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ABSTRACT

Surveillance networks have been established in many countries worldwide to monitor SARS-CoV-2 in sewage and to estimate the communal

prevalence of COVID-19 cases. Despite their popularity, gaining a rapid understanding of how infectious diseases spread across the territory

covered by the network is difficult because of the many factors involved. To improve the detection of warning signals within the territory, we

propose to apply a principal component analysis (PCA) to screen time-series data generated from wastewater treatment plants (WWTPs)

under surveillance. Our analysis allows us to identify single WWTPs deviating from the normal behavior as well as deviations of a cluster

of WWTPs (indicative of an intermunicipal outbreak). Our approach is illustrated through the analysis of the dataset generated by the Catalan

Surveillance Network of SARS-CoV-2 in Sewage (SARSAIGUA). Using 10 principal components, we captured 78.6% of the variance in the orig-

inal dataset of 51 variables (WWTPs). Our analysis identified exceedance of the Q-statistic threshold as evidence of anomalous performance

of a single WWTP, and exceedance of the T2-statistic as a sign of an intermunicipal outbreak. Our approach provides a comprehensive picture

of the spread of the COVID-19 pandemic, enabling decision-makers to make informed decisions to better manage future pandemics.
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HIGHLIGHTS

• PCA is applied to SARS-CoV-2 measurements in sewage from multiple WWTPs.

• Q- and T2-statistics are useful to trigger warnings of COVID-19 outbreaks at city and national levels.

• Warnings across waves are triggered by different subsets of WWTPs.

• The contribution of WWTPs to triggering warnings is independent of their size.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and

redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Wastewater-based epidemiology (WBE) has emerged as a powerful approach for extracting valuable health-related infor-
mation from wastewater, enabling comprehensive surveillance of population health (Singer et al. 2023). While its initial

focus was on tracking poliovirus, WBE techniques have rapidly expanded to encompass a broad spectrum of chemical
and biological targets. These include monitoring illicit drug use (González-Mariño et al. 2020), assessing pharmaceutical con-
sumption patterns (Escolà Casas et al. 2021), and analyzing various health and lifestyle biomarkers (Daughton 2018; Shao

et al. 2023). Moreover, the global outbreak of SARS-CoV-2 has significantly heightened the importance of wastewater as a
valuable source of information (Bivins et al. 2020). This has led to the establishment of surveillance networks at regional
and country scales, with over 4,107 monitoring sites across 72 countries worldwide dedicated to monitor SARS-CoV-2 in
sewage (Naughton et al. 2023). These networks play a crucial role in enhancing our understanding of chemical and biological

target dynamics and facilitating targeted interventions. These networks usually involve monitoring multiple wastewater treat-
ment plants (WWTPs), ranging from 8 (e.g., in Slovenia) to 352 (i.e., in The Netherlands) (Table 1). Once established, the data
generated are analyzed and transformed into useful information to support decision-making of health authorities. Results are

commonly presented by plotting normalized loads of the targeted SARS-CoV-2 genetic marker over time per WWTP. Also,
such plots usually include a smoothing operation (e.g., median over 7 days or the moving average of 7 days). In some cases,
loads are summed up to have a general overview of the network at the country level (Guerrero-Latorre et al. 2022). Trends in
SARS-CoV-2 loads are then estimated by applying the percent change recommended by the CDC, which entails utilizing the
regression slope of at least the three most recent measurements and categorizing it based on the statistical significance of the
slope (https://www.cdc.gov/nwss/reporting.html). Alternatively, other trend estimates, such as the relative strength index

and the Mann-Kendall trend test, are also considered (Chan et al. 2023). Some surveillance networks transform the results
into qualitative indicators (of concentrations or loads and/or of trends) shown on a map (e.g., the French network). In
some cases, such as the Swiss and Austrian surveillance networks, the effective reproductive number of SARS-CoV-2, the
time-varying analog of the basic reproductive number along one or several waves of the disease, is estimated from wastewater

data at each monitored WWTP (Huisman et al. 2022).
Beyond the implementations at the national level, several studies have proposed mathematical methods: (i) to convert raw

wastewater data to prevalence estimates (Ahmed et al. 2020; Morvan et al. 2022), (ii) to smooth the time-series data based on

an autoregressive model (Courbariaux et al. 2022), (iii) to reduce and correct the noise associated with the quantification of
SARS-CoV-2 gene targets (Cluzel et al. 2022), (iv) to model single outbreaks for short-term forecasting (Joseph-Duran et al.

Journal of Water and Health Vol 00 No 0, 2

Uncorrected Proof

Downloaded from http://iwaponline.com/jwh/article-pdf/doi/10.2166/wh.2024.043/1434961/jwh2024043.pdf
by guest
on 20 June 2024

https://www.cdc.gov/nwss/reporting.html


2022), and (v) to model the transmission of SARS-CoV-2 (SEIR model) in combination with the fate of SARS-CoV-2 in sewage
after fecal shedding (Nourbakhsh et al. 2022; Mattei et al. 2023) conferring long-term forecasting prediction capabilities and a

way to simulate non-pharmaceutical interventions. Yet, all these approaches are applied to data obtained from a single
WWTP. When it comes to aggregating information from multiple WWTPs within the network, it becomes more complex
to gain a rapid understanding of how the pandemic is evolving across the entire territory covered by the network. As

such, there is a need for reliable and scalable mathematical methods that can provide a more comprehensive picture of
the pandemic’s spread at the national level. Two surveillance networks employ mathematical methods to integrate data
from multiple WWTPs. The WastewaterSCAN network (wastewaterscan.org) represents the 5-sample trimmed average of

SARS-CoV-2 concentrations normalized by the concentration of the Pepper Mild Mottle Virus, used as an indicator of
human fecal shedding. Aggregated trend lines present population-weighted averages across groups of sites. National levels,
depicted in charts, offer a relative interpretation of current wastewater levels over the last 365 days. These levels are categor-
ized into bottom, middle, and upper thirds, based on a retrospective analysis of data from the past 365 days across all sites.

The US Biobot (https://biobot.io) approach includes weekly averaging within reporting counties, weighted by population,
using a 3-sample rolling average for greater emphasis on recent measurements. This data is subsequently averaged at both
the national and regional levels.

In this work, we applied a statistical process control technique to analyze the time-series data generated from multiple
WWTPs at once. The usefulness of the approach is illustrated by the application to the data obtained from the Catalan Sur-
veillance Network of SARS-CoV-2 in Sewage (Corominas et al. 2021; Guerrero-Latorre et al. 2022) (SARSAIGUA). Our

Table 1 | Data analysis made publicly available by health authorities of a selection of national wastewater surveillance networks
for SARS-CoV-2

Name
#
WWTPs

Cov.
(%) SF Data analysis

Austria 48 58 2 Figures: Gene copies/inhab./day per site; Sum of loads of all WWTPs; Effective
reproductive number per WWTP

Belgium 43 45 2 Figures: Gene copies/day and per 100,000 inhab. (rolling average); Increasing trend
indicators

Canada 38 NA 3 Figures: 7-day rolling average of gene copies/day for each site. Trend expressed as:
Statistically significant increase or decrease, possible increase, no change

Catalonia 56 80 1* Figures: 7-day rolling average of gene copies/day for each site and aggregated at the
national level. Trend expressed as: Increasing, stable, decreasing

Finland 16 49 1* Figures: Gene copies/1,000 inhab./day; the trend and its uncertainty are estimated
using a statistical model

France 200 33 NA Maps: qualitative assessment, trend over last 30 days, trend over last 7 days

Germany 135 NA NA Figures: Gene copies/L per site and aggregated; Maps and Heatmaps of trends

Hungary 21 NA 1 Maps: Concentrations and trend (qualitative, 4 categories)

Ireland 68 80 1 Figures: Qualitative (Positive, positive DNQ, weak positive, negative)

Luxembourg 13 NA 1 Figures: Gene copies/day/100,000 equivalent inhab.

Netherlands 352 98 2–3 Figures and Map: average number of gene copies per 100,000 inhab. per municipality

Slovenia 8 25 1 Figures: N2 gene copies/PMMoV; estimated cases from wastewater after linear
regression

Sweden 13 25 1 Figures: Gene copies/PMMOV

Switzerland 14 27 3–6 Figures: Gene copies/100,000 inhab./day; Effective reproductive number per WWTP

England 270 60 3 National and regional means of gene copies/L

US (wastewaterSCAN) 200 60 2–3 Figures and maps: Gene copies/PMMoV per site, and national levels categorized into
bottom, middle, and upper thirds

US (Biobot) 700þ 30 1 Figures: Nationwide, region, county, expressed as gene copies per mL; case estimates
from effective concentrations

Cov., population coverage (in %); SF, sampling frequency (# per week); NA, not available.

* A subset of WWTPs is sampled at less frequency than once per week.
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analysis is based on principal component analysis (PCA), which allows us to feed the gene target loads into an algorithm that

can identify deviations in single WWTP from normal behavior (a COVID-19 early warning at a city scale) as well as generic
deviations from normal behavior for a cluster of WWTPs (occurrence of an outbreak at the national level).

2. METHODS

2.1. The Catalan Surveillance Network of SARS-CoV-2

Catalonia is a region with more than 7.7 million inhabitants in north-eastern Spain. The Catalan Water Agency (ACA) and the

Public Health Agency of Catalonia (ASPCAT) promoted and funded the deployment of SARSAIGUA (Guerrero-Latorre et al.
2022). This network started in July 2020 monitoring 56 WWTPs evenly distributed across Catalonia and serving 80% of the
total population. The sample collection and analysis started on the 6th of July 2020, approximately 4 months after the detec-

tion of the first clinical COVID-19 case in Catalonia (25 February 2020). Out of the 532 WWTPs in Catalonia, 56 were
included in the surveillance network; these 56 represent a high population coverage (80%) and are evenly distributed
across the territory (at least 1 WWTP per county). The sampling frequency was set to one sample per week in 36 of the

selected 56 WWTPs and fortnightly for the remaining 18, thus resulting in the collection and analysis of 45 samples per
week. Notably, some WWTPs are only surveyed during the summer season to better monitor municipalities receiving high
tourism (e.g., Castell-Platja d’Aro, Vilaseca-Salou). Refrigerated flow-based composite samples are collected for most
WWTPs at the entrance. Details on the WWTPs and the sampling can be found in Supplementary Table S1. The 45

weekly samples are distributed to the three reference laboratories with wide expertise in molecular diagnosis and environ-
mental virology. Each laboratory receives 15 samples per week that are analyzed for SARS-CoV-2 genome abundance
using optimized protocols. Quantification of SARS-CoV-2 genomes is accomplished using RT-qPCR targeting a common gen-

etic marker (N1) and two complementary targets, N2 and IP4 (CDC 2020; Pasteur 2020). Manual data quality control on the
results generated from the laboratories is executed once a week. This manual quality control involves evaluating: (i) RT-qPCR
standard curve parameters; (ii) recovery values from process control; and (iii) correlation between RT-qPCR target genes.

Whenever large deviations from previous accumulated data in parameters like recovery percentage of a process control
are identified, the laboratories are requested to repeat the sample.

2.1.1. WWTP data

Data used for this study is obtained from an API-created ad-hoc (https://apicovid.icradev.cat/n1). When accessed, this API
reads the SQL database where the results of the SARS-CoV-2 gene targets are uploaded weekly by the laboratories respon-

sible for the quantification, and outputs the data retrieved in CSV format. The data includes information about the
concentration of N1 gene copies at each WWTP and influent flows (in m3/day). For the analysis, we only included data cor-
responding to the 51 WWTPs sampled weekly and biweekly, while those WWTPs that were sampled on a seasonal basis (5)

were excluded from the analysis. The data used as input for the statistical method applied in this study was the normalized N1
gene load for each WWTP, that is the concentration of N1 (in gene copies (GC)/L) multiplied by the daily flow of the WWTP
(L/day) and divided by the number of inhabitants assisted by the corresponding WWTP. Data interpolation was applied to the
biweekly sampled WWTPs (N1 concentration and flows) to obtain a weekly value, and missing values (due to sampling or

analytical issues) on the entire dataset were interpolated as well. We are aware that this interpolation is not feasible in a
real-world surveillance network where only weekly WWTPs can be used. However, we decided to interpolate fortnightly
sampled WWTP to increase the size of dataset and provide more robust evidence of our method. In total, 138 observations

collected from the 51 WWTPs were used for the period between July 2020 and August 2023.

2.1.2. Reported clinical cases

Daily reported clinical cases were aggregated for municipalities in the catchment of each WWTP using the official API from
the Information Systems of the Department of Health and the Catalan Health Service (Departament de Salut n.d.) (https://

analisi.transparenciacatalunya.cat/resource/jj6z-iyrp.json).

2.1.3. Simulated COVID-19 active cases using a compartmental epidemic model

The outcomes from the SCVEIR ID RHUD model described in Fonseca Casas et al. (2023) and continuously updated and
calibrated in the SDL-PAND dashboard (http://pand.sdlps.com) were used in our work to cover the gap of reported clinical
cases after April 2022. The model is a cellular automation (CA) model, hence the ‘CA’ in the name of the model, CA-SCVEIR
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ID RHUD, where each one of the different cells of the automata implements a complete SCVEIR ID RHUD model. The

different levels of the compartmental model are: (i) S: susceptible, (ii) C: confined, (iii) V: vaccinated, (iv) E: exposed, (v)
I: infective, with IR: infective real (real cases) and ID: infective detected, where the evolution is based on the IR and ID
are only for validation purposes, (vi) R: recovered, (vii) H: hospitalized, (viii) U: critical hospitalized, and (ix) D: Dead.

The presented data encompasses all simulated active cases throughout Catalonia, extending beyond the confines of the 51
WWTPs specifically included in the PCA. Nevertheless, utilizing this broader dataset for comparative analysis remains valu-
able, given that these 51 WWTPs represent 80% of the Catalan population.

2.2. PCA and statistical process control

PCA is a multivariate statistical method for exploratory data analysis. It can be used to reduce the number of variables in a
dataset while retaining as much information as possible (Jolliffe 2002). PCA can be used for a variety of applications, such as

identifying patterns in data, reducing the dimensionality of data for visualization, and making predictions using machine
learning algorithms. Here, we propose to use PCA as a basis for an automated warning system procedure using the Q-statistic
(a.k.a. squared prediction error) (Jackson & Mudholkar 1979) and the Hotelling’s T2 (Johnson & Wichern 2002).

The application of PCA followed comprehensive manual data quality control procedures for both flow and N1 measure-
ments. Thus, the primary objective of the PCA analysis was not to identify issues arising from measurement errors, but
rather to elucidate the correlations among N1 loads across WWTPs. For the PCA, each of the 51 WWTPs was treated as

a variable (matrix column) and an observation (matrix row) is a week in time between July 2020 and August 2022. An
input matrix without gaps is required when running PCA; hence, linear interpolation was applied to the biweekly sampled
WWTPs (N1 concentration and flows) and to the missing values due to incidences in sampling (e.g., missing flow data). Scal-
ing was applied to each column, to ensure each WWTP is given equal weight in the monitoring process. This involves

subtracting each variable by its sample mean (to capture the variation from this mean) and then, divide by its standard devi-
ation. This gives equal importance to all columns and removes variabilities caused by different sampling and analytical
methods (e.g., analytical differences between laboratories). After performing PCA, the Q-statistic was calculated to identify

structural changes in the process. An increase in Q suggests that the correlation structure captured by the PCA model is
not maintained for that observation (1 observation is the set of N1 loads from the 51 WWTPs). In our context, this indicates
that one or more WWTPs deviate from the average behavior. Additionally, T2 was computed to measure the distance of each

observation from the center of the PCA model, represented by the mean. An increase in T2 signifies that the observation main-
tains the model structure but with values that are further from the mean, indicating a general deviation of N1 loads from
‘normal’ values and signaling an outbreak scenario. We set up the threshold values for Q and T2 using the first set of obser-
vations (n¼ 51) (training dataset) and using an arbitrary level of significance (α) of 0.05 which gave us acceptable results to

illustrate the potential of the PCA. We did not follow a rigorous approach for setting up the thresholds which would require
data labeling, training, and validation. Finally, a contribution analysis is performed to determine which variable (WWTP) or
variables in the original dataset space are responsible for the detected warning, specifically identifying instances where

thresholds are exceeded. We implemented adaptive PCA, which is an extension of traditional PCA that allows for the con-
tinuous updating of the principal components as new data becomes available. We used an incremental window to update the
PCA, that is, on day i, we used the observations from 1 to i. To improve the stability of the method, in each new PCA, we

rejected all observations where Q or T2 values were higher than the respective thresholds of 0.05.

2.3. PCA and thresholds implementation

The PCA, the calculations of Q and T2 and the thresholds (see detailed equations in the Supplementary Material) were
implemented in JavaScript programming language, which is native to the most-used web browsers at the time of writing
(e.g., Google Chrome, Mozilla Firefox, Microsoft Edge, etc.) and it is independent of the operating system and device type.
We chose JavaScript rather than other languages keener to statistical methods (such as R or Python) to facilitate the inte-

gration of the warning system in the SARSAIGUA platform (https://sarsaigua.icra.cat), already developed using
JavaScript. However, the proposed warning system method has only been applied retrospectively for the purpose of this
research but not into the SARSAIGUA programme since it was discontinued in December 2023. A matrix library was created

to compute basic matrix operations (e.g., sum, multiplication, transposition, determinant, inverse, etc.). Then, the SVD algor-
ithm and PCA procedures, along with the computation of the Hotelling’s T2 and Q statistics and contribution analysis were
implemented on top of this first layer. This matrix library is freely available at https://github.com/icra/matrix-library-js. To
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validate the JavaScript implementation, numeric tests were conducted using R language (https://www.r-project.org/) since it

is a well-known and established numeric platform with PCA functions built in. A visual web interface was built on top of the
matrix library, coded in HTML and CSS, and using VueJS (https://vuejs.org/) as the front-end JavaScript framework.

3. RESULTS

3.1. Raw time series

The dynamics of the COVID-19 pandemic in Catalonia is displayed in Figure 1, covering six waves between July 2020 and

August 2022. The first wave started in March 2020 and occurred before the implementation of the SARSAIGUA programme.
The progression of pandemic waves was explained both by reported cases and N1 loads measured from wastewater; and
showed a Spearman correlation coefficient of 0.69 between both variables using data from July 2020 to March 2023 (6th

wave). In the 7th wave (April 2022), the Catalan Health authorities discontinued the reporting of COVID-19 cases and
launched the sentinel system SIVIC (https://sivic.salut.gencat.cat) based on the screening of 10 symptomatic patients per
week in 33 carefully selected primary care health centers. The red line in Figure 1 shows the N1 loads from all 51
WWTPs included in this study; clinical reported COVID-19 cases correspond to the cases detected and reported in the catch-

ment communities serving these 51 WWTPs. Data have been standardized in order to assign equal importance to all WWTPs
no matter their size. Otherwise, WWTPs serving large populations (i.e., El Prat de Llobregat with 1M inhabitants or Besòs
1.4M inhabitants) would bias the entire analysis.

3.2. PCA results (scores and loadings)

The PCAwas conducted on a dataset comprising 51 WWTPs and 138 observations, resulting in a matrix of dimensions 138�
51. Employing 10 PCs enabled us to capture 78.6% of the total variance within the original dataset, while the first two com-
ponents retained 49.3% of the variance. Specifically, PC1 accounted for 30.9% of the variance, and PC2 explained 18.4%. The
analysis revealed distinct patterns, as certain WWTPs tended to cluster together, indicating strong correlations among them.

For instance, during the 6th wave (January 2022), WWTPs such as DMAT, DIGU, and DGVC displayed significant corre-
lations. Similarly, during the 2nd wave (November 2020) and the 8th wave (November 2022), a cluster of WWTPs,

Figure 1 | Comparison of reported COVID-19 cases (blue) and N1 gene loads (red) in wastewater collected across the Catalan territory since
the deployment of the SARSAIGUA program in July 2020. Values were standardized to allow comparison among WWTP and smoothed using a
moving average of size 3. The line represents the average value while the shade areas comprise the values within 1 standard deviation.
Dashed lines distinguish the different pandemic waves as indicated. 1st to 4th waves were caused by the Alpha variant, the 5th wave was
caused by the Delta variant, and the Omicron variant was responsible for the 6th and upcoming waves. Vaccination started during the 3rd
wave (27 December 2020).
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including DLLL, DBER, DFIG, and DABR, exhibited notable correlations. It is worth noting that Figure 2 is a simplification

of the PCA outcome (we captured 10 PCs and hence the PCA model works in a 10-dimensional space) comprising only the
two first components.

3.3. Triggering warnings for outbreaks

3.3.1. Threshold exceedances

Figure 3 (left) illustrates a warning generated by the exceedance of the Q-statistic. It depicts the abrupt increase in the N1 load
at WWTP DSRS on the 16th of May 2022 as compared with the other WWTPs. Figure 3 (right) provides an example of the
exceedance of the T2-statistic on the 28th of June 2021. It is evident that there is a general increase in N1 loads across the

WWTPs analyzed. WWTPs highlighted in color contribute the most to the warning. In terms of PCA interpretation, all
WWTPs show deviations from the center of the 11-dimensional space but exhibit strong correlations with each other.

Figure 4 illustrates that exceedances of Q- and T2-statistics were observed in all COVID-19 waves examined in our study,

except for the 4th wave, which experienced a minor surge in infections. No threshold exceedances during interwave periods
indicate the absence of false alarms. During the 2nd, 3rd, 5th, and 6th outbreaks, the T2-statistic increases alongside diag-
nosed cases, with the threshold being exceeded early in the outbreak stages. Subsequently, the T2-statistic declines as the
outbreaks reach their peaks (at the peak or 1 week later). However, during the 7th and 8th outbreaks, the T2-statistic sur-

passes the threshold less frequently. Instead, the Q-statistic triggers more warnings, indicating a divergence in the behavior
of these outbreaks compared with previous ones. This shift between the 6th and the 7th outbreaks coincides with changes
in government policy regarding non-pharmacological interventions. Specifically, the government repealed mandates for

mask-wearing in public health spaces (effective April 2022), discontinued mandatory case reporting, and relaxed confinement
measures, including the cessation of contact tracing and quarantine obligations. Notably, during this period, outbreaks
occurred asynchronously both temporally and spatially.

Figure 2 | Biplot of first two dimensions of the PCA. The labels are shown for distinguished observations.

Journal of Water and Health Vol 00 No 0, 7

Uncorrected Proof

Downloaded from http://iwaponline.com/jwh/article-pdf/doi/10.2166/wh.2024.043/1434961/jwh2024043.pdf
by guest
on 20 June 2024



Figure 3 | Illustration of standardized N1 loads in all WWTP for different warnings on Q and T2 and the respective PCA scores for those
events. The highlighted WWTPs are the ones with the highest contribution in Q-statistic or T2 values, respectively.

Figure 4 | Control chart based on Q- and T2-statistics applied to WWTP data. Dark gray areas represent the clinical cases, and the light gray
areas represent the simulated active cases obtained from the epidemiological model. The outcomes of the epidemiological model contribute
to interpreting warnings during the period of underreporting cases (post-April 2022).
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3.3.2. Contributions of the different WWTPs to the Q and T2 warnings

Figure 5 illustrates the average ranking score of eachWWTP concerning Q and T2 warnings. The contribution of eachWWTP
in the warning generation can be obtained whenever a warning is triggered (see Materials and Methods). For each warning,

the WWTPs are sorted in descending order of contribution. Subsequently, we calculated the average of these orders across all
warnings. A lower score indicates that, on average, a specific WWTP contributes more to triggering Q (or T2) warnings. Con-
cerning T2, the fact that some WWTPs contribute minimally to warning generation implies a high correlation with principal
components, aligning with the general pattern of N1 concentrations (WWTPs converging toward the center of the 11-dimen-

sional space). For the Q-statistic, WWTPs with low-ranking scores are more likely to detect early a rise in cases at the city
level, exhibiting higher sensitivity in detecting changes in N1 loads or having experienced a surge in cases earlier than
other communities (i.e., cities). The rankings for all WWTPs fall within a narrow range of 19–32. It is important to highlight

that the rankings for Q- and T2-statistics differ, indicating that no specific subset of WWTPs consistently contributes signifi-
cantly more than others to the warnings, and this contribution is independent of WWTP size. This suggests that different
subsets of WWTPs are involved in triggering warnings, rendering all WWTPs equally informative.

4. DISCUSSION

The method proposed in this work allows triggering warnings for COVID-19 outbreaks using data of SARS-CoV-2 N1 gene
loads measured in influent wastewater of several WWTPs monitored weekly by SARSAIGUA surveillance network. Despite

SARSAIGUA prioritized maximizing spatial coverage over relying on high-frequency measurements, our method allows the
effective triggering of outbreak alerts using 1 measurement per week at high spatial resolution. In this regard, it is worth men-
tioning that the distance from any place to the nearest WWTP included in the network is less than 13 km (SD: 6.6, max: 38)

representing 141k inhabitants/WWTP and 569 km2/WWTP. By prioritizing the spatial coverage over the high-frequency data

Figure 5 | Average ranking score of the Q and T2 warnings obtained for each WWTP sorted by assisted inhabitants in descending order. The
overlap in Q and T2 for most WWTPs shows that there is not a subgroup of WWTPs consistently responsible for alarm triggering.
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acquisition, it is thus possible to enhance the robustness of the warning system. In practice, the national wastewater surveil-

lance networks have adopted different strategies for data collection. Most networks typically collect between 3 and 7 samples
per week (see Table 1) to identify trends in SARS-CoV-2 concentration in wastewater and estimate the communal prevalence
of COVID-19 in the surveilled territory. Such high frequencies are required for properly estimating trends (Chan et al. 2023)
and for the estimation of the effective reproductive number of the virus (Re) (Huisman et al. 2022). Conversely, networks such
as SARSAIGUA (Guerrero-Latorre et al. 2022) opted for a broader coverage by monitoring a larger number of WWTPs at a
lower sampling frequency. With such low temporal resolution, it is not possible to get a reliable trend analysis per each
WWTP, but as shown here it is possible to trigger warnings at a national scale. Discerning which of these approaches is

better requires future investigations conducted on a comprehensive dataset encompassing a large number of WWTPs sampled
at high frequency, enabling the downscaling of the temporal and the spatial resolutions. This debate has gained prominence,
especially in the current scenario, where budget constraints for wastewater surveillance networks prompt considerations

about optimizing either the sampling locations or the sampling frequency. To make informed decisions under these budgetary
limitations, it is imperative to determine the most effective approach for ensuring timely warnings and accurate detection of
anomalies within the wastewater treatment infrastructure.

The activation of warnings across the progressive pandemic waves does not consistently involve the same set of WWTPs.
Interestingly, the larger WWTPs assisting populations exceeding 1 million inhabitants did not significantly contribute to the
triggering of warnings but largely dictate the overall (or ‘average’) behavior. In contrast, WWTPs serving populations smaller

than 1 million bore the responsibility for initiating warnings. In our analytical framework, all WWTPs hold equal weight due
to the statistical standardization of N1 loads of each WWTP. Consequently, an outbreak involving only a few individuals in a
small population (i.e., small WWTP) may exert a substantial influence on the outcome of warning initiation. This underscores
the heightened impact of even minor outbreaks within these smaller WWTPs on the warning-triggering results. Our investi-

gations in Catalonia provide substantial support for the notion that the propagation of COVID-19 across waves originates
differentially at a spatial scale. Assuming rigorous sampling protocols were consistently implemented in all WWTPs across
the territory, particularly employing flow-based composite sampling, we propose that our approach effectively identifies

the originating sources of each outbreak using wastewater data.
Our approach has several limitations. While data-driven methodologies like PCA offer operational simplicity by requiring

few parameters, their effectiveness hinges on the careful selection of these parameters. In our PCA method, two parameters –

the number of principal components retained in the model and the level of statistical significance (α) – need to be determined.
The selection of the latter entails data labeling, dataset separation into training and validation sets, and refinement of the Q
and T2 thresholds. Although in our application, these thresholds were kept fixed after training, monitoring non-stationary pro-
cesses may necessitate adjusting the parameters to maintain the desired false detection rate (Schmitt et al. 2016). Moreover, as

the behavior of the virus may evolve with the emergence of new variants, there is a need to readjust the thresholds after each
outbreak. Secondly, the first PCA can only be applied when the number of observations (elapsed weeks) matches the number
of WWTPs. Consequently, if wastewater monitoring begins after the outbreak onset, there will be a delay before the method

becomes useful as an ‘early warning system’. This issue becomes more pronounced for larger networks. For example, a net-
work of 100 WWTPs, collecting and analyzing 1 sample per week, would require approximately 2 years of training data. In
such cases, either the number of WWTPs included in the PCA model should be reduced or the sampling frequency should be

increased. The lead time of warnings generated by our method relative to other approaches warrants further investigation.
Another limitation is the utilization of interpolation, particularly in the test dataset. While linear interpolation is acceptable
for training datasets, its application in the test dataset can lead to data leakage and overly optimistic performance estimates.

Another option to address data gaps is to use the last available value and maintain it until a new value is received. However,
this strategy may lead to false alarms. For example, when an outbreak has reached the peak and starts descending, the
majority of WWTPs may experience a decrease in values, while those interpolated with the last available value remain
unchanged. Consequently, this discrepancy may trigger a Q alarm, erroneously signaling an anomaly in the data. Addressing

this interpolation issue and refining the adaptation of Q and T2 thresholds would require further research.
The wastewaterSCAN national surveillance network (USA) facilitates integrated data visualization from multiple WWTPs,

featuring two key aspects. Firstly, it enables the plotting of population-weighted average trend lines for selected site groups,

accessible by choosing predefined groups (e.g., state or county) from the dropdown menu. Secondly, the charts incorporate
national-level indicators, categorizing data into bottom, middle, and upper percentiles based on the past 365 days across all
wastewaterSCAN sites. The 33rd and 66th percentiles delineate these categories, offering a relative context for interpreting
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the last year’s wastewater levels. While effective for contextualizing SARS-CoV-2 RNA trend lines, the approach lacks warn-

ing capabilities. This is where the PCA approach proposed in this paper stands out. Finally, the PCA approach was coded in
JavaScript and is open source so that it can be easily integrated in the existing web dashboards of the different national sur-
veillance networks. The developed system allows detecting such abnormal behavior and tracing back the origin of the

warning to a single WWTP. Notwithstanding this automation, a manual check is recommended for each warning generated
to detect potential errors in the input data that may conduct to false alarms that mislead health authorities. Such a situation
occurred once in our dataset, where an unexpected increase in 4.5 standard deviations was observed. All analytical par-
ameters were within the quality control ranges and the only explanation was the discharge of sewage from cruise ships to

the target WWTP. Yet, the system allowed identifying such anomaly and allowed the quality check of the data corresponding
to that observation.

5. CONCLUSIONS

In this study, we have presented a method for generating network-level warnings in sewage surveillance networks for SARS-

CoV-2. Our approach maximizes the value contributed by each individual WWTP to the whole network, highlighting that ‘the
whole is greater than the sum of its parts’. By utilizing a statistical process control technique, our method can identify devi-
ations from normal behavior at the level of individual WWTPs, providing early warnings for potential epidemic outbreaks

providing that a wastewater monitoring programme for the pathogen is already in place. Furthermore, our analysis shows
that network-level warnings are not generated by a specific set of WWTPs on a recurrent basis, but rather all WWTPs con-
tribute with relevant information at different times, and this contribution is independent of WWTP size. Our method for
generating network-level warnings can provide a comprehensive picture of the spread of a pandemic across a territory,

which can inform decision-making processes and intervention strategies by health authorities. By leveraging the value of indi-
vidual WWTPs in the whole network, our method can maximize the potential for early detection and intervention, ultimately
leading to more effective control of the pandemic. Last but not least, despite being applied for SARS-CoV-2 datasets, our

method can be applied to other biological or chemical targets detected in urban sewage.
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