶𝑃), 𝑑�̄�𝑝(𝑌𝑇 𝑃) and 𝑑�̄�𝑝(𝑆𝐿𝑃)) are directly obtained from the material
card by applying numerical differentiation.

The partial derivative 𝜕𝑌𝐶𝑃
(𝕂) reads

𝜕𝕂
𝜕𝑌𝐶𝑃

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 𝜕𝐾22

𝜕𝑌𝐶𝑃

𝜕𝐾23
𝜕𝑌𝐶𝑃

0 0 0
0 𝜕𝐾23

𝜕𝑌𝐶𝑃

𝜕𝐾22
𝜕𝑌𝐶𝑃

0 0 0
0 0 0 𝜕𝐾44

𝜕𝑌𝐶𝑃
0 0

0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(C.22)

with:
𝜕𝐾22
𝜕𝑌𝐶𝑃

= −
𝑌𝐶𝑃 + 𝑌𝑇 𝑃
2𝑌𝑇 𝑃𝑌 3

𝐶𝑃
, (C.23)

𝜕𝐾23
𝜕𝑌𝐶𝑃

=
𝜇𝑡𝑝 − 1
𝜇𝑡𝑝 + 1

𝜕𝐾22
𝜕𝑌𝐶𝑃

, (C.24)
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𝜕𝐾44
𝜕𝑌𝐶𝑃

= 4
𝜇𝑡𝑝 + 1

𝜕𝐾22
𝜕𝑌𝐶𝑃

, (C.25)

the partial derivative 𝜕𝑌𝑇𝑃
(𝕂) yields

𝜕𝕂
𝜕𝑌𝑇 𝑃

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 𝜕𝐾22

𝜕𝑌𝑇𝑃

𝜕𝐾23
𝜕𝑌𝑇𝑃

0 0 0
0 𝜕𝐾23

𝜕𝑌𝑇𝑃

𝜕𝐾22
𝜕𝑌𝑇𝑃

0 0 0
0 0 0 𝜕𝐾44

𝜕𝑌𝑇𝑃
0 0

0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(C.26)

with:
𝜕𝐾22
𝜕𝑌𝑇 𝑃

= −
𝑌𝐶𝑃 + 𝑌𝑇 𝑃
2𝑌𝐶𝑃𝑌 3

𝑇 𝑃
, (C.27)

𝜕𝐾23
𝜕𝑌𝑇 𝑃

=
𝜇𝑡𝑝 − 1
𝜇𝑡𝑝 + 1

𝜕𝐾22
𝜕𝑌𝑇 𝑃

, (C.28)

𝜕𝐾44
𝜕𝑌𝑇 𝑃

= 4
𝜇𝑡𝑝 + 1

𝜕𝐾22
𝜕𝑌𝑇 𝑃

, , (C.29)

and the partial derivative 𝜕𝑆𝐿𝑃
(𝕂) reads

𝜕𝕂
𝜕𝑆𝐿𝑃

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 𝜕𝐾55

𝜕𝑆𝐿𝑃
0

0 0 0 0 0 𝜕𝐾55
𝜕𝑆𝐿𝑃

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(C.30)

with:
𝜕𝐾55
𝜕𝑆𝐿𝑃

= −
2𝜇2

𝑠ℓ𝑝

𝑆3
𝐿𝑃

. (C.31)

The derivative of the equivalent plastic strain with respect to the consistency parameter
from Eq. (2.34) reads

𝑑 ̄𝜀𝑝

𝑑𝛾 = √1
2 ∥𝜕𝜑𝑝

𝜕𝝈 ∥ , (C.32)

where 𝜕𝝈(𝜑𝑝) is defined in Eq. (C.19).
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C.3 Derivatives as a function of 𝕃
The partial derivative of the yield function with respect to 𝕃 from Eq. (C.1) reads

𝜕𝜙𝑝

𝜕𝕃 = 𝝈𝑇. (C.33)

The derivative of 𝕃 with respect to the equivalent plastic strain is obtained applying the
chain rule as

𝑑𝕃
𝑑 ̄𝜀𝑝 = 𝜕𝕃

𝜕𝑌𝐶𝑃

𝑑𝑌𝐶𝑃
𝑑 ̄𝜀𝑝 + 𝜕𝕃

𝜕𝑌𝑇 𝑃

𝑑𝑌𝑇 𝑃
𝑑 ̄𝜀𝑝 , (C.34)

where the partial derivative 𝜕𝑌𝐶𝑃
(𝕃) reads

𝜕𝕃
𝜕𝑌𝐶𝑃

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
𝜕𝐿22
𝜕𝑌𝐶𝑃
𝜕𝐿22
𝜕𝑌𝐶𝑃

0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(C.35)

with:
𝜕𝐿22
𝜕𝑌𝐶𝑃

= 1
2𝑌 2

𝐶𝑃
, (C.36)

and the partial derivative 𝜕𝑌𝑇𝑃
(𝕃) yields

𝜕𝕃
𝜕𝑌𝑇 𝑃

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
𝜕𝐿22
𝜕𝑌𝑇𝑃
𝜕𝐿22
𝜕𝑌𝑇𝑃

0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(C.37)

with:
𝜕𝐿22
𝜕𝑌𝑇 𝑃

= − 1
2𝑌 2

𝑇 𝑃
. (C.38)
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C.4 Derivatives as a function of 𝕄
The partial derivative of the yield function with respect to 𝕄 from Eq. (C.1) reads

𝜕𝜙𝑝

𝜕𝕄 = 𝑚
𝝈𝑇𝝈

2√𝝈𝑇𝕄𝝈
. (C.39)

The derivative of 𝕄 with respect to the equivalent plastic strain is obtained applying the
chain rule as

𝑑𝕄
𝑑 ̄𝜀𝑝 = 𝜕𝕄

𝜕𝑆𝐿𝑃

𝑑𝑆𝐿𝑃
𝑑 ̄𝜀𝑝 , (C.40)

where the partial derivative 𝜕𝑆𝐿𝑃
(𝕄) reads

𝜕𝕄
𝜕𝑆𝐿𝑃

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 𝜕𝑀55

𝜕𝑆𝐿𝑃
0

0 0 0 0 0 𝜕𝑀55
𝜕𝑆𝐿𝑃

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(C.41)

with:
𝜕𝑀55
𝜕𝑆𝐿𝑃

= − 2
𝑆3

𝐿𝑃
. (C.42)

C.5 Numerical-analytical comparison of Δ𝛾
The analytical expression of Δ𝛾 is a complex algebraic expression, see Eq. (C.15). This
sections presents a comparison between the numerical approximation of Δ𝛾 and its
analytical solution. The main objective of this comparison is to analyse the accuracy and
the efficiency in terms of the computational time of the numerical solution of Δ𝛾.

The Newton’s difference quotient is employed in the numerical approximation of Δ𝛾 to
estimate 𝑑𝛾(𝜙𝑝) in Eq. (C.12) as

𝑑𝜙𝑝

𝑑𝛾 ≈
𝜙𝑝(𝛾 + Δ𝛾) − 𝜙𝑝(𝛾)

Δ𝛾 , (C.43)

where Δ𝛾 represents a perturbation of 𝛾. The perturbation value should be small to ensure
that the variation of the yield function is close to the calculated value (𝜙𝑝(𝛾 + Δ𝛾) ≈ 𝜙𝑝(𝛾)).
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Under certain loading conditions, such as at the onset of plasticity, the perturbation value
should be close to zero, thus the indeterminate form of Eq. (C.43) can be found [273].

Different values of Δ𝛾 under different loading cases are analysed to determine the order
of magnitude of Δ𝛾. The Abaqus/Explicit solver is used for the analysis. Therefore, the
finite element solution is then obtained by discretising the time and, hence, by strain
increments. Consequently, the analysis of Δ𝛾 is also performed with different values of
the strain increment. The analysis is carried out at the Gauss-point level using a single
C3D8R element of 0.1 mm × 0.1 mm × 0.1 mm × with the IM7/8552 material system,
see Section 2.4.

The relative error between the analytical solution of Δ𝛾 and its numerical solution is
calculated along the virtual tests and the maximum value of each test, and the error
is then presented in Fig. C.1. A high relative error is found at smaller perturbation
values (Δ𝛾 < 10−14). In this range, Δ𝛾 is close to the zero and perhaps leads to the
indetermination of Eq. (C.43) but also the perturbation is close to the decimal points
considered in the calculation (double precision is used in the simulations). The highest
maximum relative error is obtained at Δ𝛾 = 10−15 and a strain increment of 7 × 10−7

mm in the transverse compressive case. In most cases, perturbation values close to the
strain increments also lead to high relative errors.

There is no significant difference in computational time between the numerical and
analytical approaches. This may be because the analytical solution is implemented using
multiple matrix products. The computational time could potentially be reduced by
improving the implementation algorithm. One improvement could be to replace the matrix
product with its solution, since there are several matrices with null components and the
time-consuming matrix product is used in null operations.

The numerical solution is employed in this thesis with Δ𝛾 = 10−10 since accurate ap-
proximations of Δ𝛾 are obtained and there is no additional time computational cost.
Additionally, the implementation algorithm for the numerical solution is easier and more
generic than the analytical approach. The numerical method is independent of the yield
function, the algorithm does not change regardless of any changes made to the yield
function. In plasticity modelling design, one advantage of using the numerical approach is
the ability to modify the yield function without affecting the implementation algorithm.
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Figure C.1.: Maximum relative error between the analytical solution of Δ𝛾 and its numerical
approximation.
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DVector product in Fortran
This appendix presents a comparison between the traditional method for calculating
the product between a matrix and a vector (𝐜 = 𝐀𝐛) with the efficient approach. The
traditional method to calculate the product is using two loops matrix. For example, the
Fortran code of the product of a column vector of 6 components with a 6×6 matrix is
presented in Code D.1.

1 program main

2 implicit none

3 integer, parameter :: dim=6, rp=8

4 integer :: i=1, j=1

5 real(rp), dimension(dim,dim) :: A=1._rp

6 real(rp), dimension(dim) :: b=2._rp, c=0._rp

7 ! Vector product

8 do j=1,dim

9 do i=1,dim

10 c(i) = c(i) + A(i,j) * b(j)

11 end do

12 end do

13 end program main

Code D.1: Fortran code of the traditional algorithm of the product between a matrix and a
vector (𝐜 = 𝐀𝐛).

The algorithm in each statement of the traditional approach is presented in Code D.1.
Firstly, the matrix 𝐀 and the vectors 𝐛 and 𝐜 are loaded and stored in internal variables.
Subsequently, the product of the corresponding component of 𝐀 and 𝐛 is calculated.
Finally, the resultant value is added to the corresponding component of 𝐜.
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Algorithm 4: Algorithm in each statement of the above Fortran code (Algorithm
D.1).

Load each variable:
1 𝑉0 = 𝑐(1 ∶ 𝑛)
2 𝑉1 = 𝐴(1 ∶ 𝑛, 𝑗)
3 𝑆0 = 𝑏(𝑗)

Calculus:
4 𝑉1 = 𝑉1 ∗ 𝑆0

5 𝑉0 = 𝑉0 + 𝑉1

Store the calculus:
6 𝑐(1 ∶ 𝑛) = 𝑉0

Cowell and Christopher [113] proposed an approach for reducing the computational time
of a vector product. The algorithm consist into reduce the number of iterations in the
outer loop in Code D.1. The same previous Fortran example is now presented with the
proposed methodology in [113]:

1 program main

2 implicit none

3 integer, parameter :: dim=6, rp=8

4 integer :: i=1, j=1

5 real(rp), dimension(dim,dim) :: A=1._rp

6 real(rp), dimension(dim) :: b=2._rp, c=0._rp

7 ! Vector product

8 do j=1,dim-1,2

9 do i=1,dim

10 c(i) = (c(i) + A(i,j) * b(j)) + A(i,j+1) * b(j+1)

11 end do

12 end do

13 end program main

Code D.2: Fortran code of the suggested algorithm by Cowell and Christopher [113] of the
product between a matrix and a vector (𝐜 = 𝐀𝐛). The code is available at: https:
//github.com/IR-Cozar/Vector-product-in-Fortran.

The differences between the algorithms solely impact the transfer of data; the calculations
and intermediate values remain constant. The suggested algorithm is outlined in Code D.2.
Firstly, the matrix 𝐀 and the vectors 𝐛 and 𝐜 are loaded and stored in internal variables.
Subsequently, the product of the corresponding component of 𝐀 and 𝐛 is calculated. Then,
𝐀 and 𝐛 of the next component are loaded and stored in new internal variables. Following
this, the corresponding product and sum are calculated before adding the resultant value
to the corresponding component of 𝐜.
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Algorithm 5: Algorithm in each statement of the improved Fortran code (Algorithm
D.2).

Load each vector:
1 𝑉0 = 𝑐(1 ∶ 𝑛)
2 𝑉1 = 𝐴(1 ∶ 𝑛, 𝑗)
3 𝑆0 = 𝑏(𝑗)

Calculus:
4 𝑉1 = 𝑉1 ∗ 𝑆0

5 𝑉0 = 𝑉0 + 𝑉1

Load each vector:
6 𝑉2 = 𝐴(1 ∶ 𝑛, 𝑗 + 1)
7 𝑆1 = 𝑏(𝑗 + 1)

Calculus:
8 𝑉2 = 𝑉2 ∗ 𝑆1

9 𝑉0 = 𝑉0 + 𝑉2

Store the calculus:
10 𝑐(1 ∶ 𝑛) = 𝑉0

The algorithm suggested by Cowell and Christopher [113] is executed only 𝑛/2 times, in
contrast to the traditional one which is executed 𝑛 times. As a result, the total number
of loaded and stored vector 𝐜 is decreased. These two actions (load and store) are of
great significance in this program. Memory access is frequently the limiting factor in
computational processes [113]. These two algorithms have undergone a million evaluations.
The computational time difference between them exceeds 30%, being lower in the algorithm
proposed in [113].
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EPrevent division by zero in Fortran
This appendix presents a function to prevent division by zero in Fortran. The function
provides a solution to a common programming problem. The algorithm involves obtaining
the absolute value of the denominator in a division. Then, comparing it with a tolerance
value (a value close to zero) and saving the larger one. Finally, evaluating the division with
the larger absolute value, maintaining the sign of the original denominator. A Fortran
example is presented in Code E.1.

1 program main

2 implicit none

3 integer, parameter :: rp=8

4 real(rp),parameter :: tolerance=1e-15

5 real(rp) :: a=2._rp, b=0._rp, c=0._rp

6 ! Division by zero

7 c = a/Denominator(b,tolerance)

8 end program main

9
10 function Denominator( &

11 ! Value of the denominator of the division

12 value, &

13 ! Tolerance to avoid the division by 0

14 tolerance) &

15 ! Maximum value between the value or the division tolerance

16 result(value_out)

17 implicit none

18 integer, parameter :: rp=8

19 ! Inputs

20 real(rp),intent(in) :: value,tolerance

21 !

22 ! Output

23 real(rp) :: value_out

24 !

25 ! Calculus of the function

26 !

27 value_out = sign(max(abs(value),division_tolerance) , value)

28 !

29 return

30 end function Denominator

Code E.1: Fortran code to prevent a division by zero. The code is available at: https://github.
com/IR-Cozar/Prevent-a-division-by-zero.

192

https://github.com/IR-Cozar/Prevent-a-division-by-zero
https://github.com/IR-Cozar/Prevent-a-division-by-zero




FCritical characteristic element
length
This appendix describes the calculus of the critical characteristic length (𝑙∗𝑀𝑐

) to be used
in the Crack Band model [89] to prevent the snap-back effect. Firstly, the critical length
for a linear softening law is presented, and that for a bilinear softening law. Finally, the
critical characteristic length value of a material used in this work (IM7/8552 unidirectional
prepreg system) is presented.

The characteristic length of a finite element (𝑙∗𝑀) is employed in the Crack Band model to
regularise the fracture toughness. Therefore, the energy dissipated due to damage in a
finite element is dependent on both the fracture toughness and size of the finite element.
For a constant fracture toughness, the higher the characteristic length is, the smaller
the amount of energy dissipated by the finite element due to damage is, see Fig. F.1a.
Consequently, at a specific 𝑙∗𝑀, the snap-back effect may occurs in the stress vs. strain
curve, see Fig. F.1b. To prevent this effect, 𝑙∗𝑀 must be defined equal to or less than the
critical characteristic length.

Figure F.1.: Schematic representation of a stress vs. strain curve behaviour using a linear
softening law with two different characteristic element lengths: a shorter length (a),
and a longer length (b) than the critical length.
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F.1 Critical characteristic length for a linear softening
law

The critical characteristic length that prevents the snap-back effect of a linear softening
law at the corresponding loading direction (𝑙∗𝑀𝑐−1

) is obtained by equalling the regularised
fracture toughness with the elastic energy [101], then

𝑙∗𝑀𝑐−1
=

2𝐸𝑀𝒢𝑀
𝜎2

𝑢
, (F.1)

where 𝐸𝑀, 𝒢𝑀 and 𝜎𝑢 are the Young’s modulus, the fracture toughness and strength,
respectively, of the analysed material in the corresponding direction. For example, in the
transverse tensile direction, the critical characteristic length yields

𝑙∗𝑡𝑐−1 =
2𝐸22𝒢𝑌𝑇

𝑌 2
𝑇

, (F.2)

where 𝐸22 is the transverse Young’s modulus, 𝑌𝑇 and 𝒢𝑌𝑇
are the transverse tensile

strength and fracture toughness, respectively.

The schematic representation of the stress-strain relationship with different values of 𝑙∗𝑀 in
a linear softening law is presented in Fig. F.2. For 𝑙∗𝑀 < 𝑙∗𝑀𝑐−1

, stress gradually decreases
once the 𝜎𝑢 is reached (see Fig. F.2a). The stress suddenly drops after the onset of damage
(𝜎𝑖𝑗 = 𝜎𝑢) for 𝑙∗𝑀 = 𝑙∗𝑀𝑐−1

, see Fig. F.2b. Finally, the snap-back effect is observed in the
stress vs. strain curve with 𝑙∗𝑀 > 𝑙∗𝑀𝑐−1

, see Fig. F.2c.

Figure F.2.: Schematic representation of a stress vs. strain curve behaviour using a linear
softening law with three different characteristic element lengths: a) a shorter length
than the critical length, b) with the critical length, and c) a longer length than the
critical length.
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F.2 Critical characteristic length for a bilinear
softening law

The determination of the critical characteristic length to prevent the partial snap-back
effect for the bilinear softening law is also necessary to analyse. In this case, the critical
length must be calculated for each segment of the softening law, and the minimum value
between them is to be taken as the critical characteristic length.

The critical characteristic length for the first segment (𝑙∗𝑀𝑐−2.1
) is determined by matching

the regularised fracture toughness of the first segment (𝑓𝒢𝑀
𝒢𝑀/𝑙∗𝑀) with the grey area

in Fig. F.3a. This area corresponds to a sudden drop of the stress from 𝜎𝑖𝑗 = 𝜎𝑢 to
𝜎𝑖𝑗 = 𝑓𝜎𝑢

𝜎𝑢 at the same strain level. Then, 𝑙∗𝑀𝑐−2.1
yields

𝑙∗𝑀𝑐−2.1
=

2𝐸𝑀𝑓𝒢𝑀
𝒢𝑀

𝜎2
𝑢(1 − 𝑓𝜎𝑢

) . (F.3)

Figure F.3.: Schematic representation of a stress vs. strain curve behaviour using a bilinear
softening law with the critical length of the: a) first segment and b) second segment.

The critical characteristic length of the second segment (𝑙∗𝑀𝑐−2.2
) is obtained by matching

the rest of the regularised fracture toughness ((1 − 𝑓𝒢𝑀
)(𝒢𝑀/𝑙∗𝑀)) with the grey area

in Fig. F.3b. This area corresponds to a sudden drop of the stress from 𝜎𝑖𝑗 = 𝑓𝜎𝑢
𝜎𝑢 to

𝜎𝑖𝑗 = 0 at the same strain level. Then, 𝑙∗𝑀𝑐−2.2
yields

𝑙∗𝑀𝑐−2.2
=

2(1 − 𝑓𝒢𝑀
𝑓𝜎𝑢

− 𝑓𝒢𝑀
)𝐸𝑀𝒢𝑀

𝜎2
𝑢𝑓𝜎𝑢

2 . (F.4)

Finally, the critical characteristic length to prevent the snap-back effect in a bilinear
softening law yields

𝑙∗𝑀𝑐−2
= min(𝑙∗𝑀𝑐−2.1

, 𝑙∗𝑀𝑐−2.2
). (F.5)
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For example, the critical characteristic element in the longitudinal tensile direction reads

𝑙∗𝑀𝑐−2
= min (

2𝐸11𝑓𝒢𝑋𝑇
𝒢𝑋𝑇

𝑋2
𝑇(1 − 𝑓𝑋𝑇

) ,
2(1 − 𝑓𝒢𝑋𝑇

𝑓𝑋𝑇
− 𝑓𝒢𝑋𝑇

)𝐸11𝒢𝑋𝑇

𝑋2
𝑇𝑓𝑋𝑇

2 ) , (F.6)

where 𝐸11 is the longitudinal Young’s modulus, 𝑋𝑇 and 𝒢𝑋𝑇
are the longitudinal tensile

strength and fracture toughness, respectively, and 𝑓𝑋𝑇
and 𝑓𝒢𝑋𝑇

are the portions of 𝑋𝑇

and 𝒢𝑋𝑇
, respectively, see Fig. B.1.

F.3 Critical characteristic length IM7/8522
unidirectional prepreg system

This section explains the procedure to determine the critical length for a specific material
system. The selected material system in this appendix is the IM7/8552 unidirectional
prepreg system, which is used in the main chapters of this document. Firstly, Eq. (F.1)
is employed to calculate the critical length of 𝑙∗𝑡 (for the transverse direction) used in
Eq. (B.31) and the one of 𝑙∗𝑠ℓ

(for the longitudinal shear direction) used in Eq. (B.41).
Then, the critical characteristic length of 𝑙∗ℓ for the longitudinal tensile and compressive
damage variables in Eq. (B.24) and Eq. (B.22), respectively, is calculated using Eq. (F.6).
Table F.1 summarises 𝑙∗𝑀𝑐

for each direction with the material properties listed in Table 2.3.
Finally, the critical characteristic element length for the selected material is defined as
the minimum value listed in Table F.1. For the IM7/8522 material system, the critical
characteristic element length is determined as 0.99 mm from the transverse direction.

Table F.1.: Critical characteristic element length to prevent the snap-back effect in each direction.

Description Symbol Value Unit

Longitudinal tensile direction First segment 𝑙∗ℓ
3.88 mm

Second segment 62.11 mm

Longitudinal compressive direction First segment 𝑙∗ℓ
11.00 mm

Second segment − mm
Longitudinal shear direction 𝑙∗𝑡 1.31 mm
Transverse direction 𝑙∗𝑠ℓ

0.99 mm
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GVerification of the implementation
of the constitutive model
The verification of the implementation of the constitutive model under quasi-static loading
rates in a user material subroutine is presented in this appendix. The model is implemented
in a VUMAT Fortran subroutine to be used in Abaqus/Explicit solver. The implementation
is verified using loading conditions with known solutions following ASME [112]. The
numerical results are obtained from a Finite Element (FE) model, which is defined with a
Gauss-point loaded under the corresponding loading states depending of the virtual test. In
some cases, the known data are the inputs of the constitutive model (e.g. the compressive
tensile yield stress (𝑌𝐶𝑃) vs. equivalent plastic strain ( ̄𝜀𝑝) curve is the known data used
to compare to the transverse compressive virtual test in the plasticity verification, see
Fig. G.3).

The material properties used in this verification analysis are summarised in Table 2.3 and
the curves of the transverse tensile and compressive yield stresses and the longitudinal
shear yield stress are presented in Fig. 2.7. A 3D eight-node C3D8R solid element with
reduced integration and a size of 0.1 mm × 0.1 mm × 0.1 mm is employed. The virtual
tests are carried out with non-geometric linearities disabled. The verification of the
plasticity modelling is presented in the first section of this appendix, see Appendix G.1.
The verification of the damage modelling using the original constitutive model presented
in Chapter 2 is then reported in Appendix G.2. Finally, the results of the verification
analysis using the enhanced constitutive model presented in Chapter 3 are presented in
Appendix G.3.

G.1 Plasticity modelling
The virtual tests performed to verify the implementation of the plasticity model are listed
in Table G.1. In this case, the damage variables are set equal to 0 (𝑑𝑀 = 0) to avoid the
degradation of the elastic material properties. Therefore, elastic behaviour is obtained for
the longitudinal virtual test, see Figs. G.1 and G.2. However, the loading states governed
by the matrix show a non-linear response due to the plasticity, see Figs. G.1–G.8. After
conducting the virtual tests, it can be concluded that the plasticity model is properly
implemented since the numerical results match the known data in all the analysed cases.
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Table G.1.: Virtual tests performed to verify the implementation of the plasticity model in a
user material subroutine.

Loading state Figure
Longitudinal compression Fig. G.1
Longitudinal tension Fig. G.2
Transverse compression Fig. G.3
Transverse tension Fig. G.4
Biaxial transverse compression Fig. G.5
Biaxial transverse tension Fig. G.6
Longitudinal shear Fig. G.7
Transverse shear Fig. G.8

00

Figure G.1.: The stress vs. strain curve obtained from a longitudinal compressive virtual test.
The cross indicates the longitudinal compressive strength 𝑋𝐶.
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00

Figure G.2.: The stress vs. strain curve obtained from a longitudinal tensile virtual test. The
cross indicates the longitudinal tensile strength 𝑋𝑇.

00 00

Figure G.3.: The stress vs. equivalent strain curve ( ̄𝜀𝑝) obtained from transverse compressive
virtual tests.
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00 00

Figure G.4.: The stress vs. equivalent strain curve ( ̄𝜀𝑝) obtained from transverse tensile virtual
tests.

00 00

Figure G.5.: The stress vs. equivalent strain curve ( ̄𝜀𝑝) obtained from biaxial transverse com-
pressive virtual tests.

00 00

Figure G.6.: The stress vs. equivalent strain curve ( ̄𝜀𝑝) obtained from biaxial transverse tensile
virtual tests.
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00 00

00 00

Figure G.7.: The stress vs. equivalent strain curve ( ̄𝜀𝑝) obtained from longitudinal shear virtual
tests.

00 00

Figure G.8.: The stress vs. equivalent strain curve ( ̄𝜀𝑝) obtained from transverse shear virtual
tests.
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G.2 Damage modelling using the original model
The verification analysis of the damage model is carried out by disabling the plasticity
model, in this case the yield function is set equal to -1 (𝜙𝑝 = −1). Table G.2 summarises
the virtual tests carried out to verify the implementation of the damage model presented
in Chapter 2. The first cross marker of the known data of the analysed virtual tests is
defined at (0, 0). Then, the second cross marker is obtained at (𝜎𝑢/𝐸𝑖𝑗, 𝜎𝑢), where 𝜎𝑢

and 𝐸𝑖𝑗 are the corresponding strength and Young’s modulus, respectively. Finally, the
rest of the cross markers are defined using the corresponding softening law and fracture
toughness.

Table G.2.: Virtual tests performed to verify the implementation of the damage model in a user
material subroutine using the original constitutive model proposed in Chapter 2.

Loading state Figure
Longitudinal compression Fig. G.9
Longitudinal tension Fig. G.10
Transverse compression Fig. G.11
Transverse tension Fig. G.12
Biaxial transverse compression Fig. G.13
Biaxial transverse tension Fig. G.14
Longitudinal shear Fig. G.15
Transverse shear Fig. G.16

The softening law for the transverse shear and biaxial tests are not explicitly defined,
hence no known data are presented in this region for these tests. The transverse shear
strength is obtained from Eq. (5.1) for a given failure envelope shape coefficient 𝜇𝑡 as

𝑆𝑇 =
𝑌𝐶𝑌𝑇

𝑌𝐶 + 𝑌𝑇
√1 + 𝜇𝑡, (G.1)

where 𝑌𝑇 and 𝑌𝐶 are the transverse tensile and compressive strengths, respectively. The
biaxial transverse tensile strength is calculated from Eq. (5.2) for a given 𝜇𝑡 as

𝑌𝑇 𝐵 =
𝑌𝐶𝑌𝑇

(𝑌𝐶 + 𝑌𝑇)√ 𝜇𝑡
1+𝜇𝑡

+ 𝑌𝐶 − 𝑌𝑇

, (G.2)

and the biaxial transverse compressive strength is calculated from Eq. (5.3) for a given 𝜇𝑡

as
𝑌𝐶𝐵 =

𝑌𝐶𝑌𝑇

(𝑌𝐶 + 𝑌𝑇)√ 𝜇𝑡
1+𝜇𝑡

− 𝑌𝐶 + 𝑌𝑇

. (G.3)
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The numerical results obtained from loading cases analysed are in agreement with the
corresponding known data, see Figs. G.12 and G.14–G.16.

The longitudinal damage variable (𝑑ℓ) is activated in the longitudinal compressive test
(see Fig. G.9), but also the transverse damage variables (𝑑𝑡, 𝑑𝑠ℓ and 𝑑𝑠𝑡) since large values
of the transverse principal components of the effective stress tensor (�̃�22 and �̃�33) are
obtained. Under longitudinal compressive loading conditions, only 𝑑ℓ should be non-null
at the Gauss-point level. This limitation is present in constitutive models that use the
effective stress tensor, and is solved in Chapter 3. In the longitudinal tensile test, the
longitudinal tensile damage variable is activated as well as the longitudinal shear damage
variable (𝑑𝑠ℓ) due to the definition of 𝑑𝑠ℓ in Eq. (2.33), see Fig. G.10. Additionally, the
remaining damage variables are also non-null due to the limitation explained previously, as
in the longitudinal compressive test. This issue is also solved with the constitutive model
proposed in Chapter 3.

00

Figure G.9.: The stress vs. strain curve obtained from a longitudinal compressive virtual test
using the original constitutive model proposed in Chapter 2. The damage variables
curves are obtained from the finite element (FE) model.
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00

Figure G.10.: The stress vs. strain curve obtained from a longitudinal tensile virtual test using
the original constitutive model proposed in Chapter 2. The damage variables
curves are obtained from the finite element (FE) model.

The original constitutive model does not explicitly impose the transverse compressive
softening law as no damage variable is calibrated with this test, see Chapter 2. Therefore,
the softening shape is instead determined by the definition of 𝑑𝑠ℓ∗ from a longitudinal
shear tensile test and 𝑑𝑡 from a transverse tensile test, see Fig. G.11. In addition, the
transverse damage variable (𝑑𝑡) is not activated in the transverse compressive test since
the transverse hydrostatic (𝑝𝑡) is less than zero, therefore 𝑑𝑡 = 0, see Eq. (2.32). However,
all transverse damage variables (𝑑𝑡, 𝑑𝑠𝑡 and 𝑑𝑠ℓ) are activated in the transverse tensile
tests since they are defined as a function of the transverse threshold elastic domain (𝑟𝑡)
and 𝑝𝑡 > 0, see Fig. G.12.
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00 00

Figure G.11.: The stress vs. strain curve obtained from transverse compressive virtual tests
using the original constitutive model proposed in Chapter 2. The damage variables
curves are obtained from the finite element (FE) model.

00 00

Figure G.12.: The stress vs. strain curve obtained from transverse tensile virtual tests using the
original constitutive model proposed in Chapter 2. The damage variables curves
are obtained from the finite element (FE) model.

Under biaxial transverse compressive loading conditions, 𝑝𝑡 < 0 and, thus, 𝑑𝑡 = 0. At
certain strain of the biaxial compressive test, 𝑑𝑠𝑡 = 1 resulting in the components of the
elasticity tensor being ℂ𝑒23

= ℂ𝑒22
≠ 0, see Fig. G.13. Consequently, the load-carrying

capacity at the Gauss-point level under biaxial transverse compressive conditions is always
non-zero. However, in the biaxial transverse tensile, ℂ𝑒23

and ℂ𝑒22
tend to zero since

𝑝𝑡 > 0 and, hence, 𝑑𝑡 > 0, see Fig. G.14.
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00 00

Figure G.13.: The stress vs. strain curve obtained from biaxial transverse compressive virtual
tests using the original constitutive model proposed in Chapter 2. The damage
variables curves are obtained from the finite element (FE) model.

00 00

Figure G.14.: The stress vs. strain curve obtained from biaxial transverse tensile virtual virtual
tests using the original constitutive model proposed in Chapter 2. The damage
variables curves are obtained from the finite element (FE) model.

Linear softening response is observed in the longitudinal shear test and in the transverse
shear test, see Figs. G.15 and G.16. In both tests, 𝑑𝑡 is not activated since 𝑝𝑡 = 0. After
conducting the virtual tests, it can be concluded that the damage model using the original
model is properly implemented since the numerical results also match the known data in
all the analysed cases.
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00 00

Figure G.15.: The stress vs. strain curve obtained from longitudinal shear virtual tests using the
original constitutive model proposed in Chapter 2. The damage variables curves
are obtained from the finite element (FE) model.

00 00

Figure G.16.: The stress vs. strain curve obtained from transverse shear virtual tests using the
original constitutive model proposed in Chapter 2. The damage variables curves
are obtained from the finite element (FE) model.
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G.3 Damage modelling using the enhanced model
This section presents the verification analysis of the damage modelling from the enhanced
constitutive model proposed in Chapter 3. The main difference between the original
and enhanced models is the evaluation of the transverse loading function with respect
to the effective stress tensor or the nominal stress tensor, respectively. Therefore, the
predicted mechanical response obtained from each constitutive model under certain loading
conditions differs. This section analyses the cases with different behaviour as presented in
Appendix G.2. Table G.3 summarises the virtual tests carried out.

Table G.3.: Virtual tests performed to verify the implementation of the damage model in a user
material subroutine using the enhanced constitutive model proposed in Chapter 3.

Loading state Figure
Longitudinal compression Fig. G.17
Longitudinal tension Fig. G.18
Transverse compression Fig. G.19

In the longitudinal compressive test, the longitudinal damage variable (𝑑ℓ) is activated, see
Fig. G.17. Unlike the results in Fig. G.9, the transverse damage variables (𝑑𝑡, 𝑑𝑠ℓ and 𝑑𝑠𝑡)
remain null under longitudinal compressive loading conditions. Similar to compression, 𝑑ℓ

is non-null in the longitudinal tensile test, and the rest of the damage variables are equal
to zero except to 𝑑𝑠ℓ due to its definition in Eq. (2.33), see Fig. G.18.

In the enhanced model, the softening response of the transverse compressive test (see
Fig. G.11) is not purely linear as assumed in Eq. (3.4) since no damage variables are
calibrated with this test. Therefore, this softening is not explicitly imposed. No significant
discrepancies between the damage energy dissipated and the transverse compressive
fracture toughness defined are found with this assumption. In this case, the relative error
of the damage energy dissipated with respect to the fracture toughness defined is equal to
2.51%.
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00

Figure G.17.: The stress vs. strain curve obtained from a longitudinal compressive virtual
test using the enhanced constitutive model proposed in Chapter 3. The damage
variables curves are obtained from the finite element (FE) model.

00

Figure G.18.: The stress vs. strain curve obtained from a longitudinal tensile virtual test using
the enhanced constitutive model proposed in Chapter 3. The damage variables
curves are obtained from the finite element (FE) model.
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00 00

Figure G.19.: The stress vs. strain curve obtained from transverse compressive virtual tests using
the enhanced constitutive model proposed in Chapter 3. The damage variables
curves are obtained from the finite element (FE) model.
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HPositive semi-definite matrix
A positive semi-definite or non-negative definite matrix is a real symmetric matrix whose
all eigenvalues are equal to or greater than zero. The properties of this type of matrices
are [274]:

i) All eigenvalues are equal to or greater than zero.

ii) For all non-null vectors ⃗𝑣 ∈ ℝ𝑛, the following inequality is meet:

⃗𝑣𝑇𝔸 ⃗𝑣 ≥ 0, (H.1)

where 𝔸 is a positive semi-definite matrix.

iii) The sum of positive semi-definite matrices is a positive semi-definite matrix.

iv) If 𝔸 and 𝔹 are positive semi-definitive matrices and

𝔸𝔹 = (𝔸𝔹)𝑇, (H.2)

then,
𝔸𝔹 ≥ 0. (H.3)

v) If a positive semi-definite matrix is invertible, its inverse is also positive semi-definite
matrix.
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IStrain-crack opening displacement
relationship
The relationship between the crack opening displacement (𝜔) and strain in a continuum
damage model is presented in this appendix. The Crack Band model [89] is based on
the growth of a localisation band or crack within each mesh finite element. This method
allows a cohesive zone model to be solved without introducing an interface element; when
the stress reaches the strength, the elastic properties of the material are degraded. The
total displacement of a mesh finite element without plasticity is

𝑢 ∶= 𝜔 + 𝑢𝑒, (I.1)

where 𝜔 is the crack opening displacement and 𝑢𝑒 is the elastic displacement, see Fig. I.1.
Therefore, the total strain due to damage can be calculated by dividing Eq. (I.1) by the
characteristic element length (𝑙∗)

𝜀 ∶= 𝜔
𝑙∗ + 𝜀𝑒, (I.2)

where 𝜺𝑒 is the elastic strain which can be calculated from the Hooke’s law as

𝜺𝑒 =
𝜎
𝐸 , (I.3)

where 𝜎 is the stress component and 𝐸 is the Young’s modulus. In addition, the stress
can be written from the continuum damage model as

𝜎 = (1 − 𝑑𝑀)𝐸𝜀, (I.4)

where 𝑑𝑀 is the damage variable to degrade the elastic material properties. Therefore,
the crack opening displacement can be written as a function of the strain by introducing
Eq. (I.4) into Eq. (I.3) and, then, combining it with Eq. (I.5),

𝜔 = 𝑑𝑀𝑙∗𝜀. (I.5)

Note that, 𝜀 in Eq. (I.5) is the strain including elastic and cracking strains. In the rest
of document, this 𝜀 matches elastic strain (𝜀𝑒), since 𝜀𝑒 contains both the elastic and
cracking strain (in the rest of the document 𝜀 = 𝜀𝑒).
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Figure I.1.: Schematic representation of a crack band in a continuum damage model: a) undam-
aged and unloaded mesh finite element, and b) damaged and loaded mesh finite
element.
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