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An automatic deep reinforcement 
learning bolus calculator 
for automated insulin delivery 
systems
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Josep Vehi 1,3*

In hybrid automatic insulin delivery (HAID) systems, meal disturbance is compensated by feedforward 
control, which requires the announcement of the meal by the patient with type 1 diabetes (DM1) 
to achieve the desired glycemic control performance. The calculation of insulin bolus in the HAID 
system is based on the amount of carbohydrates (CHO) in the meal and patient-specific parameters, 
i.e. carbohydrate-to-insulin ratio (CR) and insulin sensitivity-related correction factor (CF). The 
estimation of CHO in a meal is prone to errors and is burdensome for patients. This study proposes a 
fully automatic insulin delivery (FAID) system that eliminates patient intervention by compensating 
for unannounced meals. This study exploits the deep reinforcement learning (DRL) algorithm to 
calculate insulin bolus for unannounced meals without utilizing the information on CHO content. The 
DRL bolus calculator is integrated with a closed-loop controller and a meal detector (both previously 
developed by our group) to implement the FAID system. An adult cohort of 68 virtual patients based 
on the modified UVa/Padova simulator was used for in-silico trials. The percentage of the overall 
duration spent in the target range of 70–180 mg/dL was 71.2% and 76.2% , < 70 mg/dL was 0.9% and 
0.1% , and > 180 mg/dL was 26.7% and 21.1% , respectively, for the FAID system and HAID system 
utilizing a standard bolus calculator (SBC) including CHO misestimation. The proposed algorithm can 
be exploited to realize FAID systems in the future.

Keywords Automatic insulin delivery, Artificial pancreas, Unannounced meals, Deep reinforcement learning

Type 1 diabetes (DM1) is a metabolic disorder caused by an autoimmune reaction that leads to the destruction 
of insulin-secreting beta cells in the pancreas. It leads to insulin deficiency and elevated levels of blood glucose 
(BG) referred to as hyperglycemia. Long-term complications as a consequence of chronic hyperglycemia may be 
microvascular and macrovascular. Retinopathy, nephropathy, and neuropathy are microvascular complications, 
whereas cardiovascular disease, artery inflammation and injury in the peripheral system, and cerebrovascular 
disease are among the macro-vascular  complications1.

The BG of normal subjects is maintained in a narrow range of 70–180 mg/dL, which is called normoglycemia. 
In people with DM1, normoglycemia is achieved by the lifelong administration of exogenous insulin generally 
under the supervision of  physicians2. Recent technological advancements have had a considerable effect on the 
management of DM1. Automatic insulin delivery (AID), also referred to as artificial pancreas (AP), systems are 
developed for the treatment of DM1 to overcome hypo and hyperglycemia and reduce long-term complications 
associated with DM1. The three core components of an AID system are a continuous glucose monitoring device 
(CGM) that generally provides BG measurements every 5 min, an insulin pump to continuously deliver insulin, 
and an algorithm to calculate the optimal insulin rate to be administered to the subject with  DM13.

Advancements in CGM technology make it possible to analyze glycemic trends, patterns, and key informa-
tion with improved accuracy, increased duration, and mean absolute relative difference (MARD) ≤ 10%. CGM 
systems can be used to calculate insulin dosing  rates4. AID systems have been reported to be a safe and effective 
approach to the treatment of  DM15. However, optimal control of postprandial BG remains a concern for AID 
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systems for various reasons, including significant delays in insulin action as a result of the subcutaneous route, 
slow response of the available insulin analogues, variability in the insulin sensitivity of DM1 subjects, and high 
intrapatient variability. Moreover, accurate modeling of glucose absorption is not possible because of uncertainty 
and intraday and interday variations. To improve glycemic performance, researchers have proposed hybrid 
AID (HAID) systems based on feedforward control schemes, usually proportional to the carbohydrates content 
(CHO) in  meals6.

HAID systems provide automated insulin delivery via closed-loop control algorithms and patient-initiated 
bolus insulin delivery to compensate for announced meals based on various insulin bolus  calculators7. HAID 
systems have shown improved glycemic control performance with a reduction in the risk of hypoglycemia and 
are among the most advanced insulin delivery systems available for DM1  subjects8.

The CHO content in meals is one of the main parameters and nutritional determinants of postprandial BG 
levels in DM1. It is recommended to accurately measure CHO for improved BG control  performance9. How-
ever, the task of CHO counting is burdensome and prone to estimation errors, with average misestimations of 
around 20% in  adults10. The quality of life in people with DM1 is negatively influenced by CHO counting and 
makes them less confident while interacting with peers, especially around food. To maintain the precision of 
the CHO count, standardized foods are more likely to be chosen by people with DM1, which can negatively 
affect their dietary  choices11. Furthermore, the level of literacy required to count CHO can be an obstacle for 
many patients with DM1, leading to the selection of packaged processed foods over whole foods (grains, fruits, 
etc.) due to the relative ease provided by the nutritional information  label12. HAID systems possess the benefit 
of meal announcement but they must be robust to missed meals and other factors discussed above. Therefore, 
a fully closed-loop AID (FAID) system is highly desirable to avoid the need for CHO counting and announcing 
meals in patients with  DM113.

Several algorithms have been proposed to automate the process of detecting meals in patients with DM1. 
A few of the proposals include fuzzy  logic14, various Kalman  filters15,16, model-based detection utilizing an 
autoregressive model and real-time CGM  data17, detection of an increase in the glucose  rate18, and artificial 
intelligence (AI)-based meal  detection19. Attempts have also been made to compensate for unannounced meals. 
The algorithms proposed include the Kalman filter to avoid CHO counting for automatic glucose  regulation20, 
disturbance observer, and feedforward compensation of unannounced  meals21, an automatic bolus priming 
 system22, and a meal absorption model for  AP23.

Reinforcement learning (RL) is a rapidly developing field of AI that has found success in many domains. 
A detailed systematic review reported that advanced RL algorithms can play a vital role in developing AID 
 systems24. Recently, several researchers have proposed insulin bolus calculators that exploit different models of 
the RL  algorithm25–27. The reported methodologies rely on information about the CHO content in meals and 
the meal announcement, resulting in HAID systems.

In comparison, this work aims to develop a FAID system based on a deep reinforcement learning (DRL) 
insulin bolus calculator to compensate for unannounced meals and to eliminate interventions from patients 
with DM1. A closed-loop proportional-derivative (PD) control algorithm is used for the computation of the 
continuous insulin delivery rate. For the detection of meals, unscented Kalman filter (UKF) predictions are 
utilized based on the CGM and insulin data. The FAID system is compared to two versions of the HAID system, 
one utilizing the standard bolus calculator (SBC) for the compensation of meal disturbances along with CHO 
misestimation and the other utilizing the proposed DRL insulin bolus calculator.

Methodology
In this work, a DRL-based insulin bolus calculator is designed and integrated with a closed-loop controller and a 
UKF-based meal detector to compensate for unannounced meals in patients with DM1. The proposed DRL-based 
insulin bolus calculator is an advanced version of an algorithm published by our  group28. The DRL algorithm 
is driven by meal detection and does not require information on the CHO content in meals, thereby fully clos-
ing the AID control loop. Continuous insulin delivery is achieved by a closed-loop PD controller with a safety 
auxiliary feedback element (SAFE) introduced  in29. The detection of meals is based on an in-house algorithm 
utilizing an augmented minimal model and a UKF along with the insulin and CGM  data30. A schematic of the 
overall strategy is given in Fig. 1.

Figure 1.  Block diagram of the proposed FAID system.
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PD Controller
The control strategy involves two loops: an inner loop comprising the insulin feedback system (IFB) that relies on 
the PD algorithm and an outer loop that provides a safety layer to exploit the concept of insulin on board (IOB).

Three insulin components constitute the inner control action: ubl the basal insulin profile of the patient, ubolus 
the insulin bolus, and the PD control action resulting in insulin action given by:

where kp =
60× TDI

τd × 1500
 (U/hr) is the proportional gain, TDI is the total daily insulin, e(t) is the error in glucose 

concentration and τd = 90 (min) is the derivative time constant.
The safety layer is based on sliding mode reference conditioning (SMRC) and comprises three parts: 1) a 

model to estimate IOB; 2) a sliding mode referencing block (SMR); and 3) a 1st-order low-pass filter to smooth 
the reference adaptation. The outer safety layer modifies the reference glucose concentration ( Gref  ) under defined 
conditions to ensure that the IOB is bounded (IOB ∈ [0, IOB] ). Essentially, this is accomplished by a suspension of 
insulin infusion caused by the controller’s reference modification. Gref  is modified to a virtual reference Gvref  in 
case the estimated ( ̂IOB ) approaches dangerously or exceeds the maximum allowed IOB ( IOB ). This phenomenon 
provides robustness against delays in the subcutaneous route.

The insulin absorption  model31 is utilized to account for the estimated IOB and is given below.

where u(t) = upd(t) + ubl + ubolus , c1(t) and c2(t) are two compartments representing the basal and bolus 
IOB conditions and kdia is a time constant that accounts for the duration of insulin action.

The SMR block is based on the concept of invariance  control32 with IOB(t) being the variable to be bounded 
and belonging to the set:

where x(t) is the state of the system and s(t) is the sliding surface, defined as:

The invariance of the region 
∑

 is achieved using the following discontinuous function.

Finally, the smoothness of the reference change is achieved by applying a first-order low-pass filter:

A widely used mechanism of IFB in AP systems is also implemented. The plasma insulin concentration is esti-
mated online; then, insulin control action is inhibited proportionally. This gives rise to a new insulin control 
action given by:

where îp(t) is the estimated value and îpss(t) is the steady-state estimated value of the plasma insulin concentra-
tion. �̂ipss(t) is the deviation of the plasma insulin concentration from the basal infusion. Further details are 
presented  in29.

Meal Detector
The meal detector  algorithm30 takes the rate of insulin infusion and CGM value as inputs and estimates a dis-
turbance term via an extended minimal model utilizing the UKF. The glucose subsystem comprises Bergman 
 equations33 as follows:

where Gpl(t) is the blood plasma glucose concentration, X(t) reflects insulin in the remote compartment, Gbl 
is basal glucose, p1 is the insulin-independent rate of plasma glucose utilisation, D(t) is the disturbance term 
included as an extended model state, and Vg is the volume distribution.

Subcutaneous glucose is represented by a first-order  system34 as given below:

(1)u(t) = kp

[
e(t)+ τd

dG(t)

dt

]
+ ubl(t)+ ubolus

(2)

dc1(t)

dt
= u(t)− kdiac1(t)

dc2(t)

dt
= kdia(c1(t)− c2(t))

ÎOB(t) = c1(t)+ c2(t)

(3)
∑

= {x(t)|s(t) = ÎOB(t)− IOB(t) ≤ 0}

(4)s(t) = ÎOB(t)− IOB(t)+ τ

(
˙̂

IOB(t)− ˙IOB(t)
)

(5)ν(t) =

{
ν+ if s(t) > 0

0 otherwise

(6)
dνf (t)

dt
= −�(νf (t)− ν(t))

(7)uIFB = u(t)− η(̂ip(t)− îpss(t)) = u(t)− η�̂ipss(t)

(8)
dGpl(t)

dt
= −(p1 + X(t))Gpl(t)+ p1Gbl +

D(t)

Vg
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where Gs(t) is the subcutaneous glucose concentration, τ is the time constant of the system, and the static gain is 
represented by g. X(t) reflects insulin in the remote compartment, p2 is the disappearance rate of remote insulin 
and p3 captures insulin sensitivity. The insulin subsystem model is the same as that represented by equation 2, 
and the concentration of plasma  insulin34 is given by:

where Vi is the distribution volume, kf  is the fractional rate of disappearance, and tmax,I is the time to maximum 
absorption of insulin.

After estimation of the model states given by equations 2 and 8 to 11 through UKF, the cross-covariance is 
calculated between the two sequences Gs(k) (from the CGM data) and Ddiff (k) (forward difference of disturbance 
term) over a window of specified length. Gsn and Ddiffn are jointly stationary random processes, and their cross-
covariance sequence is defined as the cross-correlation of mean-removed  sequences35, as given below:

where the mean values of the random processes are represented by µGs and µDdiff
 , E stands for the expectation 

operation, and ∗ represents the complex conjugate.
Meal consumption is assumed if a predefined threshold is exceeded by the cross-covariance between Gs and 

Ddiff  with respect to the last three consecutive samples (15 min). As a safety measure, meals are not detected 
during the night period (23h–6h).

The meal detector can be tuned regarding three settings with respect to the threshold and window size for 
cross-covariance30. The three settings refer to 1) highest sensitivity (high true positives (TP)), 2) trade-off (high 
TP and low false positives (FP)), and 3) lowest FP. In this study, trade-off tuning is used because the highest 
sensitivity is prone to FP and will result in the delivery of insulin bolus at times other than meals, leading to 
extreme hypoglycemia. The third setting was not used because it decreases the TP substantially.

A meal detection flag is triggered if:

where T is the predefined threshold and cGs ,Ddif
(m) represents the raw cross-covariance, as given  in30.

The DRL algorithm
The problem is first formulated as a Markov decision process (MDP) to implement the training of the RL agent. 
An MDP is defined in terms of state space S, action space A, the transition probability P(st+1 | st , at) of the next 
state ( st+1 ) given action ( at ) is taken in the current state ( st ), and an immediate reward rt , mathematically rep-
resented as a tuple M(S, A, P, r). In DRL, the agent is based on a combination of RL and a category of artificial 
neural networks (ANNs), specifically deep neural networks (DNNs), and is termed a deep Q-network (DQN). 
The DQN aims to learn actions that result in the maximum total expected reward. The total expected reward 
can be represented as ER = E[rt + γ rt+1 + γ 2rt+2 + ...] , where γ ∈ [0, 1) is the discount factor defining the 
contribution of future rewards and rt is the immediate reward at time step t.

In DRL, the mapping of states into actions to be taken by the DQN is termed the policy and is represented by 
π : S → A . The quality of the policy is represented by the action-value function Qπ (s, a) . The policy that leads 
to the maximum ER is a unique optimal policy π∗ and results in a unique optimal action-value function Q∗(s, a) . 
In this work, a fully connected DNN is used to learn π∗ to approximate Q∗(s, a, θ) ≈ Q∗(s, a) , where θ refers to 
the parameters of the DNN. The final goal of training the DQN is to learn π∗ , which implies that the agent will 
take the best possible action in a given state. In RL, the optimal action-value function is obtained on the basis of 
the notion of the Bellman  equation36 given below:

The optimal policy is obtained by dynamic programming to iteratively evaluate:

According to Bellman’s identity, Qt converges to Q∗ as t → ∞ , where α ∈ [0, 1) is the learning rate. This approach 
to RL (Q-Learning) requires the states to be discrete and lack generalization. Therefore, in DRL, Q∗(s, a) is 
approximated by a nonlinear function approximator such as DNN. To estimate Q∗(s, a) , the DQN uses fixed 
Q-targets by maintaining the Q(s, a, θ) and the target Q̂(s, a, θ̂ ) , both having the same architecture. The two 

(9)
dGs(t)

dt
= −

1

τ
Gs(t)+

g

τ
Gpl(t)

(10)
dX(t)

dt
= −p2X(t)+ p3I(t)

(11)
dI(t)

dt
= −kf I(t)+

1

Vi
.
S2(t)

tmax,I

(12)�Gs ,D(m) = E{(Gs(n+m)− µGs )(Ddiff (n)− µDdiff
)∗}

(13)Meal =





True if cGs ,Ddiff
(m) ≥ T

and Ddiff (k) > 0,

and Gs(k)− Gs(k − 3) > 0,

False otherwise.

(14)Q∗(s, a) = Est+1
[r + γ max︸︷︷︸

a

Q∗(st+1, a) | s, a]

(15)
Qt+1(s, a) = Qt(st , at)+ α[rt + γ max︸︷︷︸

at+1

Qt(st+1, at+1) | s, a]
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approximators improve the stability of optimization by updating the parameters of Q̂(s, a, θ̂ ) periodically to the 
latest parameters of Q(s, a, θ)37. The parameters are updated every 15 iterations during the training phase in the 
proposed algorithm.

In this work, multi-DQNs are implemented and trained. Typically, there are three meals per day, i.e., break-
fast, lunch, and dinner. The protocol for meals is described later in the scenario subsection under Results. For 
each meal, the action space is divided into 8 subaction spaces based on the 8 ranges defined for the CGM value 
before meal intake. The action space is explained later in Sect. 2.3. Firstly, the DQN agents are personalized for 
each patient. Secondly, a DQN is trained for each subaction space, resulting in the implementation of 8 DQNs 
for each meal and leading to a total of 24 DQNs corresponding to three meals a day.

The motivation behind introducing a multi-DQN strategy is to obtain a personalized DRL agent for each 
subaction space with respect to meals. This approach will limit the learning experience of each DQN to that 
specific subaction space and meal, thereby providing greater chances of better performance. In summary, it is 
the personalization of a DQN based on the meal and the CGM value before meal intake.

A fully connected ANN composed of three hidden layers is considered to represent a DQN for the approxima-
tion of Q∗(s, a, θ) . Each hidden layer is composed of 28 nodes. The whole network consists of 5 layers, including 
the input and output layers. The input layer represents 15 parameters (defining the state), and the output layer 
shows the Q-value of each action taken in that particular state. The Q-value used in RL measures the effective-
ness of the action taken in a certain state. The DQN architecture is presented in Fig. 2.

The main components of the MDP model considered in this study are explained below:

State space
The states are represented as the current state and the next state. DQN takes the action in the current state, which 
is then evaluated in the next state during the training process. In DRL, the states are continuous in nature, and 
discretization of states is not required. The current state is based on the pre-prandial CGM data of 4 hours. The 
parameters considered are the maximum CGM value, minimum CGM value, area under the curve (AUC) of 
the CGM data, and the 12 CGM values (1-hour data) before meal intake, summing to 15 parameters. AUC is 
calculated for the CGM data representing hyper or hypoglycemia only. In the next state, the same parameters 
are calculated based on the 4-hour postprandial CGM data, and the 12 CGM values are considered for the last 
hour of the postprandial window. The states are based on the CGM data, so the ANN can learn hidden patterns 
in the BG profile. The state space can be represented as:

where Gmax is the maximum CGM value, Gmin is the minimum CGM value, tm is the meal detection time, k is 
the sample, Gtm−k is the CGM value at tm − k and AUC  is the area under the curve over 4 hours of CGM data 
corresponding to hyper and hypoglycemia only.

Action space
The action space for a certain meal is classified into 8 subaction spaces (SASs) corresponding to 8 different BG 
ranges. The number of SASs in a previous  study28 was 7, but the number has now been increased to 8 to enhance 
safety based on BG before a meal and to provide greater flexibility to the agent in the choice of insulin bolus. 
According to the CGM value (sample) before meal intake ( GBM ), belonging to one of the 8 defined ranges, the 

(16)S = {Gmax ,Gmin,Gtm−1,Gtm−2,Gtm−3, ...Gtm−k ,AUC}

Figure 2.  Representation of the DRL algorithm based on DQN. The states feed the DQN to approximate the 
optimal policy Q∗(s, a) . A randomly extracted mini-batch of experiences is also utilized by the DQN. The action 
At corresponds to the maximum Q-value, which is the insulin bolus to be delivered to the patient. As a result, a 
transition occurs for the state St+1 , and the memory buffer is updated with the new experience.
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corresponding SAS is selected for action by the DQN agent. The actions considered in this study are discrete and 
are the bolus insulin units to be delivered to the patient, as described  in28. The action space can be represented as:

where A is the action space and Ai | i = 1, 2...8 represents the SASs. Ai = {a1, a2...aj} , where a1...aj are the bolus 
insulin units calculated based on the total daily insulin requirement of the patient and the value of GBM . In this 
study, j = 15, i.e., an agent can choose among 15 actions from a chosen SAS. The selection of SAS for a single 
iteration is demonstrated in Fig. 3.

The insulin bolus selected as an action is further adjusted according to the bolus insulin on board (BOB) 
to ensure safety and avoid extreme hypoglycemic events. The adjustment can be represented as a piece-wise 
function:

where uad is the adjusted insulin bolus to be delivered, aj is the action chosen by the agent, B̂OB is the estimated 
BOB and kBOB is a hyperparameter that is tuned separately for all SASs and three meals. A two-compartment 
model is used to estimate  BOB38.

Reward function
An immediate reward is assigned to the actions of the DQN based on the next state. If the postprandial BG is 
in the normal range (70-180 mg/dL), a high reward is given to the DQN. If the action taken by the DQN results 
in hyper or hypoglycemia, the agent is penalized. The numerical values assigned to the immediate rewards are 
illustrated in Fig. 4 and can be expressed as a piece-wise defined function:

where Gmaxp and Gminp represent the maximum and minimum glucose values in the postprandial period, respec-
tively. In the case of the simultaneous occurrence of Gmaxp and Gminp , the value associated with Gminp is consid-
ered. The reward function is designed to reward the DQN agent for optimal performance, i.e., maintaining post-
prandial glucose in the normal range. The reward values are considered positive for mild hyperglycemia to avoid 
hypoglycemic episodes. There exists a trade-off between avoiding hyper and hypoglycemia, as no information 

(17)A =





A1 GBM ≥ 200

A2 180 ≤ GBM < 200

A3 160 ≤ GBM < 180

A4 140 ≤ GBM < 160

A5 120 ≤ GBM < 140

A6 100 ≤ GBM < 120

A7 80 ≤ GBM < 100

A8 GBM < 80

(18)uad =





aj − B̂OB/kBOB aj > B̂OB/kBOB & GBM ≥ 180

decrease aj by 5% aj < B̂OB/kBOB & 140 ≤ GBM < 180

decrease aj by 10% aj < B̂OB/kBOB & 120 ≤ GBM < 140

decrease aj by 20% aj < B̂OB/kBOB & 80 ≤ GBM < 120

aj otherwise

(19)rt =





50 70 ≤ Gmaxp < 180

20 180 ≤ Gmaxp < 200

10 200 ≤ Gmaxp < 230

−5 230 ≤ Gmaxp < 250

−15 250 ≤ Gmaxp < 300

−20 Gmaxp ≥ 300

−30 65 ≤ Gminp < 70

−40 60 ≤ Gminp < 65

−50 55 ≤ Gminp < 60

−60 50 ≤ Gminp < 55

−70 45 ≤ Gminp < 50

−80 Gminp < 45

Figure 3.  Demonstration of the selection of a subaction space based on the CGM value before a meal.
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on the meal content is available. On the other hand, the occurrence of hypoglycemia is penalized proportionally 
to the intensity of the event to avoid severe postprandial hypoglycemia.

Implementation
The concept of experience replay is typically used in DRL for stability and convergence of the  DNN37. This con-
cept is also implemented in the proposed methodology. Memory is defined for each DQN. The memory buffer 
(MB) consists of the past experiences of the agent and can be represented as:

where n is the size of the MB and ξ is a single iteration experience given by:

To generate the memory, a simulation is performed for 1500 days, where the actions are taken randomly and 
the experiences are stored in the MB. The size of the MB varies for each DQN and depends on the number of 
occurrences of a specific Ai during the whole simulation. The MB is generated for each virtual patient.

A cohort of 68 virtual patients previously developed by our group is considered in this  study39. A protocol of 
three meals (breakfast at 08:00 of 30-50g, lunch at 14:00 of 50–70g, and dinner at 20:00 of 60–80g) was considered 
during the training session. The CHO content in meals was chosen randomly from the amounts indicated. All 
the meals were unannounced, and the agent only took action whenever it received a positive indicator from the 
meal-detector. The sources of intrapatient variability included sinusoidal variations in insulin pharmacodynamics 
and insulin sensitivity (circadian variability) and randomness in the rate of absorption of  meals40. An epsilon 
greedy policy is used to choose the action, and an immediate reward is assigned to the DQN agent according to 
the reward function presented in equation 19. In a single iteration, the corresponding MB is updated with the 
new experience, and the weights of the DQN are updated based on past experiences from MB. The loss function 
used to optimize the DQN’s weights is based on the Bellman equation and is given for a kth iteration as follows:

During learning, the Q-learning updates are applied to the mini-batches (st , at , rt , st+1) ∼ U(MB) extracted 
randomly from MB through uniform distribution, where γ is the discount factor, Q̂(st+1, at+1; θ̂k) is the target 
DQN in iteration k, whose weights θ̂k are updated periodically with the DQN Q(s, a; θk) weights. The DRL train-
ing algorithm implemented in this study to calculate the insulin bolus is presented in Algorithm 1. The training 
is performed for each patient resulting in individually trained DQN agents.

(20)MB = {ξ1, ξ2, ξ3, ...., ξn}

(21)ξ = {st , at , rt , st+1}

(22)Lk(θk) = E(st ,at ,rt ,st+1) ∼ U(MB)





rt + γ max����

at+1

�
Q̂(st+1, at+1; θ̂k)− Q(s, a; θk)

�



2



Figure 4.  Reward function for the proposed DRL algorithm. The green region represents the immediate reward 
when Gpp is in a healthy range, yellow for hyperglycemia and red for hypoglycemia.
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1: Generate the replay MB to capacity n
2: Initialize the action-value function Q(s, a; θ) with weights θ from a uniform

random distribution with bounds [0, 1]
3: Initialize the target action-value function Q̂(s, a; θ̂) with weights θ̂ = θ
4: Observe the current state st
5: while iterations < 1500 do
6: if meal detection flag is triggered then
7: Choose the SAS Ai based on the value of GBM

8: Explore with probability ε ; a random action aj
9: Exploit with probability 1-ε; a = max︸︷︷︸

aj

Q(s, aj ; θ)

10: Apply the BIOB adjustment according to equation 18 and take action
11: Observe the next state and assign the immediate reward
12: Modify the MB with a new experience {sk, ak, rk, s(k+1)}
13: Sample a random mini-batch of N experiences from MB
14: Set (double DQN algorithm) Amax ← argmax︸︷︷︸

ak+1

Q(sk+1, ak+1; θ)

yk ← rk + γQ̂(sk+1, Amax; θ̂)
15: Perform a gradient descent step on (yk −Q(sk, ak; θ))2 with respect to

weights θ
16: if iterations count == 15 then
17: Set Q̂(s, a; θ̂) = Q(s, a; θ)
18: Reset iteration counter
19: end if
20: else[no action]
21: end if
22: end while
23: Obtain the set of trained DQNs

Algorithm 1.  Training of Deep Reinforcement Algorithm for Insulin Bolus Calculation for the FAID

Results
In-silico scenario and benchmark
The virtual cohort  from39 was used for the final testing simulations. However, the training of the DQN was not 
successful for one of the virtual patients. Therefore, in the subsequent analysis that patient has been removed. 
The simulation time for in-silico trials is 14 days. The meals delivered include breakfast at 07:00, lunch at 13:00, a 
snack at 17:00, and dinner at 20:00, composed of a CHO content selected randomly from 30–50g, 50–70g, 30–50, 
and 60–80g, respectively. During the simulations, the meal time is varied ±30 min around the time mentioned 
above. Variability is also incorporated, including randomness in the rate of absorption for meals, random CHO 
content in meals, and circadian variability in insulin sensitivity, to emulate real-life  conditions40.

Three insulin delivery systems are compared in this study, and they all utilize a PD closed-loop controller for 
continuous insulin delivery. First, the HAID system is implemented utilizing SBC for the insulin bolus calcula-
tion, and the CHO misestimation error is included to be more realistic. This baseline system is represented as 
HAID SBC MCHO. The CHO misestimation error is incorporated as a Gaussian distribution according to the 
recently published  methodology41. To implement the SBC, the parameters required are the carbohydrate-to-
insulin ratio (CR) and correction factor (CF), calculated based on clinical  guidelines42. Then, the formula for 
SBC used in this study is given  below43:

where ubolus is the bolus insulin, BGk is the CGM value at the time of delivering the bolus, BGT is the target glucose 
value and ÎOB is the estimated insulin on board.

Second, the HAID system with the proposed DRL insulin bolus calculator is represented as HAID DRL. As 
the DRL bolus calculator is independent of the CHO content in meals, CHO misestimation is not an issue in 
this case. In both HAID systems, all the meals are announced, hence the name hybrid. In this case (HAID DRL), 
the DRL algorithm was tuned and trained in the setting of announced meals. This implies that the meal detector 
was not used and the insulin bolus was delivered at meal time during the training session of DQN agents. The 
simulation performed for generating the memory (required for the memory replay concept in the DRL algorithm) 
was also based on announced meals. HAID DRL is included to explicitly show the difference in the glycemic 
performance induced by unannounced meals.

(23)ubolus =
CHO

CR
+

(BGk − BGT )

CF
− ÎOB
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Finally, the proposed FAID system is the main contribution of this study. The FAID system is based on the 
DRL algorithm for bolus insulin dosing, but all the meals are unannounced. The delivery of insulin bolus is 
triggered by a signal from the meal detector whenever a meal is detected.

Comparative analysis
To draw a comparison and investigate the performance of the proposed FAID system, the outcomes of the in-
silico simulations are presented in the standardized core CGM metrics, as reported in a consensus report by 
the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)44.

The standardized CGM metrics and insulin information are presented in Table 1. The mean and median CGM 
values reported for the FAID system were statistically similar to those of the HAID systems, as indicated by the 
p-values. The extreme CGM values, i.e., minimum and maximum in the FAID system, were more spread, leading 
to a slightly higher glycemic variability, as indicated by the higher CV compared to that of the HAID systems. 
The FAID system achieved a similar glucose monitoring index (GMI), as reflected by the p-value.

The percentage of the CGM values (PCGM) reported for the ranges provided in Table 1 showed an overall 
increase of 5% in the PCGM below 70 mg/dL and above 250 mg/dL (hypoglycemia and hyperglycemia) for the 
FAID system. Specifically, the difference in hypoglycemia (below 70 mg/dL) was 0.9%, and that in hyperglycemia 
(above 250 mg/dL) was 4.1%, which is in accordance with the designed reward function. Hypoglycemia was 
penalized more than hyperglycemia since a hypoglycemic excursion is riskier than a hyperglycemic excursion 
of the same magnitude.

According to the p-values, the differences in PCGM ranges are significant, except for the tight target range 
(70–140 mg/dL). Importantly, all the values achieved were in the range recommended by the ADA consensus 
 report44. Moreover, the glycemic risk index (GRI), a measure of the quality of glycemia based on hypoglycemia 
and hyperglycemia components using CGM  tracings45, is also provided.

The performance of the FAID system is coupled with the accuracy of the meal detector and the time duration 
of detection. The performance metrics of the meal detector are presented in Table 2, which summarizes the popu-
lational detection performance of meals. The detection of lunch and dinner was better, as evidenced by sensitivity 
and true positives, whereas the snacks were barely detected. The detection of breakfast was approximately 60%. 
The time taken to detect a meal ranged between 30 and 40 min. As reported in Table 2 FP amounted to fewer 
than 1 meal in the cases of breakfast, lunch, and snacks, and none resulted in a hypoglycemic event. However, in 
the case of dinner, this number is approximately 2.4 meals, and a total of 8 hypoglycemic events were observed.

To exemplify the performance of the approach, the four-hour postprandial BG curves for each meal are 
illustrated in Figs. 5, 6, and 7. The BG followed a similar trajectory in all three cases. The postprandial peak 
BG values were higher in the case of the FAID system, reflecting the 30 to 40 min of delay in the delivery of the 
insulin bolus as a consequence of meal detection. The populational values of the meal detection time in minutes 
are represented by filled circles (pink) in the case of the FAID. Points on top of each other represent meals on dif-
ferent days with the same time of detection, whereas points along the x-axis represent meals with different times 
of detection. The time of detection is represented by the x-axis in minutes, with the meal appearing at t = 0.

Table 1.  Comparison of standardized CGM metrics and insulin data for the FAID system. 1HAID SBC 
MCHO = Hybrid automatic insulin delivery (closed-loop) with standard bolus calculator and CHO 
misestimation. 2HAID DRL = Hybrid automatic insulin delivery (closed-loop) with proposed DRL bolus 
calculator. 3FAID = Fully automatic insulin delivery with proposed DRL bolus calculator. ⋆ p value < 0.01. The 
p values (FAID vs HAID SBC MCHO) are based on the Wilcoxon signed-rank test.

Performance Indicator HAID SBC MCHO
1

HAID DRL
2

FAID
3

Mean CGM (mg/dl) 153.1 (147.3 - 161.1 ) 155.8 (149.7 - 160.3 ) 156.1 (148 - 167.5 )

Median CGM (mg/dl) 146.7 (140.9 - 155.9 ) 149.2 (144.8 - 154.9 ) 147.9 (140.2 - 158.4 )

Max CGM (mg/dl) 306.7 (283.6 - 324.6 ) 293.6 (265 - 347.3 ) 317.7 (296.2 - 347.5 ) ⋆

Min CGM (mg/dl) 66.6 (43.9 - 74.7 ) 72.3 (49.7 - 81.7 ) 43.1 (32.3 - 61.1 ) ⋆

CV 25.6 (23.3 - 28.5 ) 24.1 (21.9 - 28.2 ) 30.6 (27.7 - 32.3 ) ⋆

GMI (%) 7 (6.8 - 7.2 ) 7 (6.9 - 7.1 ) 7 (6.8 - 7.3 )

Below 54 (%) 0 (0 - 0.3 ) 0 (0 - 0.2 ) 0.4 (0 - 0.9 ) ⋆

54 to 69 (%) 0.1 (0 - 0.5 ) 0 (0 - 0.3 ) 0.5 (0.2 - 1 ) ⋆

70 to 140 (%) 42.2 (33.7 - 48.3 ) 38.9 (33.1 - 43.4 ) 41.1 (33.9 - 48.1 )

70 to 180 (%) 76.2 (69.6 - 82.1 ) 75.7 (71 - 81.3 ) 71.2 (60.2 - 77.2 ) ⋆

181 to 250 (%) 19.2 (14.7 - 23.4 ) 19.8 (15.5 - 24.1 ) 22.6 (18.8 - 27.5 ) ⋆

Above 250 (%) 1.9 (1.1 - 3.1 ) 1.6 (0.7 - 4 ) 4.1 (1.8 - 8.4 ) ⋆

GRI 20.9 (16.6 - 26.5 ) 20.9 (16.2 - 26.5 ) 27.8 (21.6 - 41.4 ) ⋆

Basal Insulin (U/day) 6.3 (5 - 8 ) 6.3 (5.1 - 7.8 ) 8.4 (6.9 - 10 ) ⋆

Bolus Insulin (U/day) 22.1 (16.5 - 26.7 ) 21.5 (16.7 - 26.4 ) 10.1 (7.8 - 14 ) ⋆

TDI (U) 28.5 (23.1 - 32.3 ) 27.5 (24.4 - 33.1 ) 19.1 (15.5 - 23 ) ⋆
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Discussion
The development of reliable and safe FAID systems is one of the current mainstreams in DM1 technology 
research. Although many disturbances affect people with DM1, such as exercise, stress or other medications, it is 
common practice to classify FAID systems as those that do not require meal input. To accomplish a FAID system 

Table 2.  Performance metrics of the meal detector. Values reported as mean ± standard deviation and median 
(25–75%). TP, true positive; FP, false positive; FN, false negative.

Sensitivity (%) Detection Time (min) TP FP FN

Breakfast

57.74 ± 14.43 37.92 ± 2.34 8.08 ± 2.02 0.67 ± 0.78 5.92 ± 2.02

57.14 (35.71 - 84.29) 38.75 (35 - 40) 8 (5 - 11.8) 0.5 (0 - 2) 6 (2.2 - 9)

Lunch

95.24 ± 5.56 35 ± 0 13.33 ± 0.78 0.67 ± 0.98 0.67 ± 0.78

96.43 (85.71 - 100) 35 (35 - 35) 13.5 (12 - 14) 0 (0 - 2.9) 0.5 (0 - 2)

Snacks

8.33 ± 5.96 29.17 ± 17.88 1.17 ± 0.83 0.33 ± 0.49 12.83 ± 0.83

7.14 (0 - 14.29) 37.5 (0 - 44.75) 1 (0 - 2) 0 (0 - 1) 13 (12 - 14)

Dinner

95.83 ± 4.78 34.38 ± 1.55 13.42 ± 0.67 2.42 ± 1.31 0.58 ± 0.67

96.43 (86.43 - 100) 35 (30.25 - 35) 13.5 (12.1 - 14) 2 (0.1 - 4.9) 0.5 (0 - 1.9)

Figure 5.  Four-hour postprandial BG curves for breakfast. The solid lines (middle curve) represent median 
values, whereas the dotted lines (upper and lower curves) correspond to the interquartile range of 25% and 
75% respectively. The filled circles are points where meals were detected, plotted against the time of detection in 
minutes in the case of the FAID system.

Figure 6.  Four-hour postprandial BG curves for lunch. The solid lines (middle curve) represent median 
values, whereas the dotted lines (upper and lower curves) correspond to the interquartile range of 25% and 
75% respectively. The filled circles are points where meals were detected, plotted against the time of detection in 
minutes in the case of the FAID system.
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first meal detection has to be done accurately and in a timely manner, and then compensate them. Therefore, 
the performance of these type of systems can be affected by two core steps: 1) detection and 2) compensation.

Several attempts have been made in the pursuit of a reliable FAID system. A learning-MPC algorithm was 
validated in an inpatient clinical study for a single unannounced meal in 29 patients with  DM146. No severe hypo-
glycemia was recorded, and it was suggested to extend the time of clinical trials and the number of unannounced 
meals in a future study. Analysis of the initial safety and efficacy of a FAID system based on a multiple-model 
probabilistic controller was presented for patients with  DM147. Thirty hours of inpatient study in 10 patients and 
54 hours of supervised hotel study in 15 patients were performed, challenging the controller with unannounced 
meals. It was concluded that there exists a greater risk of hypoglycemia compared to that of the HAID algorithms. 
A meal detection and estimation module was presented, relying on the fuzzy logic  algorithm48. The algorithm 
was evaluated in a retrospective study for a total of 117 meals and 11 patients. The percentage of FPs reported was 
20.8%. The detector was integrated with the AP system, but the calculation of insulin bolus was also dependent 
on the patient’s CR. In a more recent study, an internal model control approach was used to derive a feedback 
controller for the FAID system and was tested in the UVa/Padova DM1 simulator. The outcome was presented 
in terms of the CGM curve and compared with open-loop therapy, and it was reported that the postprandial 
peak was reduced by approximately 8%49.

In this work, we have proposed a FAID system to compensate for meal disturbances by utilizing a DRL insu-
lin bolus calculator. Three core components were integrated to implement the FAID system, i.e., a closed-loop 
PD controller for continuous insulin delivery, a detection algorithm for meal disturbances, and the DRL-based 
insulin bolus calculator. The proposed DRL insulin bolus calculator builds on top of our previous  work28 and goes 
one step further. The key novelties of this paper include: 1) the complete elimination of meal announcements; 
2) the improvement of the RL algorithm by using DRL based on DNNs; and 3) the integration of a closed-loop 
controller and meal detector algorithms together with the DRL system. Specifically, the state space and action 
of the DRL algorithm have been reworked and improved. One one hand, the use of DNNs allowed to describe 
the state space in continuous form and now it is composed of 15 continuous parameters. On the other hand, an 
additional subspace is also added to the action space to increase the range of actions to be chosen by the DRL 
agent. Additionally, on design benefits of the proposed system is that it could also accommodate announced 
meals without knowing the CHO content, unlike the methodologies presented in the literature. In such cases, 
the insulin bolus calculator could be fed by meal announcement instead of the meal detector.

Performance analysis
The primary CGM metrics are presented in Table 1. CHO misestimation is included in the HAID with SBC to 
depict a real-life scenario. The absolute CGM values (mean, median, and maximum) are similar, whereas the 
minimum CGM is lower in the case of the FAID system because the insulin bolus calculation does not utilize 
CHO information and there is an inherent delay in bolus delivery due to the meal detection. The CV was slightly 
higher for the FAID system but was in the acceptable range of < 36% as recommended by an international 
consensus  report44. The GMI, an approximation of the A1C level based on the average BG from  CGM50, was 
similar in all cases.

The PCGM in the tight target range ( 70− 140 mg/dL) was similar, and that in the target range ( 70− 180 mg/
dL) was lower by 5% in the FAID system. First, the PCGM in the range below 70% accounted for approximately 
1% owing to the reasons mentioned above. Second, an increase was observed in the PCGM in the range above 
180 mg/dL. This increase was induced by a delay in the bolus insulin delivery proportional to the meal detection 
duration. Moreover, a less aggressive dosing of bolus insulin, as reflected by greater penalties for hypoglycemia, 
also results in a lowering of PCGM in the target range ( 70− 180 mg/dL).

A comparison of the postprandial performance is explicitly presented in terms of populational postprandial 
BG curves for the three major meals in Figs. 5, 6, and 7. For all three meals, a similar pattern was observed, i.e., 
the peak was higher and the slope of the BG dip was steeper in the case of the FAID system as a consequence 

Figure 7.  Four-hour postprandial BG curves for dinner. The solid lines (middle curve) represent median 
values, whereas the dotted lines (upper and lower curves) correspond to the interquartile range of 25% and 
75% respectively. The filled circles are points where meals were detected, plotted against the time of detection in 
minutes in the case of the FAID system.
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of the delay in insulin bolus delivery. Despite the steeper slope of the BG dip, there was no risk of severe hypo-
glycemic events owing to the higher peaks in the postprandial period. To show the overall daily glucose profiles 
Fig. 8 is presented.

The improvement in policy and performance of the DQN agents during the training session is presented 
in terms of the total number of hypoglycemia events in Fig. 9. Each point in the plot represents a median of 
the number of hypoglycemia events per day for all patients for 25 days. A window of 25 days was selected to 
highlight the trend in the number of hypoglycemia events as training progressed. During training, an epsilon 
greedy policy that consists of both exploitation and exploration was considered; therefore, the trend was not 
downward throughout, but the overall impact was. As is clear from Table 1, the time spent in hypoglycemia was 
approximately 1% when the trained DRL agents were deployed.

Comparison with state of the art
Two RL algorithms are considered for comparison in this subsection. Both of the studies represent HAID systems. 
The RL algorithm presented  in27 learns the programmable basal rates and the CRs for insulin bolus calculation. 
The simulator used for in-silio validation was based on the Hovorka  model51. The DRL algorithm proposed  in52 
is based on double deep Q learning topology and is validated on the UVa/Padova simulator. The major advan-
tage as compared to the algorithms presented in the literature is that our work does not require estimating the 
CHO content in meals and works in a fully automatic fashion. Comparison in terms of the key percentage of 
time ranges for CGM values is provided in the Table 3. It is evident from the table that the safety mechanisms 
presented in this study to avoid hypoglycemia are reflected in the results. It is not possible to make a head-to-head 
comparison because of the difference in the simulation environments used for the validation of the algorithms. 
The RL algorithms developed for other therapies such as multiple daily  injections53 or basal insulin  dosing54 are 
not considered. A comparison with the FAID systems is not provided because it is the first attempt to analyze 
the performance of DRL in a FAID system to the best of the author’s knowledge.

Figure 8.  This figure shows the median daily CGM profile of the whole cohort. The day starts at 12:00 AM. The 
three peaks appearing are breakfast, lunch, and dinner respectively. The small spike between lunch and dinner 
represents the snacks. The solid lines (middle curve) represent median values, whereas the dotted lines (upper 
and lower curves) correspond to the interquartile range of 25% and 75% respectively.

Figure 9.  Populational number of hypoglycemia events throughout the training period lasting for 1500 
iterations. An epsilon greedy policy was followed for the purpose of training.
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Limitations
Although the system showed promising performance in our in-silico tests, several precautions and limitations 
need to be taken into account before deploying such systems. In particular, three main limitations affect this 
study: (1) training and testing in an in-silico environment; (2) the meal detector role on the overall performance; 
and (3) how to deploy the proposed system.

Firstly, we used a modified cohort of 68 patients generated based on a real cohort of people with DM1 from 
the Hospital Clínic de  Barcelona39. During our training, one virtual patient was discarded due to the DRL algo-
rithm not converging to an acceptable policy. We want to point out that, in a real life scenario not all systems 
work equally well or can be applicable to all different type of people with DM1. Therefore, this shows the need 
to perform algorithm testing and initial tuning with patient retrospective data prior to deployment.

Secondly, the performance of the FAID system was coupled with the meal detector’s accuracy and the delayed 
detection time. Greater accuracy and faster detection lead to better overall glycemic control performance of 
the FAID system. Thus, the performance metrics of the meal detector are presented in Table 2. The detection 
of breakfast was better but had almost 40% false negatives (FNs). Lunch was very well detected and controlled 
as the amount of CHO in lunch was greater than that in breakfast or snacks. The snacks were rarely detected 
but were well compensated by the closed-loop PD controller, suggesting that no feed-forward compensation is 
needed for small meals. In the case of dinner, the detection was not desirable in terms of FP, which may lead to 
nocturnal hypoglycemia, and a total of 8 hypoglycemic events were reported. This was one of the main reasons 
for lower CGM values in the case of the FAID system compared to the HAID systems. Indeed there is a trade-off 
when adjusting the sensitivity of the meal detector to minimize FNs because it may also increase FPs. Based on 
two parameters of meals, the FNs of the meal detector were compensated well by the closed-loop PD controller. 
First, the dynamics and appearance of CHO in BG were considered, i.e., meals having slow dynamics and rate 
of appearance. Second, the amount of CHO in meals, i.e., meals with minimal CHO content such as snacks, was 
accounted for. In the above-mentioned cases, when the meals were not detected, the disturbance was partially 
compensated for by the closed-loop controller. Therefore, the closed-loop controller helps alleviating delay issues 
caused by the meal detector. The meal detector was also disabled during night periods as a safety measure. The 
main purpose of the meal detector was to detect and compensate for the daily meals, i.e., breakfast, lunch, and 
dinner. The current performance of the meal detection suggests that it will increase the overall performance 
in the presence of meals during night periods and will show robustness against FPs in case of no meals. The 
performance of the FAID system will be analyzed with the meal detector enabled all the time in future work.

Finally, deploying a DRL algorithm to real patients may pose additional risks specially due to the explora-
tion nature of it. In this study, this is not a safety concern in the in-silico trials. However, in clinical settings, it 
can be dangerous, for example, the management of DM1 without taking into account safety  constraints55. Thus, 
the main limitation of this study was implementation of the FAID system in a virtual environment, as clinical 
settings would be more challenging owing to uncertain conditions in real-life scenarios. A four-step approach 
suggested  in28 can be followed to move from in-silico to clinical trials. However, a customized virtual cohort was 
considered. Second, the dependency of the FAID system’s performance on the meal detection algorithm limits 
this research. Despite having a suitable DRL insulin bolus calculator, the poor detection of unannounced meals 
may degrade the overall glycemic performance.

Conclusions
In this paper, a new machine learning-based FAID system was presented by integrating a closed-loop PD con-
troller, a UKF-based meal detector, and a DRL-driven insulin bolus calculator. The proposed DRL algorithm 
was based on DQN and the feature of memory replay to calculate the insulin bolus without requiring informa-
tion regarding CHO content, CR, and CF, thereby paving the way for the elimination of meal announcements.

The proposed FAID system showed encouraging performance. The main objective of the FAID system is to 
eliminate patient intervention in the closed-loop system to avoid errors caused by CHO misestimation and to 
relieve the unnecessary burden on patients of calculating the CHO content.

Future research will include the use of a more sophisticated meal detector to reduce the delay induced by 
the meal detector as well as to minimize the effect of false positives and false negatives on the overall glycemic 
performance of the FAID system. Furthermore, the use of more advanced DRL algorithms will boost the per-
formance, enabling the FAID system to compete with HAID systems.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.

Table 3.  Performance metrics of the meal detector. TBR = % of CGM values below 70 mg/dL. TIR = % of 
CGM values in the range 70–180 mg/dL. TAR = % of CGM values above 180 mg/dL.

Algorithm Simulator Virtual Patients TBR TIR TAB
27 Hovorka 50 1.1 86 13
52 UVa/Padova 100 4.17 70.08 23.47

HAID DRL Customized UVa/Padova 67 0 75.7 21.4

FAID Customized UVa/Padova 67 0.9 71.2 26.7
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