
Journal of Geochemical Exploration 265 (2024) 107545

Available online 3 July 2024
0375-6742/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Mapping geochemical domains using stream sediment geochemistry: An
approach based on compositional indicators in the Volturno River basin
(South Italy)

Maurizio Ambrosino a, Javier Palarea-Albaladejo b, Stefano Albanese c,*, Domenico Cicchella a

a Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
b Department of Computer Sciences, Applied Mathematics and Statistics, University of Girona, 17003 Girona, Spain
c Department of Earth, Environmental and Resources Sciences, University of Naples Federico II, 80126 Naples, Italy

A R T I C L E I N F O

Keywords:
Compositional indicators
Geochemical domains
Log-ratio analysis
Principal balances
Stream sediments geochemistry

A B S T R A C T

When dealing with environmental problems, it is of fundamental importance to establish reference values
(geochemical baselines) against which to determine the presence or absence of active contamination processes.
In the effort to develop a method to assess the geochemical baselines for territories featuring complex

geological settings and a well-established anthropic environmental pressure, we combined compositional data
analysis (CoDA) with geolithological information to reduce the degree of uncertainty possibly affecting the re-
sults. The proposed approach comprises (1) a knowledge-driven step to select a number of sample subsets from a
geochemical dataset each with a high probability of having its composition strongly influenced by only one of the
lithologies outcropping in the study area; (2) a data-driven step to compute compositional principal balances and
define geochemical indicators to be used to assign each of the observations in the dataset to one of the
geochemical domains associated to a mayor lithologies outcropping in the study area; (3) the determination for
each geochemical domain of baseline values based on the samples assigned to them by the data-driven step.
The method was tested using the geochemical data referring to 887 stream sediment samples collected across

the Volturno River catchment basin (Southern Italy), featuring a relevant lithological heterogeneity.
The results obtained were easily interpretable as they fitted well with the geomorphological, geochemical, and

geodynamic processes characterizing the study area.
Despite the use of stream sediments for the specific case study presented, the application principles of the

method hold for any environmental media and for any territory for which there is a need to define baseline
values. However, for a successful application of the method, it is crucial to have a fair knowledge of the
geological settings of the study area.

1. Introduction

In recent years, we have witnessed a critical research effort to
quantify the impact of human-induced activities on the environment and
their associated risks. However, determining the geochemical baseline
values is a critical step towards establishing this. A geochemical baseline
for an element refers to its natural variations in concentration in a given
environmental compartment (Salminen and Tarvainen, 1997), and it
strongly depends on geological characteristics such as mineral compo-
sition, grain size distribution, and organic matter content (Dung et al.,
2013). The geochemical baseline can be estimated using both empirical
and statistical methods. In a nutshell, we could say that the empirical

approach usually involves the elaboration of data related to samples
proceeding from areas not affected by anthropogenic activities (which
are also referred to as preindustrial samples), and the statistical methods
are based on the identification and elimination of outliers (Nawrot et al.,
2021). However, recognizing samples unaffected by human pollution
and quantifying the amount of a pollutant introduced into the envi-
ronment by human activities is a fairly difficult task. In many cases, the
degree of contamination of an environmental media is determined by
assuming a unique reference value (i.e geochemical baselines)
throughout the whole study area (Boente et al., 2022; Chen et al., 2019;
Sundaray et al., 2011); this makes sense in studies conducted at a local
scale, but it can be too stringent in studies conducted at a regional scale
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due to the presence of lithological variations characterizing the
geological context and different degree of weathering affecting rocks.

The extent of environmental contamination is typically evaluated by
computing indices that utilize geochemical baselines as reference
values. For instance, amongst others, this applies to measures such as the
enrichment factor, the contamination factor or the geo-accumulation
index. Although there are studies in the literature where the pollution
indices are based on local geochemical baselines (Cicchella et al., 2023;
Nawrot et al., 2021), the reference level can also be based on the average
content of elements in the earth's crust. Recent research (Cicchella et al.,
2022; Wang et al., 2021) has indicates that while the identification of
the spatial distribution of geological units serves as a solid foundation
for assessing geochemical baselines, their form cannot be directly used
to delineate areas with a singular reference geochemical composition.
This is because geological units do not encompass any geochemical data,
but solely contain chronological and geodynamic information. This is
particularly true for territories with a complex geological setting (e.g.,
Campania region in Italy) where rocks with very different chemical
compositions (such as limestones, clays, and pyroclastic levels) can
coexist within a geological unit (Piana et al., 2017; Vitale et al., 2011;
Vitale and Ciarcia, 2018). Therefore, to define geochemical baselines,
geological information should be integrated, to the best of possibilities,
with geochemical data to determine “geochemical domains” where the
geochemical variability found in environmental media can be associated
with a specific pool of processes and lithologies. Determining
geochemical domains should represent a starting point for environ-
mental, agricultural, and crop production studies. Therefore, this study
represents a first step towards an adequate evaluation of geochemical
baselines and the environmental state of soils, proposing a valuable
approach to identifying geochemical domains.

The development of well-principled statistical methods for compo-
sitional data analysis (CoDA) based on log-ratio coordinates (Aitchison,
1982; Pawlowsky-Glahn et al., 2015) has dramatically contributed to
overcoming the limitations and pitfalls of traditional statistical methods
when directly applied to raw geochemical data (Chayes, 1962). Thus,
analyses based on log-ratio data representations, such as additive log-
ratio, centered log-ratio, or isometric log-ratio coordinates, are now
common in the literature and have notably enhanced the significance of
statistical analysis in the geological and environmental sciences. Some
illustrative examples include the evaluation of soil baselines (Cicchella
et al., 2022), soil pollution (Cicchella et al., 2020; Aruta et al., 2022),
soil mineralogy (Butler et al., 2020), water quality (Glendell et al.,
2019), water dynamics (Graziano et al., 2020), air pollution (Jarauta-
Bragulat et al., 2016), environmental factors leading to diseases
(McKinley et al., 2020; McKinley et al., 2021); and health risk assess-
ment (Tepanosyan et al., 2020). In the evaluation of soil pollution, the
CoDA approach has led to the definition of new pollution indices (or
compositional indicators) for studies at both local (Boente et al., 2022)
and regional scales (Petrik et al., 2018).

Based on the above considerations, we propose a novel approach to
recognize and differentiate geographical areas in terms of their
geochemical baselines, aiming to minimize the uncertainty around it.
The method combines inputs from the geological knowledge of the study
area with evidence drawn from geochemical data to generate indicators
that allow distinguishing geochemical domains. These are understood as
areas with low compositional variation, which exhibit a characteristic
geochemical signature in response to natural phenomena such as
bedrock type and weathering degree. Stream sediment data from the
catchment basin of the Volturno River (Southern Italy) are used here as a
case study. In order to recognize only the natural phenomena that affect
soil geochemistry, emphasis has been put on chemical elements whose
concentration in the environment is typically not affected by anthropic
activities and varies considerably according to lithologies. For these
elements, the geochemical baselines are estimated for each geochemical
domain. The geochemical baselines of elements that may present an
anthropogenic contribution will be elaborated in future research,

focusing on the individual geochemical domains recognized in this
study. In our view, focusing on the individual geochemical domains
facilitates the identification and removal of the anthropic contribution,
since there is no overlapping of multiple natural sources.

2. Study area

The Volturno River basin is located along the main axis of the
southern Italian Apennines. The Matese massif, Meta mountains, Daunia
mountains, Picenti mountains, Partenio mountains, and the Rocca-
monfina volcano represent its main water and sediment alimentation
sources (Fig. 1). The watershed size is 5500 km2 and the more
anthropized areas are located in the south-western sector, between the
cities of Avellino, Caserta and Benevento where industrial, agricultural
and livestock activities are present. Although in the central-western
sector of the study area there has been a considerable increase in ur-
banization in recent decades (Ruberti and Vigliotti, 2017), a large part of
its extension is characterized by the presence of small urban centres,
which are undergoing a drastic demographic decline (Forte et al., 2020).
The study area is crossed by the Volturno River, which originates from
the Matese massif, and its tributaries (Fig. 2). The most important trib-
utary is certainly the Calore River, which has a hydrographic basin of
3050 km2 and originates from the Picentini mountains, collecting the
waters of the south-eastern sector of the basin. The Calore River flows
into the Volturno River between Benevento and Caserta, 108 km from its
spring. The complex hydrographic network of the Volturno River basin
crosses rocks that present extreme compositional variability (Cicchella
et al., 2023; Vitale and Ciarcia, 2018). These rocks are linked with the
orogeny of the Apennines and can be grouped into three macro cate-
gories (Vitale and Ciarcia, 2013, 2018):
Pre-orogenic units include the carbonate platform, known as the

Apennine platform, and the Lagonegrese Molise basin. The Apennine
platform domain has a very simple lithology and is mainly made up of
Mesozoic limestones and dolomites at the base and Chalcyclastic suc-
cessions at the top. These rocks characterize most of the mountainous
areas of the Volturno River Basin, such as the Matese, Picentini, Parte-
nio, and Taburno mountains (Fig. 1). The geochemistry of Apennine
platform rocks, and therefore also of soils and stream sediments deriving
from their alteration, is very simple and show enrichment of Ca, Mg, and
Sr compared to other rocks occurring in the central-southern Apennines
(Ambrosino et al., 2022; Cicchella et al., 2022, 2023) The Lagonegrese
Molise basin domain is defined by a late Mesozoic basinal sedimentary
succession, rich in siliciclastic lithologies, including clays, marls, fine-
grained sandstones, siliciferous clays and a minor calcareous compo-
nent consisting of calcilutites and calcarenites. Most of these siliciclastic
deposits crop out in the southeastern sector of the Volturno River basin
(Fig. 1). According to their lithology, The geochemistry of Lagonegrese
Molise basin rocks is very variable. However, recent studies (Cicchella
et al., 2022, 2023) have shown that its geochemical signal consists of an
enrichment in Ni, Co, Cr, and Mn associated with the presence of the
clay-rich portion and an enrichment of Si, Ba, Al, Ga associated with
siliciferous clays and marls. Their carbonate-rich portion shows the
same geochemical association as the Apennine platform.
Synorogenic units (wedge-top or piggy-back basins) consist of

sedimentary successions that can be grouped according to their age into
Miocene sedimentary deposits and Pliocene sedimentary deposits.
Miocene sedimentary deposits and Pliocene sedimentary deposits lie
above the accretionary prism (made up of the pre-orogenic units).
Therefore, they were formed due to the Apennine platform and Lago-
negrese Molise basin disgregation. In the Volturno River basin, the
synorogenic deposits outcrop mainly in the eastern and northern sector
(Fig. 1). The Miocene sedimentary deposits are a basin environment
succession consisting of turbidite sequences including calcilutides,
marls, sandstones, clay (coming from Lagonegrese Molise basin dis-
gregation) and carbonate (Apennine platform disgregation) olistos-
tromes. Pliocene sedimentary deposits were formed in a continental-
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transitional environment, consisting of polygenic conglomerates,
shallow-water sands, calcarenites, silts, and clays. Both Miocene sedi-
mentary deposits and Pliocene sedimentary deposits produce

geochemical signals attributable to the Apennine platform or Lago-
negrese Molise basin based on the paleogeographic domain that mostly
fed the basin (Cicchella et al., 2022).
Post-orogenic units include Quaternary deposits, volcanic rocks

connected with the activity of Roccaminfina Volcano (630–50 ka), and
pyroclastic deposits related to the most recent activity of Ischia (150 ka –
1302 CE), Campi Flegrei-Procida (80 ka – 1538 CE) and Somma-Vesuvio
(39 ka - 1944 CE) volcanoes. The pyroclastic products relating to the
various eruptive steps affected large areas of the region (Bisson et al.,
2007; Giaccio et al., 2008), but thick layers of tephra outcrop only in the
south-western sector of the study area (Fig. 1). Minor pyroclastic layers
are also present in areas far from volcanic buildings (di Gennaro et al.,
2002). Their geochemical signal in the soils is evident up to >100 km
from the sources (Ambrosino et al., 2022). All volcanic products are
enriched in a suite of chemical elements, including K, Na, Ba, Be, U, Th,
and Zr, compared to other rocks outcropping in the southern Apennines
(Albanese et al., 2007; Ambrosino et al., 2022; Zuzolo et al., 2020).
However, the same authors have also shown that volcanic rocks exhibit
different chemical compositions in soils and stream sediments based on
their age and, therefore, on their degree of weathering. The early vol-
canic products are enriched in low-mobility elements (e.g., Th, Zr, Ce,
La, Y), while the late volcanic products are enriched in high-mobility
elements (e.g., K, Na).

Other rocks in the Volturno River basin, unrelated to the Apennines'
formation, are karst bauxite deposits of uncertain origin (Mondillo et al.,
2011). These deposits are located in small outcrops scattered in the
central-northern sector of the study area (Fig. 1).

3. Material and methods

3.1. Dataset

The dataset used includes geochemical data relative to 887 steam

Fig. 1. Geological map (with underlying shaded relief) of the Volturno River basin (modified after Vitale and Ciarcia, 2022). QDs: Quaternary deposits, VRs: volcanic
rocks, PDs: pyroclastic deposits, MPLs: minor pyroclastic layers, PSDs: Pliocene sedimentary deposits, MSDs: Miocene sedimentary deposits, AP: Apennine platform,
LMB: Lagonegrese Molise basin, KB: karst bauxite.

Fig. 2. Location of stream sediment samples and their sample catchment basin
(SCB) outlines. Samples within the coloured areas were labelled as follows:
mixed sediments (MX), predominantly pyroclastic deposits (PPDs), predomi-
nantly volcanic rocks (PVRs), predominantly siliciclastic component (PSC), and
predominantly carbonate component (PCC).

M. Ambrosino et al.
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sediment samples collected along the whole hydrological system of the
Volturno River basin with an average sampling density of about 1
sample every 6 km2 (Fig. 2). To ensure that the samples used in this
study are representative of the local geochemistry, artificial banks,
channels, and levees were avoided during the sampling procedure. Each
sample was made of composite material taken from five points over a
stream stretch of 20–100 m. Finer grain size material (< 2 mm) was
collected from the center of the stream beds avoiding, where possible,
the collection of organic matter. The sampling procedure and the sample
preparation followed the protocol described in detail by Albanese et al.,
2007. Chemical analyses were carried out at ACME Analytical Lab. Ltd.
(Vancouver, Canada). A total of 35 elements were determined for each
sample, following a modified aqua regia digestion, combining induc-
tively coupled plasma mass spectrometry (ICP-MS) and inductively
coupled plasma emission spectrometry (ICP-ES).

To study only natural processes, we selected those chemical elements
whose concentrations, according to previous studies (Ambrosino et al.,
2022; Cicchella et al., 2022, 2023), were strongly related to lithology.
Therefore, the dataset used in this study includes the concentration of 16
chemical elements (Al, Ba, Ca, Co, Fe, Ga, K, La, Mg, Mn, Na, Ni, P, Sr,
Th, Ti) for which details regarding analytical quality and raw data dis-
tribution structure are reported in Table 1.

3.2. Data preparation

A vector map of sample catchment basins was generated using the
ArcGIS 10.8 spatial analyst tool (Fig. 2) by using a regional digital
elevation model and the stream sediment sample locations as inputs. The
digital elevation model allowed us to determine flow direction and
accumulation paths corresponding to the river basin's active segments
and primary runoff directions. Sample locations were used along the
accumulation paths as virtual outlets of catchments limited upstream by
the next sample. Each sample catchment basin corresponds to the up-
stream area which mainly influences the composition of the related
sample at its outlet (Carranza, 2009; Dominech et al., 2022).

Subsequently, to recognize the geochemical fingerprints on sedi-
ments of the main lithological associations occurring in the study area,
we selected from the dataset those samples having their sample catch-
ment basin meeting the following requirements: i) to belong to a
geological unit consisting of a dominant lithology (pre-orogenic units or
volcanic products), ii) to cover a single geological unit, iii) to be placed
in the upper or middle course of the Volturno River basin to limit the
effect of sediment mixing, iv) to be featured by a chemical composition
characteristic of a given lithological domain. Through this labelling
criterion, samples were selected and grouped in four domains (end-
members): i) predominantly pyroclastic deposits (PPDs), referring to
sample catchment basins lying on pyroclastic deposits; ii) predomi-
nantly volcanic rocks (PVRs) referring to those lying on volcanic rocks;
iii) predominantly siliciclastic component (PSC) referring to those lying
on Lagonegrese Molise basin and iv) predominantly carbonate compo-
nent (PCC) referring to those lying on Apennine platform. Additionally,
acknowledging that the physical displacement of sediments can result in
highly mixed products, we labelled the samples of mixed sediments to
identify their geochemical signature. It is known that extensive sediment
mixing is prevalent in downstream regions, particularly at the junction
of two rivers (Lane et al., 2008; Umar et al., 2018). This level of mixing
significantly influences the geochemical signature of stream sediments
(Lipp et al., 2021; Caracciolo, 2020). Thus, samples falling along the
highest-order streams in the downstream area, namely after the junction
between the Calore and Volturno rivers, were manually labelled to form
an additional reference group of mixed sediments (featuring the “MX”
label). To have a similar number of samples in each group (which is
convenient for the classification algorithm applied below), we did not
select all the samples that satisfied the above criteria, especially in the
case of those geological units widely present in the study area (e.g.,
Lagonegrese Molise basin). Furthermore, samples lying on Pliocene Ta
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sedimentary deposits, Miocene sedimentary deposits, and Quaternary
deposits were not considered due to their lithological inhomogeneity.
Finally, a selection of samples was manually assigned to the groups
defined above (Fig. 2): 21 to the mixed sediments (featuring the “MX”
label), 22 to the predominantly carbonate component (featuring the
“PCC” label), 21 to the predominantly siliciclastic component (featuring
the “PSC” label), 24 to the predominantly volcanic rocks (featuring the
“PVRs” label), and 16 to the predominantly pyroclastic deposits
(featuring the “PPDs” label).

3.3. Obtaining compositional indicators for different geochemical
signatures

Compositional Data Analysis relies on log-ratio coordinate repre-
sentations of the original geochemical compositions. Unlike with raw
data, using log-ratios generally leads to results that do not depend on the
scale of measurement of the data or the size of the composition. Thus,
orthonormal log-ratio coordinates (olr; a.k.a. isometric log-ratio co-
ordinates) allow the consistent projection of the information contained
in a composition into the ordinary real space and facilitate statistical
analysis. The orthonormality property guarantees that distances and
other measures of differences between compositions are preserved by
their log-ratio counterparts. Given a composition of D parts x =

(x1,…xD), we will define compositional indicators (CIs) from olr-
coordinates in the form of balances (Egozcue and Pawlowsky-Glahn,
2005), which have general expression given by

̅̅̅̅̅̅̅̅̅̅
r • s
r+ s

√

ln

[( ∏r
h=1x+h

)1
r

( ∏s
l=1x−l

)1
s

]

(1)

and represent contrasts between the geometric means of mutually
exclusive subsets of r and s parts placed, respectively, into the numerator
and denominator of the log-ratio term (+ and – superscripts). Note that
this is equivalent to the normalized aggregation of all possible pairwise

log-ratios between parts from both groups:
̅̅̅̅̅̅̅̅̅̅̅

1
rs(r+s)

√ ∑r
h=1
∑s

l=1ln
x+h
x−l
.

Hence, depending on the parts going into the + and − groups and the
relative weight of one group against the other, these balances will be
meaningful as compositional indicators of phenomena such as pollution,
mineralized veins, or lithologies. For instance, let us consider a balance
that confronts elements typically found in high concentration in volca-
nic soils and low concentration in carbonate soils (group + ) against
elements showing the opposite pattern (group − ). This could, therefore,
be a relevant compositional indicator of soil parental material, where
volcanic and carbonate rocks occur, with high values indicating the
volcanic parental material and low values doing so for carbonatic
parental material.

3.3.1. Computation of compositional indicators through principal balances
A common procedure to compute balances (Eq. 1) is through a

sequential binary partition (SBP) of the original composition: from the
original composition, a hierarchical structure is defined through suc-
cessive nested splits into two mutually exclusive subsets of parts until no
more splits are possible. This results in a system of D-1 balances, one per
split, fully representing the information in the original D-part compo-
sition (Egozcue and Pawlowsky-Glahn, 2005). Respecting the SBP rules,
the splits can be predefined based on expert knowledge so that the
resulting balances (at least one of them) are meaningful as composi-
tional indicators (see, e.g. Boente et al., 2022 or Liu et al., 2018).

The following table illustrates an example of SBP used to generate
balances that distinguish between volcanic (rich in Na, Ti, La, and Th)
and non-volcanic (rich in Ca, Mg and Ni) soils in the study area. In this
example, the first balance could be used as a compositional indicator of
the bedrock type, while the second one would relate to the degree of
weathering. The additional balances derived via SBP, such as those

involving La, Th, and Ti, lack a geochemical significance that is indic-
ative of a specific phenomenon; consequently, they are not designed to
serve as compositional indicators.

Alternatively, a structure of balances can be inferred from available
data using some criterion (data-driven approach). Amongst the latter,
the method of principal balances constructs an SBP system so that the
corresponding collection of D-1 (principal) balances successively maxi-
mizes the fraction of the original data variance explained (Martín-
Fernández et al., 2018). Principal balances approximate the properties
of ordinary principal components analysis, but they generally improve
interpretability, since they do not necessarily involve all original parts.
As the number of parts of the studied composition increases, the
exhaustive search for optimal principal balances can be computationally
intensive. Thus, some algorithms have been proposed to ease this task at
the expense of losing some explanatory power. We will use here the
constrained method described in Martín-Fernández et al. (2018).

3.3.2. Handling different geochemical signatures with common elements
By construction, the SBP procedure described above is limited when

intending to define multiple compositional indicators that share com-
mon elements. For example, we might be interested in having two
compositional indicators to distinguish, respectively, different parental
materials and the weathering degree of soils. The first compositional
indicator should contrast the elements enriched in the volcanic parental
material (e.g. Al, Na, La, Th) to the carbonate parental material (e.g. Ca,
Mg). The second compositional indicator should contrast the low
mobility elements (e.g. Th, Al, La), enriched in soils and exhibiting a
high degree of weathering, to the high mobility elements (e.g. Ca, Na),
enriched in soils and exhibiting a low degree of weathering. However,
these two compositional indicators cannot be obtained from a single
SBP, such as the one shown in Table 2, as the ratio of Al and Th to Ca
cannot appear more than once. Thus, once the compositional indicator
of the parental material has been defined (see the first balance of
Table 2), it is not possible to obtain that defining the weathering degree
since the second balance of the SBP in Table 2 can contrast only elements
that are present in the numerator or denominator of the first balance.
This issue can be overcome by conveniently picking out compositional
indicators from different SBP systems and adequately combining them
into the data analysis. We thus apply a hybrid approach to build
compositional indicators of natural sources, comprising: (1) selection of
a meaningful composition (after removing primary pollutants) and
labelling reference samples based on expert knowledge (Section 3.1;
knowledge-driven step); and (2) using such curated data to objectively
inform the definition of compositional indicators through principal
balances which stress the features of interest (data-driven step). For this,
the data were first split into three subsets of samples distinguishing pairs
of geochemical signatures:

i) All labelled samples (ALS), including the predominantly pyro-
clastic deposits, the predominantly volcanic rocks, the predominantly
carbonate component, and the predominantly siliciclastic component;

ii) Volcanic labelled samples (VLS), including the predominantly
pyroclastic deposits and the predominantly volcanic rocks;

iii) Sedimentary labelled samples (SLS), including the predominantly
carbonate component and predominantly siliciclastic component.

Table 2
Exemplary balances obtained through a knowledge-driven sequential binary
partition. The symbols (+ and − ) indicate elements placed in the numerator and
denominator of the balances, respectively.

Balance Na Ti La Th Ca Mg Ni

Volcanic vs. non-volcanic + + + + − − −

Low mobility vs. High mobility − + + +

La, Th vs. Ti − + +

La vs. Th − +

Ca, Mg vs. Ni + + −

Ca vs. Mg + −
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Secondly, three compositional indicators were separately computed
from each subset and denoted by CIALS, CIVLS and CISLS labels, respec-
tively, for reference. Technically, they corresponded with the first bal-
ances of the respective three SBP systems obtained by the method of
principal balances (i.e., the compositional indicators corresponded with
the balances between elements explaining the highest fraction of vari-
ation in each subset).

3.3.3. Joint compositional biplot display
Compositional biplots-based principal component analysis (PCA) of

centred log-ratio transformed data are ordinarily used to jointly display
samples and compositional parts (i.e. the geochemical elements) in low
dimensions to facilitate interpretation (Aitchison and Greenacre, 2002).
The biplot display is defined from a matrix of loadings (determining the
length and orientation of rays representing the compositional parts) and
a matrix of scores (determining the coordinates of the samples in the low-
dimensional, typically 2D, space). To devise such a graphical represen-
tation including all the collected samples along with the three compo-
sitional indicators (CIALS, CIVLS and CISLS associated with three different
principal-balance-based SBP systems), we adapted the strategy depicted
in Štefelová et al. (2023) to combine balances from different but
orthogonal coordinate systems into a single biplot display. In brief, this
involved firstly applying each of the three SBPs (learned from the ALS,
VLS and SLS subsets above) to the entire data set, including labelled and
unlabelled samples. Note that thanks to the orthogonality between SBP
coordinate systems, all of them led to the same matrix of scores (which
coincides with that of the standard compositional PCA biplot). Then, the
vectors of loadings associated with each one of the compositional in-
dicators (first principal balances) were extracted and combined into an
ensemble loadings matrix. Lately, such ensemble loadings matrix and
the commonmatrix of scores were used as input to build a biplot display.

3.4. Samples classification and assessment of geochemical baselines

As will be shown below in the “Results and discussion” section, the
reference samples in the five groups of labelled sediments showed
notable differences in compositional indicator values. It made sense to
use them to build a classification model to allocate the remaining un-
labeled samples. Thus, labelled samples served as input to train a
random forest classification algorithm (Biau and Scornet, 2016), using
compositional indicators as predictor variables. In brief, a random forest
model iteratively fits many decision tree classifiers to random sub-
samples and subsets of variables, using averaging to reduce over-fitting
and improve predictive accuracy when assigning new samples to groups.
Model training, including tuning of model parameters, was conducted
through a 5-time repeated 5-fold cross-validation (CV) pipeline. Thus,
the input data were randomly partitioned into five folds, with four of
them used to train the model and one used as a validation set, sequen-
tially. This fold randomization was repeated five times, contributing to a
fairer assessment of the predictive ability of the model with independent
unlabeled samples (99 % CV accuracy reached). This predictive analysis
was implemented using the “Caret – v.6.0-94” R package (Kuhn, 2008).

Following the random forest classification process, each of the
unlabelled samples in the dataset was assigned to one of the five groups
including the four geolithological domains (i.e., PPDs, PVRs, PSC, PCC)
and the mixed sediments (MX), respectively.

Finally, the upper baseline limits (UBLs) were determined for the
considered chemical elements and the distinct groups of stream sedi-
ments using the US EPA's (United States Environmental Protection
Agency) ProUCL 5.1.0 software package (Singh and Maichle, 2015).
This approach was applied to the raw data following recent applications
on soils (Meloni et al., 2023) and stream sediments (Cicchella et al.,
2022). Specifically, following a Rosner test to eliminate outliers from the
single group dataset, the upper baseline limits were determined for each
element by using the upper tolerance limit at the 95 % confidence limit
of the 95th percentile of the data distribution (UTL95–95 value) as a

reference (Singh and Maichle, 2015).

4. Results and discussion

4.1. Exploratory analysis

Fig. 3 shows the compositional PCA biplot of the entire data set.
Coloured points are used to distinguish the original labelled samples
selected as representative of the lithological domains and thin rays
represent the geochemical elements. The first two axes (PC1 and PC2)
explain 68.8 % of the total variability of the data, which is consistent
with similar analyses in other studies (Reimann et al., 2012; Buccianti
et al., 2014; Cicchella et al., 2023). The compositional biplot suggests
the existence of four geochemical associations (groups of elements
showing moderate to high proportionality between them), broadly ar-
ranged according to the four biplot quadrants. This is further corrobo-
rated by analyzing the co-dependence structure between elements based
on their pairwise log-ratio variances (see Supplementary Material:
Fig. SM1). Interestingly, the centroids of the labelled samples are also
distributed according to the biplot quadrants, thus suggesting a pre-
dominant influence of the selected lithological units on the geochemical
composition of the stream sediments.

The PC1 axis separates the predominantly pyroclastic deposits and
volcanic rocks domains (linked to the enrichment of Ti, Na, Th, La, K, Al,
Ga, Ba) (with positive loadings), from the predominantly siliciclastic and
carbonate component domains (linked to the enrichment of Ca, Mg, Ni,
Co, Mn, Fe, Sr, P) (with negative loadings). The PC2 axis separates the
predominantly volcanic rocks and siliciclastic component domains
(linked to the enrichment of Mn, Th, Ni, Co, La, Fe, Ba, Al, Ga) (with
positive loadings) from the predominant carbonate component and py-
roclastic deposits domains (linked to Ca, Mg, K, P, Sr, Na, Ti) (with
negative loadings). These results suggest that PC1 separates the samples
according to their parental material (volcanic or sedimentary rocks),
whereas PC2 separates the samples according to their weathering de-
gree. This latter observation is more significant when considering the
different mobility of the elements separated by PC2. In fact, except Ti,
the elements with positive loadings for PC2 have low mobility under
environmental conditions, while those with negative values have high
mobility (Reimann et al., 2014).

It is observed that some of the labelled samples are located notably
far from the centroid of their group; particularly, some samples of the
predominant carbonate component domain appear fairly close to the
centroid of the predominant pyroclastic deposits domain; this occur-
rence is most probably attributable to a labelling error as the pyroclastic
covers are dispersed throughout the study area and lie mainly on the
lithologies belonging to the Apennine platform (i.e., Ca-rich lithologies).
Therefore, even if the areas where the pyroclastic covers mainly occur
have been defined, their presence cannot be excluded in areas proximal
to these limits (Bisson et al., 2007; Giaccio et al., 2008). Furthermore,
the compositional biplot shows a few samples of the predominantly
siliciclastic component and volcanic rocks domains falling far away from
their cluster centroids, and located around the predominantly pyro-
clastic deposits domain; as a consequence, two considerations arise: i)
the pyroclastic deposits represent the primary chemical natural
contaminant of the lithological domains present in the study area, and ii)
using only geological and geomorphological evidence to select samples
with a similar chemical composition can lead to errors. Although the
labelling performed on a geological basis allowed us to interpret dif-
ferences in the data, not all labelled samples can be considered
compositional end-members. To avoid the propagation of this error in
calculating the compositional indicators, these presumably wrongly
labelled samples were deemed unlabeled in Fig. 3.

4.2. Compositional indicators and classification of unlabeled samples

Once the compositional end-members were selected, compositional
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indicators were calculated. The resulting CIALS (Eq. 2), based on all
labelled samples, contrasts elements that are more abundant in volcanic
parental materials (predominantly pyroclastic deposits and volcanic
rocks) (in the numerator) against elements that are more abundant in
sedimentary parental materials (predominantly carbonate and silici-
clastic components) (in the denominator):

CIALS =
̅̅̅̅̅̅
12
7

√

ln

(
(Na • Ti • La • Th)

1
4

(Ca •Mg • Ni)
1
3

)

(2)

Therefore, CIALS can be understood as a compositional indicator of
the parental material, where high values correspond to volcanic parental
material and low values correspond to sedimentary parental material. It
is obvious that this indicator cannot be applied worldwide (considering
that Ni can be abundant in ultramafic rocks), but it can be applied at
least to all areas of the Roman Comagmatic Province in Italy, which
includes most of the Latium and Campania regional territories.

The CIVLS (Eq. 3), obtained using only samples with a predominant
volcanic component (predominantly pyroclastic deposits and volcanic
rocks), contrasts low-mobility elements (in the numerator) against high-
mobility elements (in the denominator):

CIVLS =
̅̅̅̅̅̅
20
9

√

ln

(
(Ti • Ga • La •Mn • Th)

1
5

(Ca •Mg • K • Na )
1
4

)

(3)

Hence, CIVLS can be interpreted as an indicator of the degree of
weathering. Considering that the selected end-members come from the
same magmatic province, their most significant differences can be
associated with their alteration degrees. Higher values of CIVLS indicate
samples with an advanced weathering degree, whereas lower values
indicate less alteration. In this respect, it is essential to note that Ti,
together with other low mobility elements (i.e., Ga, La, Mn, Th), is
associated with a higher weathering degree, unlike what PC2 in the
compositional biplot suggests (Fig. 3). However, note that the direction
of the Ti axis in the biplot is influenced by other data populations, such
as that related to the predominantly carbonate component domain,
which is enriched in high mobility elements (i.e., Ca and Mg) but also
has high Ti concentrations.

The third indicator, CISLS (Eq. 4), was obtained using only samples
with a predominantly sedimentary component (carbonate and silici-
clastic components).

This indicator contrasts elements more abundant in siliciclastic-rich
sediments (in the numerator) against elements more abundant in
carbonate-rich sediments (in the denominator):

CISLS =
̅̅̅̅̅̅
12
7

√

ln

(
(Fe • Co •Mn • Ni)

1
4

(Ca •Mg • Ti)
1
3

)

(4)

The involvement of Ti in CISLS confirms its higher concentration in
the predominantly carbonate component compared to the siliciclastic
one. However, this might only be a feature of the study area, where
carbonate rocks are often in spatial association with pyroclastic covers.
Titanium allows us to better distinguish between predominantly car-
bonate and siliciclastic component domains for this research, confirming
the versatility of the method. Therefore, CISLS can be considered an in-
dicator of the siliciclastic component (fine-grained sandstones, marls,
and clays of the Lagonegrese Molise basin domain), with higher values
corresponding to an enrichment of siliciclastic material and lower values
corresponding to an enrichment of carbonate-rich material.

A feature of the proposed method is that it allows the recognition of
elements (e.g., Al, Ba, P, Sr) showing slightly variable concentrations
between them that are unimportant in separating end-members.
Amongst these elements, the case of Al is worth noting since it is often
used to assess the degree of alteration, for instance using the chemical
index of alteration.

In general, our results agree with Cicchella et al. (2023), where it was
shown that volcanic soils always exhibited a chemical index of alteration
>60 in the study area, whereas soils developed on sedimentary bedrock
rarely exceeded these values. This evidence suggests that a parental
material with higher concentrations of Al can generate a higher chem-
ical index of alteration, regardless of the degree of alteration. Further-
more, the elements present in the numerator of CIVLS (Ti, Ga, La, Mn, Th)
coincide with those indicated in Ambrosino et al. (2022) as the main
proxies for the degree of alteration. Therefore, the absence of Al in CIVLS
confirms that this element should not be used as a proxy for the degree of
alteration in the study area.

Fig. 3. Compositional PCA biplot display including projection of compositional indicators (CIs) computed according to subsets of labelled samples (ALS, VLS, and
SLS, see text for details). Labelled samples showed in color: PCC, predominant carbonatic component; PPDs, predominant pyroclastic deposits; PSC, predominant
siliciclastic component; PVRs, predominant volcanic rocks.
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Rays indicating the direction of increasing values of the three
compositional indicators were projected onto the compositional biplot
shown in Fig. 3, thus providing further insight and facilitating joint
interpretation. This biplot display allows us to evaluate the relative
position of the samples according to their compositional indicators and
their predominant parental material and degree of alteration. Further-
more, Fig. 4A and B show the samples in scatterplots according to the
three compositional indicators (CIALS, CIVLS, and CISLS) and the labels of
the reference samples. These samples were used to train a random forest
model to assign unlabeled samples (indicated in light grey in the graphs)
to one of the lithological groups used (MX, PCC, PPDs, PSC, and PVRs).
The resulting classification of all samples based on the compositional
indicators as predictors is represented in Fig. 4C and D. For each
compositional indicator, regions including borderline samples, where
some overlapping of different geochemical domains can occur, are
highlighted by vertical and horizontal segments, including the corre-
sponding boundary compositional indicator values. For CIALS, two seg-
ments identify the transition between sedimentary and mixed domains
(from − 4.5 to − 4.4) and between mixed and volcanic domains (from
− 3.7 to − 3.6). For CISLS, a horizontal segment (from 3.6 to 3.4) repre-
sents the transition from predominantly siliciclastic to carbonate
component domain. Regarding CIVLS, the segment shown (from 5.6 to
5.4) separates predominant pyroclastic deposits from volcanic rock
domains. Samples farther apart from these regions are classified across
the five recognized geochemical domains with greater certainty. Thus,
the boundary values could be used as a reference for the characterization
of future samples collected in the study area and their allocation into one
of the five geochemical domains. It is worth highlighting that calculating
the values of the three compositional indicators (involving just nine
chemical elements) makes it feasible to classify new samples of stream
sediments and get insight into their geochemical baselines (Table 3).

According to the above partition, the predominant volcanic rocks
domain is associated with CIALS > − 3.6 e CIVLS > − 5.4. The low number
of samples it includes reflects the spatial distribution of the volcanic
products of the Roccamonfina volcano, in agreement with the geological
map (Fig. 1). The predominant siliciclastic component domain corre-
sponds to CIALS < − 4.5 and CISLS > − 3.4. The high number of samples
allocated to this geochemical domain can be justified by the abundance

of clayey material in the Miocene sedimentary deposits and Lagonegrese
Molise basin. The predominant carbonate component domain is asso-
ciated with CIALS < − 4.5 and CISLS < − 3.6. It reflects the broad spatial
distribution of the Apennine platform and the Pliocene deposits, the
geological units most enriched in the carbonate component. The pre-
dominant pyroclastic deposits domain corresponds to CIALS > − 3.6 and
CIVLS < − 5.6. The relative frequency of samples allocated to it is
somehow more extensive than expected for the reduced spatial distri-
bution of the volcanic products reported in the geological map (Fig. 1).
However, this result can be explained by the fact that the geological map
shows pyroclastic covers only where they outcrop in high thicknesses.
The MX domain is associated with − 4.4 < CIALS < − 3.7, and the non-
negligible number of samples included in it reflects the complex
geological setting of the study area.

The relative frequency distribution of samples allocated to each
domain can be arranged in decreasing order as PSC (32.4 %) > PCC
(28.5 %) > PPDs (17.9 %) > MX (14.4 %) > PVRs (6.8 %).

4.3. Spatial distribution of clusters and their geochemical baselines

The spatial distribution of the geochemical domains (Fig. 5A) was
obtained by combining the classification results above with the sample
catchment basin information. Thus, the catchment area of each sample
was labelled according to the classification results. The map obtained
shows substantial differences from the geological map in Fig. 1. The
predominant carbonate component domain covers areas linked to the
Apennine platform, Quaternary deposits and Pliocene sedimentary de-
posits. Although these latter originate from different environments and
exhibit considerable diachronism, their chemical composition is similar.
In the Apennine platform and Pliocene sedimentary deposits, the
enrichment in carbonate minerals is explained by their lithology, which
is rich in carbonate minerals. This finding is consistent with Ciarcia and
Torre (1996), which shows that the Pliocene sedimentary deposits
consist of a suite of sedimentary rocks with a carbonate matrix and an
abundance of calcareous clasts up to 87 %. Concerning the Quaternary
deposits, enrichment in the carbonate component should be due to the
precipitation of calcium carbonate, which occurs in the active deposi-
tional zones even for a low state of water saturation (Manzo et al., 2012).

Fig. 4. Reference samples used to train the random forest model (A and B) based on the three compositional indicators (CIALS, CIVLS, and CISLS) and predicted al-
locations for all samples (C and D). Vertical and horizontal segments indicate approximate geochemical domain boundaries and associated thresholds. MX: mixed;
PCC: predominant carbonate component; PPDs: predominant pyroclastic deposits; PSC: predominant siliciclastic component; PVRs: predominant volcanic rocks.
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The predominantly volcanic rocks domain covers a relatively small area
near the Roccamonfina volcano and falls within the Apennine platform,
Quaternary deposits, and volcanic rocks geological units.

In the area surrounding the volcano, the enrichment of Ti, Ga, La,
Mn, and Th in the Quaternary deposits and Apennine platform geolog-
ical units could be attributable to old pyroclastic covers. In the distal
areas, the few samples classified as predominantly volcanic rocks
(located around the Matese Massif) are mainly located in the zones
where bauxitic deposits are present. Here, the presence of the predom-
inantly volcanic rocks domain could be associated with residual soils
and old pyroclastic covers. The predominantly pyroclastic deposits
domain appears throughout the study area but is primarily present in the
central-southern sector, where the thicknesses of the volcanic fall de-
posits are quite relevant (Bisson et al., 2007; Giaccio et al., 2008). The
predominantly pyroclastic deposits pattern allows us to recognize the
areas where the pyroclastic covers are currently present, improving the
information provided by the geological map and the volcanological
models. The geological map indicates only the areas where the pyro-
clastic covers are present in considerable thicknesses, while the volca-
nological models reconstruct the thicknesses of the volcanic fall deposits
immediately after the eruption, thus ignoring the subsequent erosion
and transport phenomena. The predominantly siliciclastic component

domain is present in the eastern and northern sectors of the Volturno
River basin and is located in the Lagonegrese Molise basin and Miocene
sedimentary deposits geological units. This result suggests that the
Miocene sedimentary deposits were mainly fed by siliciclastic material
from the Lagonegrese Molise basin, while the Pliocene sedimentary
deposits were made by carbonate rocks from the Apennine platform
unit. The mixed domain includes sediments with a geochemical signa-
ture between volcanic and sedimentary products. In the downstream
areas (central-western sector), the mixed domain is the result of mixing
between distal sediments from the upstream areas (mainly of a sedi-
mentary nature) and proximal sediments of volcanic nature. In the up-
stream areas, sediment mixing does not reflect the transport of distal
sediments but reveals the presence of weathered pyroclastic deposits
mixed with the sedimentary bedrock. Far from the volcanoes (eastern
sector), the mixed domain is associated with a low degree of weathering,
which allows for the preservation of the chemical signal of the thin
pyroclastic levels that are deposited. In the areas proximal to the vol-
canoes (southern sector), the mixed domain is associated with the high
slopes of the topographic peaks (Picentini mountains), where the
morphological structure and the high weathering did not allow a high
accumulation of pyroclastic material, which partially mixed with the
bedrock (Celico and Guadagno, 1998).

Table 3
Upper background levels calculated using ProUCL for each defined geochemical domain. MX: mixed sediments, PCC: predominant carbonate component, PVRs:
predominant volcanic rocks, PPDs: predominant pyroclastic deposits, PSC: predominant siliciclastic component.

Geochemical domain Al Ca Fe K Mg Na P Ti Ba Co La Mn Ni Sr Th

MX 39,351 126,389 36,030 7498 17,520 1415 1740 1597 382 22 56 2172 41 256 15
PCC 21,854 195,739 23,704 3874 38,945 550 1424 654 215 12 27 1190 31 390 7
PVRs 60,490 51,419 55,296 5267 7613 1720 2095 3461 525 19 126 2917 36 286 50
PPDs 58,739 91,094 46,981 24,142 14,391 6847 2889 2917 730 17 61 1545 25 340 20
PSC 22,095 160,474 32,843 4468 9718 544 1034 198 267 37 28 2494 58 398 9

Fig. 5. Spatial distribution of the defined geochemical domains (A) and compositional indicators (B, C, D). Ovals indicate areas in which all compositional indicators
exhibit intermediate values, which in the downstream areas can be attributed to a high sediment mixing.
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Interpolated distribution maps of the three compositional indicators
(CIALS, CIVLS, and CISLS) were generated in the ArcGIS package using
ordinary kriging interpolation (Cressie, 1992; Isaaks and Srivastava,
2010) (Fig. 5B-D) to highlight the geochemical fingerprint of stream
sediments. Due to the irregular distribution of the samples, the lag size
(7.4 km) was chosen according to the built-in average nearest neighbour
method.

The pattern generated by CIALS shows that volcanic products (high
CIALS values) are present throughout the western and central sectors of
the Volturno River basin. The CIALS values are higher in the western
margin, where the sediments result exclusively from volcanic material,
and relatively lower in the central sector, where there is a greater mixing
with sedimentary rocks. The lowest values of CIALS occur in the northern
sector and at the highest altitudes of the Matese Massif. In these areas,
the pyroclastic covers could be completely eroded and their geochemical
signal erased. The CISLS pattern shows that the geochemical signal
produced by carbonate rocks (low CISLS values) is strong only in the
Matese Massif, the Picentini mountains, and the Volturno River plain. In
the Volturno River plain, the high CISLS values are instead attributable to
chemical precipitation phenomena that favour the deposition of car-
bonate minerals. The pattern generated by CIVLS allows for highlighting
the areas with the highest degree of weathering associated with an
accumulation of elements with low mobility. The highest values are
found in the central-western sector, where the lavas of the Rocca-
monfina volcano, the bauxitic deposits, and, probably, the oldest vol-
canic covers outcrops. The CIVLS also allows the recognition of the
different degrees of alteration occurring within the same geochemical
domain. For example, CIVLS reveals that the predominantly siliciclastic
component domain has a low degree of weathering where Pliocene
sedimentary deposits occur (south-eastern sector) and relatively higher
degree where Miocene sedimentary deposits occur (central-eastern
sector), which is in agreement with Cicchella et al. (2023). The sedi-
ments with the lowest degree of weathering are scattered throughout the
southern and northern sectors of the study area. Combining the infor-
mation from the compositional indicator maps with the geochemical
domain map it is possible to improve the characterization of the ob-
tained geochemical domains. In fact, it is possible to recognize that the
predominantly pyroclastic deposits domain is enriched in the carbonate
component (low CISLS values) in the southern sector, probably due to
slight contamination with the calcareous bedrock. The mixed domain
shows an enrichment of the carbonate component in the Volturno river
plain (western sector), attributable to a greater precipitation of car-
bonate minerals. The predominantly carbonate component domain
presents a greater siliciclastic component (higher CISLS values) in the
northern sector, due to the more diffuse presence of marl compared to
the Matese massif which is dominated by limestone and dolomite.
Moreover, the predominantly siliciclastic component domain presents
the above-discussed difference in the degree of weathering, highlighted
by CIVLS.

The upper baseline limits (Table 3) calculated for the five defined
geochemical domains show notable differences for all the elements
considered. Specifically, elements featuring high variability in values
are Ca, Mg, K, Na, Ti, Co, and La. For example, upper background limits
of Co and Na in predominantly carbonate and siliciclastic components
domains (Table 3) are even lower than their respective mean values in
the entire data population (Table 1), thus highlighting the usefulness of
determining geochemical domains before assessing any reference value.
The effectiveness of the proposed method is underscored by the lower
skewness and robust coefficient of variation (rCV), exhibited by the
individual variables within each geochemical domain when compared
with the entire dataset. For more details, please refer to the supple-
mentary material (Table SM1).

Furthermore, it is also noteworthy that the sediments of the pre-
dominantly pyroclastic deposits domain exhibit high values of the upper
baseline limits for K, Na, and P, which are indispensable macronutrients
for the development of many plant species (Havlin, 2020; Osman, 2013).

Finally, the upper baseline limits of Co and Ni in the predominantly
siliciclastic component domain and of La, Ti, and Th in the predomi-
nantly volcanic rocks domain, respectively, are above the concentra-
tions of the 90th percentile of European stream sediments data
(Salminen et al., 2005), indicating that in the study area there are
geological and environmental conditions able to generate a natural
enrichment of these elements.

4.4. Limitations and scope of application

The proposed approach allowed us to recognize five geochemical
domains and characterize their geochemical signature. However, the
compositional indicators obtained do not enable a clear-cut distinction
of the transition from one domain to another. This transition therefore
generates borderline regions which are the result of the complex
geological setting of the study area, and the different degrees of
weathering and sediment mixing. A key part of the approach presented
here is the selection of end-members, which is fruitful only if extensive
knowledge of the study area exists. Furthermore, incorrect labelling of
some end-members could mislead the compositional indicators deduc-
ted from them and, therefore, the classification of the samples. However,
mislabeled samples can be removed before computing compositional
indicators as reported above. Another critical aspect concerns the
applicability of the proposed compositional indicators to other study
areas. The ones obtained in this study cannot be blindly used for any
other regions; they are very much confined to the current study area or,
at most, to central-southern Italy. However, the procedure described is
general and can be similarly applied and adapted to other areas to obtain
specific compositional indicators or to focus on the geochemical signals
generated by specific anthropogenic phenomena. For example, focusing
on the pollution of the study area and using samples from known
polluted sites would make it possible to create compositional indicators
for a concrete type of pollution in the different geochemical domains.
Once the anthropic contribution is known, removing it and estimating
the reference values of other PTEs would be possible.

Furthermore, using samples from the most important eruptions that
occurred in the study area, it would be possible to create compositional
indicators capable of distinguishing them and mapping them within the
predominantly pyroclastic deposits domain. In our view, the proposed
methodology could also help map mineralized areas, generating
compositional indicators between the mineralization and the host rock.
Therefore, although the proposed method has some limitations, we
consider that it can significantly improve geochemical surveys and the
evaluation of geochemical baselines in areas with prior knowledge of the
geochemical framework.

5. Conclusions

A novel approach was presented to quantitatively define geochem-
ical baselines for geochemically homogeneous areas (geochemical do-
mains), combining geological and geochemical knowledge with
compositional data analysis and supervised statistical learning.

The method was applied using chemical data relating to stream
sediments proceeding from an area characterized by a relevant litho-
logical heterogeneity. The map of geochemical domains generated
shows substantial differences compared to the geological map, allowing
a better understanding of the data variability concerning geology and
some of the natural processes affecting the environmental media (e.g.,
weathering).

A key strength of the proposed method is that it allows for building
compositional indicators that reveal the main natural phenomena
(parental material, weathering degree and mixing) affecting stream
sediment geochemistry. The obtained compositional indicators effec-
tively group samples with a similar geochemical signature before
assigning them reference values to be used as the upper limits of their
geochemical background.
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In the case of the present study, it has been sufficient to produce
three compositional indicators, referring to the presence of volcanic
material (CIALS), siliciclastic material (CISLS), and the degree of weath-
ering (CIVLS), to recognize five geochemical domains. These refer to the
predominance of early volcanic products, late volcanic products, clayey,
carbonate and mixed sediments. The results obtained are easily inter-
pretable as they respond precisely to the geomorphological, geochem-
ical, and geodynamic processes of the study area. Compositional
indicators represent an easy and intuitive tool for identifying
geochemical domains and assessing their spatial variation and
geochemical baselines. In addition, the maps of individual composi-
tional indicators can help to recognize how the intensity of the identified
phenomena varies across the space and how overlaps occur. Therefore,
by comparing the maps of the compositional indicators with the map of
the geochemical domains, it is possible to obtain even more detailed
information regarding the processes within the individual geochemical
domains.

Although themethod presented was applied to stream sediment data,
its application principles are valid for any environmental media for
which there is a need to define reference values for a specific territory
(even of high complexity) and purpose (e.g., environmental pollution,
mineral exploration or groundwater provenance studies). However,
constructing compositional indices implies that a prior knowledge of the
geological evolution and settings of the study area is available as the
experience of the practitioner is a fundamental ingredient for the success
of the method.
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