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Abstract: Chagas disease (CD), caused by Trypanosoma cruzi and endemic in Latin America, has
become an emergent health problem in non-endemic countries due to human migration. The United
States (US) is the non-Latin American country with the highest CD burden and cannot be considered
as non-endemic, since triatomine vectors and reservoir animals have been found. Populations of
T. cruzi are divided into genetic subdivisions, which are known as discrete typing units (DTUs):
TcI to TcVI and TcBat. Autochthonous human T. cruzi infection in the US is sporadic, but it may
change due to environmental factors affecting the geographic distribution of triatomines. We aimed
to perform a literature review of the genetic diversity of T. cruzi in triatomine vectors and mammalian
hosts, including human cases, in the US. The 34 analyzed studies revealed the presence of T. cruzi
in 18 states, which was mainly concentrated in Texas, Louisiana and New Mexico. TcI and TcIV
were the principal DTUs identified, being TcI the most genotyped (42.4%; 917/2164). This study
represents a first attempt to compile the molecular epidemiology of T. cruzi in the US, which is
fundamental for predicting the progression of the infection in the country and could be of great help
in its future management.

Keywords: Trypanosoma cruzi; discrete typing unit; DTU; endemic country; genetic diversity; molecu-
lar epidemiology; mammalian hosts; triatomine vectors

1. Introduction

Chagas disease (CD), also known as American trypanosomiasis, is a parasitic zoonosis
caused by the protozoan Trypanosoma cruzi (Kinetoplastea: Trypanosomatidae). Initially,
the disease was restricted to poor rural areas of Latin America (LA), where it is mainly
transmitted by hematophagous triatomine vectors (Hemiptera: Reduviidae), commonly
known as kissing bugs, that feed on mammalian blood and release infective forms of
the parasite with their feces [1]. Trypanosoma cruzi can infect many of the 148 described
triatomine species and almost all tissues of more than 180 mammalian species, contributing
to the maintenance of the parasite in nature through the interchange of three distinct and
interrelated cycles: wild or sylvatic (enzootic), peridomestic, and domestic [2–5].

Life 2024, 14, 901. https://doi.org/10.3390/life14070901 https://www.mdpi.com/journal/life

https://doi.org/10.3390/life14070901
https://doi.org/10.3390/life14070901
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0003-2002-1186
https://orcid.org/0000-0003-4925-7184
https://orcid.org/0000-0002-9142-8760
https://orcid.org/0000-0002-4150-8834
https://orcid.org/0000-0002-8143-9773
https://doi.org/10.3390/life14070901
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life14070901?type=check_update&version=1


Life 2024, 14, 901 2 of 23

Chagas disease began accidentally when humans invaded the wild cycle of T. cruzi
and became infected. Since then, the transmission of the parasite evolved from enzootic
to anthropozoonotic, being now well established among reservoir mammalian species,
vectors, and human beings [6,7]. Although all triatomine species present in the Ameri-
cas are considered potential vectors of T. cruzi, about 20 species of the genera Triatoma,
Rhodnius and Panstrongylus are the most epidemiologically relevant in the transmission to
humans [5,8]. Within the vectorial transmission of T. cruzi, there is an alternative pathway
known as oral or foodborne, which takes place through the ingestion of beverages and
food contaminated with feces of infected triatomines or secretions of parasite reservoirs as
well as the consumption of raw/uncooked meat or blood from reservoirs [9]. Transmission
can also occur by non-vectorial routes, i.e., blood transfusion, organ, and tissue transplanta-
tion, from mother to child during pregnancy or delivery (congenital route) and laboratory
accidents [1].

Chagas disease has two stages. The acute phase lasts four to eight weeks and in
90–95% of cases evolves asymptomatically or with generally mild nonspecific signs. Oral
transmission is related to more severe symptomatology [9]. The acute phase usually
resolves spontaneously with a substantially decrease in parasitemia after approximately
90 days [10]. Congenital CD is considered an acute infection in the newborn and has
mortality rates of around 2% [11]. After the acute period, untreated immunocompetent
individuals enter the chronic phase, and most of them settle into a chronic asymptomatic
stage. One to three decades post-acute infection, 30–40% of T. cruzi-infected patients will
lead to symptomatic chronic disease with organ involvement associated with severe cardiac
and gastrointestinal disorders [10,11]. The chronic phase is characterized by low and
intermittent parasitemia [12].

Today, there are an estimated 6 to 8 million people with CD in the 21 continental
LA countries considered endemic for the disease (within the vector distribution area),
with 38,000 new cases and 12,000 deaths per year, and about 65 million people at risk of
infection [13]. In the last few decades, CD has emerged as a global-scale issue resulting
from human flows that have expanded the infection from rural to urban environments and
across LA borders to reach non-endemic countries, especially in North America, Europe,
and the Western Pacific region [14,15]. With nearly 20 million residents from CD endemic
countries, the US is the leading recipient country for LA migrants as well as the non-Latin
American country with the highest CD burden [16,17]. Even though most people living
with CD in the US came from strictly endemic settings, the country cannot be labeled
as non-endemic because there is evidence of established enzootic cycles of T. cruzi in the
southern states, including several triatomines and mammalian species, and sporadic cases
of autochthonous CD have also been described [3,18]. Therefore, given the particular and
ambiguous position of the US in terms of endemicity, it could be roughly termed as the
least endemic country for CD.

Regarding genetics, T. cruzi has a marked diversity. Taxonomic studies attempt to
identify associations between the intraspecific diversity of the parasite and the clinical
presentation of CD [19]. Although certain contributions of the different genotypes to clinical
outcomes are intuited, the direct implications of the biological subdivisions of T. cruzi with
the various manifestations of CD, as well as the distinct infectivity and virulence rates, have
not been yet defined [20,21]. This is probably because human infection is a recent event
in the evolutionary history of the parasite [20]. In LA endemic regions, some important
clinical aspects have already been broadly defined as well as the type of transmission cycle
and the geographic distribution linked to T. cruzi genotypes [21]. In the case of the US,
T. cruzi transmission is spreading in the south of the country but is apparently restricted
to the wild cycle with sporadic, but increasing, transmission to humans [3,22]. All in all,
knowledge about the parasite genetic variability and its distribution in the territory could
be of great help considering that the climate change may play a key role in the spread of
T. cruzi vectors to the northern states and that they are increasingly tolerant to urbanized
environments [12,23,24].
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In this framework, the aim of this article was to perform a narrative review of the ge-
netic diversity of T. cruzi in both triatomine vector species and mammalian hosts, including
human cases, in the US. It will allow us to describe the current situation of the infection
in the US to understand its evolution up to the present day as well as to predict its future
steps. The information gathered will be directly applicable to CD management plans and
will be useful for its control.

2. Chagas Disease Epidemiology in the US

According to estimates, there are 326,000 to 347,000 people with CD living in the
US [17]. The states with the highest CD burden are California, Texas, Florida, and New
York, with more than 10,000 reported cases, excluding undocumented immigrants [25].
Despite that fact, the level of underdiagnosis is extremely high (~99%) [26]. Most cases
of CD reported in the US correspond to individuals infected in their countries of origin
(imported CD). Women of childbearing age are a group of particular concern because
approximately 40,000 women of reproductive age that are living in the US have chronic
CD [27]. Therefore, assuming a 1% to 5% transmission rate, 400 to 2000 newborns with
congenital CD can be estimated.

Autochthonous Human Chagas Disease in the US

Autochthonous human infections due to vector-borne transmission remain rare in
the US, but the fact that at least 11 species of triatomines have been recorded in the
country cannot be underestimated [3,18]. Lynn et al. [22] found 76 cases of contemporary
suspected (47) or confirmed (29) locally acquired CD between the years 2000 and 2018.
There was an increase in the detection of chronic CD cases from 2007, corresponding to
the introduction of blood donor screening for T. cruzi infection in the US [28]. Afterwards,
another autochthonous case diagnosed in 2018 was reported in Missouri [29] and eight
additionally suspected (4) or confirmed (4) autochtonous T. cruzi infections were diagnosed
from May 2019 to July 2020 via the US blood donor screening system [30]. Previously, five
more cases had already been identified, the first of which was notified in 1955 ([18] and
references therein).

Taking all these data into account, at least 90 cases of autochthonously acquired CD
are estimated to date in the US. Texas is by far the state with the highest number of re-
ported cases of autochthonous CD [22,31]. However, probable or confirmed autochthonous
CD cases have been reported in the states of Arizona, Arkansas, California, Louisiana,
Mississippi, Missouri, and Tennessee [29,32,33].

3. Trypanosoma cruzi Genetic Diversity

The genetic structure of the T. cruzi population has long been considered predom-
inantly clonal because of mostly asexual reproduction by binary fission coupled with
occasional genetic exchange [34]. However, the clonal paradigm has been strongly chal-
lenged by the reported evidence of frequent recombination by sexual reproduction in the
natural populations, which fits with the genetic heterogeneity of the parasite [35,36].

After many unsuccessful attempts to classify the intraspecific taxonomic structure of T.
cruzi under alternative nomenclatures, the concept of discrete typing unit (DTU) was first
defined in 1998 by Tibayrenc [37] as “sets of stocks that are genetically more related to each
other than to any other stock and are identifiable by common molecular markers that act as
tags”. Strains within DTUs are not identical clones but groups of interrelated clones that
share profiles for a specific panel of markers, so these stocks could be further differentiated
using additional markers due to accumulations of discrete mutations and events of genetic
exchange [21,38].
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The first consensus of T. cruzi intraspecific nomenclature was not reached until 1999
when the DTUs were divided into two groups named T. cruzi I (TcI) and TcII during
the Satellite Meeting [39]. Afterwards, TcII was subdivided into five more units termed
TcIIa–TcIIe [40,41] which were finally renamed in 2009, together with TcI, with the current
nomenclature of six DTUs (TcI to TcVI) as recommended at the Second Satellite Meeting [42]
(Table 1). In this same meeting of experts, TcV and TcVI were recognized as hybrid DTUs
probably derived from TcII and TcIII. As for the remaining DTUs, TcI and TcII are considered
pure ancestral lineages with long-standing independent evolution, while the origin of TcIII
and TcIV is still under debate [21,43].

Table 1. Nomenclature for Trypanosoma cruzi intraspecific genetic diversity.

Satellite Meeting [39] Brisse et al. [40,41] Zingales et al. [42]

TcI TcI TcI

TcII

TcIIa TcIV
TcIIb TcII
TcIIc TcIII
TcIId TcV
TcIIe TcVI

However, the second revision of T. cruzi nomenclature did not include subdivisions
for TcI due to the need to complete studies based on additional markers [44]. In 2010, Cura
et al. [45] reported five genotypes within TcI, termed TcIa–TcIe, through the characterization
of the intergenic region of the mini-exon gene (SL-IR). Genotype TcIe was detected for the
first time, whereas TcIa-d had been previously described ([44] and references therein). In
addition, a seventh new DTU, called TcBat, closest to TcI and associated with bats was first
reported in Brazil by Marcili et al. [46]. To our knowledge, only one case of human T. cruzi
infection attributed to the TcBat genotype has been described [47].

DTUs have differential geographical distribution in endemic regions and transmission
cycles. In brief, TcI is the most widely distributed DTU in LA and is present in both
domestic and sylvatic cycles. TcII, TcV, and TcVI are predominant in domestic cycles and
circulate mainly in the Southern Cone. TcIII and TcIV are predominant in sylvatic cycles
and are principally found in the Amazon region [21].

4. Trypanosoma cruzi DTUs in the US

In this review, a literature search was conducted in the scientific databases Web of
Science, Scopus and Pubmed between September 2023 and March 2024 without time or
language restrictions to identify relevant publications on the topic. The combination of
search terms used to find potential studies was (Trypanosoma cruzi OR Chagas disease)
AND (discrete typing unit OR DTU OR genotype OR lineage OR genetic diversity OR
genetic variability) AND (United States OR US OR USA). In addition, the references of the
retrieved articles were examined for other important publications that might have been
missed. Accordingly, we have compiled information on the genetic characterization of T.
cruzi in the US from a total of 34 studies that reported the genetic diversity of the parasite
by DTUs in mammalian hosts, including humans, and triatomine vectors in different states
of the country [31,32,45,48–78] (Appendix A: Tables A1 and A2). Based on the gathered
data from these typing studies in the US, 18 states of the country have reported T. cruzi
DTUs in mammalian hosts, triatomine vectors or both (Figure 1). Typing protocols and
caveats are further described in Section 6.
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reached up to 10 cases, and there were also two T. cruzi positive domestic dogs and one 
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Figure 1. States of US with T. cruzi DTUs genotyped in mammalian hosts (blue), triatomine vectors
(yellow) or both (green). In the case of the state of Missouri (MO), Curtis-Robles et al. [75] reported a
triatomine (Triatoma sanguisuga) resulted positive by PCR for T. cruzi DNA, but it was not possible
to type the DTU. The outline map was taken from https://simplemaps.com/resources/svg-maps,
accessed on 20 June 2024. AL, Alabama; AK, Alaska; AZ, Arizona; AR, Arkansas; CA, California;
CO, Colorado; CT, Connecticut; DE, Delaware; FL, Florida; GA, Georgia; HI, Hawaii; ID, Idaho; IL,
Illinois; IN, Indiana; IA, Iowa; KS, Kansas; KY, Kentucky; LA, Louisiana; ME, Maine; MD, Maryland;
MA, Massachusetts; MI, Michigan; MN, Minnesota; MS, Mississippi; MO, Missouri; MT, Montana;
NE, Nebraska; NV, Nevada; NH, New Hampshire; NJ, New Jersey; NM, New Mexico; NY, New York;
NC, North Carolina; ND, North Dakota; OH, Ohio; OK, Oklahoma; OR, Oregon; PA, Pennsylvania;
RI, Rhode Island; SC, South Carolina; SD, South Dakota; TN, Tennessee; TX, Texas; UT, Utah; VT,
Vermont; VA, Virginia; WA, Washington; WI, Wisconsin; WY, Wyoming.

The global molecular prevalence, i.e., the number of samples with evidence of T.
cruzi DNA by PCR or blood culture over the total number of samples tested, was 25.6%
(2164/8460) (Tables A1 and A2). However, it should be noted that this calculation is not pre-
cise, since several studies started from samples previously selected as positive [32,63,71,78].
Once excluded, the prevalence drops to 24%. Of these positive specimens, 62.3% were
found in triatomine vectors. The vast majority of T. cruzi positives were concentrated in
six states: Texas, Louisiana, New Mexico, Florida, California and Georgia, all of them
located in the southern part of the US (Figure 2a). The remaining 12 states reached up to
10 cases, and there were also two T. cruzi positive domestic dogs and one Rhesus macaque
reported by Roellig et al. [32] for which the state of origin could not be determined. Indeed,
the state of Texas alone accounted for almost 50% of the cases. DTUs TcI and TcIV were
the principal lineages identified in the country (Figure 2b), being TcI the most genotyped
DTU (42.4%; 917/2164). It was present in eight states and was the predominant DTU in
Texas, New Mexico, Florida and Arizona. TcIV was the second most present DTU (25.5%;
551/2164), with records in all the states listed except Arizona. Mixed infections TcI + TcIV
were also reported in the 6.1% of the samples included in this study. TcII was only found
in Louisiana [49,70]. Finally, the fact that 517 samples (23.9%) could not be characterized
cannot be underestimated. Of them, in 141 cases, some DTUs could be ruled out, but the
genotype could not be accurately determined. Factors that may have influenced the success
of the characterization are discussed in Section 6.

https://simplemaps.com/resources/svg-maps
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Figure 2. Trypanosoma cruzi DTUs identification according to the states of the US. (a) Number of cases
positive for T. cruzi in mammalian hosts (including humans) and triatomine vectors (n hosts = 815;
n vectors = 1349; global n = 2164). States with up to 10 T. cruzi positive cases are shown with an
adapted scale in the box at the top of the figure. (b) Percentage of samples typed according to the
states of the US. The number of types per state is bracketed. Other mixed infections include TcI + TcII,
TcI + TcVI, TcI + TcII + TcVI, TcI + TcII/V, TcI + TcII/V/VI, TcI + TcIV + TcII/V, TcI + TcII + TcV + TcVI,
TcI + TcII + TcIV + TcV + TcVI, TcII + TcIV and TcII + TcVI; Unclear DTU, it was not possible to
genotype at the level of a single DTU. AL, Alabama; AZ, Arizona; CA, California; FL, Florida; GA,
Georgia; IL, Illinois; IN, Indiana; KS, Kansas; KY, Kentucky; LA, Louisiana; MD, Maryland; MO,
Missouri; NM, New Mexico; OK, Oklahoma; SC, South Carolina; TN, Tennessee; TX, Texas; VA,
Virginia; n.d., state of origin not determined.
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4.1. Trypanosoma cruzi DTUs Identified in Hosts

DTUs reported in mammals according to host species and the state of localization are
summarized in Table A1. The states with more positive T. cruzi cases among mammals were
Texas (408) and Louisiana (250) (Figure 2a). The molecular prevalence in mammalian hosts
was 12.3%, excluding studies based on preselected samples [32,63,71]. Most of the samples
positive by T. cruzi were obtained from Carnivora (60.6%; 494/815) and particularly from
domestic dogs (206/494) (Figure 3). DTUs could not be typed for all samples positive
for the presence of T. cruzi DNA. The typing success rate was 66.9% (545/815) with the
highest number of uncharacterized samples from carnivores (41.1%; 203/494). In the case
of humans, all positive isolates were from autochthonous US cases of T. cruzi infection, and
the 70.6% (12/17) were characterized from whole blood [31]. There is no information about
the sample source for the remaining five isolates [32].
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Figure 3. Trypanosoma cruzi DTUs identification in mammalian hosts. (a) Number of cases positive for
T. cruzi according to the mammal host order (n = 815). (b) Percentage of samples typed according to the
mammal host order. The number of types per order are bracketed. The distribution of species within
each order is as follows: Chiroptera: evening bat (Nycticeius humeralis) (1); Cingulata: nine-band
armadillo (Dasypus novemcinctus) (3); Didelphimorphia: Virginia opossum (Didelphis virginiana) (92);
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Rodentia: southern plains woodrat (Neotoma micropus) (36), hispid cotton rat (Sigmodon hispidus) (3),
rock squirrel (Otospermophilus variegatus) (1), house mouse/cotton mouse (Mus musculus and Per-
omyscus gossypinus) (34), eastern woodrat (Neotoma floridana) (12), northern pygmy mouse (Bayomis tay-
lori) (1), white-footed mouse (Peromyscus leucopus) (3), hispid pocket mouse (Chaetodipus hispidus) (1),
Mexican spiny pocket mouse (Liomys irroratus) (1), house mouse (Mus musculus) (2), cotton mouse
(Peromyscus gossypinus) (3), cactus mouse (Peromyscus eremicus) (1); spotted ground squirrel (Xe-
rospermophilus spilosoma) (1), western harvest mouse (Reithrodontomys megalotis) (1); Primate non-
human: ring-tailed lemur (Lemur catta) (3), rhesus macaque (Macaca mulatta) (42), pig-tailed macaque
(Macaca nemestrina) (2), cynomolgus macaque (Macaca fascicularis) (59), and baboon (Papio spp.)
(2); Carnivora: domestic dog (Canis lupus familiaris) (206), raccoon (Procyon lotor) (189), domestic
cat (Felis catus) (80), coyote (Canis latrans) (11), striped skunk (Mephitis mephitis) (7), and gray fox
(Urocyon cinereoargenteus) (1).

Regarding T. cruzi typing in mammalian hosts, the most reported DTUs were TcI
and TcIV (Figure 3b). TcI was the only genotype found in Didelphimorphia and in the
single Chiroptera specimen. Indeed, TcI was present in all orders of mammalian hosts
analyzed and was also the most common lineage found in all of them except for Carnivora,
in which TcIV was the dominant one. In fact, this was to be expected, since TcI is the most
ubiquitous DTU and is present in both domestic and sylvatic cycles [79]. TcIV was found
in Carnivora, non-human primates, Rodentia and Cingulata. On the other hand, TcII was
detected displaying single infection in two mice (Rodentia) and two racoons (Carnivora)
from Louisiana [49,70]. Previously, Majeau et al. [80] had already described raccoons as
a major reservoir of T. cruzi in Louisiana with a reported molecular prevalence of 33.6%
in two metropolitan areas in this state. The most reported mixed infection involved TcI
and TcIV, but other DTU combinations were also detected, including the remaining DTUs
except TcBat.

4.2. Trypanosoma cruzi DTUs Identified in Vectors

Eleven species of triatomine kissing bugs are found in 27 states distributed across
the lower two thirds of the US: Triatoma protracta, T. sanguisuga, T. lecticularia, T. rubida, T.
gerstaeckeri, Paratriatoma hirsuta, T. indictiva, T. neotomae, T. rubrofasciata, T. recurva, and T.
incrassata [81]. In this review, seven species of Triatoma were reported as positive for T. cruzi
(Figure 4). Furthermore, 11 triatomines reported by Curtis-Robles et al. [75] could not be
assigned to a specific species. The states with more positive T. cruzi cases among vectors
were Texas (1080) and New Mexico (120) (Figure 2). Trypanosoma cruzi DTUs reported in
vectors according to triatomine species and the state of localization are listed in Table A2.

The overall molecular prevalence in triatomine vectors was 50.5%, excluding stud-
ies based on preselected samples [32,78]. The triatomine species with more reported T.
cruzi-positive cases was T. gerstaeckeri, which was followed by T. rubida and T. sanguisuga
(Figure 4a). Triatoma gerstaeckeri has a limited range but is common in Texas, which explains
the fact that it is the most collected species [18]. TcI and TcIV were reported in all the
triatomine species (Figure 4b). In the case of the four T. recurva with T. cruzi collected by
Flores-López et al. [78], the unclear DTU refers to TcI or TcIV. The most common DTU was
TcI (45.1%; 608/1349) followed by TcIV (28.2%; 381/1349). Overall, 18.3% of the T. cruzi
positive triatomines (247/1349) could not be typed (116) or had an unclear DTU (131). The
presence of the rest of the DTUs was extremely low. Hwang et al. [72] found that two T.
protracta isolates from California were related to TcII and TcVI groups. On the other hand,
Dumonteil et al. [77] detected for the first time the presence of TcII/TcV in triatomines in the
US. These genotypes were found as part of mixed infections with TcI (2) and TcI + TcIV (1),
and the authors were unable to distinguish them at the level of a single DTU.
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5. The Importance of Identifying DTUs in the US

Taxonomic studies have attempted to identify associations between DTUs and the
clinical presentation of CD and clarify the geographic distribution of T. cruzi genotypes in
endemic regions and transmission cycles [19]. The description of the contribution of each
T. cruzi DTU to the forms of chronic CD is far from clear and is further hampered by the
fact that the pathophysiology of the disease is not only determined by the genetic diversity
of the parasite but also by complex host–pathogen interactions (with multiple unknown
factors) as well as environmental factors [21,82]. Another point to note is that the full extent
of intra-lineage diversity of T. cruzi in the progression of CD has not yet been elucidated.
Probably, to identify clear associations between parasite diversity and the disease outcomes,
DTUs but also intra-DTU sublevels must be considered [70,83]. Indeed, due to its great
intra-diversity, five genotypes within TcI have already been described [44,45]. However,
based on the premise that infection with specific strains leads to distinct outcomes, there



Life 2024, 14, 901 10 of 23

are a growing number of studies trying to investigate the association of T. cruzi DTUs with
different outcomes of CD [82,84]. From the information gathered in this type of studies that
assign DTUs to T. cruzi populations, it has been possible to relate the genetic diversity of
the parasite with its ecoepidemiological features and the presentation of CD in humans [85].
Except for TcBat, of which only one human case has been described in Colombia [47], and
TcIII, which is rare in humans, the remaining DTUs have been associated with clinical
manifestations of chronic CD. TcI and TcIV have been linked mainly to cardiac disorders,
while TcII, TcV and TcVI have also been connected to digestive outcomes [85]. In addition,
TcV has also been related to an increased risk of congenital infection [86].

On the other hand, climate change is an emerging important factor contributing to
the epidemiology of CD in general terms but with a particularly important impact in the
US due to the endemic condition of the southern part of the country [87]. Consequently,
the distribution range of triatomines may expand northward, leading to an increased risk
of autochthonous cases of CD in humans, even in areas that are not currently endemic
for the infection [23,81]. Studies examining circulating DTUs in the country will help to
predict the potential geographic distribution of T. cruzi genotypes in new environmental
scenarios. Other factors that may contribute to changes in the epidemiology of CD in the US
include increasing migration, rapid population growth, rising urbanization, and growing
poverty [87,88].

Regarding treatment, current drugs for treating CD are benznidazol (BZ) and nifur-
timox (NF). Both are available from the 1970s, require prolonged treatment and cause
severe side effects [89]. It is well documented that treatment should be offered the earlier
the better, with proven high efficacy in acute and congenital cases and improved clinical
results in the chronic indeterminate phase [90]. Nevertheless, BZ and NF show high vari-
able efficacy, with reported differences in treatment outcomes in distinct geographic areas,
as well as in murine models inoculated with different T. cruzi DTUs ([89] and references
therein). Although it is not possible to directly connect each DTU to a specific treatment
behavior, a variation in pathogenicity and susceptibility to treatment of T. cruzi genotypes
is intuited [21,91]. For instance, Vela et al. [92] observed a lower susceptibility of TcI at the
trypomastigote stage to BZ. Revollo et al. [93] also reported TcI trypomastigotes as more
resistant to BZ and NF, although some TcII and TcV strains behaved similarly. A factor to
consider is that susceptibility to treatment may vary within the same DTU and at different
stages of the parasite life cycle (i.e., trypomastigote, epimastigote and amastigote) [89,93].
Therefore, knowledge of the identity of T. cruzi DTUs circulating in the US is important to
establish possible connections to human infections, to detect differences in lineage behavior
to current treatment, and to design and develop new potential therapeutic targets [78].

In essence, understanding the genetic heterogeneity of circulating T. cruzi popula-
tions in human hosts, sylvatic and domestic reservoirs and vectors from a comprehensive
perspective will be of particular interest to help manage CD in the country [94].

6. The Problem of Identifying DTUs

Molecular tools are the most used to genotype T. cruzi DTUs in humans, reservoirs
and vectors. The most common markers for T. cruzi typing are the 24sα rRNA gene, the
mitochondrial cytochrome oxidase subunit 2 (COII) gene, the mini-exon gene spliced leader
intergenic region (SL-IR), and the 18S rRNA gene, among others (Tables A1 and A2). In
addition to the variety of markers, there is a wide range of algorithms and characteriza-
tion techniques available, which adds even more complexity to the interpretation of the
results [95–97].

One of the main problems of direct typing in biological samples is the lack of sensitivity
due to the single or low copy number of the DNA markers used [98–100]. Low and fluctuant
parasitemia, typical of the chronic phase of CD, is also another drawback to achieving good
accuracy in genotyping [101]. Precisely because they are sometimes not sensitive enough to
be used in biological samples, typing schemes are in occasions applied to cultured stocks of
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the parasite [96]. These kinds of studies involving parasite amplification, either by in vitro
culture or by passages in experimental models, may bias the T. cruzi populations [20,100].

Highly repetitive sequences used for the molecular diagnosis of CD, such as satellite
DNA (SatDNA) and the minicircle hypervariable region of the kinetoplastic DNA (kDNA),
have been proposed as an improved option to increase sensitivity in in vivo typing stud-
ies [98,99]. Both sequences are represented in around 105 copies per parasite genome and
are therefore easily detectable by molecular techniques [99,102,103]. The main limitation is
that the analysis of the signature patterns of each DTU in these highly repetitive markers
implies sequencing. In the case of SatDNA, the main limitation is that the proposed ap-
proach is not yet capable of distinguishing between the presence of hybrid lineages (TcV
and TcVI) and the existence of mixed infections with TcI or TcIII and TcII [98]. More recently,
serological typing or serotyping, based on polymorphic antigens that detect strain-specific
antibody signatures, has also been suggested as an alternative method to molecular geno-
typing [100]. However, this approach still needs to be further explored to determine its
application in the characterization of T. cruzi DTUs.

Another problem related to T. cruzi genotyping is the tissue tropism detected for
different DTUs [95,104]. This phenomenon was first described by Macedo and Pena [105]
as the “clonal-histotropic model of the pathogenesis of CD” and is also reported in non-
human mammalian hosts [106,107]. Most studies that characterize T. cruzi populations
from clinical samples are based on isolates recovered from peripheral blood [95]. It is
important to note that blood isolates may not reveal all T. cruzi DTUs infecting a particular
patient, as other genotypes may be circulating at low loads or being retained in tissues.
Therefore, the mostly present DTU could be having a masking effect with respect to other
genotypes [20].

The general advice could be that the accurate classification of T. cruzi DTUs requires
the use of several markers, as characterization based on a single marker may lead to the
assignment of an erroneous genotype to the isolate [94,105]. Indeed, for an optimal typing,
multiple isolates from the patient should be analyzed, since different T. cruzi populations
can simultaneously infect the same individual (mixed infections) and not be detected with
only one sample [108].

7. Final Remarks

Although most reports of T. cruzi infections in mammals and triatomine vectors
occurred in the southern US, new cases are progressively appearing in northern states, such
as raccoons (Procyon lotor) with TcIV detected in Illinois and Missouri [57] (Table A1) and the
T. sanguisuga also with TcIV in Indiana [75] (Table A2). As pointed out in previous sections,
this pattern could increase because of climate change. So, epidemiological surveillance
programs for T. cruzi infection in the US should be increased to cover and detect this
eventual expansion of the number of cases in both hosts and vectors that can ultimately
help to estimate risk to human health [70]. Texas accounts for most reported cases of T. cruzi
infection in the country, which is probably influenced by the numerous studies conducted
in this state due to its border condition with Mexico. Therefore, the study area should be
expanded to be able to draw a true unbiased map of cases in the territory.

TcI has been the most reported DTU in the studies included in this review, being
present in 37.9% (309/815) of the mammals analyzed and in 45.1% (608/1349) of the vectors.
TcIV was the second most reported DTU, with 20.9% (170/815) of mammals and 28.2%
(381/1349) of vectors. TcII, TcV and TcVI were also present in the country but to a lesser
extent and mainly as part of mixed infections. These combinations of DTUs were almost
entirely reported in the state of Louisiana (Figure 2b). In humans, TcI was reported in 29.4%
(5/17) of T. cruzi-positive cases. In two more cases, TcI was found in combination with
TcII/TcV/TcVI, although it was not possible to determine which genotype or genotypes
were involved [31,32]. The same occurred in four other cases in which non-TcI was found.
In the remaining six cases, the DTU could not be determined. It indicates the existence
of several circulating DTUs, in addition to TcI, among autochthonous cases of human
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CD in the USA, which accentuates the need to determine the genotypes present in each
human patient.

However, the totality of T. cruzi diversity present in the country is probably not being
fully detected because of the low resolution of the characterization markers used, the lack
of a typing reference, the bias produced by the main use of peripheral blood as the sample
of choice and the low parasitemia in chronic infections. All these factors hamper T. cruzi
typing and make the characterization of the parasite complex and laborious. Thus, new
markers and technologies are needed to optimize the process and to identify diversity at
the intra-DTU level [83,97].

On the other hand, this study also highlights the need for an increased T. cruzi charac-
terization throughout the US to predict the possible future pathways of the infection in the
country and to focus strategies to deal with CD. Currently, most cases of CD reported in
the US correspond to individuals infected in their countries of origin, and autochthonous
human T. cruzi infection occurs sporadically and because of enzootic transmission from
sylvatic cycles maintained in animals. However, in such an unstable and changing environ-
mental scenario, CD could become epidemiologically relevant in the country in the near
future. In terms of human cases, TcI is the DTU of most concern, but the presence of TcIV in
the country, as well as TcII, TcV and TcVI, may lead to potential autochthonous infections
by these DTUs in the US. In addition, specific genotypes also appear to circulate in the US.
Flores-López et al. [78] identified the so-called TcIV-USA in the southwestern US, which is
described as a divergent American branch of TcIV (Table A2). Thus, it is crucial to study
the molecular epidemiology of T. cruzi in the area and its progression in the different states
of the country. This information may be of special interest in the development of future
management and control plans for CD in the US, including screening and epidemiological
surveillance protocols in humans but also interventions targeting mammalian T. cruzi hosts
that act as a reservoir as well as triatomine vectors.

Author Contributions: A.L. contributed to the data collection as well as the interpretation and
writing of the manuscript. A.A. contributed to the conception and design of the study, data collection
and interpretation, writing the manuscript, and revision of the manuscript. A.F.-A., C.B. and S.H.
contributed to data interpretation and revision of the manuscript. M.G. and C.M. contributed to the
conception and design of the study, data interpretation and revision of the manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: The participating UB and ISGbobal investigators are part of the GREPIMER group (Grup
de Recerca en Patologia Importada i Malalties Emergents i Re-emergents), which received sup-
port from the Generalitat of Catalonia, Universities and Research Department, Agència de Gestió
d’Ajuts Universitaris i de Recerca Spain (AGAUR: 2021 SGR 01562). The ISGlobal research group
is supported by the CIBER of Infectious Diseases—Consorcio Centro de Investigación Biomédica
en Red—(CB 2021), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and Unión
Europea—NextGenerationEU.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We acknowledge support from the Spanish Ministry of Science and Innovation
and State Research Agency through the “Centro de Excelencia Severo Ochoa 2019–2023” Program
(CEX2018-000806-S) and support from the Generalitat de Catalunya through the CERCA Program.

Conflicts of Interest: The authors declare no conflicts of interest.



Life 2024, 14, 901 13 of 23

Appendix A

Table A1. Trypanosoma cruzi DTUs reported in mammalian hosts per state in the US.

Reference Host State Target Method
Molecular
Prevalence a

P/Tested (%)
Typed
typ./P (%)

DTU (Number)

TcI TcIV Other Mixed
Infections

Roellig et al. [32]

Human (Homo sapiens sapiens)

CA

SL-IR; 24Sα;
18S

PCR; MLEE;
RAPD; STR

2/2 (100) 2/2 (100) 2

TX 2/2 (100) 2/2 (100) 2

LA 1/1 (100) 1/1 (100) 1

Domestic dog (Canis lupus familiaris)

n.d. 2/2 (100) 2/2 (100) 2 *

TN 1/1 (100) 1/1 (100) 1 TcI/TcIV *

OK 1/1 (100) 1/1 (100) 1 *

SC 1/1 (100) 1/1 (100) 1 *

CA 1/1 (100) 1/1 (100) 1 *

Virginia opossum (Didelphis virginiana)

GA 6/6 (100) 6/6 (100) 6

FL 6/6 (100) 6/6 (100) 6

LA 2/2 (100) 2/2 (100) 2

AL 1/1 (100) 1/1 (100) 1

Raccoon (Procyon lotor)

GA 45/45 (100) 45/45 (100) 2 43 *

FL 16/16 (100) 16/16 (100) 15 * 1 TcI/TcIV *

SC 1/1 (100) 1/1 (100) 1 *

MD 1/1 (100) 1/1 (100) 1 *

TN 1/1 (100) 1/1 (100) 1 *

Ring-tailed lemur (Lemur catta) GA 3/3 (100) 3/3 (100) 3 *

Rhesus macaque (Macaca mulatta)
n.d. 1/1 (100) 1/1 (100) 1

GA 1/1 (100) 1/1 (100) 1 TcI/TcIV *

Nine-band armadillo (Dasypus novemcinctus)
GA 1/1 (100) 1/1 (100) 1 *

LA 2/2 (100) 2/2 (100) 2

Striped skunk (Mephitis mephitis) GA 1/1 (100) 1/1 (100) 1 *
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Table A1. Cont.

Reference Host State Target Method
Molecular
Prevalence a

P/Tested (%)
Typed
typ./P (%)

DTU (Number)

TcI TcIV Other Mixed
Infections

Charles et al. [48]

Southern plains woodrat (Neotoma micropus) TX

24Sα
PCR;
sequencing

35/104 (34) 23/35 (66) 10 13

Striped skunks (M. mephitis) TX 4/4 (100) 4/4 (100) 1 3

Racoon (P. lotor) TX 12/20 (60) 5/12 (42) 5

Hispid cotton rat (Sigmodon hispidus) TX 2/2 (100) 2/2 (100) 2

Rock squirrel (Otospermophilus variegatus) TX 1/1 (100) 1/1 (100) 1

Herrera et al. [49]
House mouse (Mus musculus); Cotton mouse
(Peromyscus gossypinus) LA

SL-IR; 24Sα;
18S

PCR;
sequencing

34/44 (77) 20/34 (59) 16 2 TcII 1 TcI + TcII
1TcII + TcIV

Eastern woodrat (Neotoma floridana) LA 11/15 (73) 3/11 (27) 2 1 TcII + TcIV

Hodo et al. [50] Evening bat (Nycticeius humeralis) TX SL-IR; 24Sα;
18S; COII MTq-PCR 1/593 (0.2) 1/1 (100) 1

Curtis-Robles
et al. [51] Racoon (P. lotor) TX TcSC5D Sequencing 49/70 (70) 11/49 (22) 10 1 TcI + TcIV

Aleman et al. [52]

Northern pygmy mouse (Bayomis taylori) TX

18S Sequencing

1/4 (25) 1/1 (100) 1

Southern plains woodrat (N. micropus) TX 1/5 (20) 1/1 (100) 1

White-footed mouse (Peromyscus leucopus) TX 3/87 (3) 3/3 (100) 3

Hispid cotton rat (Sigmodon hispidus) TX 1/13 (8) 1/1 (100) 1

Hispid pocket mouse (Chaetodipus hispidus) TX 1/2 (50) 1/1 (100) 1

Mexican spiny pocket mouse (Liomys
irroratus) TX 1/44 (2) 1/1 (100) 1

Curtis-Robles
et al. [53] Domestic dog (C. lupus familiaris) TX SL-IR; TcSC5D MTq-PCR;

sequencing 15/86 (17) 15/15 (100) 9 5 1 TcI + TcIV

Curtis-Robles
et al. [54] Domestic dog (C. lupus familiaris) TX SL-IR MTq-PCR 5/184 (3) 4/5 (80) 4

Garcia et al. [31] Human (H. sapiens sapiens) TX SL-IR; 24Sα;
18S

PCR;
sequencing 12/15 (80) 6/12 (50) 4 TcII/V/VI 2 TcI + TcII/V/VI

Meyers et al. [55] Domestic dog (C. lupus familiaris) TX SL-IR MTq-PCR 3/528 (0.6) 2/3 (67) 1 1 TcI + TcIV

Hodo et al. [56]

Rhesus macaque (M. mulatta) TX

SL-IR; 24Sα;
18S; COII MTq-PCR

33/41 (80) 33/33 (100) 18 13 2 TcI + TcIV

Virginia opossum (D. virginiana) TX 4/5 (80) 4/4 (100) 4

Racoon (P. lotor) TX 2/5 (40) 2/2 (100) 2

Striped skunk (M. mephitis) TX 2/3 (67) 2/2 (100) 1 1
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Table A1. Cont.

Reference Host State Target Method
Molecular
Prevalence a

P/Tested (%)
Typed
typ./P (%)

DTU (Number)

TcI TcIV Other Mixed
Infections

Vandermark
et al. [57]

Racoon (P. lotor) IL

SL-IR; 24Sα PCR;
sequencing

5 (37 global) 5/5 (100) 5

Racoon (P. lotor) KY 1 (37 global) 1/1 (100) 1

Racoon (P. lotor) MO 1 (37 global) 1/1 (100) 1

Hodo et al. [58] Domestic dog (C. lupus familiaris) TX SL-IR MTq-PCR 53/559 (9) 6/53 (11) 5 1

Herrera et al. [59]

Rhesus macaque (M. mulatta) LA

SL-IR NGS; MB

7/8 (88) 7/7 (100) 5 1 TcI + TcIV
1 TcI + TcVI

Pig-tailed macaque (Macaca nemestrina) LA 2/2 (100) 2/2 (100) 2

Baboon (Papio spp.) LA 2/2 (100) 2/2 (100) 2

Dumonteil
et al. [60] Domestic dog (C. lupus familiaris) LA SL-IR PCR; NGS;

MB 73/540 (14) 40/73 (55) 25

10 TcI + TcIV
2 TcI + II + V + VI
2 TcI + II + IV +
V + VI
1 TcI + TcII

Hodo et al. [61]
Coyote (Canis latrans) TX SL-IR; 24Sα;

18S; COII MTq-PCR
10/120 (8) 10/10 (100) 10

Racoon (P. lotor) TX 15/24 (62) 15/15 (100) 15

Meyers et al. [62] Domestic dog (C. lupus familiaris) TX SL-IR MTq-PCR 4/1610 (0.2) 3/4 (75) 2 1 TcI + TcIV

Pronovost
et al. [63]

House mouse (M. musculus) LA

SL-IR NGS; MB

2/2 (100) 2/2 (100) 1 TcI + II + VI
1 TcII + VI

Cotton mouse (P. gossypinus) LA 3/3 (100) 3/3 (100)
1 TcII + TcVI
1 TcI + II + VI
1 TcI + II + V + VI

Eastern woodrat (N. floridana) LA 1/1 (100) 1/1 (100) 1 TcI + II + IV + VI

Zecca et al. [64] Domestic cat (Felis catus) TX SL-IR; 24Sα;
18S; COII MTq-PCR 3/167 (2) 3/3 (100) 3

Zecca et al. [65] Virginia opossum (D. virginiana) TX SL-IR MTq-PCR 15/100 (15) 15/15 (100) 15

Dumonteil
et al. [66] Domestic cat (Felis catus) LA SL-IR PCR;

sequencing 70/284 (25) 19/70 (27) 3 ** 16 **



Life 2024, 14, 901 16 of 23

Table A1. Cont.

Reference Host State Target Method
Molecular
Prevalence a

P/Tested (%)
Typed
typ./P (%)

DTU (Number)

TcI TcIV Other Mixed
Infections

Rodríguez
et al. [67]

Domestic dog (C. lupus familiaris) TX

SL-IR; 24Sα; PCR

43/95 (45) 40/43 (93) 30 9 1 TcI + TcIV

Domestic cat (Felis catus) TX 7/24 (42) 3/7 (43) 2 1

Cactus mouse (Peromyscus eremicus) TX 1/1 (100) 1/1 (100) 1 TcI + TcIV

Spotted ground squirrel (Xerospermophilus
spilosoma) TX 1/1 (100) 1/1 (100) 1 TcI + TcIV

Western harvest mouse (Reithrodontomys
megalotis) TX 1/1 (100) 1/1 (100) 1

Gray fox (Urocyon cinereoargenteus) TX 1/1 (100) 1/1 (100) 1

Coyote (C. latrans) TX 1/1 (100) 1/1 (100) 1

Padilla et al. [68] Cynomolgus macaque (Macaca fascicularis) TX LSU; SL-IR PCR 59/64 (92) 40/59 (68) 33 6 1 TcI + TcIV

Torhorst et al. [69] Virginia opossum (D. virginiana) FL SL-IR; 24Sα;
18S; COII MTq-PCR 58/112 (52) 55/58 (95) 55

Majeau et al. [70] Racoon (P. lotor) LA SL-IR NGS 40/119 (34) 29/40 (73) 19 2 TcII 1 TcI + TcIV
7 ***

Landsgaard
et al. [71] Domestic dog (C. lupus familiaris) TX SL-IR PCR 4/4 (100) 3/4 (75) 1 2

CA, California; TX, Texas; LA, Louisiana; n.d., not determined; TN, Tennessee; OK, Oklahoma; SC, South Carolina; GA, Georgia; FL, Florida; AL, Alabama; MD, Maryland; IL, Illinois;
KY, Kentucky; MO, Missouri; MLEE, multilocus enzyme electrophoresis; RAPD, random amplified polymorphic DNA; STR, short tandem repeats (microsatellites); NGS, next-generation
sequencing; MB, metabarcoding; MTq-PCR, Multiplex TaqMan Real-Time PCR; typ., typed; SL-IR, spliced leader intergenic region of the mini-exon; 18S, 18S ribosomal DNA; 24Sα, 24Sα
ribosomal DNA; COII, cytochrome oxidase II; LSU, large subunit rRNA; TcSC5D, TcSC5D gene. a Molecular prevalence was calculated as the number of samples with evidence of T. cruzi
DNA by means of PCR or hemoculture (positive, P) with respect to the total number of samples analyzed (tested). Molecular prevalences in Roellig et al. [32], Pronovost et al. [63], and
Landsgaard et al. [71] do not match reality since positive samples were pre-selected for the study. * TcIV was typified as TcIIa according to the previous nomenclature (see Table 1).
** Cats were predominantly infected with parasites from TcI and TcVI DTUs, and to a lesser extent from TcIV and TcV DTUs. *** Mixed infections of TcI, TcII, TcIV, TcV and TcVI in
different combinations and proportions.

Table A2. Trypanosoma cruzi DTUs reported in triatomine vectors per state in the US.

Reference Vector State Target Method
Molecular

Prevalence a

P/Tested (%)
Typed
typ./P (%)

DTU (Number)

TcI TcIV Other Mixed
Infections

Roellig et al. [32]

Triatoma sanguisuga FL

SL-IR; 24Sα; 18S PCR; MLEE;
RAPD; STR

3/3 (100) 3/3 (100) 3

T. sanguisuga GA 1/1 (100) 1/1 (100) 1

Triatoma gerstaeckeri TX 3/3 (100) 3/3 (100) 2 1 *
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Table A2. Cont.

Reference Vector State Target Method
Molecular

Prevalence a

P/Tested (%)
Typed
typ./P (%)

DTU (Number)

TcI TcIV Other Mixed
Infections

Cura et al. [45] T. gerstaeckeri TX SL-IR Sequencing 7/7 (100) 7/7 (100) 7

Hwang et al. [72] Triatoma protracta CA 24Sα; 18S Sequencing 34/161 (21) 2/34 (6) 2 TcII/VI

Herrera et al. [49] T. sanguisuga LA SL-IR; 24Sα; 18S PCR; sequencing 8/12 (67) 6/8 (75) 6

Buhaya et al. [73] Triatoma rubida TX TcSC5D Sequencing 25/39 (64) 24/25 (96) 24

Shender et al. [74] T. protracta CA SL-IR; 24Sα;
HSP60; GPI PCR; PCR-RFLP 37/97 (38) 22/37 (59) 20 2

Curtis-Robles et al. [53]
T. gerstaeckeri TX

SL-IR; TcSC5D MTq-PCR;
sequencing

16/16 (100) 16/16 (100) 10 4 2 TcI + TcIV

T. sanguisuga TX 13/20 (65) 13/13 (100) 2 9 2 TcI + TcIV

Curtis-Robles et al. [54] T. gerstaeckeri TX SL-IR MTq-PCR 1/2 (50) 1/1 (100) 1

Meyers et al. [55] T. gerstaeckeri TX SL-IR MTq-PCR 9/18 (50) 9/9 (100) 6 1 2 TcI + TcIV

Aleman et al. [52]
Triatoma lecticularia TX

18S Sequencing
13/19 (68) 13/13 (100) 13

T. sanguisuga TX 2/2 (100) 2/2 (100) 2

Curtis-Robles et al. [75]

T. gerstaeckeri TX

SL-IR; TcSC5D MTq-PCR;
sequencing

574/897 (64) 548/574 (95) 294 189 65 TcI + TcIV

Triatoma indictiva TX 32/67 (48) 28/32 (88) 9 17 2 TcI + TcIV

T. lecticularia TX 44/66 (67) 42/44 (95) 9 25 8 TcI + TcIV

T. protracta TX 3/19 (16) 2/3 (67) 2

T. rubida TX 11/64 (18) 7/11 (64) 6 1

T. sanguisuga TX 158/315 (50) 135/158 (85) 21 107 7 TcI + TcIV

Triatoma sp. TX 11/29 (38) 11/11 (100) 4 7

T. sanguisuga AL 1/4 (25) 1/1 (100) 1

T. protracta AZ 1/7 (14) 1/1 (100) 1

T. rubida AZ 5/33 (15) 4/5 (80) 4

T. sanguisuga FL 4/25 (16) 4/4 (100) 1 3

T. sanguisuga IN 1/2 (50) 1/1 (100) 1

T. sanguisuga KS 1/1 (100) 1/1 (100) 1

T. sanguisuga LA 3/3 (100) 3/3 (100) 1 2

T. sanguisuga MO 1/2 (50) 0/1 (0)

T. rubida NM 2/7 (29) 1/2 (100) 1

T. sanguisuga OK 1/2 (50) 1/1 (100) 1

T. sanguisuga TN 1/2 (50) 1/1 (100) 1

T. sanguisuga VA 3/7 (43) 3/3 (100) 3
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Table A2. Cont.

Reference Vector State Target Method
Molecular

Prevalence a

P/Tested (%)
Typed
typ./P (%)

DTU (Number)

TcI TcIV Other Mixed
Infections

Curtis-Robles et al. [76]

T. gerstaeckeri TX

SL-IR MTq-PCR

1/11 (9) n.s. n.s. **

T. protracta TX 4/9 (44) n.s. n.s. **

T. rubida TX 69/299 (23) n.s. n.s. **

Hodo et al. [56] T. sanguisuga TX SL-IR; 24Sα; 18S;
COII MTq-PCR 1/4 (25) 1/1 (100) 1

Dumonteil et al. [77] T. sanguisuga LA SL-IR MTq-PCR;
sequencing 40/45 (89) 40/40 (100) 19 3

15 TcI + TcIV
2 TcI + TcII/V
1 TcI + IV + II/V

Rodríguez et al. [67]

T. rubida TX

SL-IR; 24Sα; PCR

29/50 (58) 27/29 (93) 26 1

T. protracta TX 1/2 (50) 1/1 (100) 1

T. gerstaeckeri TX 2/2 (100) 2/2 (100) 2

T. rubida NM 118/171 (69) 117/118 (99) 109 1 7 TcI + TcIV

Flores-López et al. [78]

T. gerstaeckeri TX

COII-ND1;
MSH2; DHFR-TS;
TcCLB

MLST

44/n.s.

n.s. *** 75% *** 25% ***

T. lecticularia TX 4/n.s.

T. indictiva TX 1/n.s.

T. sanguisuga TX 2/n.s.

Triatoma recurva AZ 4/n.s.

FL, Florida; GA, Georgia; TX, Texas; CA, California; LA, Louisiana; AL, Alabama; AZ, Arizona; IN, Indiana; KS, Kansas; MO, Missouri; NM, New Mexico; OK, Oklahoma; TN, Tennessee;
VA, Virginia; MLEE, multilocus enzyme electrophoresis; RAPD, random amplified polymorphic DNA; STR, short tandem repeats (microsatellites); typ., typed; SL-IR, spliced leader
intergenic region of the mini-exon; 18S, 18S ribosomal DNA; 24Sα, 24Sα ribosomal DNA; COII, cytochrome oxidase II; HSP60, heat-shock protein 60; GPI, glucose phosphate isomerase;
COII-ND1, cytochrome oxidase subunit II- NADH dehydrogenase subunit 1 region; MSH2, mismatch-repair class 2; DHFR-TS, dihydrofolate reductase-thymidylate synthase; TcCLB,
nuclear gene with ID TcCLB.506529.310; TcSC5D, TcSC5D gene; RFLP, restriction fragment length polymorphism; MTq-PCR, Multiplex TaqMan Real-Time PCR; MLST, multilocus
sequence typing; n.s., not specified. a Molecular prevalence was calculated as the number of samples with evidence of T. cruzi DNA by means of PCR or culture or direct microscopic
examination (positive, P) with respect to the total number of samples analyzed (tested). Molecular prevalences in Roellig et al. [32] do not match reality since positive samples were
pre-selected for the study. * TcIV was typified as TcIIa according to the previous nomenclature (see Table 1). ** TcI was the only DTU detected but numbers are not detailed. *** TcI was
found in the 75% of the infected triatomines (n = 55). The other 25% showed TcIV-USA, a divergent American branch of TcIV.
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