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A B S T R A C T

A novel 3D viscoelastic–viscoplastic and viscodamage constitutive model is proposed to predict the viscous
effects due to dynamic loading conditions of unidirectional carbon fibre-reinforced polymer laminates at the
meso-scale level. The present model is developed under continuum damage mechanics and the thermodynamics
of irreversible processes framework. The viscoelastic response is modelled using the generalised Maxwell
model, while an overstress model is employed to address the viscoplastic strain. The onset of the viscodamage
mechanisms is based on experimental expressions, and their propagation is defined as a function of the
corresponding fracture toughness. The mechanical response of the present constitutive model under pure
longitudinal shear loading conditions at different strain rates is presented. The higher the strain rate is, the
stiffer the responses in the viscoelastic and viscoplastic regions are. Additionally, the onset of viscodamage
increases with higher strain rates. Off-axis compressive experimental data at two different strain rates are
employed to demonstrate the capabilities of the present model with good predictions being obtained.
1. Introduction

The use of carbon fibre-reinforced polymer (CFRP) laminates to
manufacture of aircraft components has increased in recent years due
to its high stiffness and strength, low density and high fatigue re-
sistance [1–3]. CFRPs are widely employed in major-load bearing
structures, replacing older aircraft structures which were mainly made
of aluminium. CFRP laminates are also employed in the automotive
sector to reduce pollutant emissions by decreasing vehicle weight,
thereby improving energy efficiency in both internal combustion en-
gine vehicles [3–5] and electric vehicles [6–9]. In general, composite
material components in these sectors are subjected to dynamic loading,
such as impacts [10–13].

Numerous experimental investigations have been carried out to un-
derstand the dynamic effects on CFRPs. For instance, Hsiao et al. [14]
performed off-axis compressive tests under quasi-static and dynamic
loading conditions using a CFRP laminate. The authors observed a
strain rate dependency on the stress–strain behaviour, along with an
increase in off-axis compressive strength and modulus of elasticity at
high strain rates. In addition, as the loading rate is increased, the
plastic hardening response in compression also increases. However, the
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ultimate compressive strain decreases for off-axis angles less or equal
to 45◦. No significant strain rate dependency on the ultimate strain
was found in off-axis compressive tests for off-axis angles greater than
60◦ [15–17]. Vinson and Woldesenbet [18] observed that the strain rate
sensitivity of the failure compressive strength decreases as the off-axis
angle increases because the failure mode changes. The off-axis tensile
strength and the elastic modulus also increases with increasing loading
rates [17,19]. Likewise, the longitudinal shear modulus, yielding stress
and strength also increase in the in-plane shear test at higher strain
rates [20,21].

Ploeckl et al. [22] carried out compressive tests using a quasi-
isotropic laminate with a CFRP under different loading rates. Although
the authors reported no significant strain rate effects on the elastic
modulus, the compressive strength and the ultimate strain do increase
with higher loading rates. Similar behaviour is observed for unidirec-
tional CFRP laminates under longitudinal compressive loading condi-
tions [22–26]. In contrast, no significant strain rate dependency on the
stress–strain response under longitudinal tensile conditions has been
found for unidirectional CFRP [27,28]. Jacob et al. [29] reported no
significant difference from quasi-static to dynamic loading conditions
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for the longitudinal tensile and compressive strengths. Cheng et al.
[30] carried out quasi-static and dynamic compact tensile tests in a
cross-ply CFRP laminate, finding no clear trend of the longitudinal
tensile fracture toughness as a function of the strain rate. However,
other authors have reported the strain rate having a significant effect
on the longitudinal tensile fracture toughness (this material property
decreased with increasing strain rate) [31,32]. Depending on the data
reduction methods and testing techniques employed, fracture toughness
increases or decreases as a function of the loading rate conditions.

Kuhn et al. [33] performed double-edge notched compressive tests
using different loading rates and specimen sizes on cross-ply CFRP
laminates. The authors reported a strong dependency of the strain rate
on the longitudinal compressive fracture toughness, with its value being
greater at higher strain rates. In addition, the cross-ply CFRP laminates
exhibited a strain rate effect on the elastic stiffness, where its value
increases with strain rate increases, but the ultimate strain decreases
when increasing the loading rate [34,35]. Perry and Walley [26] ob-
served an increase in the cross-ply elastic modulus in compression with
increasing loading rates, but no significant strain rate effect was found
in tension [34].

Consequently, the dynamic effects must be considered in constitu-
tive models for CFRPs to predict the inelastic deformation and fracture
under dynamic loading conditions. Koerber et al. [19] developed a
3D constitutive model for CFRPs which considers plastic deformations
with a failure criterion for damage onset (no damage propagation was
considered). A non-associated plastic flow rule was defined using the
overstress function proposed by Perzyna [36]. The strain rate effects
in the elastic and strength properties were considered by introducing
experimentally-obtained scaling functions. Kang et al. [37] presented a
3D constitutive model to predict the inelastic deformation in a dynamic
tensile biaxial test using a CFRP laminate. An isotropic yield function
was defined by combining the Tsai–Hill equivalent stress criterion
and the Voce-type strain-hardening law. The strain rate dependency
was introduced by scaling the isotropic term of the yield criterion
as a function of the strain rate. In numerous studies of constitutive
models for CRPF materials, scaling functions are applied to the material
properties to account for the strain rate dependency on the elastic
region [38–41], as well as on the plastic and damage regions [42–45].

Chang et al. [46] developed a viscoelastic constitutive model based
on the generalised Maxwell model. The non-linear stress–strain rela-
tionships of CFRPs in the elastic region resulting from different loading
rate and temperature conditions were predicted. Gerbaud et al. [47]
proposed a 3D viscoelastic–viscoplastic model for CFRPs, and the model
was extended to finite strain theory [48]. The generalised Maxwell
model was employed to consider the viscous effects in the elastic region
due to strain rates. The loading strain rate dependency on the plastic
region was introduced by a non-associative plastic flow rule using
the overstress model [36]. Hegde and Mulay [49] developed a 1D
viscoelastic damage model for viscoelastic matrix materials. Again, the
generalised Maxwell model was used and coupled to a damage model. A
single damage variables were employed to degrade: (i) the quasi-static
stiffness and (ii) the stiffness of the Maxwell element.

From observations in the literature, no 3D constitutive model ad-
dressees modelling CFRPs by considering the viscoelastic–viscoplastic
behaviour to account for viscodamage evolution and fracture tough-
ness. Table 1 summarises the features of the published constitutive
models that account for strain rate dependency. Currently, there are
only two constitutive models that account for the viscoelastic, vis-
coplastic and viscodamage effects of CFRPs [19,38], but the scale
functions being used in the viscoelastic region can induce thermody-
namic inconsistencies as the strain rates change. Furthermore, Koerber
et al. [19] only modelled the initiation, not the propagation of the
failure.

In the present work, a 3D viscoelastic–viscoplastic and viscodamage
model is proposed to predict the constitutive behaviour of CFRPs
2

under dynamic loading conditions. The proposed constitutive model is
Table 1
Modelling strategies used in the literature to address the dynamic effects in CFRP
laminates, where V refers to a strain-rate dependent (viscous) procedure and I refers
to a strain-rate independent approach.

Authors Elasticity Plasticity Damage

Initiation Propagation

Koerber et al. [19] Va Vb Va –
Kang et al. [37] I Va –
Eskandari et al. [38] Va Vb Va

Tan and Liu [39] Va Va –
Shi et al. [40] Va – Va

Jin et al. [41] Va – Va

Raimondo et al. [42] I Va Va

Daniel [43] I – Va

Daniel [44] I Va Va

Ma et al. [45] I – Va

Chang et al. [46] Vc – –
Gerbaud et al. [47] Vc Vb –
Lopes et al. [48] Vc Vb –
Hegde and Mulay [49] Vc – I

a Using scale functions.
b Using the Overstress model [36].
c Using the generalised Maxwell model.

based on the generalised Maxwell viscoelastic model and the overstress
viscoplastic model. The onset of the damage is developed using ex-
perimental scale functions. Failure propagation is defined by softening
laws that take into account the energy dissipated by the corresponding
viscodamage process. The constitutive model is described in Section 2.
In Section 3, a simple longitudinal shear virtual test at different loading
rates and a relaxation test are carried out to verify the stress–strain
response of the proposed constitutive model at the Gauss-point level.
In addition, a numerical–experimental comparison of off-axis compres-
sive tests at different loading rates is performed to demonstrate the
predictive capabilities of the model. Finally, the main conclusions of
the present work are summarised in Section 4.

2. Constitutive model

The 3D elastoplastic damage model developed by Cózar et al. [50,
51] is extended here to include the viscous effects due to dynamic load-
ing conditions. Different hypothesis have been considered to develop
the constitutive model from the experimental observations available
in the literature: (i) the longitudinal direction (fibre dominated direc-
tion) is strain rate-independent, except its strength; (ii) a viscoelastic
and viscoplastic behaviour is considered in the directions governed
by the matrix; (iii) damage related properties, strengths and fracture
toughness can be defined as strain rate-dependent; and (iv) bilinear
softening laws are considered in the longitudinal compressive and
tensile directions and linear for the rest of the directions (as in the
original model [50,51]).

The additive decomposition of the infinitesimal strain tensor is
considered

𝜺 = 𝜺𝑣𝑒 + 𝜺𝑣𝑝 , (1)

where 𝜺𝑣𝑒 is the viscoelastic strain tensor that contains the cracking
strains and 𝜺𝑣𝑝 is the viscoplastic strain tensor. The model assumes
purely elastic response before the onset of damage in the longitudinal
direction. No significant dependence of the strain rates in neither the
longitudinal Young’s modulus, or in the inelastic deformation was
observed in the literature for CFRP laminates for both tensile and
compressive longitudinal loading directions [22–28] (see Fig. 1a). How-
ever, in the transverse directions, strong strain rate dependency on
the elastic modulus and during the hardening process in CFRPs was
observed [14,15,17,17,19–21]. Then, a viscoelastic response followed
to a viscoplastic behaviour in the directions governed to the matrix
is considered. After that, the onset of damage can be reached in any
direction, and develops without increasing the viscoplastic strains at
the Gauss-point level, see Fig. 1.



Composites Science and Technology 254 (2024) 110634I.R. Cózar et al.

H

H

E
t
a
g
l

D

Fig. 1. Schematic representation of uniaxial stress vs. strain curve response at the
Gauss-point level: (a) in the longitudinal direction, and (b) in the directions governed
by the matrix.

Fig. 2. Schematic representation of the 1D rheological scheme of the proposed
constitutive model.

2.1. Modelling viscoelasticity

The viscoelastic effects of CFRPs under different loading rate con-
ditions is modelled using the generalised Maxwell model. The 1D
rheological scheme of the viscoelastic part can be divided into two main
elements connected in parallel (see Fig. 2): (i) the Hookean element and
(ii) the Maxwell element, which consists of a Hookean element and a
Newtonian dashpot connected in series. The Hookean element (top left
branch in Fig. 2) provides the quasi-static stiffness that remains after
the dynamic effects have relaxed as the dashpot releases the Maxwell
element (bottom left branch in Fig. 2). The original model [50,51] is
proposed to be extended with a single Maxwell element to account for
dynamic effects without significantly increasing the complexity of the
calibration of the input model parameters in the viscoelastic region. To
adjust the viscoelastic parameters, two tests can be used: a creep test
and a uniaxial transverse test, as explained at the end of this section.

The Helmholtz free-energy density function proposed in Voigt no-
tation reads

𝛹 ∶= 1
2
(𝜺 − 𝜺𝑣𝑝 )𝑇C𝑒(𝜺 − 𝜺𝑣𝑝 ) + 1

2
(𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖 )𝑇C𝑣𝑒(𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖 ), (2)

where 𝜺𝑖 is the inelastic strain tensor due to viscoelastic effects, and C𝑒
and C𝑣𝑒 are the quasi-static and Maxwell elasticity tensors, respectively,
see Fig. 2. The viscoelastic effects in CFRP laminates are only observed
in the directions governed by the matrix (in the transverse isotropic
plane with respect to the longitudinal direction). Therefore, C𝑣𝑒 is
defined proportional to C𝑒 in the direction governed by the matrix as
3

C𝑣𝑒 ∶= 𝜞C𝑒𝜞 , (3) t
with

𝜞 = �̄�𝑣𝑒I𝑣𝑒, (4)

where �̄�𝑣𝑒 is a viscoelastic parameter and I𝑣𝑒 is the identity matrix with
the first component equal to zero (longitudinal direction). Based on
this hypothesis, a single relaxation time of the Newtonian dashpot of
the Maxwell element (𝜏𝑣𝑒) is defined for the directions governed by the
matrix [47]. Therefore, the stress equilibrium in the Maxwell element
(bottom left branch in Fig. 2) reads

𝜞C𝑒𝜞 (𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖 ) = 𝜞C𝑒𝜞T𝑣𝑒�̇�𝑖 , (5)

where T𝑣𝑒 = 𝜏𝑣𝑒I (I is the identity matrix). These two assumptions allow
the implementation of the constitutive model to be simplified. The use
of a single 𝜏𝑣𝑒 allows the differential equation for the stress (or strain)
on the Maxwell element in 1D to be solved and extending it directly to
3D [47]. Furthermore, the viscoelastic strain rate dependence of CFRP
plies can be characterised by two viscoelastic parameters.

The quasi-static elasticity tensor is defined using the compliance
tensor (H = C−1

𝑒 ) proposed by Quintanas-Corominas et al. [52],

H =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

H11 H12 H12 0 0 0
H12 H22 H23 0 0 0
H12 H23 H22 0 0 0
0 0 0 H44 0 0
0 0 0 0 H55 0
0 0 0 0 0 H55

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6)

with:

H11 = 1
(1 − 𝑑𝓁 )𝐸11

12 = −
𝜈12
𝐸11

H22 = 1
4(1 − 𝑑𝑡 )𝐸𝑡

+ 1
4(1 − 𝑑𝑠𝑡 )𝐺𝑡

H23 = 1
4(1 − 𝑑𝑡 )𝐸𝑡

− 1
4(1 − 𝑑𝑠𝑡 )𝐺𝑡

H44 = 1
(1 − 𝑑𝑠𝑡 )𝐺𝑡

55 = 1
(1 − 𝑑𝑠𝓁 )𝐺12

,

(7)

where 𝐸11 is the longitudinal elastic modulus, 𝜈12 is the longitudinal
Poisson’s ratio, and 𝐺12 is the longitudinal shear elastic modulus. 𝐸𝑡
is the elastic modulus associated to a change of area in the transverse
isotropic plane, and 𝐺𝑡 is the elastic modulus associated to a change of
shape in the transverse isotropic plane. They are defined as

𝐸𝑡 ∶=
𝐸22

2(1 − 𝜈23 )
, (8)

and

𝐺𝑡 ∶=
𝐸22

2(1 + 𝜈23 )
, (9)

where 𝐸22 is the transverse elastic modulus and 𝜈23 is the transverse
Poisson’s ratio.

The four viscodamage variables 𝑑𝑀 (𝑀 = 𝓁, 𝑡, 𝑠𝓁, 𝑠𝑡) defined in
q. (7) describe the following failure mechanisms: 𝑑𝓁 associated to
he longitudinal failure, 𝑑𝑡 describes the mode-I matrix cracking, 𝑑𝑠𝑡
ssociated to the mode-II matrix cracking, and 𝑑𝑠𝓁 combines the lon-
itudinal tensile and matrix failure mechanisms. Subscript 𝓁 refers to
ongitudinal, 𝑡 to transverse, and 𝑠 to shear.

The mechanical dissipated energy is defined from the Clausius–
uhem inequality to ensure the thermodynamically consistency of

he model and the irreversibility of the dissipated processes [53].
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Fig. 3. Schematic representation of a transverse tensile test to measure the relaxation
time of the Newtonian dashpot of the Maxwell element (𝜏𝑣𝑒).

Considering an isothermal state, an energy dissipation carried out in
an adiabatic manner, and a constant density, the Clausius–Duhem
inequality reads

𝛯 = 𝝈𝑇 �̇� − �̇� ≥ 0, (10)

where 𝛯 is the mechanical energy dissipated per unit volume. Applying
the corresponding chain rules in Eq. (2), the inequality of Eq. (10)
yields
(

𝝈𝑇 −
𝜕𝛹
𝜕𝜺

)

�̇� −
𝜕𝛹
𝜕𝜺𝑖

�̇�𝑖 −
𝜕𝛹
𝜕𝜺𝑣𝑝

�̇�𝑣𝑝 −
∑

𝑀

𝜕𝛹
𝜕𝑑𝑀

�̇�𝑀 ≥ 0. (11)

The expression in parenthesis of the first term in Eq. (11) must be
equal to zero to guarantee this inequality since the strains can freely
vary, yielding the constitutive equation:

𝝈 ∶=
𝜕𝛹
𝜕𝜺

, (12)

here 𝝈 is the stress tensor that can be rewritten from the generalised
axwell model as

= C𝑒(𝜺 − 𝜺𝑣𝑝 ) + 𝜞C𝑒𝜞 (𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖 ). (13)

he demonstration of the non-negativity of the rest of the terms of
q. (11) is presented in Appendix.

The relaxation time of the Newtonian dashpot of the Maxwell ele-
ent (𝜏𝑣𝑒) can be measured through a relaxation test from the tangent

ine where the material starts to relax (𝝈22 ) and the stress relaxed
(𝐸22𝜺

𝑣𝑒
22 ) [54], see Fig. 3. Additionally, for a given 𝜏𝑣𝑒, the viscoelastic

arameter (�̄�𝑣𝑒) can be fitted from an experimental transverse tensile
est at constant loading rate. The transverse stress Cartesian compo-
ent applying uniaxial transverse stress state conditions in Eq. (13) at
onstant strain rate yields

22 = 𝐸22

(

1 + 𝛾𝑣𝑒𝜏𝑣𝑒�̇�𝑣𝑒22
(

1 − exp
( −𝜺𝑣𝑒22
𝜏𝑣𝑒�̇�𝑣𝑒22

)

)

)

𝜺𝑣𝑒22 , (14)

here 𝛾𝑣𝑒 is the uniaxial viscoelastic parameter. Therefore, 𝛾𝑣𝑒 can be
itted from a pure transverse test using Eq. (14) and, thus, �̄�𝑣𝑒 in Eq. (4)
an be written as a function of the uniaxial viscoelastic parameter as

̄𝑣𝑒 =

√

√

√

√𝛾𝑣𝑒
(

1 −
𝐸22

𝐸11
𝜈212

)

. (15)

.2. Modelling viscoplasticity

A non-associative viscoplastic flow rule is employed allowing the
olumetric viscoplastic strains and the plastic Poisson’s ratios to be
mposed,

̇ 𝑣𝑝 ∶= 𝜆
𝜕𝜑𝑝

, (16)
4

𝜕𝝈 v
here 𝜆 is the viscoplastic multiplier parameter and 𝜑𝑝 is the vis-
oplastic potential function. The main difference in modelling plasticity
etween the model developed by Cózar et al. [50,51] (elastoplastic
amage model) and the one proposed in the present work is the
efinition of 𝜆.

The explicit function for 𝜆 proposed by Perzyna [36], and used in
any previously-developed constitutive models [38,47,48], is adopted.
he overstress model [36] allows the yield function to become larger
han zero for describing the viscoplastic strain. In addition, the loading–
nloading hysteresis observed in the stress–strain relationships in CFRP
aminates, which can be attributed to a viscoplastic behaviour of matrix
ich zones [55], can be predicted from the overstress model [56]. The
iscoplastic multiplier parameter is defined as

∶=
⟨(𝜙𝑝 )1∕𝛽𝑣𝑝 ⟩

𝜂𝑣𝑝
, (17)

here 𝜙𝑝 is the yield function, 𝜂𝑣𝑝 ∈ (0,∞) is the viscoplasticity-
elated parameter, 𝛽𝑣𝑝 is the rate sensitivity parameter, and ⟨𝑥⟩ is the
cCauley operator defined as ⟨𝑥⟩ ∶= (𝑥 + |𝑥|)∕2. Then, the proposed
odel matches the original elastoplastic damage model with vanishing

iscosity (𝜂𝑣𝑝 → 0) in Eq. (17) since �̇�𝑣𝑝 → ∞. However, the overstress
odel does not reproduce the quasi-static plastic response with van-

shing 𝛽𝑣𝑝 → 0. For example, under uniaxial transverse compressive
oading conditions using a quasi-static strain rate and 𝛽𝑣𝑝 → 0, the
iscoplasticity modelling produces two times the transverse compres-
ive yield stress (𝝈22 = −2𝑌𝐶𝑃 ) [57]. This behaviour can be avoided by
odifying Eq. (17) as in [57–59].

The yield function is defined as

𝑝 (𝝈 , �̄�𝑣𝑝 ) ∶=

√

√

√

√

(

𝑌𝐶𝑃 + 𝑌𝑇𝑃
𝑌𝐶𝑃 𝑌𝑇𝑃

)2 𝜏2𝑡 + 𝜇𝑡𝑝𝑝2𝑡
1 + 𝜇𝑡𝑝

+
(𝜇𝑠𝓁𝑝
𝑆𝐿𝑃

𝜏𝓁

)2

+
𝑌𝐶𝑃 − 𝑌𝑇𝑃
𝑌𝐶𝑃 𝑌𝑇𝑃

𝑝𝑡 +
(1 − 𝜇𝑠𝓁𝑝)

𝑆𝐿𝑃
𝜏𝓁 − 1 ≤ 0, (18)

here 𝜇𝑠𝓁𝑝 and 𝜇𝑡𝑝 are viscoplastic envelope shape coefficients, 𝑌𝐶𝑃 and
𝑇𝑃 are the transverse compressive and tensile yield stresses, respec-
ively, and 𝑆𝐿𝑃 is the longitudinal shear yield stress. The viscoplastic
nvelope shape coefficients allow the shape of the viscoplastic envelope
yield criterion) to be changed depending on the behaviour of the ma-
erial. While they can be experimentally obtained, other procedures to
stablish them are suggested in Cózar et al. [50]. The stress invariants
f Eq. (18) read

𝑡 =
𝝈22 + 𝝈33

2
; (19)

𝜏𝓁 =
√

𝝈 2
12 + 𝝈 2

13 ; (20)

and

𝜏𝑡 =

√

(𝝈22 − 𝝈33 )
2 + 4𝝈 2

23

2
, (21)

where 𝝈𝑖𝑗 are Cartesian components of 𝝈 .
The yield stresses in Eq. (18) are defined as a function of the

equivalent viscoplastic strain (�̄�𝑣𝑝 ) (viscoplastic internal variable). In
the present work, the yield stress-equivalent viscoplastic strain relation-
ships are defined using an experimental curve for each of them. The
rate of the viscoplastic internal variable is defined as

̇̄𝜺𝑣𝑝 ∶=
√

1
2
‖

‖

‖

�̇�𝑣𝑝‖‖
‖

. (22)

Finally, the viscoplastic potential function is defined using Eq. (18)
and by replacing the yield stresses and the viscoplastic envelope shape
coefficient with the potential viscoplastic constant parameters. For
example, 𝑌𝐶𝑃 is replaced by the transverse compressive viscoplastic
potential parameter (𝑌𝐶𝑃 ). These define the direction in which the

iscoplastic flows and allow the viscoplastic dilatancy or contractility
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to be controlled. The relationships between these potential parameters
with the plastic Poisson’s ratios in tension and compression (𝜈𝑝23𝐶 and
𝑝
23𝑇 , respectively) and 𝜈𝑝122 ∶= −

𝜺𝑝22
𝜺𝑝12

are defined in [50].

.3. Modelling viscodamage

An undamaged domain, where the material response is viscoelastic
nd viscoplastic under complex loading states, is defined using three
ailure envelopes. The viscodamage activation functions associated to
he longitudinal failure mechanisms are defined as

𝓁𝐶 ∶= 𝜙𝓁𝐶 − 𝑟𝓁𝐶 ≤ 0, (23)

nd

𝓁𝑇 ∶= 𝜙𝓁𝑇 − 𝑟𝓁𝑇 ≤ 0, (24)

here 𝜙𝓁𝐶 and 𝜙𝓁𝑇 are the longitudinal compressive and tensile load-
ng functions, respectively, and 𝑟𝓁𝐶 and 𝑟𝓁𝑇 are the viscoelastic thresh-
ld domains in compression and in tension, respectively. The viscodam-
ge activation function related to the transverse failure mechanisms is
efined as

𝑡 ∶= 𝜙𝑡 − 1 ≤ 0, (25)

here 𝜙𝑡 is the transverse loading functions.
The difference in the definition of 𝐹 𝓁𝐶 and 𝐹 𝓁𝑇 compared to 𝐹 𝑡 is

n how the corresponding loading function is defined. The longitudinal
oading functions (𝜙𝓁𝐶 and 𝜙𝓁𝑇 ) are defined as a function of the

ffective stress tensor
(

�̃� = C𝑒(𝑑𝑀 = 0)𝜺𝑣𝑒
)

, whereas the transverse
oading function is defined as a function of the nominal stress tensor
𝝈 ). Therefore, the longitudinal viscoelastic domains can be explicitly
btained as

𝓁𝐶 = max
(

1, max
𝑠∈[0,𝑡]

(

𝜙𝑠
𝓁𝐶

)

)

, (26)

nd

𝓁𝑇 = max
(

1, max
𝑠∈[0,𝑡]

(

𝜙𝑠
𝓁𝑇

)

)

, (27)

ince the longitudinal loading functions only depend on the viscoelastic
train tensor. The longitudinal viscoelastic domain thresholds (𝑟𝓁𝐶 and
𝓁𝑇 ) are the internal longitudinal viscodamage variables, are initialised
qual to one, and increase with damage. However, the transverse
iscodamage variables (𝑑𝑡 , 𝑑𝑠𝑡 and 𝑑𝑠𝓁 ) are the internal transverse
iscodamage variables.

The loading functions proposed by Quintanas-Corominas et al. [52]
re used in the present work. The main advantage of these loading
unctions is the option to modify the shape of the undamaged do-
ain (failure envelopes) depending on the behaviour of the material

nalysed. The non-interacting maximum allowable strain criteria is
mployed in the longitudinal tensile as

𝓁𝑇 ∶=
𝜺𝑣𝑒11𝐸11

𝑋𝑣
𝑇

, (28)

where 𝑋𝑣
𝑇 is the viscous longitudinal tensile strength. The longitudinal

compressive loading function reads

𝜙𝓁𝐶 ∶= 1
𝑋𝑣

𝐶

(√

�̃� 2
11 + 𝜂𝑞𝑡 �̃�

2
𝑡 + 𝜂𝑞𝑠𝓁 �̃�

2
𝓁 + 𝜂𝑡�̃�𝑡 + 𝜂𝑠𝓁 �̃�𝓁

)

, (29)

where 𝑋𝑣
𝐶 is the viscous longitudinal compressive strength, and 𝜂𝑞𝑡 , 𝜂

𝑞
𝑠𝓁 ,

𝜂𝑡 and 𝜂𝑠𝓁 are failure envelope shape coefficients that allow the shape
of the failure envelopes to be modified. The transverse loading function
reads

𝜙𝑡 ∶=

√

√

√

√

(𝑌 𝑣
𝐶 + 𝑌 𝑣

𝑇
𝑌 𝑣
𝑇 𝑌

𝑣
𝐶

)2 𝜏2𝑡 + 𝜇𝑡𝑝2𝑡
1 + 𝜇𝑡

+
(

𝜇𝑠𝓁
𝑆𝑣
𝐿
𝜏𝓁

)2
+
𝑌 𝑣
𝐶 − 𝑌 𝑣

𝑇
𝑌 𝑣
𝑇 𝑌

𝑣
𝐶

𝑝𝑡 +
(1 − 𝜇𝑠𝓁)

𝑆𝑣
𝐿

𝜏𝓁 ,
5

(30)
here 𝑌 𝑣
𝐶 and 𝑌 𝑣

𝑇 are the viscous transverse compressive and tensile
strengths, respectively, 𝑆𝑣

𝐿 is the viscous longitudinal shear strength,
and 𝜇𝑡 and 𝜏𝓁 are failure envelope shape coefficients. The strengths
in Eqs. (28)–(30) can be defined by considering the dynamic effects
using experimental expressions as a function of: strain rate [19,38–45],
viscoplastic strains as in metallic material models [60,61], strain rate,
and ultimate strain as in concrete constitutive models [62], etc.

The softening law of each transverse viscodamage variable is de-
fined in the equivalent viscoelastic domain to simplify the implemen-
tation. The stress tensor in Eq. (13) can be rewritten as

𝝈 = C𝑒�̄�𝑣𝑒 , (31)

where the equivalent viscoelastic strain tensor yields

�̄�𝑣𝑒 = 𝜺𝑣𝑒 +H𝜞C𝑒𝜞 (𝜺𝑣𝑒 − 𝜺𝑖 ). (32)

Therefore, the definition of the viscodamage evolution functions match
that of the quasi-static constitutive model since Eq. (31) has the same
form to the quasi-static model (𝝈 = C𝑒𝜺𝑒 ) replacing �̄�𝑣𝑒 by 𝜺𝑒 . Addition-
ally, the softening laws follow the same shape in the proposed domain
(�̄�𝑣𝑒 ) instead of the 𝜺𝑣𝑒 domain. However, the amount of mechanical
energy dissipated by viscodamage is guaranteed in the 𝜺𝑣𝑒 domain and
calibrated with the corresponding fracture toughness.

The outcome of this simplification on the softening response is
analysed in Fig. 4, and no significant effect is observed. The trans-
verse viscodamage variables can be explicitly obtained following the
approach presented in [51]. The relationship of the longitudinal visco-
damage variables with the corresponding viscoelastic threshold domain
is described in [50]. The fracture toughness can be also defined as a
function of the strain rate also using experimental expressions. Finally,
a bilinear softening law is defined for the longitudinal direction and a
linear softening law in the directions governed by the matrix.

3. Results

Several tests are performed to demonstrate the capabilities of the
proposed constitutive model at the Gauss-point level. In addition, the
off-axis compressive experimental tests carried out by Koerber et al.
[15] are used to demonstrate the ability of the present model to predict
the inelastic deformation and fracture of CFRPs under different loading
rates. In both cases, the IM7/8552 unidirectional prepreg system is em-
ployed with the quasi-static model input parameters listed in Table 2.
Most of these parameters can be measured or fitted directly from exper-
imental tests. However, there is no experimental test for determining
𝜈𝑝122 . In the present work, 𝜈𝑝122 is defined by assuming no volumetric
plastic strains. Additionally, there are no tests to determine the shape of
the failure envelopes. Here, the shape of the failure envelopes is fitted
from the 3D failure criteria proposed by [63]. New methodologies are
needed to analyse the mechanical behaviour of CFRPs under multi-axial
loading conditions [64].

The dynamic model input parameters are listed in Table 3 and their
calibration is explained in detail in Section 3.3. Note that, only four
dynamic parameters are required in the viscoelastic and viscoplastic
regions due to the isotropy of the CFRP laminates in the directions
governed by the matrix.

3.1. Calibration of the strengths under dynamic conditions

Based on the experimental observations reported in the literature,
the longitudinal and transverse strengths of CFRPs are strain-rate de-
pendent. There is no significant experimental evidence of how to
define the evolution of the strengths due to high strain rates for the
selected material system (IM7/8552). As such, the expression proposed
by Wiegand [78] and calibrated for the selected material in [16,19] is
used. Therefore, the dynamic strengths are defined as

𝜎𝑑𝑦𝑛 ∶= 𝜎
(

1 + (1.13 × 10−4�̇�𝑣𝑒 )
1
4
)

, (33)
𝑢 𝑢 𝑖𝑗
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Table 2
Quasi-static model input parameters for the IM7/8552 unidirectional prepreg system. Note that the suggested tests do not need to match the tests that were performed to obtain
the values of the properties.

Symbol Value Unit Source Test

Density 1570 kg/m3 [65] Test method for density of plastics [66,67]

El
as

tic

𝐸11 171 420.00 MPa [68] Longitudinal tensile test (ASTM D3039) [69]
𝐸22 9080.00 MPa [68] Transverse tensile test (ASTM D3039) [69]
𝐺12 5290.00 MPa [68] Longitudinal shear tensile test (ASTM D3518) [70]
𝜈12 0.32 – [68] Longitudinal tensile test (ASTM D3039) [69]
𝜈23 0.45a – [50] Transverse test [71]

Pl
as

tic

𝑌𝐶𝑃 (�̄�𝑝 ) curve [72] Transverse compressive test (ASTM D6641) [73]b

𝑌𝑇𝑃 (�̄�𝑝 ) curve [72] Transverse tensile test (ASTM D3039) [69]b

𝑆𝐿𝑃 (�̄�𝑝 ) curve [72] Longitudinal shear tensile test (ASTM D3518) [70]b

𝜇𝑡𝑝 0.47a – [50] Multiaxial test
𝜇𝑠𝓁𝑝 1.00a – [50] Multiaxial test
𝜈𝑝23𝑇 1.00a – [72] Transverse test [71]
𝜈𝑝23𝐶 1.00a – [72] Transverse test [71]
𝜈𝑝122 0.00a – [72] –

Da
m

ag
e

𝑋𝐶 1017.50 MPa [74] Longitudinal compressive test (ASTM D6641) [73]
𝑓𝑋𝐶

𝑋𝐶 203.50 MPa [52] Compact compressive test [75]
𝑓𝑋𝐶

𝑋𝐶
26.58 N/mm [52] Compact compressive test [75]

𝑋𝑇 2323.50 MPa [74] Longitudinal tensile test (ASTM D3039) [69]
𝑓𝑋𝑇

𝑋𝑇 464.70 MPa [52] Compact tensile test [75]
𝑋𝑇

97.80 N/mm [76] Compact tensile test [75]
𝑓𝑋𝑇

𝑋𝑇
48.90 N/mm [52] Compact tensile test [75]

𝑌𝐶 253.70 MPa [52] Transverse compressive test (ASTM D6641) [73]
𝑌𝐶 2.8a N/mm [51] –
𝑌𝑇 62.30 MPa [68] Transverse tensile test (ASTM D3039) [69]
𝑌𝑇 0.28 N/mm [68] Double cantilever beam test [77]c

𝑆𝐿 92.30 MPa [68] Longitudinal shear tensile test (ASTM D3518) [70]
𝑆𝐿

0.80 N/mm [68] 4-point bending end notched test (ASTM D5528) [77]c

𝜇𝑡 0.90a – [52] Multiaxial test
𝜇𝑠𝓁 1.00a – [52] Multiaxial test
𝜂𝑠𝓁 9.50a – [52] Multiaxial test
𝜂𝑞𝑠𝓁 0.00a – [52] Multiaxial test
𝜂𝑡 12.00a – [52] Multiaxial test
𝜂𝑞𝑡 350.00a – [52] Multiaxial test

a Adjusted or assumed.
b Assuming no damage occurs until the specimen fails, the plastic strain can then be calculated by subtracting the elastic strain, as the ratio of stress to elastic modulus, from the
total strain.
c Assuming that the intralaminar fracture toughness is equivalent to the interlaminar fracture toughness.
l
T

𝑋

Table 3
Dynamic model input parameters for the IM7/8552 unidirectional prepreg system.

Symbol Value Unit

Viscoelastic 𝛾𝑣𝑒 0.35 –
𝜏𝑣𝑒 10−4 s

Viscoplastic 𝛽𝑣𝑝 1.00 –
𝜂𝑣𝑝 2.25×10−5 s

Viscodamage 𝜂𝑣𝑑 4.00×10−5 s

where 𝜎𝑢 is the strength under quasi-static loading conditions (e.g. the
longitudinal compressive strength is 𝜎𝑑𝑦𝑛𝑢 (𝜎𝑢 = 𝑋𝐶 ) = 𝑋𝑑𝑦𝑛

𝐶 ). Eq. (33) is
proposed for a 1D state, thus Eq. (33) must be extended to a 3D state
to be employed in the present constitutive model. Eq. (33) is a function
of a scalar value related to the viscoelastic strain rate (�̇�𝑣𝑒𝑖𝑗 ) and must
be extended to account for the viscoelastic strain rate tensor (�̇�𝑣𝑒 ). The
extension is carried out by defining a new norm to evaluate Eq. (33)
under 3D loading conditions. In the longitudinal compressive direction,
the strength norm is defined as

�̇�𝑞𝑠
𝓁𝐶 ∶=

𝑑𝜙𝑞𝑠
𝓁𝐶

𝑑𝜺𝑣𝑒
�̇�𝑣𝑒 , (34)

here 𝜙𝑞𝑠
𝓁𝐶 is the longitudinal compressive loading function defined in

q. (29) and evaluated by replacing 𝑋𝑣
𝐶 with 𝑋𝐶 (the static longitudinal

ompressive strength). Therefore, dynamic longitudinal compressive
6

strength (𝑋𝑑𝑦𝑛
𝐶 ) can be obtained by evaluating Eq. (34) under uniaxial

ongitudinal compressive conditions (as with Eq. (33) was obtained).
herefore, the dynamic longitudinal compressive strength yields

𝑑𝑦𝑛
𝐶 = 𝑋𝐶

⎛

⎜

⎜

⎜

⎝

1 +

(

1.13 × 10−4
�̇�𝑞𝑠
𝓁𝐶𝑋𝐶

𝐸11

)

1
4 ⎞
⎟

⎟

⎟

⎠

. (35)

The norm to obtain the transverse strengths is defined as

�̇�𝑞𝑠
𝑡 ∶=

𝑑𝜙𝑞𝑠
𝑡

𝑑𝜺𝑣𝑒
�̇�𝑣𝑒 , (36)

where 𝜙𝑞𝑠
𝑡 is the transverse loading function defined in Eq. (30) with

𝑑𝑀 = 0 and evaluated by replacing the viscous strengths with the
quasi-static strengths. The dynamic strengths are then obtained by
evaluating Eq. (36) with uniaxial conditions; like Eq. (33) was obtained
for the corresponding strength. For instance, the dynamic transverse
compressive strength (𝑌 𝑑𝑦𝑛

𝐶 ) is obtained by evaluating Eq. (36) under
pure transverse compressive conditions,

𝑌 𝑑𝑦𝑛
𝐶 = 𝑌𝐶

⎛

⎜

⎜

⎜

⎝

1 +

(

1.13 × 10−4
�̇�𝑞𝑠
𝑡 𝑌𝐶
𝐸22

)

1
4 ⎞
⎟

⎟

⎟

⎠

. (37)

The rest of transverse dynamic strengths read

𝑌 𝑑𝑦𝑛
𝑇 = 𝑌𝑇

⎛

⎜

⎜

⎜

1 +

(

1.13 × 10−4
�̇�𝑞𝑠
𝑡 𝑌𝑇
𝐸22

)

1
4 ⎞
⎟

⎟

⎟

, (38)
⎝ ⎠
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and,

𝑆𝑑𝑦𝑛
𝐿 = 𝑆𝐿

⎛

⎜

⎜

⎜

⎝

1 +

(

1.13 × 10−4
�̇�𝑞𝑠
𝑡 𝑆𝐿

𝐺12

)

1
4 ⎞
⎟

⎟

⎟

⎠

. (39)

xplicit FE solver is used to obtain the numerical predictions, and both
orms (�̇�𝑞𝑠

𝓁𝐶 and �̇�𝑞𝑠
𝑡 ) are numerically integrated using the backward

uler method. No significant error is found in the numerical integration
rocess of �̇�𝑞𝑠

𝓁𝐶 and �̇�𝑞𝑠
𝑡 since the increment of the time in the explicit

E solver is less than 10−8 s.
In the present work, the longitudinal tensile strength is defined

train rate-independent since no experimental data on the strength-
train rate relationship are available for the selected material. As with
he longitudinal tensile strength, the fracture toughnesses are defined
onstants since no clear trend or experimental data were found.

A viscosity regularisation of the strengths is considered to prevent
igh strength rates with high strain rate. The viscous strength rate is
efined as

̇ 𝑣𝑢 ∶=
𝜎𝑑𝑦𝑛𝑢 − 𝜎𝑣𝑢

𝜂𝑣𝑑
, (40)

here 𝜂𝑣𝑑 is a viscodamage-related parameter. This viscous regulari-
ation is applied at all strengths defined in Eqs. (29) and (30). For
xample, the viscous longitudinal compressive strength (𝑋𝑣

𝐶 ) is ob-
ained using Eq. (35) and its viscous regularisation (�̇�𝑣𝑢 (𝜎

𝑑𝑦𝑛
𝑢 = 𝑋𝑑𝑦𝑛

𝐶 ) =
̇𝑣
𝐶 ) is then applied based on Eq. (40).

.2. Gauss-point level tests

Virtual tests at the Gauss-point level are carried out to verify that
he present constitutive model complies with the assumptions made in
ts development (see Section 2). A single Gauss-point is loaded under
imple longitudinal shear conditions (see Fig. 4a) at a high loading rate
�̇�
12

= 200 s−1), as well as at a quasi-static loading rate (�̇�
12

= 10−4 s−1).
he Gauss-point is defined as a cube of 0.24 mm × 0.24 mm × 0.24 mm
the same in-plane mesh element size is used in the off-axis compressive
E models of Section 3.3).

The schematic representation of the deformed shape of the simple
ongitudinal shear test is presented in Fig. 4b. The stress–strain response
btained from the high strain rate in the viscoelastic region is stiffer
han that obtained from the quasi-static loading rate conditions, see
ig. 4c. The stress component from the Maxwell element in that region
s linear since 𝜏𝑣𝑒 of the selected material is large enough compared to
he time when the viscoplastic process starts (𝜏𝑣𝑒 ≫ 2.10×10−5 s). The
iscoplastic hardening from the dynamic case starts with a smaller 𝜺12
ompared to the quasi-static simulation, but at similar 𝝈12 (see cross
arkers in Fig. 4c). Furthermore, the hardening process is also stiffer

t the high strain rate; this can be observed by comparing the two
esponses with no damage (𝑑𝑠𝑡 = 0) in Fig. 4c. This indicates a high
train rate dependency of the analysed material on both the viscoelastic
nd viscoplastic hardening processes under simple longitudinal shear
oading conditions.

The increase in the strength with the high strain rate obtained from
q. (39) (𝑆𝑑𝑦𝑛

𝐿 = 128.09 MPa at �̇�
12

= 200 s−1) is properly predicted from
he dynamic simulation in Fig. 4c. Equivalent energy dissipated by the
iscodamage process is obtained from both loading rate conditions (0.8
/mm, grey area in Fig. 4c) since the fracture toughness is defined as

train rate-independent for the selected material and which match 𝑆𝐿
.

herefore, the absolute value of the slope of the softening law increases
ith a high strain rate.

The effect of implementing the equivalent viscoelastic domain (see
q. (31)) on the viscodamage softening response is analysed using a lin-
ar regression analysis in the softening region. Although the softening is
ot a straight line due to the non-linearities contributed by the Maxwell
lement, this is not significant. The coefficient of determination from
7

Fig. 4. Simple longitudinal shear virtual test at the Gauss-point level at two different
strain rate conditions: (a) boundary conditions, (b) deformed shape, and (c) stress vs.
strain curve. The cross markers in the stress–strain curve represent when the viscoplastic
process starts. The dotted black straight line in the stress–strain curve represents the
linear regression analysis curve applied to the viscodamage softening behaviour of the
dynamic response, and the grey areas refer to the energy dissipated by viscodamage.

the linear regression analysis conducted in the viscodamage softening
region is equal to one (R2 = 1.00, linear stress–strain relationship in the
viscodamage softening).

A relaxation test is also carried out applying simple longitudinal
shear loading conditions. A Gauss-point is loaded to a prescribed strain
(𝜺12 = 4%) at �̇�

12
= 200 s−1 and, then maintained it loaded at �̇�

12
= 0

over a long period of time, see Fig. 5a. In this case, a time-dependent
response is observed. Firstly, the nominal longitudinal shear stress (𝝈12 )
increases with the increasing of 𝜺12 . Then, 𝜺12 remains constant and 𝝈12
slowly decreases since the stress component of the Maxwell element
decreases and the viscoplastic process relaxes until they vanish, see
Fig. 5b. Finally, the material is damaged without increasing 𝜺12 but due
to how 𝑆𝑣

𝐿 is relaxed. The viscodamage variable 𝑑𝑠𝓁 is activated after
𝜺12 is fixed since 𝑆𝑣

𝐿 relaxes faster than 𝝈12 . Therefore, 𝝈12 decreases
t the end of the test not only because the material relaxes, but also
ecause a failure mechanism is initiated (𝑑𝑠𝓁 > 0). Note that, less than

30% of 𝑆𝐿
is dissipated during the relaxation test. In addition, the

longitudinal shear strength is also strain rate-dependent and its viscous
regularisation is observed in Fig. 5b; 𝑆𝑣

𝐿 tends to 𝑆𝐿 at the end of the
test.

The stress–strain relationship obtained from the relaxation case
until to fix 𝜺12 = 4% matches the one obtained from the monotonic
virtual test under simple longitudinal shear conditions at high strain
rate, see Fig. 6. However, although the stress vertically drops during the
relaxation step, but does not reach the stress from the quasi-static test
at 𝜺12 = 4%. In both cases (quasi-static and relaxation tests), the stress
remains constant at 𝝈12 = (1−𝑑𝑠𝓁 )𝐸12𝜺

𝑣𝑒
22 but with different viscoplastic

and viscodamage states due to how the material was loaded over time.
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G
o

Fig. 5. Relaxation virtual test under simple longitudinal shear loading conditions at the
auss-point level: (a) strain applied and (b) nominal longitudinal shear stress, evolution
f the longitudinal shear strength and viscodamage variable.

Fig. 6. Comparison of the simple longitudinal shear virtual tests from the relaxation
test and monotonically increasing tests.

3.3. Off-axis tests

The mechanical response of the off-axis compressive tests carried
out by Koerber et al. [15] under different loading rates with the fibre
angle orientation 𝜃 = 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ is predicted using
8

FE models. The present constitutive model is implemented in a user
material subroutine (VUMAT) and the Abaqus/Explicit solver [79] is
used to obtain the finite element results, employing 3D eight-node
C3D8R solid elements with reduced integration. The in-plane element
size is defined equal to 0.24 mm to prevent the snap-back of the con-
stitutive softening laws for each failure mechanism [80]. In addition,
three elements through-the-thickness of each ply are used.

The in-plane dimensions of the specimens are 10 mm × 20 mm and
the laminates have a 32-ply thickness. Vertical displacement is applied
on the top face of the FE models, while the bottom face is fixed in this
direction, see Fig. 7a. The quasi-static FE simulations are performed
applying the vertical displacement at constant low velocity to prevent
kinetic effects. However, the loading rates applied during the dynamic
experimental tests are also employed in the dynamic simulations, see
Fig. 7b. In addition, the remaining boundary conditions shown in
Fig. 7a are defined to prevent rigid body motions.

Fig. 7. Schematic representation of the boundary conditions (a), and the displacement–
time curves applied to the dynamic tests in the off-axis compressive tests [15]
(b).

Because no experimental data were found in the literature, the
dynamic model input parameters summarised in Table 3 are fitted
by tuning these parameters. Eq. (14) cannot be employed with the
experimental data measured from [15] since the loading rate in the
elastic region is not constant, see the first sections of the curves
in Fig. 7b. The 45◦ dynamic test is used to compare the numerical
stress–strain curve with those experimentally obtained since the highest
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Fig. 8. Numerical–experimental comparison of the remote stress vs. axial strain curves of the off-axis compressive tests performed by Koerber et al. [15].
experimental ultimate strain was obtained from this test. Firstly, the
viscoelastic input parameters (𝜏𝑣𝑒, 𝛾𝑣𝑒) are varied with pure viscoelastic
FE response (the viscoplastic and viscodamage model are disabled in
this step) to properly capture the initial slope of the experimental data.
Then, the viscoplastic parameters (𝛽𝑣𝑝, 𝜂𝑣𝑝) are fitted using the fully
constitutive model to reproduce the hardening response. Finally, the
viscodamage-related parameter (𝜂𝑣𝑑 ) is set equal to 4.00×10−5. The
effect of 𝜂𝑣𝑑 on the failure strength is not significant since the loading
rate is almost constant when the specimen fails and this stabilisation
time is large enough compared with 𝜂𝑣𝑑 , see Fig. 7b.

The stress vs. strain curves from the present constitutive model and
the strain rate-independent constitutive model [50] are compared with
9

the experimental data [15] in Fig. 8. The initial slope of the dynamic
tests are properly predicted from the present constitutive model for 𝜃 =
15◦, 30◦, 45◦ and 60◦ and a slightly stiffer elastic response is observed
for 𝜃 = 75◦ and 90◦. The hardening response of the dynamic simula-
tions is in good agreement with the experimental data. Furthermore,
the failure strength of the specimens from the high strain rate numerical
models is also in good agreement with the experimental data, with its
highest relative error being less than 7.81% for 𝜃 = 60◦. Furthermore,
good agreement is found in the ultimate strain between the numerical
and experimental dynamic results except for 𝜃 = 30◦ and 45◦ in which

a small change in stress produces a significant increase in axial strain.
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The quasi-static numerical results from the compressive off-axis
tests are also compared with the corresponding experimental data.
The elastic and hardening response are properly predicted from the
present constitutive model. In addition, the numerical failure strength
of the specimens is also in good agreement with the experimental
data, albeit except for 𝜃 = 45◦ and 60◦. Similar predictions are ob-
tained from the strain rate-independent constitutive model [50]. The
failure strength predictions in the quasi-static results can be improved
by experimentally measuring 𝑆𝐿 [50]. This material property has a
significant influence on the 𝝈22−𝝈12 stress space of the failure envelope
and is not experimentally obtained in the present work. 𝑆𝐿 is assumed
from an in-plane shear test following the ASTM D 3518/3518M-94 test
standard [70], and thus 𝑆𝐿 is estimated when 5% of the axial strain
is reached. Note that, the present constitutive model overpredicts the
failure strength from the quasi-static tests compared to those obtained
from the model [50]. This is due to using the definition of the material
strengths as a function of the strain rate as described by Eq. (33).

4. Conclusions

A 3D constitutive model is proposed to account for the strain rate
dependence of the stress–strain response of carbon fibre-reinforced
polymer (CFRP) laminates. The proposed constitutive model is based on
a previous strain rate-independent model and is extended to account for
the strain rate effects. The generalised Maxwell model is employed to
predict the viscoelastic response under dynamic loading conditions. An
overstress model is used to account for the viscoplastic strains of CFRPs.
In addition, a new viscodamage model is proposed to account for the
onset of damage as well as its propagation under different loading rates.
The viscodamage modelling is based on a quasi-static damage model
and is extended to dynamic conditions using experimental strength-
strain rate relationships. In addition, the objectivity of the viscodamage
model is ensured by regularising the viscodamage energy dissipated
with the characteristic element size.

The proposed constitutive model is linked with a finite element
solver to show its predictive capabilities. The constitutive model is
able to reproduce the stiffer stress–strain response of CFRPs under high
strain rates. In addition, the response of a relaxation test shows how the
material relaxes and how the onset and propagation of the viscodamage
occur without increasing the strains, since the strength relaxes faster
than the stresses.

Numerical–experimental comparison of off-axis compressive tests at
different loading rates is also carried out to demonstrate the ability
of the proposed constitutive model to predict the mechanical response
of CFRP laminates. The comparison of the dynamic tests shows good
agreement in the viscoelastic, viscoplastic and viscodamage regions.
In addition, quasi-static tests are properly predicted by the proposed
constitutive model and are in good agreement with the previously
strain rate-independent model. Further experimental investigations are
required to better understand the onset of failure and its propaga-
tion under dynamic loading conditions, but also to quantify the dissi-
pated energy converted to heat to cross-validate the dissipated energy
predicted by the model.
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Appendix. Thermodynamic consistency of the viscoelastic-
viscoplastic viscodamage model

The demonstration of the thermodynamic consistency of the
viscoelastic–viscoplastic viscodamage model is presented in this sec-
tion. To ensure the thermodynamically irreversibility of dissipation
processes, the energy dissipated must be positive or at least null. The
mechanical energy dissipated of the constitutive model presented in
Section 2 can be rewritten from Eq. (10) as

𝛯 = −
𝜕𝛹
𝜕𝜺𝑖

�̇�𝑖 −
𝜕𝛹
𝜕𝜺𝑣𝑝

�̇�𝑣𝑝 −
∑

𝑀

𝜕𝛹
𝜕𝑑𝑀

�̇�𝑀 ≥ 0. (A.1)

Then, if each term in Eq. (A.1) is equal to or greater than zero, the
thermodynamic irreversibility of dissipation processes will be ensured.
The following subsections of this appendix describe the demonstration
that the constitutive model presented in Section 2 fulfils the inequality
in Eq. (A.1).

A.1. Thermodynamic consistency of the viscoelastic energy dissipated

The mechanical energy dissipated due to a viscoelastic process from
Eq. (A.1) reads

−
𝜕𝛹
𝜕𝜺𝑖

�̇�𝑖 =
(

C𝑣𝑒(𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖 )
)𝑇

�̇�𝑖 , (A.2)

where 𝜕𝜺𝑖 (𝛹) is the stress tensor of the Hookean element of the Maxwell
component (bottom left branch in Fig. 2, left hand side of Eq. (5)).
Therefore, by introducing the right hand side of Eq. (5) into Eq. (A.2),
the viscoelastic mechanical energy dissipated yields

−
𝜕𝛹
𝜕𝜺𝑖

�̇�𝑖 = (𝜞C𝑒𝜞T𝑣𝑒�̇�𝑖 )𝑇 �̇�𝑖 . (A.3)

The non-negativity of C𝑒 can be demonstrate by the definition of
, since the inverse of a positive semi-definite matrix is also a positive

emi-definite matrix [81]. Therefore, the non-negativity of H can be
emonstrate by the product of an arbitrary vector (𝝈 ) with H [81],
s

𝑇H𝝈 =
𝜎2𝓁 −

4𝜈12𝜎𝓁𝑝𝑡

(1 − 𝑑𝓁 )𝐸11 𝐸11
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𝜆

+
𝑝2𝑡

(1 − 𝑑𝑡 )𝐸𝑡
+

𝜏2𝑡
(1 − 𝑑𝑠𝑡 )𝐺𝑡

+
𝜏2𝓁

(1 − 𝑑𝑠𝓁 )𝐺12
. (A.4)

Applying the thermodynamic restrictions of the elastic material prop-
erties of transversely isotropic materials [82],

𝐸11 , 𝐸22 , 𝐺12 > 0

|𝜈23 | < 1

|𝜈12 | <

√

√

√

√

𝐸11

𝐸22

−1 < 𝜈23 < 1 − 2𝜈212
𝐸11

𝐸22
,

(A.5)

and by setting the range of the damage variables to 𝑑𝑀 ∈ [0, 1], the
expression in Eq. (A.4) is always non-negative,

𝝈𝑇H𝝈 ≥ 0. (A.6)

Therefore, H is a positive semi-definite matrix and its inverse matrix
(C𝑒) is also a positive semi-definite matrix.

The non-negativity of 𝜞C𝑒𝜞T𝑣𝑒 can be demonstrated because the
product of positive semi-definite matrices is equal to its transpose
thereby resulting also in a positive semi-definite matrix,

𝜏𝑣𝑒�̄�𝑣𝑒2I𝑣𝑒C𝑒I𝑣𝑒 = 𝜏𝑣𝑒�̄�𝑣𝑒2(I𝑣𝑒C𝑒I𝑣𝑒)
𝑇 . (A.7)

Therefore, 𝜞C𝑒𝜞T𝑣𝑒 is a positive semi-definite matrix for all 𝜏𝑣𝑒 ≥ 0.
inally, Eq. (A.3) can be rewritten as

−
𝜕𝛹
𝜕𝜺𝑖

�̇�𝑖 = �̇�𝑖𝑇 (𝜞C𝑒𝜞T𝑣𝑒)𝑇 �̇�𝑖 , (A.8)

where the right hand side of Eq. (A.8) yields the condition of the
product of a positive semi-definite matrix by a non-negative vector
(�̇�𝑖 ) [81]. Hence, the mechanical energy dissipated due to a viscoelastic
process is always positive or at least null.

A.2. Thermodynamic consistency of the viscoplastic energy dissipated

The mechanical energy dissipated due to a viscoplastic process from
Eq. (A.1) yields

−
𝜕𝛹
𝜕𝜺𝑣𝑝

�̇�𝑣𝑝 =
(

C𝑒(𝜺 − 𝜺𝑣𝑝 ) + C𝑣𝑒(𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖 )
)𝑇

�̇�𝑣𝑝 . (A.9)

Then, Eq. (A.9) can be rewritten by inserting Eq. (13) and Eq. (16) as

−
𝜕𝛹
𝜕𝜺𝑣𝑝

�̇�𝑣𝑝 = 𝜆𝝈𝑇 𝜕𝜑𝑝

𝜕𝝈
. (A.10)

Therefore, the mechanical energy dissipated of Eq. (A.9) yields

−
𝜕𝛹
𝜕𝜺𝑣𝑝

�̇�𝑣𝑝 = 𝜆

(

√

√

√

√

√

(

𝑌𝐶𝑃 + 𝑌𝑇𝑃
𝑌𝑇𝑃 𝑌𝐶𝑃

)2 𝜏2𝑡 + �̂�𝑡𝑝𝑝2𝑡
1 + �̂�𝑡𝑝

+

(

�̂�𝑠𝓁𝑝
�̂�𝐿𝑃

𝜏𝓁

)2

+
𝑌𝐶𝑃 − 𝑌𝑇𝑃
𝑌𝑇𝑃 𝑌𝐶𝑃

𝑝𝑡 +
(1 − �̂�𝑠𝓁𝑝)

�̂�𝐿𝑃
𝜏𝓁

)

. (A.11)

ence, the first and third terms in parenthesis of Eq. (A.11) will
lways be non-negative for all �̂�𝑠𝓁𝑝 ≤ 1. Then, the right hand side
f Eq. (A.11) only will be negative if 𝑝𝑡 < 0, since 𝜆 ≥ 0 from the
uhn–Tucker conditions and all viscoplastic potential parameter must
e defined positive. The worst case scenario to meet the negativity of
he mechanical energy dissipated due to a viscoplastic process is

23 = 𝝈13 = 𝝈12 = 0

= 𝝈 < 0.
(A.12)
11

22 33
ence, by introducing the conditions of Eq. (A.12) in Eq. (A.11), the
iscoplastic mechanical energy dissipated yields

−
𝜕𝛹
𝜕𝜺𝑣𝑝

�̇�𝑣𝑝
)

|

|

|

|𝐸𝑞. (A.12)
=

𝜆

𝑌𝑇𝑃 𝑌𝐶𝑃

(

(𝑌𝐶𝑃+𝑌𝑇𝑃 )

√

�̂�𝑡𝑝

1 + �̂�𝑡𝑝
−(𝑌𝐶𝑃−𝑌𝑇𝑃 )

)

|𝑝𝑡|.

(A.13)

herefore, the following conditions are imposed to ensure the non-
egativity of the mechanical energy dissipated by a viscoplastic proc-
ss:

�̂�𝑠𝓁𝑝 ≤ 1

𝑌𝑇𝑃 ≤ 𝑌𝐶𝑃

1 + �̂�𝑡𝑝
1+�̂�𝑡𝑝

1 − �̂�𝑡𝑝
1+�̂�𝑡𝑝

≤
𝑌𝐶𝑃

𝑌𝑇𝑃
.

(A.14)

A.3. Thermodynamic consistency of the viscodamage energy dissipated

The mechanical energy dissipated due to a viscodamage process
defined in Eq. (A.1) can be rewritten knowing that C𝑒(𝑑𝑀 ) (its inverse
s defined in Eq. (6)) and applying the corresponding chain rule as

−
∑

𝑀

𝜕𝛹
𝜕𝑑𝑀

�̇�𝑀 = −1
2

(

(𝜺 − 𝜺𝑣𝑝 )𝑇
∑

𝑀

(

𝜕C𝑒
𝜕𝑑𝑀

�̇�𝑀

)

(𝜺 − 𝜺𝑣𝑝 )

+ (𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖 )𝑇𝜞
∑

𝑀

(

𝜕C𝑒
𝜕𝑑𝑀

�̇�𝑀

)

𝜞 (𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖 )

)

.

(A.15)

The derivative of C𝑒 with respect to 𝑑𝑀 can be rewritten as

𝜕C𝑒
𝜕𝑑𝑀

= −C𝑒
𝜕H
𝜕𝑑𝑀

C𝑒, (A.16)

therefore, Eq. (A.15) yields

−
∑

𝑀

𝜕𝛹
𝜕𝑑𝑀

�̇�𝑀 = 1
2

(

(𝜺 − 𝜺𝑣𝑝 )𝑇
∑

𝑀

(

C𝑒
𝜕H
𝜕𝑑𝑀

C𝑒�̇�𝑀

)

(𝜺 − 𝜺𝑣𝑝 )

+ (𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖 )𝑇𝜞
∑

𝑀

(

C𝑒
𝜕H
𝜕𝑑𝑀

C𝑒�̇�𝑀

)

𝜞 (𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖 )

)

.

(A.17)

C𝑒 is a positive semi-definite matrix as proved in Appendix A.1. The
non-negativity of 𝜕𝑑𝑀 (H) can be demonstrated by the non-negativity of
their eigenvalues [81]. The eigenvalues of 𝜕𝑑

𝓁
(H) are

𝜆𝜕𝑑
𝓁
(H)1 = 1

𝐸11 (1 − 𝑑𝓁 )
2
> 0

𝜆𝜕𝑑
𝓁
(H)2−6 = 0,

(A.18)

the eigenvalues of 𝜕𝑑𝑡 (H) are

𝜆𝜕𝑑𝑡 (H)1 = 1
𝐸𝑡 (1 − 𝑑𝑡 )2

> 0

𝜕𝑑𝑡
(H)2−6 = 0,

(A.19)

the eigenvalues of 𝜕𝑑𝑠𝑡 (H) are

𝜆𝜕𝑑𝑠𝑡 (H)1 = 1
𝐺𝑡 (1 − 𝑑𝑠𝑡 )2

> 0

𝜆𝜕𝑑𝑠𝑡 (H)2 = 1
2
𝜆𝜕𝑑𝑠𝑡 (H)1 > 0

𝜆𝜕 (H) = 0,

(A.20)
𝑑𝑠𝑡 3−6
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and the eigenvalues of 𝜕𝑑𝑠𝓁 (H) are

𝜆𝜕𝑑𝑠𝓁 (H)1−2 = 1
𝐺12 (1 − 𝑑𝑠𝓁 )

2
> 0

𝜆𝜕𝑑𝑠𝓁 (H)3−6 = 0.
(A.21)

Therefore, 𝜕𝑑𝑀 (H) is a positive semi-definite matrix:

𝜕H
𝜕𝑑𝑀

≥ 0. (A.22)

The non-negativity of the first summand term in Eq. (A.17) can be
emonstrate since the transpose matrix of a symmetric matrix is equal
o the matrix itself,

𝑒
𝜕H
𝜕𝑑𝑀

C𝑒 =
(

C𝑒
𝜕H
𝜕𝑑𝑀

C𝑒

)𝑇
, (A.23)

then,

C𝑒
𝜕H
𝜕𝑑𝑀

C𝑒�̇�𝑀 ≥ 0, (A.24)

since �̇�𝑀 ≥ 0 because the damage is irreversible. Using the same pro-
cedure, the non-negativity of the second summand term in Eq. (A.17)
yields

𝜞C𝑒
𝜕H
𝜕𝑑𝑀

C𝑒𝜞 =
(

𝜞C𝑒
𝜕H
𝜕𝑑𝑀

C𝑒𝜞
)𝑇

, (A.25)

and therefore,

𝜞C𝑒
𝜕H
𝜕𝑑𝑀

C𝑒𝜞 �̇�𝑀 ≥ 0. (A.26)

Finally, the mechanical energy dissipated by a viscodamage process
s a product of a positive semi-definite matrices and an arbitrary
ector [81]. For example, the left hand side terms in Eq. (A.23) is
ositive semi-definite matrix multiplied by (𝜺 − 𝜺𝑣𝑝 ), then

(𝜺 − 𝜺𝑣𝑝 )𝑇
∑

𝑀

(

C𝑒
𝜕H
𝜕𝑑𝑀

C𝑒�̇�𝑀

)

(𝜺 − 𝜺𝑣𝑝 ) ≥ 0. (A.27)

Similar, the left hand side terms in Eq. (A.25) is positive semi-definite
matrix multiplied by (𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖 ), hence

(𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖 )𝑇𝜞
∑

𝑀

(

C𝑒
𝜕H
𝜕𝑑𝑀

C𝑒�̇�𝑀

)

𝜞 (𝜺 − 𝜺𝑣𝑝 − 𝜺𝑖 ) ≥ 0. (A.28)

Therefore, the mechanical energy dissipated due to a viscodamage
process is equal to or greater than zero.

A.4. Thermodynamic restrictions of the material properties

The thermodynamic restrictions to ensure the non-negativity of the
mechanical energy dissipated presented in Eq. (A.1) can be divided in
three main groups: viscoelastic restrictions, viscoplastic restrictions and
viscodamage restrictions. They are presented in the previous subsec-
tions of this appendix. Then, the restrictions are summarised, the one
from the viscoelastic mechanical energy dissipated reads

𝜏𝑣𝑒 ≥ 0.

𝐸11 , 𝐸22 , 𝐺12 > 0

|𝜈23 | < 1

|𝜈12 | <

√

√

√

√

𝐸11

𝐸22

−1 < 𝜈23 < 1 − 2𝜈212
𝐸11

.

(A.29)
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𝐸22
The restrictions from the viscoplastic mechanical energy dissipated
are
𝑌𝐶𝑃 , 𝑌𝑇𝑃 , �̂�𝐿𝑃 , �̂�𝑡𝑝 ≥ 0

0 ≤ �̂�𝑠𝓁𝑝 ≤ 1

𝑌𝑇𝑃 ≤ 𝑌𝐶𝑃

1 + �̂�𝑡𝑝
1+�̂�𝑡𝑝

1 − �̂�𝑡𝑝
1+�̂�𝑡𝑝

≤
𝑌𝐶𝑃

𝑌𝑇𝑃
.

(A.30)

Finally, the restrictions imposed from a viscodamage process are those
defined in Eq. (A.29), except the first conditions, and

0 ≤ 𝑑𝑀 ≤ 1. (A.31)
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