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A B S T R A C T

Floods affect chronically many communities around the world. Their socioeconomic impact increases year-
by-year, boosted by global warming and climate change. Combined with long-term preemptive measures,
preparatory actions are crucial when floods are imminent. In the last decade, machine learning models have
been used to anticipate these hazards. In this work, we model the Ter river (NE Spain), which has historically
suffered from floods, using traditional ML models such as K-nearest neighbors, Random forests, XGBoost and
Linear regressors. Publicly available river flow and precipitation data was collected from year 2009 to 2021.
Our analysis measures the time elapsed between observing a flow rise event at different stations (or heavy
rain, for rainfall stations), and use the measured time lags to align the data from the different stations. This
information provides increased interpretability to our river flow models and flood forecasters. A thorough
evaluation reveals that ML techniques can be used to make short-term predictions of the river flow, even during
heavy rain and large flow rise events. Moreover, our flood forecasting system provides valuable interpretable
information for setting up timely preparatory actions.
1. Introduction

Faced with catastrophic events such as floods, droughts or violent
storms, responsible administrations need to plan prevention and rapid-
response actions to mitigate the impact of these events. Floods, which
chronically affect many riversides and coastal areas every year, are
among the most devastating natural hazards; the World Meteorologi-
cal Organization (2011) estimates that one third of all losses due to
natural phenomena can be attributed to floods. Their impact involves
damage or destruction of crops, infrastructure and buildings along
riverbanks, but also can cause personal harm and, in the most severe
cases, the loss of human lives. In Europe, floods account for 43%
of the economic losses caused by climate-related extremes (European
Environment Agency, 2023). In Spain, and particularly in Catalonia,
floods are the main cause of loss of human lives and property damage
due to natural disasters (Barnolas and Llasat, 2007).

Climate change, natural or human-induced, can affect the frequency
or strength of extreme weather events such as extreme precipita-
tion (Cubasch et al., 2013). Floods follow extreme precipitation events,
and the frequency of these is strongly correlated with temperature
increase (Drobinski et al., 2018). Recent studies by Mallakpour and
Villarini (2015) or by Blöschl et al. (2020) evidence that the frequency
of flooding has, in general, increased over the last decades following the
global warming, even though in specific areas the trend might be the
opposite. Direct human intervention through land use changes has been
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associated with an increase in frequency and severity of floods (Apol-
lonio et al., 2016; Hounkpè et al., 2019). Being able to anticipate
them is crucial for planning mitigation actions and diminishing their
potentially severe consequences.

Analyzing meteorological hazards and using predictive models to
implement preventive measures is paramount in the research commu-
nity, addressing, e.g., wildfire detection (Sayad et al., 2019), snowfalls
prediction (Kulie et al., 2020; Panegrossi et al., 2022), drought detec-
tion (Chang et al., 2023), or river flow modeling (Norsyuhada et al.,
2022). We are interested in river flow modeling to enable the prediction
of floods using machine learning (ML). Previous works on river flow
analysis range from flow forecasting (Dibike and Solomatine, 2001;
Saint-Fleur et al., 2023) to flood prediction or detection (Ha et al.,
2021; Norsyuhada et al., 2022; Chebii et al., 2022), most of them based
on traditional statistical methods, including multivariate time series
analysis tools. In the related literature, hydrological forecasting has
been addressed with ML models like support vector machines (Bürger
et al., 2007; Hamitouche and Ribalta, 2023; Kumar et al., 2021), tree-
based ensembles (Chakraborty et al., 2021; Hamitouche and Ribalta,
2023; Chang et al., 2024) or artificial neural networks (ANNs) (Bafitl-
hile and Li, 2019; Jimeno-Sáez et al., 2018; Tayfur et al., 2018; Chebii
et al., 2022). ANNs are a popular choice since seminal works like
those by Hsu et al. (1995), modeling the rainfall-runoff relationship in
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the Leaf river watershed (USA), or by Dibike and Solomatine (2001),
forecasting the streamflow in the Apure river watershed (Venezuela).
Modern deep neural networks (DNN) have also been used for hydro-
logical modeling and flood forecasting (Gao et al., 2020; Lin et al.,
2020; Kratzert et al., 2019; Chang et al., 2024; Bhasme and Bhatia,
2024). Xu et al. (2021) used temporal DNN to model the rainfall-runoff
relationship on two Chinese rivers, and Ghimire et al. (2021) integrated
two DNN structures to make short-term hourly flow predictions on
two Australian rivers. Recently, Jiang et al. (2024) used dynamic
temporal graph convolutional networks for flood forecasting, capturing
dynamic spatiotemporal features of flood data. These ML models have
traditionally used flow, rainfall and other meteorological data (Bürger
et al., 2007; Zhang et al., 2021; Jimeno-Sáez et al., 2018; Saint-Fleur
et al., 2023; Hamitouche and Ribalta, 2023; Xu et al., 2021; Ghimire
et al., 2021), and more recently remote sensing/satellite data (Kumar
et al., 2021; Liu et al., 2023; Kratzert et al., 2019; Jiang et al., 2024).
Although ML has had a transformative impact on different scientific
areas, mainly after the emergence of deep learning (DL) methods, this
has not yet taken place in hydrology (Nearing et al., 2021). The low
interpretability of this type of model has slowed down the adoption
of DL techniques in hydrology. However, several studies have recently
shed light on this issue. Kratzert et al. (2019) designed a general
physics-informed model that allows them to improve flow predictions
in a vast amount of river basins and find a hidden representation
which, compared to observable catchment characteristics, reveals that
vegetation type and seasonality are relevant factors. Similarly, Bhasme
and Bhatia (2024) and Saint-Fleur et al. (2023) show that physics-
informed ML can be applied to enhance and make more interpretable
results in both general and specific contexts. In this direction, theory-
guided machine learning aims to produce scientifically interpretable
models, simplifying model search and enhancing model generalizability
due to their grounding in scientific knowledge (Karpatne et al., 2017).
The use of attention mechanisms in the DL models, which can be
easily visualized, was exploited by Chang et al. (2024) to understand
the relationship between flood sensors and spatiotemporal variables.
Salience maps over convolutional DNNs have also been used to un-
derstand how sea temperature surface influences Amazon and Congo
rivers flow in relation with the El Niño Southern Oscillation (Liu et al.,
2023). On the contrary, most of the traditional ML models are directly
explainable or can take advantage of off-the-self techniques like SHAP
or LIME (Molnar, 2022) to produce interpretable yet competitive pre-
dictions on structured tabular hydroclimatic data (Chakraborty et al.,
2021).

In this work, we focus on river flow modeling to enable the predic-
tion of floods in the Ter river, which flows from the eastern Pyrenees
into the Mediterranean Sea in NE Spain. It flows through the city of
Girona and supplies water to the metropolitan area of Barcelona (about
5 million people). Floods have been documented in the Ter watershed
since 1193 (Ribas Palom, 2007). Several meteorological studies have
analyzed and categorized the historical floods of the river, identifying
those that can be considered serious or catastrophic (Barnolas and
Llasat, 2007; Llasat et al., 2005). Although other rivers in the west-
Mediterranean region have been studied with ML techniques (Bürger
et al., 2007; Hamitouche and Ribalta, 2023; Jimeno-Sáez et al., 2018;
Saint-Fleur et al., 2023; Tayfur et al., 2018), this is, up to our knowl-
edge, the first study on ML-based streamflow modeling of the Ter
river. We consider standard ML models due to (i) their simplicity
and efficiency, (ii) our use of structured tabular data, where they
are competitive with DNNs (Chakraborty et al., 2021) and, more im-
portantly, (iii) their straightforward interpretability, which fulfills our
requirement of an explainable and actionable predictive system. Using
meteorological and river flow data from 2009 to 2021, we calibrate our
models with an estimation of the time elapsed between the observation
of an event (heavy rainfall, flow rise) in different meteorological and
river flow stations. This enhances the interpretability of our models in
2

line with the current trend towards interpretable ML (Molnar, 2022, o
Ch. 3.1). We present a solution combining two models fitted to calm
and flow rise periods.

The contributions of this work can be summarized as follows:

• A dataset collected with 12-year rainfall and river-flow data
for the Ter basin, curated after imputing missing values and
frequency homogenization, publicly available on the website as-
sociated with this study1;

• The estimation of the time elapsed (lag) between the obser-
vation of the same event (heavy rainfall, flow rise) between
meteorological and river flow stations;

• A set of interpretable regressors for river flow modeling at two
points of the river able to provide short-term predictions during
both flow rises and clam periods.

For the rest of the paper, we first describe the case study, the Ter
iver, the data sources and the preprocessing techniques. Section 3
resents the descriptive data analysis where the time elapsed between
tations is estimated, followed by our river-flow predictive modeling
nd its validation. Finally, in Section 5, our findings are discussed and
uture research lines are drawn.

. Case study: Ter river

In the NE Iberian peninsula (Catalonia, Spain), the Ter river is born
t 2400 masl in an ancient glacial cirque of the Eastern Pyrenees and
lows into the Mediterranean Sea. With a length of 208 km and a
atershed area of 3010 km2, it is the longest river in the Pyrenees-
editerranean hydrographic area. The river suffers from numerous

low diversions: It greatly influences the local agricultural sector and
ts water is exported to other areas such as the Barcelona area. It holds
arge hydroelectric production facilities such as those in Sau (capacity:
51.3 hm3), Susqueda (233 hm3), and Pasteral (2 hm3) reservoirs.

These reservoirs, located approximately halfway through the course of
the river, are used to regulate the flow downstream along the second
half of the river. Thus, the flow at the beginning of the lower course is
completely regulated. For this reason, we perform separate studies for
the upper and the lower courses.

Ter is the Catalan river with the largest number of historical floods
(121 events from year 1322 to 2000) (Llasat et al., 2005). Floods
mainly occur in the late summer and fall months (Barnolas and Llasat,
2007). Catalan Water Agency (2019, Map 01H02D, Annex I) identified
the highest flood risk areas.

Recently, several high-impact flood episodes have hit the Ter basin.
For example, the Gloria storm brought rainfall ranging from 200 to
500 mm in three days of January 2020. This event filled the reservoirs
in the middle course of the river, forcing river managers to open sluice
gates. Thus, for several hours, the lower course of the river was un-
regulated. In consequence, the Ter river and its tributaries overflowed,
causing significant floods that forced the evacuation or confinement
of several populations. In October 2018, the Leslie storm, with more
than 200 mm (20–30 mm in 30 min), caused a similar flood risk event.
Although the Ter did not overflow, the warning height threshold was
exceeded. Both events are recorded in our data and are used as key
events for model evaluation.

For this study, river flow and rainfall data were collected from open
data sources at the Catalan Water Agency2 (ACA) and Catalan Mete-
orological Service3 (SMC) websites, respectively. The supplementary
material available on the website associated with this study1 includes
a spreadsheet and a map of the Ter watershed with the list of the river
flow and rainfall stations considered and their location.

1 https://jhernandezgonzalez.github.io/supp_ter.html
2 https://aplicacions.aca.gencat.cat/sdim21/ (accessed July 15th, 2024).
3 https://www.meteo.cat/wpweb/serveis/cataleg-de-serveis/serveis-

berts/dades-obertes/ (accessed July 15th, 2024).

https://jhernandezgonzalez.github.io/supp_ter.html
https://aplicacions.aca.gencat.cat/sdim21/
https://www.meteo.cat/wpweb/serveis/cataleg-de-serveis/serveis-oberts/dades-obertes/
https://www.meteo.cat/wpweb/serveis/cataleg-de-serveis/serveis-oberts/dades-obertes/
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Fig. 1. Ter river watershed and the location of the stations considered in this study. Codes of river flow stations are given in gray, reference stations in green, and meteorological
stations in red. Codes are not given for discarded stations. The yellow box covers the three reservoirs that divide the river into two differentiated courses.
2.1. River flow data

ACA’s open data website2 allows for collecting measurements of
river flow and height in 14 different stations throughout the Ter river
and its main tributaries. River flow is the quantity of water that runs
through a section of the river in a period of time. Height measures
the distance from the bottom of the river up to the water surface.
These measurements are provided in cubic meters per second (m3∕s)
and meters (m), respectively, every 5 min.

Data pre-processing. We first homogenized the frequency (30 min)
of the time series using the mean value. Four stations initially with
more than 50% of missing values (ranging from 57% to 95%) were
eliminated from the study. Defective measurements were easily iden-
tified due to the generally stable flow-height relationship: too-large
or too-small height values attached to regular flow values (or the
other way around) were discarded. Moreover, we applied a moving
average individually to each river flow and height time series to detect
and remove outliers. With a window size of 25, we removed all the
detected outliers: values above/below the mean plus/minus two times
the standard deviation. After this step, the percentage of missing values
ranged from 5% to 60% among the river flow time series and from 3%
to 62% among the height time series.

To fill missing values, we took advantage again of the flow-height
relationship. For each station, we fitted to this relationship a 𝐾-nearest
neighbor (𝐾NN) regressor (Cover and Hart, 1967) with 𝐾 = 7. When
a river height value was available and the corresponding flow mea-
surement missing (and the other way around), the model estimation
was used to impute it. We also used simple interpolation to fill in
small gaps (up to 30 consecutive missing points) in both river flow
and height series taking advantage of their usual smoothness. After
these imputation steps, the percentage of missing values ranged from
0.1% to 49% among the river flow time series. Finally, combining
the flow time series of several stations, we applied multivariate 𝐾NN-
based imputation assuming that the river behavior is stable across time.
We performed it twice, separately for the upper course series and for
3

those of the lower course. After this, all the river flow time series are
complete.

Two stations are used as reference points to model the river flow,
one from each part of the river: Masies de Roda (Upper course, L08116-
72-00002) and Colomers (Lower course, L17055-72-00002). Our deci-
sion was motivated by their location (both are near the final section of
the upper and lower courses) and their proximity to potentially flood-
affected areas according to the Catalan Water Agency (2019). Pasteral
(F001242) is a key river flow station in the lower course of the river
because, due to its location at the last reservoir’s gates, it contains
information on the impact of reservoir management on downstream
flow. One station was discarded as it is physically located downstream
from the reference station of the lower course. As a result, the final
number of river flow stations is 9.

2.2. Rainfall data

SMC open data website3 allows for collecting measurements of dif-
ferent meteorological features throughout the whole Catalan territory.
We are interested in rainfall measurements from stations located inside
the Ter watershed: we found 21 well-functioning stations in the period
of interest (2009–2021). Rainfall is the amount of rain that falls on an
area in a particular period of time. Rainfall measurements are provided
in millimeters (mm) and their frequency varies (half-hourly or hourly).

Data pre-processing. We first homogenized the frequency (30 min) of
the time series. The collected time series had, in part, hourly rainfall
measurements. To simulate half-hourly measurements in these parts,
we made the simplifying assumption of a constant rainfall rate through-
out the hour. Thus, from each point in the time series, two new points
were created with half the measured rainfall each.

Discontinued rainfall stations were disregarded, with only two ex-
ceptions: DM and Z4. Right after disassembling them, two new stations
were operational in their vicinity (XJ and ZC, resp.). Each pair of time
series was combined into a single one (DM-XJ and Z4-ZC). The time
gap between the original series (merely 29 and 405 points, resp., 0.6
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Fig. 2. Time series of the Ter river flow at the upper and lower reference stations.
Fig. 3. Illustrative example of a rainfall time series (CI station).
and 8.4 days) was filled with data from the closest stations (WF and
DG, resp., although only DG measured some rain in 11 out of the
405 points). No treatment of missing values or outliers was required.
Two other rainfall stations were disregarded as they are physically
located downstream from the reference stations. All in all, the number
of rainfall stations is finally 16.

3. Descriptive data analysis

The river flow in Ter follows a relatively constant pattern (see
Fig. 2), with a mean streamflow of 14.78 m3∕s in the upper course and
19.53 m3∕s in the lower course. The median values are, respectively,
9.98 and 13.34 m3∕s. The river flow increases considerably at specific
time points usually due to large rainfall events. The number of these
events changes yearly, but as a general pattern, they are more common
during the fall and winter months. Counterintuitively, the flow peaks
are consistently smaller in the lower course of the river. This can be
explained by the presence of the reservoirs that split the upper and
lower courses into two streams with different characteristics. These
reservoirs can catch most of the water from flow rise events in the upper
course, as they are the origin of large flow diversions. Only on rare and
dangerous occasions when the reservoirs are full and sluice gates need
to be opened, like during the Gloria event, the flow rises in the upper
and lower courses with similar magnitudes.
4

The rainfall time series (see Fig. 3) shows a general periodic pattern:
the first months of the year are drier, and the rest of them have similar
rainfall, with a clear peak in the late-summer/fall months, when heavy
rain events traditionally happen in this area.

Given the rather flat or periodic characteristics of these time series,
focusing on heavy-rain or river flow rise events can help us understand
the dynamics of the river. In this study, we are interested in measuring
the lag or time elapsed between the signal of these events registered on
each of the upstream rain and river-flow stations and the corresponding
signal registered at the reference station. We can take advantage of this
information to calibrate or align the time series of the different stations.

The source code of the analysis presented hereunder is available on
the website associated with this study.1 Written in Python (v3.7.13)
and run in Jupyter notebooks (notebook, v6.4.12), it uses standard
ML libraries: numpy (v1.21.5), pandas (v1.3.5), matplotlib (v3.5.2),
scipy (v1.7.3), scikit-learn (v1.0.2), smogn (v0.1.2), xgboost (v1.6.2).
The default parametrization of all methods is used unless otherwise
explained.

3.1. Finding rare events

We are interested in finding events that stand out due to their high
streamflow automatically. In this work, for the sake of simplicity, a
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Fig. 4. Rare events found on the time series of both reference stations.
measurement above the 99.5th percentile is considered to stand out.
Consequently, a rare event is a (short) period including one or more
outstanding measurements.

Fig. 4 shows the rare events found in the time series of the two
reference stations. 32 and 14 such events are found in the upper and
lower course, respectively. The smaller number of rare events in the
lower course is in line with the above description of the river as a two-
course river. The initial flow in this lower course is regulated. Among
the events detected as anomalies are the storms Gloria and Leslie (see
Section 2).

3.2. Lag estimation

One of the main objectives of the descriptive analysis is to under-
stand and infer from data the time elapsed between the observation of
the same event at two different stations. The aim is to estimate this
time for every station, both rainfall and river flow, with respect to the
corresponding reference station. Remember that we have identified two
stations, one from the upper and another one from the lower course, as
references.

The signal we aim to find might be too weak in most of the analyzed
period as the river flow is rather constant (see Fig. 2) and heavy rain
events are scarce (see Fig. 3). Therefore, we focus on the rare events
found in the previous section. We assume that it is possible to estimate
from data the time elapsed between a streamflow rise at two different
river stations. Similarly, we expect to understand how a heavy rain
event is later observed in the river as a streamflow raise and how long
this process takes.

For each pair of time series to be aligned (any station with its
reference station in the corresponding part of the river), our pro-
cess uses Pearson’s cross-correlation to find a set of relevant time
lapses/lags. Algorithm 1 shows its pseudocode. Given a rare event,
the origin, ts_orig, and reference, ts_ref, time series are cross-
correlated within the limits of that rare event for up to M lag values or
shifts of ts_ref. Iteratively, we test increasingly larger lag values and
employ Pearson coefficient to measure the linear correlation between
a window of size ws of both series. Whenever the correlation is above
r > 0.5 and statistically significant (p < 0.05), we keep the lag
value. This cross-correlation procedure is iteratively repeated (as many
5

Algorithm 1 Pseudo-code of the cross-correlation procedure
Require: 𝑡𝑠_𝑜𝑟𝑖𝑔, 𝑡𝑠_𝑟𝑒𝑓 ,𝑤𝑠 > 0, 𝑠𝑡𝑒𝑝 > 0,𝑀 ≥ 0

𝑇0 ← 0
𝑅 ← {} ⊳ Initially empty set
while 𝑇0 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑠_𝑜𝑟𝑖𝑔) −𝑀 do

𝑙𝑎𝑔 ← 0
while 𝑙𝑎𝑔 < 𝑀 do

(𝑟, 𝑝) ← 𝑝𝑒𝑎𝑟𝑠𝑜𝑛(𝑡𝑠_𝑜𝑟𝑖𝑔[𝑇0 ∶ 𝑤𝑠 + 𝑇0],
𝑡𝑠_𝑟𝑒𝑓 [𝑙𝑎𝑔 + 𝑇0 ∶ 𝑤𝑠 + 𝑙𝑎𝑔 + 𝑇0]) ⊳ Pearson correlation

if (𝑟 > 0.5) and (𝑝 < 0.05) then ⊳ (coeff., 𝑟, and p-value, 𝑝)
𝑅 ← 𝑅 ∪ {(𝑙𝑎𝑔, 𝑟, 𝑝)}

end if
𝑙𝑎𝑔 ← 𝑙𝑎𝑔 + 1

end while
𝑇0 ← 𝑇0 + 𝑠𝑡𝑒𝑝

end while
return 𝑅

times as possible) by pushing back the origin of the rare event in
both time series step points per iteration. For all the lags stored
due to their significance, we keep the T-most frequent values. This
function is applied to each pair of stations (ts_orig, ts_ref) for
all the rare events detected in the previous section. For each pair of
stations, we select a single lag among the T-most frequent values of all
the events: the lag with the highest mean correlation that appears in
the most-frequent list of at least half of the events.

The final time-lapses estimated for each station are summarized in
Table 1. The inferred lags between river flow stations are largely in
line with the physical distance between them (see Fig. 1). Checking
the validity of the measured time-elapse for the rainfall stations is not
that straightforward. Future deployment of a monitoring and predictive
system based on these methods would require validation from field
experts.
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Table 1
Lag (time elapsed, in minutes) for each station, together with the percentage of rare events (Perc.) in which the lag was found relevant and
the mean Pearson correlation (Mean corr.) in these events. Symbols are used to differentiate river flow⋄ and rainfall† stations (find in Fig. 1
their physical location).

(a) Upper course. (b) Lower course.

Station Lag Perc. Mean corr. Station Lag Perc. Mean corr.

L17147-72-00005⋄ 300 53% 0.886 L17038-72-00002⋄ 120 67% 0.894
L17167-72-00001⋄ 300 53% 0.849 L17079-72-00004⋄ 210 67% 0.897
CC† 390 47% 0.740 L17079-72-00005⋄ 210 67% 0.876
CG† 420 29% 0.747 F001242⋄ 420 44% 0.897
CI† 480 35% 0.747 F026458⋄ 120 67% 0.852
CY† 480 24% 0.717 DJ† 540 56% 0.759
DG† 420 24% 0.735 DN† 690 44% 0.771
V3† 450 35% 0.711 UN† 780 33% 0.822
V4† 420 47% 0.745 UO† 480 44% 0.758
V5† 390 35% 0.733 VN† 810 33% 0.817
WS† 540 35% 0.775 WS† 720 56% 0.768
Z4-ZC† 510 24% 0.731 DM-XJ† 600 44% 0.756
v
e
w
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4. Predictive modeling

In this section, the lag estimations are used to calibrate a set
of models that compose our interpretable and actionable predictive
system.

4.1. Set up

We prepare two standard ML datasets, one for each reference sta-
tion. Each dataset is formed by the time series of the upper or lower
course, correspondingly, aligned using the lags of Table 1. For each
dataset, the time series of the corresponding reference station becomes
the outcome vector, 𝑦, that is, what we want to predict. The time series
of the rest of the stations form the columns of the input matrix, 𝑿, that
s, the predictive or independent variables. Each row (𝑿𝑡, 𝑦𝑡) encodes
he situation of the reference station in time ‘𝑡’, 𝑦𝑡 = 𝑇𝑆𝑟𝑒𝑓

𝑡 , and the
situation of each station 𝑗 in time ‘𝑡 − lag𝑗 ’, 𝑋𝑡,𝑗 = 𝑇𝑆𝑗

𝑡−lag𝑗
. This

alignment of the columns (stations) will provide actionable information
to decision-makers: ‘‘to anticipate what is going to happen at the
reference station, observe what happened lag𝑗 minutes before at station
𝑗’’.

Regressors: Four different types of regressors are considered: 𝐾NN
(Cover and Hart, 1967), Linear regression (LR) (Hastie et al., 2008),
Random Forest (RF) (Breiman, 2001) and XGBoost (XGB) (Chen and
Guestrin, 2016). We use halving grid search for hyper-parameter tun-
ing of 𝐾NN, RF and XGB, with 𝑅2 metric as scoring function. It
uses {1, 3, 5, 10, 20} neighbors, leaf sizes of {20, 30, 50}, and uniform
or distance-based weights for 𝐾NN. RF and XGB optimization con-
siders {50, 100, 200} estimators, {1, sqrt, log2} features per split, and
{8, 10, 25,None} depth. The rest of the hyper-parameters are set to
default values. The source code is available on the website associated
with this study1.

Data subsets. Noting the potential difficulty of fitting heavy-rain or
extreme flow rise measurements, we perform additional experiments
using specific data subsets:

• A subset with no-precipitation data, i.e., it only includes data
from periods without precipitation. We hypothesize that when the
training data includes heavy rainfall episodes (rare) the model
tries to adjust to them, losing the ability to fit well the calm
periods (the vast majority).

• A subset with precipitation-only data, i.e., it only includes data
from periods with precipitation. As before, attempting to model
the curves of river flow when the training signal is mostly plain
(no precipitation) is presumably inadequate. We hypothesize that
learning only from data with signal (at least a minimum amount
of precipitation) can boost the performance of a model fitted to
this curve.
6

G

To split the dataset into rainy/non-rainy periods, we use the average
rainfall across all the rainfall stations over/under 0.1 mm. Dunkerley
(2021) recently reviewed the thresholds used in the related literature
and found that light or low-intensity rainfalls are usually characterized
to be approximately under 0.2 mm/h (or 0.1 mm in our 30-minute
frequency data). With this threshold, the rain volume left in the so-
called non-rainy periods accounts for 2.3 − 4.2% of the total volume.
Using precipitation to decide which model to use is an easily ac-
tionable criterion that can be easily implemented in the hypothetical
deployment of this prediction system.

Due to the small proportion of rainy periods, we perform synthetic
oversampling in the precipitation-only data subset to help the models
gain robustness. We use Synthetic Minority Oversampling technique for
regression with Gaussian Noise (SMOGN) (Branco et al., 2017), which
adapts the classical SMOTE (Chawla et al., 2002) to generate synthetic
samples for regression. Each new sample is generated by interpolating
its values from two real neighbor samples and adjusted by a linear
model to guarantee generalization.

Validation. Standard cross-validation (CV) is not valid for time series.
In the usual alternative, time series split validation (TSS), the training
data slice grows with the CV iterations and the validation fold is the
next fixed-size slice of the series (Fig. 5a). In the common validation
set (CVS) strategy, the training data slice also grows with the validation
iterations but the validation fold is held constant (the last end of the
series) (Fig. 5b). Whereas the increased robustness of a model learned
from a larger dataset can be hidden with TSS, CVS cannot measure the
model’s generalization to different validation sets. We used both TSS
and CVS in these experiments.

Performance is measured in terms of root mean squared error,
RMSE =

√

𝑁−1 ⋅
∑𝑁

𝑗=1(𝑦𝑗 − �̂�𝑗 )2 where 𝒚 = {𝑦1,… , 𝑦𝑁} are the true
alues and �̂� = {�̂�1,… , �̂�𝑁} are the predictions, and Nash–Sutcliffe
fficiency coefficient, NSE = 1 −

(

∑𝑁
𝑗=1(𝑦𝑗 − �̂�𝑗 )2

)

∕
(

∑𝑁
𝑗=1(𝑦𝑗 − �̄�)2

)

,
here �̄� represents the mean true value through the evaluation period
�̄� = 𝑁−1⋅
∑𝑁

𝑗=1 𝑦𝑗
)

. Both are standard metrics to evaluate hydrological models.
hereas NSE gathers insights about the increased performance of the
odel regarding a simplistic system that always predicts the mean

alue, RMSE provides information about the divergence between the
eal and predicted values while maintaining the same scale of the data,
hich makes it more interpretable.

Reporting model performance exclusively relying on aggregation-
ased metrics such as RMSE or NSE can mask the performance in
pecific relevant situations that might interest domain experts (Burnell
t al., 2023). In these cases, local inspection is valuable. In this study,
e inspect five different events: two standard situations where no
articularly high rise is observed (S1 and S2) and three events of heavy

rain and large flow rise: one specifically relevant in the lower course
(RL), Leslie storm, with a bigger impact in the upper course, and
loria storm, which impacted both parts.
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Fig. 5. Graphical representation of TSS and CVS validation strategies.
Table 2
Results in terms of averaged RMSE and NSE (and associated standard deviation) following TSS (left) and CVS (right) validation strategies for 4 regressors in the upper and lower
courses. Results are shown with the complete dataset, and with the subsets of no-precipitation and precipitation-only data. Bold type indicates the best model per dataset.

(a) Results with TSS validation strategy. (b) Results with CVS validation strategy.

Model Upper course Lower course Model Upper course Lower course

RMSE NSE RMSE NSE RMSE NSE RMSE NSE

KNN 15.34 ± 4.63 0.64 ± 0.14 21.31 ± 18.08 0.54 ± 0.18 KNN 20.51 ± 0.38 0.75 ± 0.01 40.30 ± 0.65 0.52 ± 0.02
LR 13.05 ± 4.39 0.75 ± 0.07 19.31 ± 13.15 0.51 ± 0.30 LR 16.90 ± 0.15 0.83 ± 0.00 33.47 ± 1.45 0.67 ± 0.03
RF 13.53 ± 5.43 0.74 ± 0.05 17.92 ± 14.43 0.68 ± 0.10 RF 19.34 ± 2.01 0.78 ± 0.05 33.91 ± 1.10 0.66 ± 0.02
XGB 15.02 ± 5.28 0.67 ± 0.10 18.83 ± 15.70 0.65 ± 0.11 XGB 19.42 ± 2.10 0.78 ± 0.05 37.26 ± 0.94 0.59 ± 0.02

Complete dataset Complete dataset

KNN 8.17 ± 1.66 0.52 ± 0.29 14.33 ± 12.84 0.50 ± 0.17 KNN 8.06 ± 1.00 0.80 ± 0.05 28.67 ± 0.04 0.43 ± 0.00
LR 6.08 ± 1.68 0.74 ± 0.18 12.61 ± 8.50 0.36 ± 0.55 LR 5.40 ± 0.09 0.91 ± 0.00 22.13 ± 0.57 0.66 ± 0.02
RF 6.06 ± 1.04 0.77 ± 0.07 14.16 ± 12.59 0.56 ± 0.09 RF 7.22 ± 0.31 0.84 ± 0.01 27.06 ± 2.72 0.49 ± 0.10
XGB 6.05 ± 1.43 0.75 ± 0.15 11.88 ± 11.31 0.65 ± 0.16 XGB 5.85 ± 0.24 0.90 ± 0.01 24.45 ± 1.36 0.59 ± 0.05

No-precipitation subset No-precipitation subset

KNN 63.82 ± 46.56 0.69 ± 0.26 107.03 ± 107.87 0.65 ± 0.36 KNN 53.34 ± 28.63 0.72 ± 0.29 59.42 ± 38.68 0.75 ± 0.29
LR 51.69 ± 18.80 0.78 ± 0.06 104.36 ± 73.62 0.67 ± 0.16 LR 46.20 ± 7.02 0.82 ± 0.06 63.79 ± 7.05 0.78 ± 0.05
RF 56.71 ± 57.71 0.73 ± 0.35 103.38 ± 117.68 0.68 ± 0.42 RF 46.70 ± 38.77 0.74 ± 0.37 71.88 ± 36.30 0.67 ± 0.27
XGB 57.72 ± 54.91 0.72 ± 0.33 126.01 ± 95.17 0.44 ± 0.43 XGB 46.56 ± 37.67 0.74 ± 0.36 109.85 ± 79.85 0.11 ± 1.06

Precipitation-only subset (oversampled) Precipitation-only subset (oversampled)
4.2. Results

The overall results of our predictive analysis using both TSS and
CVS validation strategies are displayed in Table 2 for both the upper
and lower courses. Holding constant the validation set (with CVS)
shows consistently lower variance and larger error than using TSS.
For example, in the upper course with the whole data, 𝐾NN shows
a mean RMSE of 15.34 with TSS and 20.51 with CVS, whereas the
associated standard deviation is 4.54 and 0.38 respectively. As shown
in Fig. 4, in the last portion of the series a concentration of more
and heavier flow rise events exists. These events are included in the
last validation subset, the only one used by CVS. In contrast, TSS
uses different validation subsets, some of them with long easy-to-
predict valley periods. Thus, we can describe the different sources of
variation: whereas the standard deviation measured with CVS is due
to an increasingly-large training set (and the intrinsic variability of the
model), TSS also registers the variability due to changing validation
subsets. The behavior with the precipitation-only subset is slightly
different because synthetic oversampling is applied to the training data,
forcing the model to fit larger curves. Linear regression stands out as
the best model, in general. Random forest and XGBoost, in this order,
show competitive results. In the upper course, LR is the best model in
the vast majority of experiments. In the lower course, its superiority is
less clear. Per validation strategy, the best model is always LR with CVS
and in the majority of cases RF with TSS. These results might indicate
that simpler models, with a smaller number of parameters to fit, might
be more appropriate for this problem: while holding top performance,
the limited standard deviation suggests that a competitive model fit can
be achieved with smaller data sizes. Reasonably, the lowest errors are
achieved with the no-precipitations dataset, as large flow rise events are
not present in the dataset and the models can fit the data better. These
events are collected in the precipitation-only subset, and hence the
associated large error values. Note that RMSE measures absolute error.
Results in terms of NSE show that models for the no-rain periods might
be relatively worse than those for the rainy periods. The lower course
7

seems more complex to model, as all the evaluation measurements are
worse than those of the upper course. This can be partially explained
by the presence of the reservoirs right before this part of the river, the
management of which depends on different aspects such as reservoir
level, weather forecasts or water diversions.

Tables 3 and 4 show the results of the models learned with the
different datasets when validated on 5 different events in the upper
and lower courses, respectively: two standard situations of the river (S1
and S2), a larger flow rise in the upper course which was moderate
in the lower course (Leslie storm) and the other way around (RL),
as well as Gloria storm, which affected both parts of the river. The
validation with these 5 events is similar to CVS (Fig. 5b): each exper-
iment is repeated with training datasets of increasing size and, hence,
the observed variability (standard deviation). In standard situation S1,
models learned with the complete data or the no-precipitation subset
show similar results in both courses. Regardless of the RMSE values,
NSE results indicate that this type of small flow rise event is difficult
to model, especially in the lower course. As expected, models learned
with precipitation-only data are not competitive in this case. However,
with standard situation S2, which covers a slightly heavier flow rise,
some regressors (LR with the precipitation-only subset in the upper
course, KNN with the no-precipitation dataset in the upper course)
provide good results while the vast majority fails to model it prop-
erly. Interestingly, models learned only with data from rainy events
start showing up as competitive. Results during RL, Gloria and Leslie
events are consistently better when the models are learned from the
precipitation-only subset. For example, for Gloria in the lower course,
LR improves from a RMSE value of 296.32 with the complete dataset
to 138.62 with the subset and, in terms of NSE, from 0.04 to 0.79.
To better illustrate this gain, Fig. 6 shows the original river flow time
series of these three last flow rise events, and the prediction of the LR
and RF models learned with the complete data and the precipitation-
only subset. It can be easily appreciated how the models learned with
data of rainy periods fits better the real curve. By visual inspection,
RF fits better the real time series. LR overestimates (or underestimates,
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Table 3
Results in terms of averaged RMSE and NSE (and associated standard deviation) in 5 events in the upper course using 4 different types of regressors. Results are shown with the
complete dataset, and with the subsets of no-precipitation and precipitation-only data. Bold type indicates the best model per event.

Model S1 S2 RL Leslie Gloria Metric

KNN 10.48 ± 0.59 14.57 ± 0.67 26.76 ± 0.94 141.68 ± 5.7 217.28 ± 3.76 RMSE
−0.08 ± 0.12 0.63 ± 0.03 0.45 ± 0.04 0.63 ± 0.03 0.49 ± 0.02 NSE

LR 8.27 ± 0.93 12.54 ± 1.63 22.26 ± 1.69 89.24 ± 5.3 213.28 ± 6.66 RMSE
0.32 ± 0.15 0.72 ± 0.07 0.62 ± 0.06 0.85 ± 0.02 0.5 ± 0.03 NSE

RF 8.73 ± 0.15 13.17 ± 0.75 22.93 ± 1.29 145.58 ± 20.96 211.71 ± 25.55 RMSE
0.25 ± 0.03 0.7 ± 0.03 0.6 ± 0.04 0.61 ± 0.11 0.51 ± 0.12 NSE

XGB 9.89 ± 0.62 13.52 ± 1.02 27.84 ± 2.4 144.61 ± 32.31 210.17 ± 17.7 RMSE
0.04 ± 0.12 0.68 ± 0.05 0.41 ± 0.1 0.6 ± 0.16 0.52 ± 0.08 NSE

Complete dataset

KNN 10.41 ± 0.46 15.74 ± 0.03 27.77 ± 0.71 199.33 ± 3.01 320.19 ± 7.29 RMSE
−0.07 ± 0.09 0.57 ± 0.0 0.41 ± 0.03 0.27 ± 0.02 −0.12 ± 0.05 NSE

LR 10.05 ± 1.31 18.84 ± 2.61 28.27 ± 1.99 109.52 ± 4.31 247.98 ± 9.97 RMSE
−0.01 ± 0.27 0.37 ± 0.18 0.39 ± 0.09 0.78 ± 0.02 0.33 ± 0.05 NSE

RF 8.29 ± 0.15 12.68 ± 0.59 22.65 ± 2.74 215.7 ± 0.17 359.52 ± 1.08 RMSE
0.32 ± 0.02 0.72 ± 0.03 0.6 ± 0.09 0.15 ± 0.0 −0.41 ± 0.01 NSE

XGB 9.51 ± 0.68 16.21 ± 2.45 27.68 ± 1.7 203.28 ± 10.55 329.2 ± 22.71 RMSE
0.11 ± 0.13 0.54 ± 0.13 0.41 ± 0.07 0.24 ± 0.08 −0.18 ± 0.16 NSE

No-precipitation subset

KNN 9.79 ± 5.82 12.7 ± 2.9 14.5 ± 2.34 131.91 ± 71.23 215.31 ± 120.75 RMSE
−0.16 ± 1.31 0.71 ± 0.14 0.84 ± 0.05 0.62 ± 0.4 0.39 ± 0.66 NSE

LR 11.11 ± 3.18 10.43 ± 2.39 18.32 ± 2.86 83.03 ± 15.51 192.45 ± 37.02 RMSE
−0.28 ± 0.64 0.8 ± 0.09 0.74 ± 0.08 0.87 ± 0.05 0.59 ± 0.16 NSE

RF 10.78 ± 7.08 11.34 ± 6.61 10.46 ± 0.37 106.98 ± 106.88 189.58 ± 160.81 RMSE
−0.47 ± 1.78 0.73 ± 0.3 0.92 ± 0.01 0.65 ± 0.54 0.42 ± 0.83 NSE

XGB 10.33 ± 4.86 10.88 ± 4.95 11.12 ± 0.67 111.83 ± 104.02 189.23 ± 156.64 RMSE
−0.2 ± 1.12 0.77 ± 0.21 0.91 ± 0.01 0.64 ± 0.54 0.43 ± 0.8 NSE

Precipitation-only subset (oversampled)
Table 4
Results in terms of averaged RMSE and NSE (and associated standard deviation) in 5 events in the lower course using 4 different types of regressors. Results are shown with the
complete dataset, and with the subsets of no-precipitation and precipitation-only data. Bold type indicates the best model per event.

Model S1 S2 RL Leslie Gloria Metric

KNN 5.96 ± 0.49 45.77 ± 14.41 138.35 ± 41.93 71.94 ± 0.72 207.58 ± 35.38 RMSE
−6.76 ± 1.23 −2.43 ± 1.84 0.34 ± 0.34 0.6 ± 0.01 0.52 ± 0.17 NSE

LR 5.9 ± 0.65 42.91 ± 2.2 97.85 ± 29.83 39.38 ± 10.54 296.32 ± 15.53 RMSE
−6.61 ± 1.7 −1.83 ± 0.29 0.67 ± 0.21 0.87 ± 0.07 0.04 ± 0.1 NSE

RF 2.43 ± 0.53 44.0 ± 8.11 92.57 ± 6.3 50.26 ± 5.96 206.35 ± 34.41 RMSE
−0.33 ± 0.59 −2.04 ± 1.12 0.72 ± 0.04 0.8 ± 0.05 0.53 ± 0.16 NSE

XGB 3.58 ± 0.22 66.02 ± 24.64 139.2 ± 8.44 58.35 ± 10.83 216.04 ± 36.32 RMSE
−1.79 ± 0.35 −6.31 ± 5.46 0.37 ± 0.08 0.73 ± 0.1 0.48 ± 0.18 NSE

Complete dataset

KNN 5.39 ± 0.02 14.94 ± 0.23 147.71 ± 0.25 77.62 ± 1.5 288.51 ± 16.68 RMSE
−5.31 ± 0.05 0.66 ± 0.01 0.29 ± 0.0 0.53 ± 0.02 0.09 ± 0.11 NSE

LR 6.95 ± 1.93 102.87 ± 24.26 293.86 ± 75.56 48.94 ± 14.16 592.97 ± 113.62 RMSE
−10.03 ± 6.27 −15.83 ± 8.13 −1.92 ± 1.48 0.8 ± 0.12 −2.94 ± 1.51 NSE

RF 4.32 ± 1.35 38.04 ± 5.88 124.68 ± 20.57 81.51 ± 22.13 310.2 ± 51.2 RMSE
−3.32 ± 2.69 −1.26 ± 0.71 0.49 ± 0.16 0.46 ± 0.27 −0.07 ± 0.33 NSE

XGB 3.51 ± 0.12 25.23 ± 9.71 109.76 ± 7.83 49.8 ± 5.81 232.18 ± 24.08 RMSE
−1.68 ± 0.19 −0.07 ± 0.8 0.61 ± 0.06 0.81 ± 0.05 0.41 ± 0.13 NSE

No-precipitation subset

KNN 23.41 ± 33.31 32.05 ± 12.66 59.63 ± 63.32 39.06 ± 19.45 188.87 ± 146.03 RMSE
−278.52 ± 477.58 −0.74 ± 1.39 0.8 ± 0.32 0.86 ± 0.13 0.45 ± 0.74 NSE

LR 9.49 ± 8.41 24.97 ± 0.41 65.96 ± 20.36 42.82 ± 4.45 138.62 ± 6.17 RMSE
−28.79 ± 41.59 0.04 ± 0.03 0.85 ± 0.09 0.86 ± 0.03 0.79 ± 0.02 NSE

RF 23.09 ± 20.31 24.38 ± 14.98 68.0 ± 60.23 49.24 ± 44.96 182.48 ± 181.74 RMSE
−174.43 ± 222.7 −0.14 ± 1.32 0.77 ± 0.33 0.71 ± 0.43 0.39 ± 0.93 NSE

XGB 13.73 ± 13.76 24.22 ± 10.43 61.62 ± 59.21 47.7 ± 28.33 198.06 ± 150.05 RMSE
−67.33 ± 104.2 −0.01 ± 0.86 0.8 ± 0.3 0.78 ± 0.24 0.41 ± 0.79 NSE

Precipitation-only subset (oversampled)
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Fig. 6. Each plot shows, for a specific event (see Section 2), the real time series of the river flow and the predicted time series of LR and RF models learned with the complete
data and models learned with (oversampled) precipitation-only data.
in Leslie event) and shifts the high flow peaks. However, LR produces
smoother time series, closer to reality. RF introduces artifacts and
produces shaky time series. Similar figures for other models, events
and parts of the river can be found as supplementary material on the
associated. website1

4.3. Measuring the impact of the alignment of stations

The alignment of the time series of the different rainfall and river
flow stations regarding the corresponding reference station is, to our
knowledge, novel in this type of machine learning based prediction of
river flow. Measuring the impact of this alignment step can help us
understand the extra information that this provides to our models. The
following experiment aims to measure this impact.

The models presented above have been compared with a set of
models learned from the same data without alignment. For these new
models, we fix the prediction window in six hours. That is, they answer
the question: given the current situation in the different stations, what
will be the river flow in the reference station in six hours? Mean relative
performance improvement (calibrated regarding uncalibrated models)
is summarized in Table 5. Note that for the complete dataset, there is
no practical mean improvement; only a subset of models of the river
show improvement. For the precipitation-only subset, there is a clear
9

mean improvement in terms of RMSE: the error of calibrated models
is on average a 25.85% lower. In terms of NSE, the mean relative
improvement (increase) is 18.97%. After a detailed inspection of the
results, we observe improvement in almost every model from both parts
of the river, although the improvement rates of the lower-course models
are the largest.

These results are partially determined by our selection of six hours
for the prediction window of uncalibrated models. It was selected as a
large enough, but still short, time to set up preparatory actions. Another
value for this prediction window would definitively lead to different
results. However, this fact highlights the need for some sort of lag
estimation step in flow prediction studies so that the prediction window
is not fixed arbitrarily and, mainly, to understand the dynamics of the
river flow in large flow rise situations. The difference in improvement
rates between experiments using the complete data or the precipitation-
only subset can also be explained by our choice of rare events to
estimate the lags. That is, by design, the calibration method focuses
on adjusting the large-rise events and, thus, the large improvement
observed when only using data from rainy (and flow rise) periods
seems reasonable. In stable periods the river flow is rather constant,
the flow values do not change considerably from hour to hour. Thus,
for the complete dataset, where these stable periods are predominant,
calibration is irrelevant. Nevertheless, we must emphasize that the
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Table 5
Mean relative improvement in RMSE and NSE over all the models
and both parts of the river before and after performing the calibration
(aligning the time series according to the estimated lags). Results are
shown with the complete dataset, and with the precipitation-only subsets.
Complete dataset Precipitation-only subset

RMSE NSE RMSE NSE

0.2% −0.4% −25.85% 18.97%

final objective of flow modeling is to predict large flow rises (poten-
tial floods), which highlights the importance of the results with the
precipitation-only subset.

5. Discussion

Our models, which fit different scenarios of the river, show promis-
ing results. They not only meet the objective of helping to anticipate
floods but also provide useful and interpretable information about their
functioning.

Data collection. The first contribution of this work is the collection
nd curation of rainfall and river flow data for the study. In the future,
ore data or information could also be provided to the models. For

xample, floods are known to be associated with saturated soils that
annot absorb more water. To account for this behavior, soil moisture
ata could be gathered (Kumar et al., 2021) or, by feature engineering
ur current data, additional information on the number of rainy days in
certain past period or cumulative rainfall measurements (Saint-Fleur

t al., 2023) over longer periods could be fed to the model.

odeling decisions. Due to its physical traits, we decided to model
he upper and lower courses of the river separately. We chose (and
odeled the river flow at) one station from each part of the river, as

tations close to flood-risk areas. The results of this work depend on
he selection of these two stations as reference points; results might
e different if other stations were chosen as references. Specifically,
rying to model a station close to the source of the river could make
he model depend exclusively on rainfall measurements. This type of
nalysis could be interesting to understand the contribution of rainfall
o the river flow.

stimation of the time lag between stations. The measurement of
the lag or time elapsed between the observation of an event across
different stations of the river is our result with the largest explanatory
potential. This information was used to calibrate the ML models. This
calibration is key to the interpretability of the produced models as it can
guide domain managers not only to pay attention to the most relevant
stations but also to indicate them when to look at these relevant sites.
In the future, calibration could also be carried out within a multivariate
correlation analysis, instead of the current bivariate study, to account
for the interactions between stations. Recent studies using DNNs have
been able to provide information similar to that of our calibration study
taking advantage of spatial–temporal attention mechanisms (Chang
et al., 2024) or physics-informed models (Saint-Fleur et al., 2023). It
would be interesting to study whether these techniques can be used to
estimate the lags for our alignment process.

The calibration also determines the largest achievable prediction
window. As found also by Saint-Fleur et al. (2023), if our method
finds that river flow rises with a difference of two hours between
the reference and its closest station, our models will not be able to
provide a prediction for a window longer than two hours. Eventually, a
resulting short prediction window might not enable a feasible response
to potential floods (not enough time for setting up preparatory actions).
If this were the case, the station that determines the prediction window
10
might be removed from the calibration step or, directly, from the
predictive models at the cost of potential performance loss.

Standard machine learning techniques. We decided to avoid com-
plex and black-box models such as ANNs and modern DNNs. Standard
ML models provide competitive results and a good fit to flow rise
events, as shown in Section 4. Moreover, thanks to the use of standard
ML models, off-the-shelf model inspection techniques (Molnar, 2022)
could be used to gain extra interpretation, such as feature importance
metrics to understand which are the most relevant stations for deter-
mining river flow at each reference station. There might be room for
improvement if the different components of our solution could be fur-
ther optimized (using other types of models, enlarged hyperparameter
tuning process, etc.).

Adapting to extreme situations. We have analyzed different models
with various configurations of the data due to the difficulty of ML mod-
els to fit the extremes, that is, low and high flow levels (Kumar et al.,
2021). In line with Saint-Fleur et al. (2023), we show that a model
fitted to the heavy-rain/flow-rise events (precipitation-only subset) is
useful. It shows a reduced predictive error regarding models learned
with the complete dataset which registers, most of the time, a flat
signal (no rain - no flow change). The improvement of models learned
with the subset of no-precipitation data (only these predominantly flat
periods) regarding those models learned with the complete data is more
modest. In practice, a combination of models (precipitation-only/no-
precipitation) might be more appropriate to build a predictive system
that can anticipate high-flow episodes. The trigger of the decision to
use one or another model in such a system, the mean precipitation, is
easily measured and therefore actionable.

6. Conclusion

This study uses traditional machine learning to model the flow of
the Ter river (NE Spain), which has historically suffered floods with a
vast social impact. The goal is to anticipate flood episodes and enable
the preparation of mitigation actions by the responsible institutions.
We propose a predictive system composed of a set of models that fit
different weather scenarios. Rainfall and river flow stations feed the
models after calibrating them according to their estimated time lag with
the modeled stations. The calibration step increases the interpretability
of the models, providing actionable information about which station to
pay attention to (and when) to anticipate overflow risk. Our predictive
system shows a promising ability to model river flow. Empirical results
suggest that a combination of two models is worthwhile: a model
learned from data of heavy-rain periods which offers robust estimations
during flow-rise events, and another one that models the more common
calm periods.

River flow modeling is an open problem that can lead to several
lines of future research, some of which are identified in our discussion
above. Recovering or imputing data for the time series of the stations
discarded due to their large missing rate is a potentially simple di-
rection to enhance our models. Alternative approaches could consider
pure time series analyses, possibly using current deep recurrent models.
The present study could be extended by learning similar models using
rainfall forecasts. This could enable an extensive analysis to understand
how rainfall affects the flow in every river flow station. Domain ex-
perts should validate these data-driven results and our alignment of
stations. We will explore the possibility of deploying a machine learn-
ing based predictive system that assists the Catalan Water Agency’s
decision-makers.
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