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ABSTRACT: Nature’s enzymes exhibit remarkable substrate specificity and catalytic efficiency by transforming substrates within
confined active sites. To emulate this, various molecular containers, including zeolites, cyclodextrins, calix[n]arenes, cavitands,
cucurbit[n]urils, metal−organic frameworks, covalent organic frameworks, and carbon nanotubes (CNTs), have been explored.
Among these, CNTs are notable for their unique physical and chemical properties, enabling them to control reactions through
spatial confinement. This study investigates the effect of CNT encapsulation on metal-free 1,3-dipolar Huisgen cycloaddition
reactions between benzyl azide and substituted alkynes. Experimental results showed that CNTs significantly enhance the selectivity
for the 1,4-triazole product. Computational studies using density functional theory further elucidate the impact of CNT confinement
on reaction mechanisms and regioselectivity. The findings reveal that confinement within CNTs alters potential energy surfaces,
favoring 1,4-triazole formation over 1,5-triazole, driven by steric and electronic factors. Additionally, comparative analyses highlight
the influence of CNT diameter on activation energies and product stability, particularly with energy decomposition analysis and
noncovalent interaction plots. This research underscores the potential of CNTs as nanoscale reactors for controlled synthesis,
providing insights into the design of new catalytic systems and advancing the field of molecular encapsulation for selective organic
transformations.

■ INTRODUCTION
Nature has developed enzymes to recognize specific substrates
and transform them inside well-defined pockets that ensure
product selectivity and enhance reaction rates.1,2 To mimic
nature, there is currently a wide selection of potential
candidates, including zeolites,3,4 cyclodextrins,5,6 calix[n]-
arenes,7,8 cavitands,9−11 cucurbit[n]urils,12,13 and more
recently, even metal−organic frameworks and covalent organic
frameworks, despite their less potential.14,15 All of them have
been exploited or designed to control, through the
encapsulation of guest molecules inside their cavities, kinetics
and thermodynamics of a large number of chemical trans-
formations.16 The cavity environment is capable of altering the
potential energy surface (PES) of the reaction, affecting
kinetics and selectivity, and promoting spatial confinement as a

valuable methodology for controlling organic reactivity.17

Actually, another class of molecular containers are carbon
nanotubes (CNTs),18,19 which can be seen as hollow
nanocylinders, generated by rolling a graphene sheet.20,21

The peculiar physical and chemical properties of CNTs can be
exploited to govern confined reactions.22 In addition, depend-
ing on the diameter of the CNT,23 different-sized molecules
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can be encapsulated,24−27 allowing the desired molecules to be
selectively trapped,28 forming the bulk phase. Studies on metal-
based catalytic reactions inside CNTs are mainly reported in
the literature,29−31 but only a limited number of metal-free
CNT encapsulated reactions have been investigated.32,33 The
discovery of unique oligomers and polymers,34 graphene,35−37

inorganic nanoribbons,38 nanotubes,39,40 and molecular nano-
diamonds41 encapsulated within CNTs highlights the potential
of narrow nanotubes as nanoscale reaction vessels.42 These
tubes control the formation of one-dimensional macro-
molecular products that are difficult to produce by using
other methods. However, strong interactions between the
nanotube host and guest nanostructures prevent the extraction
and characterization of the products, hindering preparative
synthesis due to the product inhibition effect.

Recently, Rance and co-workers43 investigated the effect of
encapsulating metal-free 1,3-dipolar Huisgen cycloaddition
reactions44,45 described in narrow CNTs,46 by performing the
reaction between benzyl azide (1,3-dipole) and substituted
alkynes (dipolarophiles). From a mechanistic point of view, the
1,3-dipolar cycloadditions are pericyclic reactions, where the
2π electrons of the dipolarophile and the 4π electrons of the
1,3-dipole generate a six-electron 5-membered-ring transition
state (TS) in an aromatic patterned structure.47 These
reactions occur in the bulk phase at high temperatures and
generate a mixture of regioisomers (1,4 and 1,5-triazoles), see
Scheme 1. For instance, to prove the effect of increasing the

steric bulk of the alkyne reactant, in the case of p-terphenyl, S1,4
regioselectivity increased upon 11% inside the nanotube, or,
with the aim to test the effect of the electronic effects, 4-
nitrophenyl, also enclosed in Scheme 1, increased the S1,4
regioselectivity up to 18%. Thus, in general, the presence of
CNT enhances the selectivity for the 1,4-triazole product by up
to 55% with respect to the bulk phase (benzene).46 To explain
this experimental evidence, the authors suggested that product
geometry, steric effects, and polarizability of the CNT are
responsible for the increased regioselectivity inside the CNT.
In extreme cases, the most significant increase in S1,4
regioselectivity upon confinement was noted for the alkyne
featuring the most electron-withdrawing para-substituent,
particularly exemplified by 4-nitrophenylacetylene. Conversely,
the opposite trend was observed for p-terphenyl. This study
was nearly revolutionary since it was the second apart from the
former organic chemical reaction carried out experimentally
inside narrow CNTs without the aid of a catalyst: the aromatic
halogenation reaction.48 This reaction demonstrated that the
intense spatial constraints within narrow single-walled CNTs
(SWCNTs) guided the site-selective electrophilic attack of the
confined aromatic guest reactant. Consequently, there was a

significant increase in the formation of the preferred
linearpara-regioisomer, with the yield rising to an impressive
97%. This observation underscored the remarkable influence of
nanotube confinement on reaction outcomes, offering
intriguing possibilities for controlled synthesis within nanoscale
environments. Next, computational studies complemented the
understanding of confining reactions inside several types of
CNTs. In particular, apart from a descriptive work,49 specially
by Yumura et al.,50−52 the reactivity was unveiled inside
CNTs,52−56 like the general Diels−Alder57 and SN2
reactions,58−61 or the rather specific aromatic bromination of
N-phenylacetamide inside CNTs.62 In particular, Fukuura and
Yumura conducted density functional theory (DFT) calcu-
lations to analyze 1,3-dipolar cycloadditions involving phenyl-
acetylene and phenylazide or benzylazide within CNTs with
diameters ranging from 10 to 14 Å. The study focused on
optimizing the structures of reaction species, constructing PESs
in terms of the reaction pathway. Key parameters such as
activation energy and stability of the products were determined
to understand the regioselectivity of these cycloadditions.
Comparative analysis with gas-phase reactions was undertaken
to discern the impact of nanotube confinement on the
regioselectivity modulation. Results revealed that nanotube
confinement significantly favors the formation of 1,4-triazoles
over 1,5-triazoles, enhancing both kinetic and thermodynamic
control. Performed energy decomposition analyses also
identified two main factors affecting regioselectivity: destabi-
lization of the reactant complex (RC) in 1,4-approaches and
increased activation energies in 1,5-approaches due to phenyl
overlapping styles dictated by tube diameter. In thin tubes,
repulsive orbital interactions between phenyl rings in 1,5-
approaches led to higher activation energies, favoring 1,4-
triazole formation. Conversely, in both 1,4 and 1,5-approaches,
the stability of products was less affected by phenyl interactions
due to their stacking configuration. Thus, nanotube confine-
ment selectively modulates PESs to promote the formation of
1,4-triazoles, elucidating the role of nanotubes in controlling
regioselectivity in 1,3-dipolar cycloadditions.63

In the present paper, we aim to further clarify, by means of
computational methods, the factors that govern the regiose-
lectivity inside the CNT for the 1,3-dipolar cycloaddition
reactions studied by Rance and co-workers.43 We used either a
full DFT approach to study the reactions in the bulk phase
(benzene) or a hybrid QM/MM approach to investigate
encapsulated reactions. The hybrid methodology was reported
to reliably describe CNT confined reactions,62 and the results
may lead to future predictions.64,65

■ COMPUTATIONAL DETAILS
All DFT calculations were performed using the Gaussian16
package.66 Geometry optimizations utilized the B97 functional,
a hybrid GGA functional originally developed by Becke67,68

and then by Head-Gordon and Chai,69 along with the Grimme
D3 dispersion correction.70 The calculations involved the all-
electron 6-311 + G(d,p) basis set.71,72 Symmetry constraints
were not applied during the optimizations, and the nature of
the stationary points was confirmed through an analytical
frequency analysis. The QM/MM calculations73 were con-
ducted with the electronic embedding and Qeq formalism.
Gibbs free energies at 353.15 K were computed using the B97-
D3 functional74 and the triple-ζ basis set 6-311 + G(d,p) for all
atoms.75 Solvent effects were considered using the universal
solvation model PCM,76−78 with benzene as the solvent. The

Scheme 1. Huisgen Reaction with/without CNTs
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reported Gibbs free energies include electronic energies
obtained at the B97-D3/6-311+G(d,p)(PCM(benzene))//
B97-D3/6-311+G(d,p) level of theory. These values were
corrected for zero-point vibrational energies, thermal correc-
tions, and entropy effects computed at the B97-D3/6-
311+G(d,p) level. The nanotube models are limited to 24 Å
long, as in our previous analyses.62 Moreover, the atoms of the
nanotube are allowed to relax during geometry optimization.
The choice of functional79−81 and basis set65,82 is validated by
previous studies on carbon nanostructures.

A quantitative Kohn−Sham molecular orbital theory in
combination with a quantitative energy decomposition analysis
(EDA) in the gas phase has been performed with the
Amsterdam density functional program.83−85 For such, the
dispersion-corrected DFT at the ZORA-BLYP-D3(BJ)/TZP
level of theory has been used. The interaction energy ΔEint
between these fragments is decomposed into the classical
electrostatic attraction ΔVelstat, Pauli repulsion ΔEPauli between
occupied orbitals, stabilizing orbital interactions ΔEoi, and
dispersion ΔEdisp. The strain energy is the energy difference
between the fully relaxed geometry and that adopted by the
fragments in the interacting system. Atomic charges were
computed with the Voronoi deformation density (Voronoi
deformation density) method.86,87

■ RESULTS AND DISCUSSION
The 1,3-dipolar cycloaddition of benzyl azide to alkynes, also
known as the Huisgen reaction, has been investigated through
DFT calculations in benzene. The model systems under
investigation are formed by the benzyl azide (1,3-dipole) and
the substituted dipolarophiles enclosed in Scheme 2: (i) 4-
nitrophenyl acetylene (system 1), (ii) 4-bromophenyl
acetylene (system 2), (iii) phenyl acetylene (system 3), (iv)
4-methoxyphenyl acetylene (system 4), (v) 4-aminophenyl

acetylene (system 5), and (vi) cyclohexyl acetylene (system 6).
The reaction mechanism of systems 1−6 is studied in bulk
solution and within (8,8) and (10,10) CNTs. The reaction
mechanism is well-known, and in the absence of a metal
catalyst, the formation of a triazole (P) occursviaa synchronous
TS and after the two reactants interact in a RC. However,
depending on how the two molecules are disposed spatially,
the reaction can afford two possible regioisomers, i.e., the 1,4-
triazole and the 1,5-triazole. In the absence of a metal catalyst,
the reaction usually gives a mixture of both regioisomers
without any selectivity.88

Figure 1 shows the two possible reaction pathways in the
case of the reaction of benzyl azide with unsubstituted phenyl

acetylene. As shown in Figure 1, both pathways share a
common RC (ΔG = 5.8 kcal/mol), in which the phenyl ring of
benzyl azide interacts only partially with the aromatic moiety
of phenylacetylene since the methylene unity does not allow a
good overlap between the two phenyl rings. At the same time,
the N1−C5 distance is slightly shorter than the N3−C4
distance (3.450 Å for N1−C5 vs 3.492 Å for N3−C4), and
thus N1 and C5 result more reactive with respect to other
atoms. Following the pathway to form 1,5-triazole (1,5-
pathway), the reactive system goes through TS1,5 (ΔGTS1,5 =
26.3 kcal/mol) where both the azide and the acetylene moiety
bend to shorter N1−C5 and N3−C4 distances. Moreover,
TS1,5 turns out to be asynchronous with the N3−C4 distance,
much shorter than the N1−C5 distance (2.122 Å for the N3−
C4 distance vs 2.273 Å for the N1−C5 distance). In contrast,
following the other possible mechanism (1,4-pathway), the
reactive system must overcome an overall activation energy
barrier of 31.7 kcal/mol passing through TS1,4. Like TS1,5,
TS1,4 is an asynchronous TS with N1−C5 distance shorter
than the N3−C4 distance (2.140 Å vs 2.279 Å, respectively).
However, since the partial interaction between the phenyl rings
is lost, TS1,4 results are destabilized with respect to TS1,5.
Finally, after overcoming the corresponding energy barriers,
the 1,4-triazole P1,4 (ΔGP1,4 = −44.7 kcal/mol) and the 1,5-

Scheme 2. CNTs and Systems 1−6 Figure 1. Reaction profile with relative Gibbs energies (in kcal/mol)
for the cycloaddition reaction between benzyl azide and phenyl-
acetylene.
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triazole P1,5 (ΔGP1,5 = −43.8 kcal/mol) are formed. P1,4 is thus
slightly thermodynamically favored, while P1,5 turns out to be
the kinetic product. However, since the products are almost
isoenergetic, a mixture of both regioisomers is formed. The
reaction profile was then reassessed again, changing the phenyl
acetylene hydrogen in the para position with electron-
withdrawing (systems 1 and 2) and electron-donating
(EDG) (systems 4 and 5) groups.89−91 Last but not least,
steric effects were evaluated by analyzing the reaction of benzyl
azide with 6.

In Table 1, the results are summarized. In terms of kinetics,
each reaction of benzyl azide with the systems tested 1−6 was
kinetically more favored than the reaction with phenyl
acetylene.

In particular, the nitro group is the most stabilizing
substituent in both pathways (ΔΔG⧧ = −6.6 kcal/mol for
1,4-pathway and ΔΔG⧧ = −2.5 kcal/mol for 1,5-pathway) but
losing in terms of regioselectivity since the difference in energy
between TS1,4 and TS1,5 is only 1.3 kcal/mol (5.4 kcal/mol
with phenyl acetylene). On the other hand, with the other
substituents, there are no major changes in the stabilization of
the 1,4-pathway kinetics (ΔΔG⧧ = −3.6, −3.4, and −4.0 kcal/
mol for systems 2, 4, and 5, respectively) and the 1,5-pathway
kinetics (ΔΔG⧧ = −0.7, −0.4, and −1.1 kcal/mol for systems
2, 4, and 5, respectively). System 6, the cyclohexyl acetylene,
still kinetically favors the 1,5-pathway (27.6 kcal/mol for TS1,5
vs 29.2 kcal/mol for TS1,4). However, while TS1,4 is stabilized
by 2.5 kcal/mol with respect to the case of unsubstituted
phenyl acetylene, TS1,5 is destabilized by 1.3 kcal/mol due to
the higher steric hindrance of the cyclohexyl and the loss of
π−π interactions between the phenyl rings. Thermodynami-
cally, the situation is similar. The nitro group in system 1 leads
to more stable products (ΔΔGP1,4 = −2.6 kcal/mol vs ΔΔGP1,5
= −0.9 kcal/mol) with the difference in stability between the
two isomers (ΔΔG = −2.6 kcal/mol) increased with respect to
the unsubstituted case (ΔΔG = −0.9 kcal/mol). A larger
difference in stability can still be found with 2, while with EDG
groups, the same difference remains constant or decreases.
Then, it is worth mentioning that in the case of cyclohexyl
(system 6), the triazole P1,5 results are slightly more stable.
Reactivity inside CNT (8,8). Once the substituent effects

on the reactivity in benzene were analyzed, the same reactions
with systems 1−6 were studied within a (8,8) CNT (see
Scheme 2). Unlike the benzene-phase reaction, the reaction is
a bit more complicated. The reaction still starts with the initial
formation of a RC, but after overcoming the activation barrier
through TS, the product complex PC is formed. Only after
extraction from the nanotube can the triazole be isolated. Since
inside the CNT, the phenyl rings can interact with the
nanotube wall, two possible RCs are now possible, stabilized
by π−π interactions. In one of the RCs, the phenyl rings are on

the same side as in TS1,5, and in the other one, the phenyls
point in opposite directions as in TS1,4. However, for allowing
comparison with benzene-phase reactions, the activation
energy barriers and the product complex stabilities were
calculated taking as a reference the more stable among the two
RC regioisomers. First, the effects of confinement on kinetics
were analyzed, and in Table 2, the activation energy barriers

ΔG⧧
1,4@(8,8) and ΔG⧧

1,5@(8,8) for both pathways within
CNT and the ones ΔG⧧

1,4 and ΔG⧧
1,5 without CNT are

reported. It is worth noting that the 1,4-pathway is kinetically
favored over the 1,5-one for each system within a (8,8) CNT,
which is opposite to what happens in the absence of CNT.

Considering only electronic effects, the largest energy
differences between the two pathways are found with systems
1, 3, and 4 (ΔΔG⧧ = −1.8, −2.1, and −2.0 kcal/mol,
respectively). Another difference is the fact that 1,4 and 1,5-
pathways are destabilized with the nitro group as a substituent
(system 1) with respect to system 3 by 1.1 and 0.8 kcal/mol,
respectively. On the other hand, it is with a methoxy group
(ΔΔG⧧

1,4@(8,8) = −0.6 kcal/mol and ΔΔG⧧
1,5@(8,8) =

−0.7 kcal/mol) that both pathways are more stabilized. Finally,
in terms of kinetics, the greatest selectivity toward the 1,4-
triazole is with cyclohexyl acetylene (system 6). ΔG⧧

1,4@(8,8)
is even 9.1 kcal/mol lower than ΔG⧧

1,4, while ΔG⧧
1,5@(8,8) is

28.5 kcal/mol higher in energy than ΔG⧧
1,5@(8,8) since the

nanotube diameter is not long enough to allow the phenyl and
the cyclohexyl to be positioned into a sandwich-like structure.

From a thermodynamic perspective, the product complexes
PC1,4@(8.8) result more stable than PC1,5@(8.8). Except for
cyclohexyl acetylene, the differences in stabilities between the
complexes are in the range 6−9 kcal/mol. Once again, the
nitro group is the substituent leading to the greatest difference
in energies between PC1,4@(8,8) and PC1,5@(8,8) with the
first one 8.7 kcal/mol more stable than the second one. In
addition, bromo and amino groups have similar selectivities
toward 1,4-regioisomer (ΔΔG = −7.7 and −7.5 kcal/mol,
respectively), and the same applies when comparing phenyl
and methoxy (ΔΔG = −5.9 and −6.1 kcal/mol, respectively).
Reactivity inside CNT (10,10). The 1,3-dipolar reaction

was investigated also inside a (10,10) CNT (see Scheme 2),
whose diameter is 13.57 Å. Thus, the molecules inside this
larger tube suffer less steric hindrance with respect to (8,8)
CNT. Like in the case of (8,8) CNT, two reactant complexes
are possible, and as such, the activation barrier and product
complex stabilities are calculated taking the more stable RC
complex as a reference. Consequently, in Table 3, the
activation energy barriers were also summarized, and, like for
(8,8) CNT (Table 2), the 1,4-pathway results are much more
favored for systems 1−5 since the TS1,4-like RC results are

Table 1. Gibbs Energy Barriers and Product Complex
Stability in Benzene (in kcal/mol) for Systems 1−6

system RC TS1,4 TS1,5 P1,4 P1,5

1 3.4 25.1 23.8 −47.3 −44.7
2 5.2 28.1 25.6 −45.2 −43.5
3 5.8 31.7 26.3 −44.7 −43.8
4 4.7 28.3 25.9 −45.1 −44.1
5 4.0 27.7 25.2 −45.1 −44.6
6 5.2 29.2 27.6 −43.9 −44.3

Table 2. Activation Energy Barriers (in kcal/mol) within
(8,8) and (10,10) CNTs Compared to Activation Energy
Barriers in Benzene Phase for Systems 1−6

system
TS1,4
@(8,8)

TS1,5
@(8,8)

TS1,4
@(10,10)

TS1,5
@(10,10) TS1,4 TS1,5

1 23.6 25.4 27.5 39.8 25.1 23.8
2 23.1 23.8 32.1 53.2 28.1 25.6
3 22.6 24.7 29.0 37.6 31.7 26.3
4 21.9 24.0 33.9 46.5 28.3 25.9
5 22.8 23.6 27.1 49.8 27.7 25.2
6 20.1 48.6 27.1 27.6 29.2 27.6
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more stabilized by the CNT than the TS1,5-like RC.
Furthermore, since the CNT diameter is large, the critical
points cannot be fully stabilized by the interaction with the
nanotube walls, and in addition, the systems are slightly
deformed trying to fit the nonplanar nanotube wall. Therefore,
the energy may result in an intermediate situation between a
graphene phase and the reaction within the (8,8) CNT (see
Table 4).

For that reason, the activation energy barriers for the 1,4-
path result resemble those of the benzene phase. Particularly,
they are 2.4, 4.0, and 5.6 kcal/mol higher than the latter for
systems 1, 2, and 4, respectively, while for systems 3 and 5,
they are 2.7 and 0.6 kcal/mol lower, respectively. Finally, with
the cyclohexyl group (system 6), the TS1,5-like results are
slightly more stable than the other one, being ΔG⧧

1,4@(10,10)
only 0.5 kcal/mol lower than ΔG⧧

1,5@(10,10) similarly to
benzene-phase reactions. In addition, ΔG⧧

1,4@(10,10) results
2.1 kcal/mol lower than ΔG⧧

1,4, while ΔG⧧
1,4@(10,10) is

equal to ΔG⧧
1,5. Like for kinetics, the thermodynamics (Table

3) are also influenced by (10,10) CNT in PC1,4@(10,10),

which is more stable than PC1,5@(10,10). At the same time, in
all cases, the product complexes are less stable than the
benzene-phase intermediates due to the nonplanarity of the
CNT wall. In particular, in the case of 2, 4, and 5, PCs result
more unstable with energies around −30.0 kcal/mol, almost 20
kcal/mol above the case without CNT. In contrast, with
cyclohexyl (system 6), the thermodynamics are similar to those
calculated in absence of confinement. In this case,
PC1,4@(10,10) is slightly more stable with respect to
PC1,5@(10,10), while without CNT, it is the opposite.
However, in terms of magnitude order, there is no significant
difference with or without CNT.

EDA of Benzene-Phase Reaction. By evaluating in Table 1,
we now analyze the electronic (systems 1−5) and steric factors
(system 6) of the reaction in benzene, i.e., in the absence of
CNTs. In the RC, the phenyl ring of benzyl azide partially
interacts with the aromatic moiety of phenylacetylene. Hence,
the 1,5 triazole formation is kinetically favored being the
positions 1 and 5 closer and prone to react, while the
thermodynamic products are 1,4-triazole, except in the case of
the cyclohexyl substituent. Analyzing the electronic effects,
both the EDG and the electron-withdrawing groups (EWGs)
decrease the kinetics of formation of two regioisomers with
respect to the unsubstituted phenyl. On the other hand, with
cyclohexyl instead of phenyl, the kinetics increase, being
cyclohexyl sterically hindered.

With the aim of understanding the above trends, a Kohn−
Sham molecular orbital analysis together with a quantitative
energy decomposition (EDA) analysis has been performed.
First, with respect to the interaction energy of RC, ΔEint
increases for both EDG and EWG compared to unsubstituted
system 3. The attractive electrostatic interaction is the main
factor responsible for such an effect, together with the orbital
interaction, although at a lower extent. Both more attractive
ΔVelstat and ΔEoi compensate the increase of larger repulsive
ΔEPauli due to the increase of steric repulsion with the
substituent in the phenyl acetylene. The nature of the
interaction between the latter and the benzyl azide in RC is
mainly electrostatic. In contrast, the trends of ΔGTS1,4 cannot
be explained by EDA in TS1,4, as ΔEint is kept almost constant
with either EDG or EWGs. However, in case of 1,5-triazole
formation, EWG and EDG affect the kinetics differently. So,
whereas for EDG ΔEint is kept constant, for EWG, ΔEint
increases due to more attractive ΔVelstat and ΔEoi and is
supported by ΔEdisp too. Now, for both TS1,4 and TS1,5 the
nature of the interaction is clearly covalent. For completeness,
whereas in the RC, the deformation of the two reactants is very
small (ΔEstrain = 0.3−0.6 kcal/mol), those in the TSs
experience a larger deformation, somehow larger in the case
of TS1,5 (24.3−25.2 kcal/mol).

Once discussed the interaction of benzyl azide and the
substituted acetylene in the benzene-phase reaction, we
proceeded to analyze it when the reaction takes place inside
the nanotube. Importantly, despite the confinement given by
the CNT, either (8,8) or (10,10), in case of RC, the
interaction energy decreases. Nonetheless, the trends are kept;
i.e., ΔEint increases with either EDG or EWGs (Tables 5 and
S1). Importantly, we have also computed the interaction
between the RC and CNT (8,8) by means of an EDA. The
corresponding values correlate with the above interaction
between the benzyl azide and substituted acetylene. For
instance, ΔEint increases from H to either EDG or EWG
(Table S2). At difference, EDA values for both TS1,4 and TS1,5

Table 3. Product Complex Stabilities (in kcal/mol) within
(8,8) and (10,10) CNTs Compared to Product Stabilities in
Benzene-Phase Reactions for Systems 1−6

system
PC1,4

@(10,10)
PC1,5

@(10,10)
PC1,4
@(8,8)

PC1,5
@(8,8) P1,4 P1,5

1 −37.6 −29.8 −48.2 −39.5 −47.3 −44.7
2 −24.1 −16.2 −48.9 −41.2 −45.2 −43.5
3 −42.3 −32.5 −47.7 −41.8 −44.7 −43.8
4 −30.2 −23.5 −49.6 −43.5 −45.1 −44.1
5 −25.7 −19.8 −48.7 −41.2 −45.1 −44.6
6 −41.3 −40.6 −52.5 −22.0 −43.9 −44.3

Table 4. EDA Analysis (in kcal/mol) between the Benzyl
Azide and the Substituted Acetylene in the Benzene-Phase
Reactiona

ΔEstrain ΔEint ΔVelstat ΔEPauli ΔEoi ΔEdisp

RC
1 0.3 −10.2 −8.9 17.5 −3.3 −15.6
2 0.3 −9.7 −8.5 17.4 −3.3 −15.3
3 0.3 −8.1 −7.2 15.1 −2.9 −13.1
4 0.3 −9.1 −7.6 16.4 −3.2 −14.7
5 0.4 −9.0 −8.1 16.6 −3.3 −14.3
6 0.6 −8.1 −6.8 12.8 −3.0 −11.1

TS1,4
1 22.7 −10.3 −43.8 86.7 −46.6 −6.6
2 23.8 −10.4 −40.6 78.8 −42.0 −6.7
3 23.9 −10.1 −40.3 78.6 −41.8 −6.6
4 24.2 −10.2 −40.1 77.9 −41.4 −6.6
5 24.2 −10.2 −39.9 77.3 −41.0 −6.6
6 24.6 −11.3 −41.2 79.3 −42.2 −7.2

TS1,5
1 25.1 −17.4 −46.6 93.5 −47.2 −17.1
2 25.2 −16.7 −45.6 91.8 −45.7 −17.2
3 24.3 −14.7 −43.6 86.7 −44.5 −13.4
4 24.4 −14.6 −43.6 87.1 −44.5 −13.6
5 24.4 −14.6 −43.6 87.1 −44.4 −13.7
6 25.1 −14.4 −41.2 82.1 −42.6 −12.7

aPerformed at the ZORA-BLYP-D3(BJ)/TZP level of theory in the
gas phase on the equilibrium geometries in benzene.
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are comparable to the nonconfined ones above. In this regard,
Figure 2 includes how TS1,5 is tuned in the CNT (8,8) with

respect to the CNT (10,10). At first glance, the confinement
favors both possible pathways by reducing the kinetic barriers
except for the cyclohexyl substituent (6). In fact, while the 1,4-
triazole pathway is favored by 9.1 kcal/mol, the 1,5-path results
are kinetically forbidden (ΔΔG = +21.0 kcal/mol) due to high
ΔEstrain and ΔEPauli (respectively, 31.27 and 119.90 kcal/mol vs
the corresponding 28.71 and 102.87 kcal/mol when R is a
phenyl, Tables 5 and S1) in TS1,5 structure. Focusing the
analysis on the electronics, a stabilization by 2.3−8.1 kcal/mol
was found regarding ΔG⧧

1,4, whereas ΔG⧧
1,5 is only slightly

stabilized (ΔΔG⧧ ≈ 1.0−2.0 kcal/mol) varying the sub-
stituents in the para position. The difference in stabilization
between 1,4 and 1,5-pathways leads to a switch in the
regioselectivity toward the 1,4-regioisomers. It is noteworthy
that regioselectivity varies more with EDG than with EWG.
Indeed, expressing the regioselectivity toward 1,4-pathway S1,4
as the difference between ΔG⧧

1,4 and ΔG⧧
1,5, S1,4 in a (8,8)

nanotube is around 3 kcal/mol lower than in benzene when
EWG is present, whereas in the presence of an EDG, S1,4 is
reduced by 4.5 kcal/mol within CNT. However, the major
changes of S1,4 occurs when no substituents are present (ΔS1,4
= −7.2) or the phenyl is substituted by a cyclohexyl (ΔS1,4 =
−30.1). Finally, the performance of the reaction inside the
nanotube drives to larger deformation energies, especially in
the case of TS1,5 inside CNT (8,8), which is reduced with
larger CNT (10,10).

To describe the importance of the steric effects, and taking
into account past work related to the Tolman,92 steric maps in
Figure 3 were performed,93,94 and the %VBur

95 unveiled that

there is a significant change from CNT (8,8) to CNT
(10,10).96−99 To confirm that the CNT does not hinder the
reaction, we created steric maps to examine the cavity where
reactivity occurs. The center point of the CNT section was
used to define the xy plane, with the length along the z-axis.
The diameters are 6.7 Å for CNT (8,8) and 9.5 Å for CNT
(10,10). This analysis demonstrates that inserting the two
substrates is less challenging for the narrower CNT. To further
unveil the importance of the CNT, we studied the noncovalent
interaction (NCI) in Figure 4 for transition states TS1,4 and
TS1,5. In these plots, green regions show attractive noncovalent
interactions, whereas red regions refer to steric clashes. The
NCI plots clearly show why TS1,5 is favored by both CNTs. At
a particular level, in the case of CNT (8.8), the aryl groups of
the two pieces of substrate make perfect π−π stacking. This is
evident in Figure 4a, both in the NCI 3D and in the 2D, where
clearly in the favorable zone there is a thickening of the
peaks.100,101 In Figure 4b, on the other hand, it is observed
how the force to stabilize the aryl groups with the nanotube
gains with respect to each other, and thus both point toward
the CNT (10,10), and therefore, the difference between TS1,4
and TS1,5 is much greater than for CNT (8,8), reaching 8.7 vs
only 2.1 kcal/mol, according to Table 2. In general terms,
CNT (8,8) improves the kinetics for TS1,4 always, whatever
the substrate, with a range of 1.5−9.1 kcal/mol. This expresses
that the CNT really favors the reaction. Moreover, how is it
that the preference for the TS1,5 is lost despite π−π stacking?

Table 5. EDA Analysis in Gas Phase between the Benzyl
Azide and the Substituted Acetylene inside CNT (10,10).a

ΔEstrain ΔEint ΔVelstat ΔEPauli ΔEoi ΔEdisp

RC
1 0.4 −2.6 −2.2 4.4 −1.2 −3.6
2 0.4 −2.9 −3.0 4.3 −1.1 −3.2
3 0.3 −2.4 −2.4 3.9 −0.9 −3.0
4 0.4 −2.7 −2.1 4.3 −1.2 −3.6
5 1.1 −3.9 −2.8 5.8 −1.7 −5.2
6 0.9 −2.6 −1.4 3.3 −0.7 −3.7

TS1,4
1 26.9 −10.6 −40.4 78.0 −41.5 −6.8
2 26.6 −11.1 −41.2 79.0 −42.3 −6.8
3 26.8 −10.7 −40.6 78.6 −41.9 −6.8
4 27.1 −11.0 −40.8 78.4 −41.8 −6.8
5 27.9 −10.8 −40.5 78.0 −41.5 −6.8
6 24.7 −10.8 −39.9 77.4 −41.6 −6.7

TS1,5
1 26.1 −18.3 −41.5 83.2 −46.7 −8.2
2 26.1 −16.4 −41.2 82.9 −46.4 −8.2
3 26.0 −15.2 −40.7 82.2 −46.0 −8.1
4 26.2 −15.9 −41.0 82.7 −46.2 −8.2
5 26.0 −14.7 −40.4 82.0 −45.9 −8.1
6 25.5 −8.6 −40.7 81.5 −44.8 −10.2

aPerformed at the ZORA-BLYP-D3(BJ)/TZP level of theory in the
gas phase on the equilibrium geometries obtained inside the CNT
(10,10) in benzene.

Figure 2. TS1,4 including substrate 3 in the (a) (8,8) and (b) (10.10)
CNTs and TS1,5 including substrate 3 in the (c) (8,8) and (d)
(10.10) CNTs (selected distances in Å.).

Figure 3. Steric maps of the xy plane, featuring the external ring, with
a radius of 7.0 Å from the center of the ring, the length of the
corresponding CNT on the z axis, and any of the carbon atoms
providing the xz plane; curves are indicated in Å for CNT (8,8) on
the left and (b) CNT (10,10) on the right (see Supporting
Information for the steric maps with radii of 5.0, 6.0, and 10.0 Å).
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So the answer is simple. The steric hindrance between the two
substrates to interact with the walls of the CNT as a limiting
agent does not give room. By extension, one would expect a
better behavior for CNT (10,10) than for CNT (8,8), but it
does not happen like this, as mentioned above. In fact, the
corresponding kinetics worsens for TS1,4 by 2.4, 4.0, and 5.6
kcal/mol for systems 1, 2, and 4, and improve to 2.7, 0.6, and
2.1 kcal/mol for systems 3, 5, and 6, respectively. If we analyze
the TS1,5, in all cases, the CNT shows a worsening, and in a

very quantitative way, with an enormous range that goes from
zero variability for the nonaryl alkyne 6 up to 27.6 kcal/mol for
2. Going deeper, the energetic differences in the kinetics
described in Table 2 exemplify that performing the reaction
encapsulated in a CNT is kinetically disadvantaged by a CNT
that cannot confront the aryl rings of the benzyl azide and the
alkyne. In fact, if this last substrate does not have an aryl ring,
as is the case for the alkyne system 6, the barrier is shot for
TS1,5 by CNT (8,8) up to 48.6 kcal/mol, compared to 27.6

Figure 4. 2D and 3D NCI plots of the reduced density gradient (σ) vs sign (λ2)ρ, in a.u. for TS1,4 (left) and TS1,5 (right) including substrate 3 for
(a) CNT (8,8) and (b) CNT (10,10) (see Supporting Information for the 3D NCI plots with a perspective view). Green regions show attractive
noncovalent interactions, whereas red ones show steric clashes.
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kcal/mol without the CNT, and the NCI plots clearly confirm
that the interaction with CNT is of a higher strength than
between the two interacting units, and this was also evident in
the above-arranged EDA results, confirming that a larger CNT
diameter, if the substrates have aryl rings, hinders the reaction
considered in this study.

■ CONCLUSIONS
The regioselectivity of the 1,3-dipolar cycloaddition reactions
is significantly influenced by the confinement within CNTs.
This computational study demonstrated that the regioselectiv-
ity shifts depending on whether the reaction occurs in the bulk
phase (benzene) or inside CNTs. In the bulk phase, both
regioisomers (1,4 and 1,5-triazoles) are formed with little
selectivity, leading to a mixture of products. However, inside
CNTs, the 1,4-pathway becomes kinetically favored due to
spatial constraints and interactions with the nanotube walls.
For reactions in benzene, the 1,5-pathway generally has a lower
activation energy compared with the 1,4-pathway, making it
the kinetically favored product. The thermodynamic products
are nearly isoenergetic, resulting in a mixture of both
regioisomers. Next, EWGs, partircularly the nitro group,
increase the stability of the transition states and product
complexes but reduce regioselectivity due to similar energy
barriers for both pathways. EDGs show moderate effects on
stability and selectivity. Next, substituents on the dipolar-
ophiles significantly affect the reaction kinetics and thermody-
namics, while EWG-substituted dipolarophiles stabilize the
reaction intermediates and transition states more than EDG-
substituted ones. In addition, cyclohexyl acetylene presents
unique behavior due to steric hindrance, which influences both
the reaction pathways and the stability of the resulting
products.

Inside (8,8) CNTs, the 1,4-pathway is generally favored
kinetically over the 1,5-pathway across all systems, contrary to
the bulk phase. This is attributed to the π−π interactions
between the phenyl rings and CNT walls. In (10,10) CNTs,
the difference in activation barriers between the two pathways
is reduced, resembling more closely the behavior in the bulk
phase, though the 1,4-pathway remains slightly favored.

EDA analyses revealed that the interaction energy in RC is
mainly driven by electrostatic and orbital interactions. For TSs,
covalent interactions dominate. In detail, the strain energy is
minimal in the RC but increases significantly in the TS,
particularly in the 1,5-pathway.

Overall, the study highlighted that confinement within
CNTs not only alters the reaction pathways but also enhances
the selectivity and stability of specific regioisomers. The
findings suggest that CNTs can be effectively used to control
and predict the outcomes of cycloaddition reactions,
potentially leading to the selective synthesis of desired
products in nanoconfined environments.
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