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Abstract
To determine the decomposition conditions of carbonates in the form of films, we investigated the dependence of the 
kinetics on carbon dioxide partial pressure, temperature and film thickness. Three different analyses allow us to determine 
the functional dependence of the decomposition onset temperature on the CO

2
 partial pressure, of the reaction rate on the 

temperature and of the kinetics on the film thickness. The latter analysis also reveals geometrical aspects of the reaction 
mechanism. Experiments have been carried out with CaCO

3
 and BaCO

3
 films. The simple geometry of the films and their 

relatively fast heat and gas transport allow the reaction kinetics to be easily explored.
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Introduction

A large number of studies are devoted to the thermal decom-
position of alkaline earth metal carbonates due to their mul-
tiple applications [1–3]. For example, the decomposition of 
CaCO3 is widely studied for the production of quicklime 
and concrete [4, 5], CO2 capture [6–8] and energy storage 
[9–11]. In addition, BaCO3 is also used in the synthesis 
of concrete [12]. Moreover, the thermal decomposition of 
BaCO3 is a crucial step in the synthesis of high-temperature 
superconductors [13], ferroelectric and dielectric materi-
als [14, 15]. Therefore, knowing the decomposition tem-
perature of a carbonate, as well as its functional dependence 
on the system parameters, is of interest for many practical 
situations.

The decomposition of carbonates is a reversible reaction,

so its kinetics depends on the partial pressure of CO2 [1]. 
The partial pressure of CO2 at the interface depends on the 
transport of CO2 through the sample and on the surround-
ing atmosphere. For instance, at atmospheric pressure, the 
formation of a stagnant CO2 layer around particles can slow 
down the decomposition [2, 16, 17]. As a result, the decom-
position kinetics depends on the morphology of the material 
[18–20], the gas flow rate [21], the total pressure and the 
composition of the atmosphere [1]. Consequently, a wide 
dispersion of activation energy values has been reported; 
from 155 to 960 kJ mol−1 for CaCO3 [2, 3, 22] and from 226 
to 305 kJ mol−1 for BaCO3 [23–28].

Thermal decomposition of metal carbonates is a ther-
mally activated process and for low or moderate values of 
p(CO2) can be approximately described by a single step 
kinetics [1, 29, 30]:

where t is the time, T is the temperature, � is the degree 
of transformation ( 0 ≤ � ≤ 1 ), EA and A are the activation 
energy and the pre-exponential term of the rate constant, 
respectively, RG is the universal gas constant, p(CO2) is the 
partial pressure of CO2 , f (�) is a characteristic function of 
the reaction model [21] and g(p(CO2)) is a function that 
accounts for the dependence on p(CO2) [1, 2]. For reversible 

(1)MCO3(s) ⇌ MO(s) + CO2(g), (2)d�

dt
= Ae

−
EA

RGT f (�)g(p(CO2)),

 *	 Jordi Farjas 
	 jordi.farjas@udg.edu

1	 Physics, Universitat de Girona, Campus Montlivi, Edif. PII, 
17003 Girona, Catalonia, Spain

2	 Laboratoire de Chimie Inorganique, Faculté des Sciences de 
Sfax, University of Sfax, BP 1171, 3000 Sfax, State, Tunisia

http://orcid.org/0000-0002-4093-9843
http://crossmark.crossref.org/dialog/?doi=10.1007/s10973-024-13318-x&domain=pdf


	 D. Sanchez‑Rodriguez et al.

reactions such as the decomposition of a carbonate, the most 
common dependence on p(CO2) is [2, 21, 28]:

where peq(CO2) is the equilibrium partial pressure in atm. 
peq(CO2) depends on temperature through the standard 
Gibbs free energy change, ΔG0:

In the case of CaCO3 and BaCO3 decompositions, ΔG0 
exhibits a linear temperature dependence for a wide tem-
perature range,

where a = 171 kJ mol−1 and b = 0.147 kJ K −1 mol−1 for the 
decomposition of CaCO3 [29, 31] (similar dependences 
have been reported by [32]: a = 170 kJ mol−1 and b = 0.146 
kJ K −1 mol−1 , [33]: a = 168 kJ mol−1 and b = 0.144 kJ K −1 
mol−1 , and by [16]: a = 164 kJ mol−1 and b = 0.139 kJ K −1 
mol−1 ). For the decomposition of BaCO3 : a = 232 kJ mol−1 
and b = 0.133 kJ K −1 mol−1 [34] or a = 243 kJ mol−1 and 
b = 0.143 kJ K −1 mol−1 [35]. These values are relatively 
similar to those of the enthalpy and entropy changes at the 
reaction temperatures; for CaCO3 decomposition at 550◦ C, 
ΔH0 = 173 kJ mol−1 and ΔS0 = 0.154 kJ K −1 mol−1 [31], and 
for BaCO3 decomposition at 900◦ C, ΔH0 = 235.1 kJ mol−1 
and ΔS0 = 0.1355 kJ K −1 mol−1 [34].

Despite the large number of works devoted to the study of 
the thermal decomposition of carbonates, to our knowledge, 
there are no works dedicated to analyze the decomposition 
of carbonates in the form of films. Knowing the mecha-
nisms and kinetics governing the gas-solid state reactions 
involved in the synthesis of oxides is crucial to optimize 
film synthesis and control the final film morphology. Moreo-
ver, in powders the surface area of the reaction interface is 
not constant and there is often considerable uncertainty in 
its determination, whereas in films it is basically constant 
and well known. In addition, gas exchange is much faster 
in films than in powders, so the determination of the reac-
tion mechanism is simpler. Besides, in powders it has been 
reported that the heat consumed by the decomposition and 
gas diffusion of the carbonate affects the kinetics [36–40]. 
In contrast, heat dissipation through the substrate is much 
more efficient in films so the effect on the kinetics of the 
heat absorbed or generated by the reaction is negligible [41, 
42]. Moreover, the significantly faster heat transport in films 
compared to powders allows higher heating rates to be used, 
while avoiding the formation of temperature gradients within 
the sample.

(3)g(p(CO2)) = 1 −
p(CO2)

peq(CO2)
,

(4)ln(peq(CO2)) = −
ΔG0

RGT
.

(5)ΔG0 = a − bT ,

In contrast, the sample masses involved in film analysis 
are usually quite small, in the order of a few hundredths of 
a milligram at best. Consequently, the signal obtained for 
kinetic analysis is very weak and sensitive to deviations of 
the baseline, experimental noise and experimental artifacts. 
Accordingly, it is difficult to obtain well-defined, low-noise 
transformation rate curves in which the peak shape is not 
affected by the choice of the baseline. Therefore, the use of 
advanced kinetic methods, such as isoconversional methods, 
is limited.

The decomposition kinetics of carbonate films has three 
distinct dependencies: the dependence of the reaction rate 
on temperature, its dependence on the carbon dioxide partial 
pressure and its dependence on film thickness. Furthermore, 
the carbon dioxide partial pressure dependence also involves 
the temperature through the equilibrium partial pressure, 
g(p(CO2)) . Since these dependencies are entangled, tradi-
tional kinetic approaches relying solely on temperature result 
in the scattered values for the reported activation energy.

In this work we introduce three complementary analy-
ses enabling the separate determination of the functional 
dependence of the kinetics on the system parameters and 
to predict the onset of carbonate decomposition. The first 
analysis consists on determining the onset temperature as a 
function of p(CO2) to characterize g(p(CO2)) . The second 
analysis entails analyzing the decomposition of CaCO3 and 
BaCO3 films at very low p(CO2) (vacuum conditions) to 
determine the reaction rate. Finally, we explore the depend-
ence of the kinetics on the film thickness. As a result, we 
were able to obtain a complete characterization of the func-
tional dependence of the kinetics on the system parameters 
in a relatively simple and reliable way.

Materials and methods

The initial CaCO3 and BaCO3 films were characterized by 
Fourier transform infrared spectroscopy (FTIR) and X-ray 
diffraction (XRD). FTIR analysis was performed with a 
Bruker ALPHA spectrometer connected to an attenuated 
total reflectance module. XRD spectra were obtained with 
a Bruker AXS D8 ADVANCE diffractometer with a Cu-K� 
source (1.5406 Å) operating at 40 kV and 40 mA.

Films were obtained by depositing through spin coat-
ing a solution of the metal propionate onto 10 × 10 mm2 
LaAlO3 (LAO) substrates and drying them at 70◦ C for 5 
min. The starting solutions for CaCO3 and for BaCO3 were 
obtained by dissolving calcium propionate (Glentham 
≥ 99% ) and barium acetate (Sigma Aldrich ≥ 99% ) in 
propionic acid (Merck, ≥ 99% ), respectively. The solution 
was then kept under sonication until complete dissolution 
of the salt to a concentration [M2+] = 1.5 M. Removal of 
organic moieties was achieved after heating the films from 
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room temperature to 500◦ C at a heating rate of 5 K min−1 
under a flow rate of 80 mL min−1 of wet oxygen [43, 44]. 
X-ray and FTIR analyses of the films (not shown) con-
firmed that the phases after pyrolysis of calcium propion-
ate and barium propionate are calcite [44] and orthorhom-
bic BaCO3 , respectively.

The nominal film thickness, h, given in this work is 
calculated from the mass of the films, the carbonate den-
sity ( �CaCO3

=2.71 g cm−3 and �BaCO3
=4.29 g cm−3 [45]) and 

the surface area, S, of the substrate, h =
m

�S
 . The nominal 

thickness is expected to be lower than the actual thickness 
due to porosity.

The decomposition of carbonate under vacuum condi-
tions was carried out in a quartz tube surrounded by a low 
thermal inertia tube furnace, as shown in Fig. 1. An alu-
mina sample holder is used to place the sample in the hot 
zone of the furnace. A thermocouple is placed in contact 
with the sample to measure its temperature. One end of the 
tube is connected to the carrier gas. The composition of 
the atmosphere is controlled by means of the carrier gas 
by mixing high purity N 2 and synthetic air (Air Liquide, 
CO2 ≤ 1 ppm and purity ≥ 99.999% ) using MKS Instru-
ments G-series mass flow controllers. The other end of the 
quartz tube is connected to a to a Leybold LEYSPEC view 
100 S quadrupole mass analyzer in series with a turbomo-
lecular pump and a rotary pump to drag the gas evolved 
from the sample and achieve the necessary vacuum (the 
total pressure at the sample chamber was around 10−4 
mbar). The quadrupole mass analyzer allows to measure 
the CO2 (m/z=44) partial pressure set by the carrier gas 
as well as recording the decomposition of carbonate as a 
function of temperature.

Carbonate decomposition at atmospheric pressure 
was performed on a Mettler Toledo thermobalance (TG), 
model TGA/DSC1. The determination of the p(CO2) 

inside the TG furnace was performed using the Leybold 
LEYSPEC quadrupole connected to the TG with a steel 
capillary and a needle valve.

Reaction models and kinetic analysis

Reaction models

As a first approximation, three basic models are candidates to 
describe the decomposition of carbonate: (i) the rate of decom-
position is governed by the reaction at the interface or between 
the oxide and the carbonate, (ii) the rate of decomposition 
is governed by the diffusion of CO2 through the oxide layer 
formed on top of the carbonate layer, and (iii) the oxide devel-
ops spontaneously at randomly distributed points throughout 
the film [3].

Interface limited decomposition

In reversible reactions, if diffusion is sufficiently fast, the 
reaction occurs on a reactant/product interface [46] and the 
kinetics is controlled by the forward and reverse reaction rate 
constants kf and kr , respectively. Thus, the number of moles of 
CO2 evolved in a time interval dt is:

where S is the film surface.
Since at equilibrium the reaction rate is zero:

The evolution of the number of moles of CO2 is:

Moreover, since the surface area of the film S is constant, we 
can easily relate the number of evolved moles ( dn = dm∕M ) 
to the degree of transformation ( d� = dm∕m):

where M is the carbonate molecular mass, h is the initial film 
thickness and � is the carbonate density. Finally, assuming an 
Arrhenius dependence on temperature for kf ( kf = kf,0e

−
Ef

RGT ) 
we obtain:

(6)
dn

dt
=

S

RGT

(

kf − krp(CO2)
)

.

(7)kr =
kf

peq(CO2)

(8)
dn

dt
= kf

S

RGT

(

1 −
p(CO2)

peq(CO2)

)

.

(9)d� = dn
M

�hS
,

(10)
d�

dt
= kf,0

M

�RGT

1

h
e
−

Ef

RGT

(

1 −
p(CO2)

peq(CO2)

)

.

quadrupole
mass

Analyzer 
pump

quartz tube

Furnace turbomolecular
pump

MSsampleholder CO2 flow

CO
2 flow

Fig. 1   Experimental set-up for measuring carbonate decomposition 
under vacuum conditions
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where Ef and kf,0 are the activation energy and the pre-expo-
nential term of the forward rate constant.

Taking into account that the rate constant in Eq. 2 is 
k(T) = Ae

−
Ef

RGT , we obtain:

and

The activation energies for product recombination are gener-
ally low, so Ef ≈ ΔH0 is expected [3] and the RGT  term is 
about 5 kJ mol−1 , so EA ≈ ΔH0.

Diffusion limited decomposition

If diffusion through the layer is the limiting mechanism, then 
the reaction is fast enough to reach equilibrium at the inter-
face, so the concentration of CO2 at the interface, ci , is that of 
equilibrium:

If we assume that the concentration of CO2 at the film sur-
face is that of the surrounding atmosphere:

And in stationary conditions the rate of evolution of CO2 is:

where z is the thickness of the oxide along which CO2 dif-
fusion occurs and D = D0e

−Ed∕RGT is the diffusion coeffi-
cient. And, if we take into account that � = z∕h and that 
dn = dm∕M we obtain:

And taking into account that both diffusion and peq(CO2) are 
thermally activated, we obtain,

So the pre-exponential term and the activation energy are:

(11)A = kf,0
M

�RG

1

h
,

(12)EA = RGT
2 d ln(k(T))

dT
= Ef − RGT ,

(13)ci = ce =
peq(CO2)

RGT
.

(14)c0 =
p(CO2)

RGT
.

(15)1

S

dn

dt
= D

ce − c0

z
=

D

RGT

peq(CO2) − p(CO2)

z
.

(16)
d�

dt
= D

M

�RGT

1

h2
1

�
peq(CO2)

(

1 −
p(CO2)

peq(CO2)

)

.

(17)
d�

dt
= D0

M

�RGT

1

h2
e
−

ΔS0

RG
1

�
e
−

ΔH0+Ed

RGT

(

1 −
p(CO2)

peq(CO2)

)

.

(18)A = D0

M

�RG

1

h2
e
−

ΔS0

RG ,

and

Since the molar volume of the oxide is lower than that of the 
carbonate, the oxide film can be porous. In this case Ed << 
ΔH0 and EA ≈ ΔH0.

Random nucleation decomposition

Finally, if the decomposition is governed by random nuclea-
tion and growth of the new oxide phase throughout the film, 
the reaction rate does not depend on the film thickness and 
the activation energy depends on the nucleation and growth 
activation energies [47–50].

Note that, depending on the control mechanism, the pre-
exponential term shows a different dependence on the film 
thickness; A ∝ h-n , where n = 0, 1 and 2 for a decomposition 
governed by nucleation and growth, by the interface reac-
tion and by CO2 diffusion, respectively. Furthermore, it is 
important to stress that for the advancing interface and CO2 
diffusion mechanisms the activation energy is similar to the 
enthalpy change of the reaction.

Kinetic analysis

The main drawback of working with layers is their low mass, 
so experimental artifacts and inaccuracies in TG and mass 
spectroscopy (MS) measurements significantly affect the 
shape of TG and MS curves. However, the onset tempera-
ture, TOnset (TOnset is the intersection point of the extrapolated 
baseline and the tangent at the beginning of the peak), and 
the temperature at which the transformation rate is maxi-
mum, TKis , can be determined with fair confidence. For this 
reason, the kinetic analyses are based on the determination 
of TOnset or T Kis.

Specifically, to determine the reaction rate we have per-
formed Kissinger’s analysis [51] which is based on the deter-
mination of the peak temperature, TKis , for experiments car-
ried out at a constant heating rate, � . Kissinger’s method 
assumes that the kinetics is governed by a single step reac-
tion and is derived directly from Eq. 2 with g(p(CO2)) = 1:

where �M is the degree of transformation at TKis . The values 
of �M and f ′

(

�M
)

 for different reaction models are given in 
[52]. Thus, according to Eq. 20, the plot of ln

(

�

T2
Kis

)

 versus 
the reciprocal of temperature should give a straight line from 
whose slope and intercept EA and A can be determined.

(19)EA = RGT
2 d ln(k(T))

dT
= Ed + ΔH0 − RGT ,

(20)ln

(

�

T2
Kis

)

= −
EA

RGTKis
+ ln

(

−
ARG

EA

f �
(

�M
)

)

,
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Kissinger’s method is exact for a first-order reaction and 
inaccuracies are less than 5% for many reaction models as 
long as EA∕RGT > 10 [53] and for some models less than 
1% for EA∕RGT > 30 [54]. However, Kissinger’s method 
has important limitations: it cannot be used to analyze 
processes occurring in cooling experiments [55], it is inac-
curate for non-constant heating rate experiments [56], it 
fails for processes that do not obey the Arrhenius equation 
[57], and it does not give a reliable result when the process 
has multi-step kinetics that cannot be described by a single 
value of the activation energy [21].

As we will see below, EA∕RGT > 30 , so the only rel-
evant consideration is to check that the process can be 
described approximately by a constant value of the acti-
vation energy. For this purpose we have used Friedman’s 
exact isoconversional method [58]. Friedman’s method is 
derived directly from the isoconversional principle which 
states that for a given degree of transformation � , the con-
version rate is only a function of temperature. [59, 60]:

where E� is the activation energy at a given degree of trans-
formation. The integration of Eq. 21 gives the transforma-
tion rate:

To linearize Eq. 22 we apply logarithms to both sides:

Therefore, for a given � , E� can be determined from the 
slope of a plot of ln d�

dt
 versus 1∕T� , where the set of data 

points d�
dt

 and T are obtained from experiments performed at 
different heating rates. To reduce the detrimental effect of 
noise in the Friedman analysis, we have applied a Savitzky-
Golay filter [61], but taking care not to alter or distort the 
shape of the transformation rate curve.

Finally, to analyze the dependence of the pre-exponen-
tial term A on film thickness we use the following approxi-
mate solution of Eq. 20 [62]:

where xKis =
EA

RGTKis
 , z = 1

2

√

−
EAA

RG�
f �
(

�M
)

 and x0 is xKis for a 
given experiment, that is, for a particular heating rate �0 and 
film thickness h0.

Note that for different experiments performed on films 
of the same compound, all terms of the z parameter are 

(21)
[

dln(d�∕dt)

dT−1

]

�

= −
E�

RG

,

(22)
d�

dt
= A�f (�)exp

[

−
E�

RGT

]

.

(23)ln
d�

dt
= −

E�

RGT
+
(

A�f (�)
)

.

(24)xKis = x0 +
2x0

2 + x0
ln

(

z

z0

)

,

identical except the heating rate and the pre-exponential 
term. According to Sect. 3.1 A depends on the thickness 
of the film, h; A ∝ h-n , where n = 0, 1 and 2 for a decom-
position governed by nucleation and growth, advancing 
interface, and CO2 diffusion, respectively. Therefore, if all 
experiments are performed at the same heating rate, the 
term z

z0
 reduces to 

(

h0

h

)n

 . In addition, as we will see in 
Sect.  4.1, for BaCO3 and CaCO3 decompositions 
x0

2+x0
≈ 0.94 , so Eq. 24 becomes:

where T0 is the peak temperature for a thickness h0 . Thus, a 
plot of 1

TKis
 versus −0.94RG

EA

ln(h) should give a straight line of 
slope n. Therefore, this analysis will allow us to elucidate 
the decomposition mechanisms.

Results and discussion

Determination of the CO
2
 equilibrium partial 

pressure

To determine the kinetic parameters of the Gibbs free 
energy, a and b in Eq. 5, we have performed TG measure-
ments at a fixed heating rate for different CO2 partial pres-
sures. Since the kinetics depends on the film thickness, 
we have used films of similar thicknesses: for CaCO3 the 
average film thickness was 0.43 ± 0.03�m while for BaCO3 
the average film thickness was 0.57 ± 0.02�m . The results 
for the decomposition of CaCO3 and BaCO3 are shown in 
Fig. 2. To determine the degree of transformation we assume 
that it is proportional to the mass, m(t):

(25)
1

TKis
=

1

T0
+ 0.94n

RG

EA

ln

(

h0

h

)

,

Fig. 2   Transformation rate determined from TG curves showing the 
decomposition evolution of CaCO

3
 and BaCO

3
 films when heated at 

a constant heating rate of 20 K min−1 for different CO
2
 partial pres-

sures
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where mi and mf are the initial and final masses, respectively.
From Fig. 2, we can state that with increasing CO2 partial 

pressure the peaks shift to higher temperatures and become 
narrower and sharper. This behavior is characteristic of 
reversible reactions [1, 16]. In fact, from Eqs. 2 and  3 it 
follows that the onset temperature, TOnset , is the temperature 
at which the equilibrium pressure of CO2 is equal to the 
external pressure. Thus, according to Eqs. 4 and  5, when 
p(CO2) increases, TOnset also increases.

Moreover, a plot of ln(p(CO2)) with respect to the recip-
rocal of TOnset should give a straight line. From the slope 
and intercept of this line we can determine the parameters 
a and b, respectively. This analysis has been performed in 
Fig. 3 and we have obtained for the CaCO3 decomposition: 
a = 174 kJ mol−1 and b = 0.148 kJ K −1 mol−1 which are in 
very good agreement with [29, 31] ( a = 171 kJ mol−1 and 
b = 0.147 kJ K −1 mol−1 ). For the decomposition of BaCO3 
we obtain a = 234 kJ mol−1 and b = 0.148 kJ K −1 mol−1 
which agree quite well with [34] ( a = 232 kJ mol−1 and 
b = 0.133 kJ K −1 mol−1 ). The small discrepancy in coeffi-
cient b for BaCO3 may be related to the sorption of p(CO2) 
[17]. In Eq. 2 it is assumed that desorption and sorption are 
not rate-limiting steps for the forward and reverse reactions, 
respectively. These processes are related to the weak Van der 
Waals interaction between the solid and the CO2 molecules, 
so the activation energy of sorption is much lower than that 
of peq(CO2) , but the effect on entropy may be apparent [63]. 

(26)�(t) =
m(t) − mf

mi − mf

,
Therefore, if sorption controls the reverse reaction, then 
the onset temperature will be shifted to lower values and 
a slightly larger value of the b parameter will be obtained.

The agreement between the onset temperature in the films 
and the peq(CO2) by more than three orders of magnitude 
down to a p(CO2) as low as 9.9 × 10−5 atm shows that no 
CO2-rich stagnant layer forms on the film surface. In con-
trast, the same analysis performed on powders (open stars in 
Fig. 3) shows that the formation of a local CO2-rich atmos-
phere around the particles shifts the onset of decomposition 
to higher temperatures and, as expected, the effect of this 
local atmosphere is more relevant at low p(CO2) . In fact, it 
has been shown that the gas transport is much faster in films 
[42, 64, 65] while the behavior of powders is affected by the 
formation of a local atmosphere around the particles [1]. 
Thus, in films the kinetics is not affected by the self-gen-
erated CO2 , whereas in the case of powders, total pressure, 
sample mass and powder compaction can have a significant 
effect on decomposition kinetics.

Kinetic analysis of the reaction rate constant

To determine the kinetic parameters and the influence of 
the p(CO2) on the activation energy, we have performed 
TG and MS experiments for two fixed p(CO2) and dif-
ferent heating rates. In Fig. 4 we have plotted the evo-
lution of CO2 when BaCO3 films are heated at constant 
rates, � , of 5, 10, 15, 20, 30 and 40 K min−1 in vacuum 
( p(CO2) ≊ 10−8 atm), the same measurements under the 
same vacuum conditions and for the same heating rates 
have been performed for CaCO3 films. The thickness of 
the films remained approximately constant: the average 
film thickness was 0.56 ± 0.03μm and 1.03 ± 0.04μm for 
CaCO3 and BaCO3 , respectively. We performed the same 
series of experiments at atmospheric pressure in the TG 
apparatus with a constant flow of 80 mL min−1 of high 
purity synthetic air. Due to furnace leakage, we have a 

/

–1

–1

–1

–1

/

Fig. 3   Solid points: plot of ln(p(CO
2
)) with respect to 1000∕T

Onset
 

for the TG measurements shown in Fig. 2 from film decomposition. 
Empty stars: measurements made on samples in the form of powders

Fig. 4   MS curves showing the rate of CO
2
 formation when BaCO

3
 

films are heated at different constant heating rates



Kinetic analysis of reversible solid‑gas reactions in films: application to the decomposition…

significantly higher value of p(CO2 ), 9.9 × 10−5 atm. The 
Kissinger kinetic analysis of these four sets of experiments 
is shown in Fig. 5.

The experiments in vacuum have been performed at 
very low p(CO2) and according to Eq. 3 when p(CO2) → 0 
then g(p(CO2)) → 1 . Therefore, under vacuum conditions 
the reaction rate only depends on the parameters EA and 
A. Thus, from the Kissigner analysis of the experiments 
done under vacuum conditions, Fig. 5, we can determine 
the activation energy of the rate constant. For CaCO3 films 
we obtain an activation energy of 196 kJ mol−1 . This result 
is in good agreement with the results reported for CaCO3 
powders (191 kJ mol−1 in [16] and 195 kJ mol−1 in [66]) 
and single crystals (205 kJ mol−1 in [39]), both in vacuum. 
As for BaCO3 , we have obtained an activation energy of 
232 kJ mol−1 that agrees well with the value of 226 kJ 
mol−1 for experiments performed in vacuum on single 
crystals [23]. Note that these activation energies are simi-
lar to the reaction enthalpies of CaCO3 at 550◦ C (173 kJ 
mol−1 ) and BaCO3 at 900◦ C (235 kJ mol−1 ), as expected 
according to Sect. 3.1 when the reaction is controlled by 
the reaction at the interface or by CO2 diffusion.

To asses that the kinetics can be described approxi-
mately by a single value of the activation energy we have 
also performed Friedman’s isoconvertional analysis, the 
result is shown in Fig. 6. The total mass evolved during 
carbonate decomposition is about 0.1 mg, as a result, the 
kinetic analysis is very sensitive to noise and experimen-
tal artifacts. In particular, the low baseline stability of 
the experiments dramatically affects the kinetic analysis 

for low and high degrees of conversion, this effect is 
especially noticeable for the decomposition of BaCO3 
in vacuum. Nevertheless, for the range of values where 
the Friedman analysis provides a reliable fit, we obtain a 
fairly constant value of the activation energy that matches 
the values obtained from the Kissinger analysis, so that, 
within the accuracy of our experiments, the kinetics can 
be described by a single value of the activation energy.

When p(CO2) is not negligible, the dependence of 
the kinetics on temperature is influenced by the function 
g(p(CO2)) in Eq. 3. As a result, the activation energy deter-
mined from the kinetic analysis is not EA , it is an apparent 
activation energy, E′ , which does not correspond to a physi-
cal parameter of the system. For this reason, the experiments 
performed at a p(CO2) = 9.9 × 10−5 atm yield higher values 
of the activation energies, 258 and 260 kJ mol−1 for CaCO3 
and BaCO3 respectively. In fact, the apparent activation 
energy, E′ , is known to increase with p(CO2) [29]:

Note that when p(CO2) → peq(CO2) , then E�
→ ∞ . For 

instance, for the decomposition of CaCO3 Hashimoto 
[67] reported activation energies up to 1548 kJ mol−1 at a 
p(CO2) = 80 kPa.

Therefore, even when working with high purity gases, the 
limited performance of commercial equipment for working 
in high purity environments may result in incorrect values 
of the activation energy [1, 16]. Furthermore, in the case of 
powder, the slower diffusion of CO2 may also result in CO2 
accumulation. Therefore, kinetic analysis of powder can also 
result in higher values of the apparent activation energy. For 
BaCO3 powders, an activation energy of 251 kJ mol−1 in 
nitrogen atmosphere [27] and 305 kJ mol−1 in argon atmos-
phere [25], respectively, has been reported.

(27)E� = EA + ΔH0 ×
p(CO2)

peq(CO2) − p(CO2)
,

/
/

/

–1

–1

–1

–1

Fig. 5   Kissinger plots corresponding to the decomposition of CaCO
3
 

and BaCO
3
 films in vacuum (circles) and at atmospheric pressure 

(stars). The continuous lines are the linear fit to Eq. 20

/

–1

Fig. 6   Friedman analysis corresponding to the decomposition of 
CaCO

3
 (blue symbols) and BaCO

3
 (red symbols) films in vacuum 

(circles) and at atmospheric pressure (stars). The dashed lines are the 
activation energies obtained from the Kissinger analysis
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Analysis of film thickness

As described in Sect. 3.2, we can determine the mechanism 
governing the decomposition by analyzing the dependence 
of the kinetics on film thickness. To this end, we have per-
formed two sets of decomposition experiments, one for 
CaCO3 and one for BaCO3 , which consist of determining 
the peak temperature for films of different thicknesses while 
keeping the heating rate constant. In addition, we need to 
determine the value of x0 from a single experiment. For 
CaCO3 we have T 0=650◦ C and E A = 258 kJ mol−1 thus 
x0 = 33.6 and for BaCO3 we have T 0=810◦ C and E A = 260 
kJ mol−1 thus x0 = 28.9 , so for both the term x0

2+x0
≈ 0.94 . 

Then, according to Eq. 25 a plot of of 1

TKis
 with respect to 

−0.94
RG

EA

ln(h) should give a straight line whose slope is the 
n exponent of the pre-exponential factor.

In Fig. 7 we show the result of this plot and, in both cases, 
the data points are well aligned. We obtain values of n close 
to 1 (0.99 and 1.09 for CaCO3 and BaCO3 , respectively) in 
agreement with a decomposition governed by the interface 
reaction. In fact, it has been reported that the interface reac-
tion controls the decomposition of CaCO3 in powders and 
in single crystals [2, 36, 37, 39, 68], where this interface 
consists of an active calcium oxide layer. The reason why 
diffusion is not the controlling mechanism is the formation 
of a porous oxide film due to the smaller molar volume of 
the oxide relative to that of the carbonate [2, 23, 39, 69].

For larger particles or coarser samples, diffusion of CO2 
through the oxide layer or transport of CO2 out of the inter-
particle gaps may become the rate-limiting step. Moreover, 
according to Valverde [63], when p(CO2) is significant, the 
dependence of the active sites on temperature has to be taken 
into account and Eq. 2 is no longer valid. Besides, for large 

values of p(CO2) the temperature onset shifts to higher tem-
peratures. In addition, increasing temperature and p(CO2) 
can alter the morphology and rate of decomposition. Thus, 
the activation energy determined at very low p(CO2) may 
not be valid for higher values of p(CO2) . Still, it follows 
from Fig. 3 that the determination of the onset temperature 
is still valid over a relatively wide range of values of p(CO2).

Conclusions

To the best of our knowledge, in this work we have analyzed 
for the first time the decomposition kinetics of two carbon-
ates in the form of films. We have analyzed the influence 
of p(CO2) on the onset temperature. We have shown that, 
in contrast to the powder, the kinetics is not affected by the 
self-generated CO2 and the films exhibit a linear dependence 
of ln

(

p
(

CO2

))

 on the reciprocal of the temperature.
In the case of CaCO3 films there is a perfect agree-

ment between this dependence and the dependence of the 
peq

(

CO2

)

 with temperature, i.e., the decomposition reaction 
starts when the actual p(CO2) exceeds the equilibrium par-
tial pressure. In the case of BaCO3 films, the slope of this 
linear dependence agrees perfectly with the expected value 
determined from peq

(

CO2

)

 , but there is a slight difference in 
the value of the y-intercept. As a result, the  onset is slightly 
shifted to lower temperatures relative to the expected value. 
This shift can be attributed to the sorption kinetics of CO2.

In addition, we have characterized the rate constant from 
experiments performed under vacuum conditions. For both 
CaCO3 and BaCO3 , the activation energies of the rate con-
stant match the corresponding reaction enthalpy and agree 
with the reported activation energies from experiments per-
formed at low p(CO2).

We have developed a new kinetic method that allows to 
analyze the dependence of the decomposition kinetics on 
film thickness. We have observed that the reaction rate is 
inversely proportional to the film thickness. This dependence 
reveals that the decomposition kinetics is controlled by the 
interface reaction and that the interface between the oxide 
and the carbonate advances from the top of the film to the 
substrate. CO2 diffusion is not the rate-limiting mechanism, 
probably, due to the porosity of the oxide films and the rela-
tively fast transport of the gas in the films.
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