

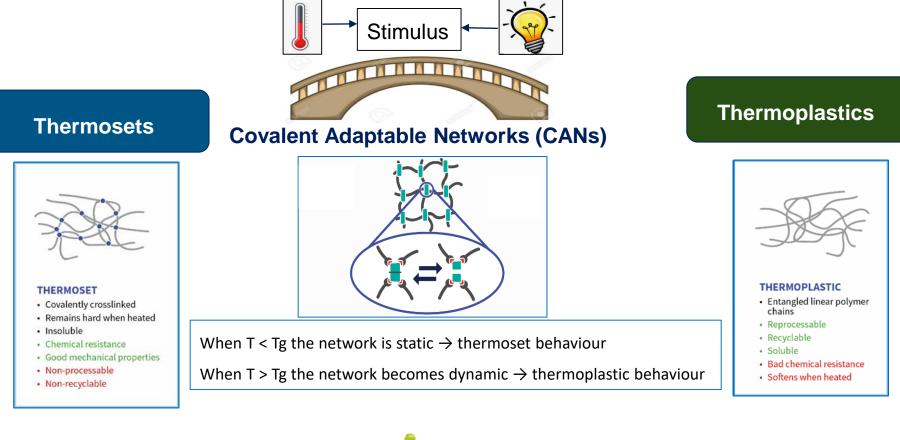
Sustainable matrices for structural composites: processing and mechanical performance

Aromatic disulfide containing vitrimers: Promising materials towards fast commercialization (enduring prepreg (EPP) concept)

<u>Alaitz Rekondo*</u> Alaitz Ruiz de Luzuriaga, Aratz Genua, Ibon Aranberri, Nerea Markaide

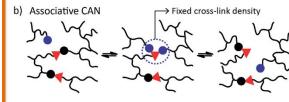
Contact: arekondo@cidetec.es

Outline


- Introduction & concepts
- 3R concept
- Enduring prepreg concept
- Conclusions

Thermoplastic vs. Thermoset polymers

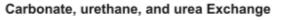
surface engineering


→ Loss of network integrity

Dissociative CANs

- Very fast topology rearrangement (stress relaxation and flow)
- Temporary loss of crosslinks results into sudden viscosity drop (similar to thermoplastics).
- Upon cooling the crosslinks are formed again recovering thermoset properties (stiffness and insolubility)
- Reprocessable when heating

- Do not depolymerize upon heating.
- They maintain fixed crosslinking density.
- Covalent bonds are only broken when new ones are formed, making these networks permanent as well as dynamic.
- Gradual viscosity decrease upon heating (similar to silica)
- Also known as vitrimers
- Vitrimers (novel concept introduced for polymers by Ludwick Leibler)


a) Dissociative CAN

Main consequences: distinct viscoelastic behaviour during the thermal reprocessing step

Exchangeable chemical bonds

$$\overset{O}{R^1}_{X} \overset{O}{\searrow}_{Y'} \overset{R^2}{R^2} + \overset{O}{Y - R^3} \overset{O}{=} R^1_{X} \overset{O}{\swarrow}_{Y'} \overset{R^3}{R^3} + \overset{O}{Y - R^2}$$

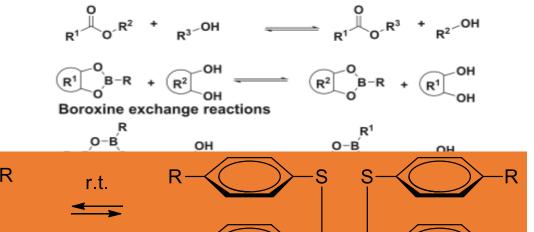
Carbonate: X = Y = O; Urethane: X = O, Y = NH; Urea: X = Y = NH

Transimination

Tran

Ŕ^{Ň→}

Silv


OR¹

R¹O-Si-OR¹ +

OR¹

в

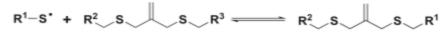
$$R^{1} \sim N^{-R^{2}} + R^{3} - NH_{2} = R^{1} \sim N^{-R^{3}} + R^{2} - NH_{2}$$

Imine metathesis

Transesterification

$$R^{1} \sim N^{R^{2}} + R^{3} \sim N^{R^{4}} =$$

Dioxaborolane metathesis


Olefin metathesis

Disulfide exchange

 $R^{1^{-S}}S^{-R^{2}} + R^{3^{-S}}S^{-R^{4}} = R^{1^{-S}}S^{-R^{4}} + R^{3^{-S}}S^{-R^{2}}$

Radical chain transfer

Patent application:

R²-OF

EP 3 149 065 B1 – "Thermomechanically reprocessable epoxy composites and processes for their manufacturing".

R¹-OH

A. Rekondo, R. Martin, A. Ruiz de Luzuriaga, G. Cabañero, H. J. Grande and I. Odriozola, Mater. Horiz., 2014, 1, 237-240

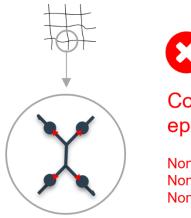
R'

A. Ruiz de Luzuriaga et al., Material Horizon, 2016, 3, 241.

OR²

R¹O-Si-OR¹ +

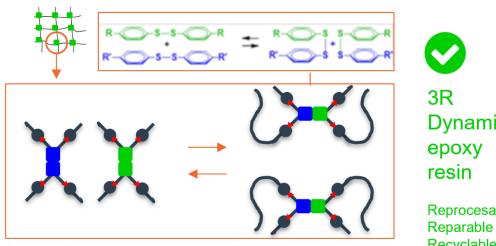
OR¹



3R technology is based on the reversibility of aromatic disulfide bond:

Schematic representation of conventional epoxy vs 3R dynamic resin.

Conventional polymer network



Conventional epoxy resin

Non-Reprocesable Non-Reparable Non-Recyclable

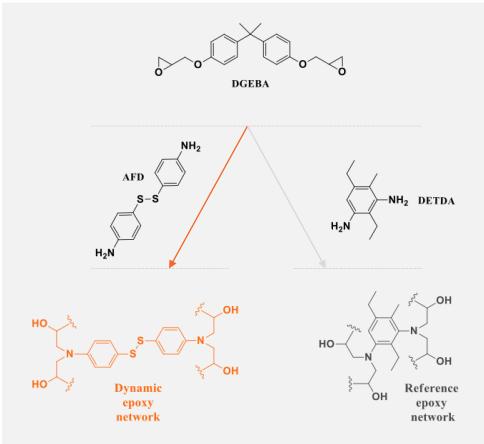
Permanent Crosslinks

Dynamic polymer network

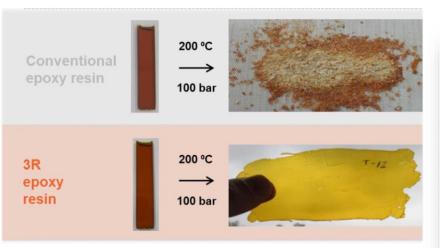
Dynamic Crosslinks based on aromatic disulfide exchange

Dynamic

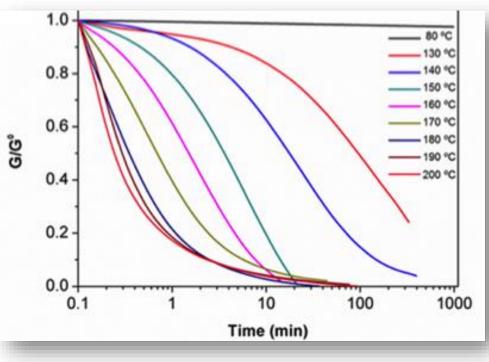
Reprocesable Recyclable



EP 3 149 065 B1 – "Thermomechanically reprocessable epoxy composites and processes for their manufacturing".


	Reference network	Dynamic network
Tg (DSC) [⁰C]	127	130
Tg (DMA) [⁰C]	130	130
Td [⁰C]	350	300
E´(25⁰C) [GPa]	2,5	2,6
E´(150⁰C) [MPa]	20	20
Stress [MPa]	81	88
Strain [%]	7,3	7,1

Comparable thermal and mechanical properties using our dynamic hardener instead of a conventional hardener.



• At temperatures above Tg, **the dynamic epoxy network** is able to completely relax stress and flow.

• The obtained relaxation times ranged from 3 hours at 130 °C to 20 seconds at 200 °C.

Characterization of the stress relaxation by DMA

A. Ruiz de Luzuriaga et al., Material Horizon, 2016, 3, 241.

Dynamic fibre reinforced composites based on aromatic disulfide

3R Composites

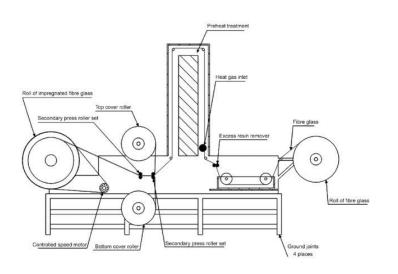
- A new generation of Reprocessable, Repairable and Recyclable highperformance fibre-reinforced thermoset composites.
- They can be manufactured following traditional methods but the resulting material can be reprocessed, repaired and recycled.

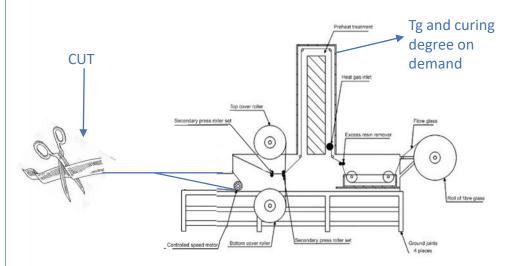
Enduring PrePreg concept (EPP)

ENDURING PREPREG CONCEPT

- Traditional prepregs need to be stored in the freezer to stop the curing reaction
- Traditional prepregs have an out time of a few weeks at RT and a shelf life of 1 year at 20 °C.
- EPP can be stored at RT for years without loosing its reprocessability.
- EPP storage is much cheaper than conventional thermoset prepregs.
- EPP shipment has not any extra shipping cost
- The storage at RT offers clear logistical advantages
- Compression forming of pre-cured materials can take minutes to obtain high performance well consolidated parts.
- They can be like thermoplastic organosheets.

3R enduring prepreg (EPP)



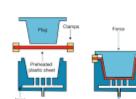


cidetec>

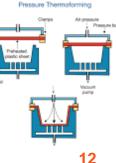
CONVENTIONAL PREPREG

ENDURING PREPREG PROCESS

Conventional prepregs are stored in the form of rolls and need to be stored in a freezer (-20 °C).



Enduring prepregs can be stored in the form of rolls, but also as flat laminates, at RT (similar to thermoplastic organosheets). The Tg and curing degree of the input material can be adjusted on request.


EPPs can be thermoformed to obtain the desired parts using high production rate processes.

SUSMAT_x

Sustainable matrices for structural composites: processing and mechanical performance

Mechanical Thermoforming

ThermoformAble, Bondable, Repairable smart ePOXY resin for Aero structures

Input material: EPPs with different curing degress and initial Tg were tested **Final material:** Tg = 180 °C

• T = 210 °C for 3 min and after switch off the heating and put the set point at 25 °C ; P = 50 bar

Sample	Tg (⁰C)	Tg (°C) Curing degre (%) Result	
1	55,36	58,98	Good
2	174	98,19	Good (some voids are present)

58,98 % of curing rate before pressing

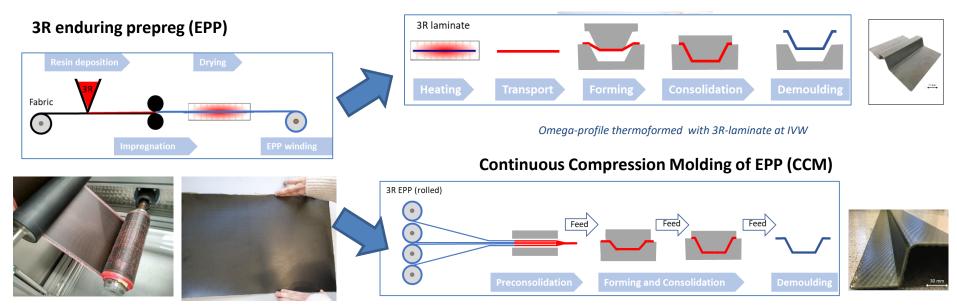
Results: prepegs sheets show **good adhesion**, therefore it has a good rigidity and mechanical properties.

Prepreg reference: AIR-C-PP-F32-2 (V7)

- Sample dimensions = 13 cm x 8 cm
- % resin = 36,67 %
- layers = 6
- Doctor Blade Gap = 0,3 mm initial
- Teflon above and below prepreg

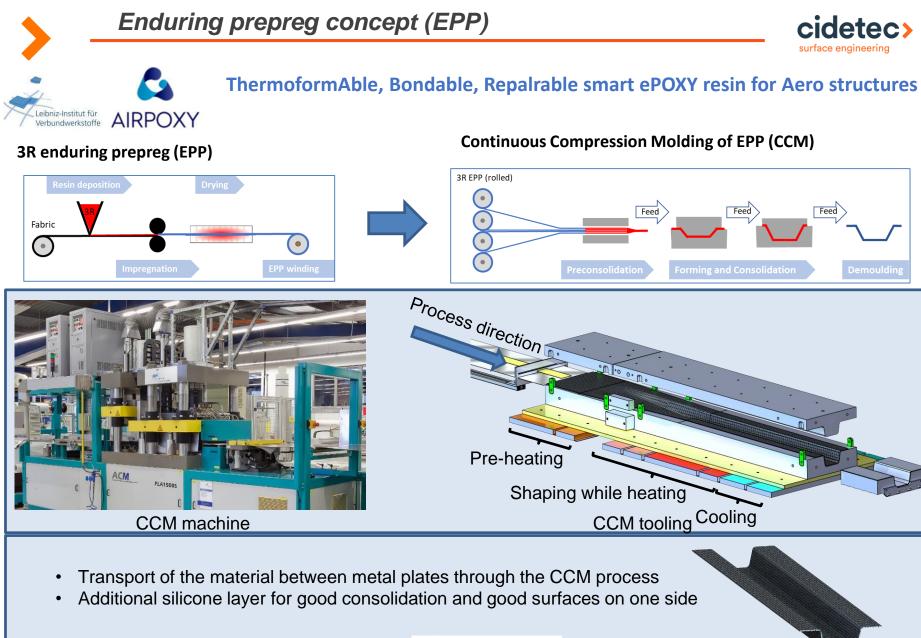
98,19 % of curing rate before pressing

Results: Good aspect but some delaminations appear when bending, higher press time and pressure are required


ThermoformAble, Bondable, Repairable smart ePOXY resin for Aero structures

Two thermofoming processes studied with EPP input material:

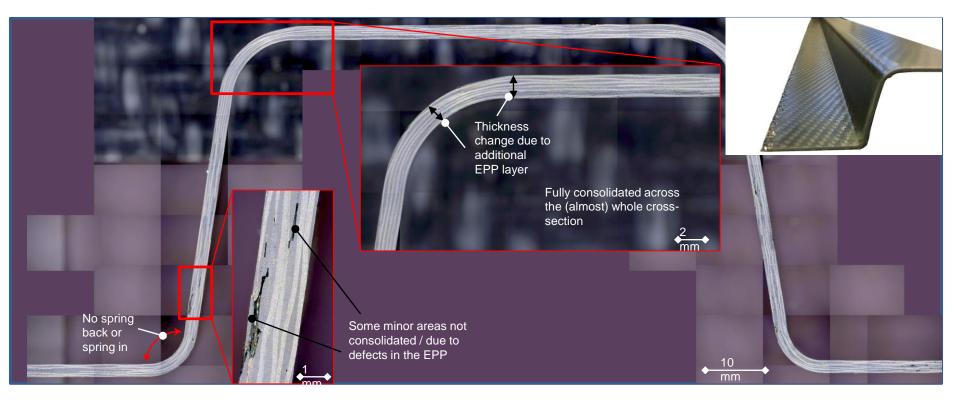
- 1. Discontinuous compression moulding (DCM)
- 2. Continuos compressiong moulding (CCM)


Discontinuous Compression Molding of laminate (DCM)

Omega-profile thermoformed with 3R-EPP in continuous process at IVW

processing and mechanical performance

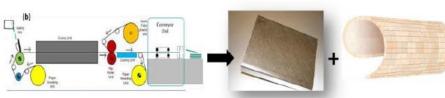
Longitudinal stiffener

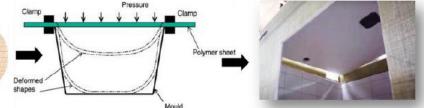


ThermoformAble, Bondable, Repairable smart ePOXY resin for Aero structures

cidetec>

Continuous Compression Moulding of Longitudinal stiffener





BIOcomposites in smart plastic transformation processes to pave the way for the large-scale **UPTAKE** of sustainable bio-based products

EPP FOR THE MANUFACTURING OF MODULAR BATH CEILINGS

Balsa core + flax pre-impregnated with CAN-3R-bioepoxy Layer/Sandwich configuration

Thermoforming of the pre-impregnated organosheet into final product structure (flat panel) for pre-fabricated bathroom pods (ceiling)

CURRENT MANUFACTURING PROCESS

- Handmade and slow process.
- Non-recyclable materials.
- Generates a lot of waste.
- Refrigeration/freezer to store the resin..

BIO-UPTAKE PROCESS

- Semi-automated process, 30% faster.
- Recyclable and reprocessable materials
- Minimisation of waste.
- No need for refrigeration/freezer.

Enduring prepreg concept (EPP)

BIO-UPTAKE

BIOcomposites in smart plastic transformation processes to pave the way for the large-scale **UPTAKE** of sustainable bio-based products

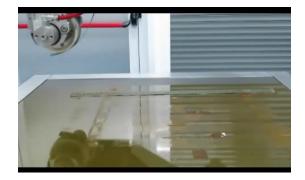
T= 150 °C P = 50 bar

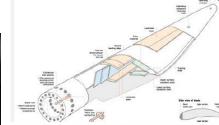
Input material Tg: 100 °C Curing degree: 100 %

NEW GENERATION OF OFFSHORE TURBINE BLADES WITH INTELLIGENT ARCHITECTURES OF HYBRID, NANO-ENABLED MULTI-MATERIALS VIA ADVANCED MANUFACTURING

Input material Tg: 55 °C Curing degree: 58 %

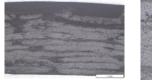
'This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 953192".





NEW GENERATION OF OFFSHORE TURBINE BLADES WITH INTELLIGENT ARCHITECTURES OF HYBRID, NANO-ENABLED MULTI-MATERIALS VIA ADVANCED MANUFACTURING

> Automatic tape layering (ATL)



Parameters						
Heating Source	Laser					
Power (W)	900					
Speed (mm/seg)	150					
Pressure (N)	360					
Ta (°C)	160					
N⁰ Layer	10					
Thickness (mm)	2					

ILSS Test (D2344) 20 MPa 200 N Failure: IS

	Post- Processing AFP	Tg (°C)	α (%)	Tª ONSET (⁰C)	Tª Descomp. (⁰C)	Resin (%)	Fibre (%)
der grant agreement No 9531	U	99.5	100	260.6	347.3	33.6	71.76

"This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 9531

-EPP allows storage at RT lowering storage price.

-EPP can be process like thermoplastic organosheets.

- Compression forming of pre-cured materials can take minutes to obtain high performance well consolidated parts.

- EPPs for ATL process have been developed.

- High energy savings related to part production.

- New 3R composites can be: reprocessed, repaired and recycled.

surface engineering

a greater future today