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A B S T R A C T   

Wastewater treatment plant (WWTP) discharges of microcontaminants negatively impact freshwater streams, 
underscoring the need for accurately mapping wastewater-derived contamination in water bodies across Europe 
(EU). In this study, we present a fast and open-source code for a microcontaminants fate and transport (MFT) 
model, capable of simulating contamination at a high resolution (15 arc second scale) across the EU. The model 
was developed using the best publicly available hydrological (HydroSHEDS) and sanitation (UWWTD) datasets 
and was rigorously calibrated, with a goodness of fit of 77.5% as measured by the R2. Importantly, the model 
demonstrated the ability to predict wastewater-derived contamination in water bodies, making it a valuable tool 
for planning the upgrade of WWTPs and improving the ecological condition of freshwater streams in the EU.   

1. Introduction 

Chemicals are a necessary component of our daily lives. The database 
REACH contains between 30 and 50 thousand of such industrial chem
icals, each of which may potentially be discharged into water bodies 
(Schwarzenbach et al., 2006). Microcontaminants are chemicals present 
in low concentrations in water matrices, which can be harmful for 
ecosystems or human health. Microcontaminants include pharmaceuti
cals, endocrine disruptors, and personal care products. Sewers and 
Wastewater Treatment Plants (WWTPs) are designed to remove nitro
gen, and phosphorus, but not microcontaminants. As a result, 
wastewater-derived contamination is one of the primary reasons that 
surface water bodies do not satisfy the requirements for good chemical 
status (Whalley et al., 2018). Over the last decades, legislators have 
taken action to reduce chemical pollution of water, mostly following the 
precautionary principle. Such laws include The Water Framework 
Directive (WFD) in Europe and the Clean Water Act (CWA) in the United 
States. (An Act to Amend the Federal Water Pollution Control Act, 1971; 

European Parliament and European Council, 2000). Despite these leg
islative efforts, many contaminants continue to reach the natural envi
ronment. The new European Union (EU) rules on surface and 
groundwater pollution recognize this and call for an urgent reduction in 
micro contamination (European Commission, 2022). Legislators could 
hypothetically ban or limit the use of all potentially harmful chemicals. 
Diclofenac, for example, was banned for agricultural use in India 
following adverse effects on vulture populations (Aldred, 2011). In 
practice, however, a full implementation of the precautionary principle 
is unfeasible, because the produced chemicals likely provide some 
health or economic benefit. In the absence of a blanket ban, reducing 
micro contamination through advanced wastewater treatment is key for 
improving chemical status of surface water bodies. Lowering chemical 
consumption may also help, but it does not eliminate the need for 
advanced treatment (Corominas et al., 2021). 

Implementing advanced treatment at conventional WWTPs entails 
an initial infrastructure investment and an increase in operational costs. 
These costs are not only monetary, but also environmental through CO2 
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emissions (Corominas et al., 2020). Advanced wastewater treatment 
should therefore be implemented where wastewater contamination is 
most deleterious to surface water bodies. This is where the development 
of microcontaminant fate and transport (MFT) models can be beneficial. 
Such models can simulate contamination where no field data is avail
able, they can identify hotspots of wastewater-derived contamination 
and they can evaluate counterfactual strategies to protect water body 
ecosystems and human health. As a result, researchers have developed 
many spatially distributed MFT models. These include models such as 
GREAT-ER (Koormann et al., 2006), iSTREEM (Kapo et al., 2016), 
LF2000-WQX (Young et al., 2003), PhATE (Cunningham et al., 2012), 
Gimeno et al. (2017) and others. The majority of these models have 
limited geographical scope and are sometimes limited to single basins. 
Nowadays, large-scale free digital hydrologic and wastewater sanitation 
layers are available, allowing MFT models to be developed at large 
hydrological scales (e.g. Font et al., 2019; Grill et al., 2018). 

Historically, calibrating and validating the accuracy of large-scale 
models has been a challenging task due to inadequate observations, 
coarse resolution of models, or limited computing resources. As a result, 
the accuracy of spatial predictions of microcontaminant concentrations 
has been deemed imprecise, with modeling exercises often indicating 
orders-of-magnitude differences from observations. Calibrations or vali
dations of most MFT models have been conducted by comparing the 
orders-of-magnitude of modelled concentrations or loads to observations 
or by examining the distributions of simulated and observed concentra
tions or loads. Hence the goal of this study is to develop a large-scale MFT 
model (wOtter) that can rapidly simulate wastewater-derived contami
nation at a large scale and fine resolution and calibrate it. To demonstrate 
the capabilities of the model, we implemented the model for water bodies 
in the European Union, Serbia, the United Kingdom, Switzerland, and 
Norway. This study focused on the impact of micro-contamination 
derived from household wastewater on water bodies under average 
conditions. The hydrological data derive from the HydroSHEDS dataset, 
while the Urban Wastewater Directive database (UWWTD) in combina
tion with the Water Sanitation and Hygiene database (WASH) supplied 
information on wastewater and wastewater treatment. We calibrated the 
model against a lumped contaminant, which is as a weighted average of 
the concentrations of multiple contaminants. We believe that this index 
serves as a better proxy for overall river contamination. 

2. Materials and methods 

wOtter processes data on sanitation, rivers and lakes (dams and 
reservoirs are included as lakes). In the sanitation section, the data on 
WWTPs is transformed into a data frame (.csv file) containing infor
mation on the served population (in person equivalents), the treatment 
level (primary, secondary, or tertiary) and the point of entry of treated 
wastewater into the river. A vectorial representation of rivers is con
verted to a graph object in the rivers section, which contains information 
on discharges, residence times, as well as the topographical order of the 
nodes. If a part of the river is identified as a lake, reservoir or dam, 
residence times are replaced by a lake-specific residence time. In the 
graph section, the data on sanitation, rivers and lakes, dams and reser
voirs come together. Contamination enters the river through discharge 
points, is propagated through the river networks, and is attenuated using 
residence times. The programming structure is shown in Fig. 1, and a 
detailed user manual is available in the supplementary material. 

We discuss the data of the hydrological network, sanitation, and 
occurrences of contamination in rivers in Sect. 2.1. In Sect. 2.2 we 
provide a brief explanation of the river graph generation and the resi
dence times calculation. Following this, we describe the method for 
calculating the contamination load entering the river network and the 
method for applying attenuation. Section 2.3 discusses the construction 
of the lumped contaminant. In Sect. 2.4, we present the model calibra
tion methodology. Section 2.5 explains the contamination score, which 
is a way of representing the results. 

2.1. Data 

This study encompasses the European Union member states, the 
United Kingdom, Switzerland, Serbia, and Norway. An online version of 
the model with a link to the input files is available at https://github. 
com/icra/wOtter. 

2.1.1. Water bodies 
The information on the river network derives from the HydroSHEDS 

database (Lehner et al., 2008). HydroSHEDS in turn uses waterGAP and 
satellite imagery to calculate river discharges (Alcamo et al., 2003). The 
resolution of river locations and discharges is 15ʹ́  (arc seconds), which 
corresponds to a maximum length and width of 450 m. The discharges 
are averaged over a year. Data on lakes, dams and reservoirs in Europe 
come from HydroSHEDS as well. This data includes the location of these 
water bodies and their volumes. 

2.1.2. Sanitation 
The two sources of sanitation data in Europe are the UWWTD data

base and the WASH database. The UWWTD database contains infor
mation on WWTPs in Europe that serve more than 2000 person 
equivalents (PE), and some smaller ones that voluntarily report to the 
database. All reported WWTPs have information on the load entering the 
plant in PE and the treatment levels available at the WWTP. We utilized 
the UWWTD database and addressed various errors encountered. The 
reconciled databases are available at this GitHub repository (http 
s://github.com/icra/waterbase-uwwtd/tree/master/src/1-export_mdb 
_to_sqlite/db_versions), and a visualization of the corrected errors can be 
viewed at this link (https://waterbase.icradev.cat/). The WASH data
base provides national data on wastewater treatment or lack thereof. We 
use this data to create new sources of wastewater that are not included in 
the UWWTD database, such as untreated wastewater sources. We also 
use WASH to calculate correction factors for discrepancies between the 
PE found in a region according to the UWWTD database and the popu
lation with access to wastewater treatment according to the WASH 
database. 

Fig. 1. The process flow of wOtter.  
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2.1.3. Microcontaminant occurrence dataset 
We used the data on occurrences reported in Wilkinson et al. (2022) 

to calibrate and validate the model. The occurrence data included ob
servations on 61 pharmaceuticals at 1052 sampling sites, 320 of which 
fell within the geographical scope of the study. We calibrated using 273 
sampling sites, as 47 sites were removed for a variety of reasons after 
studying each site manually. We removed some sampling sites in Utrecht 
as anthropogenic changes to rivers made the river system too complex to 
be modelled by HydroRIVERS. We also removed any sample sites that, as 
reported by Wilkinson et al. (2022), were located in small ponds or 
urban drainages rather than rivers. Finally, we removed some sampling 
sites that measured sewage directly. Justification for each removal is 
provided in the supplementary material S2. 

2.2. Model construction 

2.2.1. Creation of the river graph 
The creation of the river graph began with the HydroSHEDS data

base, which contains data on Europe’s river network, (average) river 
discharges and flow directions. We converted the river network from a 
vectorial representation into a 15″ raster. At confluences, the highest 
among the two river discharges was chosen. A river graph was created 
from the raster by creating a graph node for each river cell. The position 
of the river cell in the raster became the node’s unique identifier, such 
that the node could always be converted to a position in the raster or vice 
versa. This identifier based on the raster simplifies uploading 
geographical data, and was used to upload data on discharges, flow 
directions and lake presence to the river graph’s nodes. The flow di
rections determined the topographical structure of the river graph, by 
forming directed edges from one river cell to the cell downstream. 

We calculated the residence times RT [h] following the approach of 
Font et al. (2019). For rivers, the residence time was the length of a cell l 

[m] divided by the flow velocity v [m h− 1
]
. For lakes, the residence time 

was calculated as the inverse proportion of outflow per hour, which 

required data on volumes Vol [m3] and discharges q ([m3 h− 1
]

unless 

otherwise specified). 

RT=
l
v
(rivers). (1)  

RT=
Vol
q

(lakes,dams and reservoirs). (2) 

The length of a river node was determined by the cell size, which was 
in turn determined by the latitude. Cells are 450 m horizontally and 
range between 160 and 380 m vertically. If the river flowed horizontally 
or vertically, we stored the horizontal or vertical length; otherwise, we 
stored the diagonal length. We estimated the flow velocity using the 
hydraulic radius and then the Manning equation. 

To calculate the hydraulic radius R [m], we estimated the width w 
[m] and height h [m] of the riverbed. We used eqs. (3) and (4) from Allen 
et al. (1994), with discharge q in [m3 s− 1]: 

w=2.71*q
[
m3s− 1]0.557

. (3)  

h=0.349*q
[
m3s− 1]0.341

. (4) 

We calculated the hydraulic radius R [m] following Schulze et al. 
(2005) with eq. (5). This equation is derived by assuming rectangular 
river beds. 

R=
wh

2h + w
. (5) 

We also follow Schulze et al. (2005) in calculating the flow velocity v 
[m h− 1]. In this equation, S is the slope [m m− 1], which we derive using 
elevation data from HydroSHEDS. 

v
[
m s− 1]= 22.7

m
1
3

s
R

2
3 S

1
2. (6)  

v
[
m h− 1]

= 3600 s
/

h*v
[
m s− 1] (7) 

We obtain the residence time for each river cell by using this flow 
velocity and eq. (1). 

2.2.2. Creation of the contamination discharge 

2.2.2.1. Wastewater collection and treatment pathway. The UWWTD 
database contains data on WWTPs. It reports the treatment level at the 
plant as well as the influent in PE units. The influent includes the load 
from industry. Since this paper focuses on microcontaminants in 
household wastewater, we removed the portion of the load in PE units 
that enters WWTPs from industry. We estimated this portion using the 
WASH database, which contained data on the population that is con
nected to WWTPs by country. For example, if the WASH database esti
mated that 8 million people were connected to wastewater plants in a 
specific country, but the UWWTD database reported 10 million PE, then 
the load of each wastewater plant in that country was reduced by 20 
percent. The approach is inspired by Vigiak et al. (2020). 

We hence calculate a correction factor αi [persons PE− 1] that converts 
the PE load into persons for a WWTP in country i using eq. (8). 

αi =
people in country i connected to WWTPs according to WASH

total reported PE of the WWTPs in country i according to UWWTD
.

(8)  

And for a treatment plant j that is in country i, we obtain an estimated 
population for plant j using eq. (9) 

Estimated populationj =αi*reported PEj. (9) 

We require two additional parameters to calculate the contamination 
discharged from WWTPs into water bodies. The first is a wastewater 
treatment efficacy ϵtl associated with treatment level t (primary, sec
ondary, tertiary) at the WWTP l, and the second is the scale parameter γ, 
which accounts for the consumption of chemicals and their excretion in 
urine and feces after intake. We call γ a scale parameter because it de
termines the scale of the predictions of the model. γ is of the form 
μg h− 1/person. The treatment parameters ϵt are unitless. 

The contamination load Ll 

[
μg h− 1

]
coming from a WWTP indexed 

by l is then: 

Ll = γ*Estimated Populationl*
(
1 − ϵtl

)
= γ*dl. (10)  

With dl := Estimated Populationl*
(
1 − ϵtl

)
. We call dl [persons] the 

unscaled load since the scale parameter γ has not yet been applied. 

2.2.2.2. Other pathways. The WASH database provides information on 
wastewater discharge to water bodies with pathways different from 
collection and treatment. It contains the number of inhabitants in each 
country that are not connected to WWTPs and the number of inhabitants 
with in situ wastewater treatment (individual appropriate systems, la
trines; see: S5). These inhabitants and their associated contaminants 
loads were assigned to the least populated subbasins from HydroSHEDS 
(resolution level 7) in accordance with the total population of the basin. 
Because Serbia lacked wastewater treatment even in urban areas, raw 
discharges were assigned to urban areas. The contamination enters the 
water bodies through an artificial discharge point that is created at the 
location of a city, if such a city exist within the basin according to the 
UWWTD database. If the subbasin contained no cities, a discharge point 
was created randomly within the basin. 
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2.2.3. Contaminants routing 
Contamination in a river node can come from upstream river nodes, 

or from a discharge point such as a WWTP if the river node is closest to 
the discharge point. The contamination entering the river node from the 
various sources is summed. Formally, let Pi denote the set of parent 
nodes of node i. These parent nodes are the upstream river cells, so there 
are none if the cell is the river’s origin, one if it is a midsection and two if 
it is a confluence. Let Di denote the set of wastewater discharges directly 
to node i. Typically, there are no direct discharges or only one, though 
there can be multiple. Let L be the load from a river cell or a discharged 
point, with index j ∈ Pi if it is a river or index l ∈ Di if it is a discharge 
point. The formula for the contamination entering a river cell i is given 
by eq. (11). 

contamination entering cell i per hour=
∑

j∈Pi

Lj +
∑

l∈Di

Ll =
∑

j∈Pi

Lj + γ
∑

l∈Di

dl

(11) 

The last equality follows by substitution of Ll according to eq. (10). 
First-order attenuation is applied to each river node according to its 

residence time. The attenuation rate is obtained through calibration. Let 

k [ h− 1
]

denote the attenuation in water bodies and let RTi denote the 

residence time of cell i in hours. 

Li =

(
∑

j∈Pi

Lj + γ
∑

l∈Di

dl

)

exp{− RTik}. (12) 

Letting qi be the discharge [m3 h− 1], derived from the HydroSHEDS 
dataset, we calculate the concentrations with eq. (13). 

ci =
Li

qi
. (13)  

Where ci has dimension [μg m− 3], which is equivalent to [ng l− 1]. 

2.3. Creation of a lumped contaminant 

For model validation, we construct a lumped contaminant as a sum 
of normalized concentrations of several contaminants. A lumped 
contaminant averages out differences in consumption across areas 
served by WWTPs and differences in treatment efficacies at WWTPs for 
the same compound. It also averages out observational error when 
sampling. The leftover variance of the lumped contaminant should thus 
better represent spatial variability in wastewater-derived contamina
tion, resulting in better model adjustment as well as more accurate 
calibration of parameters. To calculate the lumped contaminant, we 
normalize each contaminant by dividing its concentration in each 
sampling point by the standard deviation of concentrations in all sam
pling points. Subsequently, we sum the normalized concentrations. The 
lumped contaminant is thus constructed according to eq. (14). 

Oi =
∑

j∈J

Oi,j

σj
. (14)  

Where J is the set of contaminants included in the lumped contaminant, 
Oi,j are the concentrations of individual contaminants at each location i, 
and σj is the standard deviation of each chemical across observations. 
Note that in normalizing the concentrations of the individual com
pounds, we do not subtract the mean. This step is omitted since it would 
yield negative observations, which the model cannot handle. 

The lumped contaminant is modelled as a single contaminant (Sect. 
2.2.2 and Sect. 2.2.3). There is, however, a difference in the units. 
Whereas for single contaminants the concentrations ci are expressed in 
[ng /l], for the lumped contaminant these are in normalized nanograms 

per liter 
[
ng ng− 1 l− 1

]
. Attenuation is nonetheless applied using eq. (12), 

as with a single contaminant. 

A selection of chemicals was made from the 61 pharmaceuticals and 
drugs reported in Wilkinson et al. (2022) to construct the lumped 
contaminant. This selection involved two steps. In the first step, only 
pharmaceuticals and drugs that were detected at more than 70 of the 
320 sampling sites were kept. This was to avoid the measurement error 
of assigning values to non-detect samples and those samples with con
centrations under the limit of quantification. The procedure left 21 out 
of 61 pharmaceuticals. 

In the second step, pharmaceuticals and drugs such as Nicotine and 
Caffeine were removed because they did not correlate as well with 
wastewater. This is because while these compounds indicate the pres
ence of wastewater, they do not correlate well with the degree of 
contamination, as different WWTPs may differ in removal efficacies (see 
section 4.1). To determine the correlation between the compounds and 
wastewater, we first calculated a lumped contaminant with the 21 
compounds obtained in step one. For each compound, the percentual 
contribution to the lumped contaminant per site was calculated. This 
percentual contribution was correlated with 13 observations that were 
highly affected by wastewater with levels of contamination higher than 
6 times the average. 14 out of 21 contaminants showed a positive cor
relation with those observations, meaning that they were relatively 
overrepresented in observations affected by wastewater. The lumped 
contaminant was the sum of these 14 contaminants, normalized by 
dividing them by their respective standard deviations. The chosen 
compounds were Atenolol, Citalopram, Codeine, Cotinine, Desvenla
faxine, Diltiazem, Fexofenadine, Lidocaine, Propranolol, Ranitidine, 
Sitagliptin, Sulfamethoxazole, Trimethoprim, Venlafaxine. The filter 
steps are further illustrated and explained in S1. This supplementary 
material also contains the observatios used for the calibration. More 
information, such as application and removal at WWTPs of the com
pounds can be found in S7. 

2.4. Model calibration 

We adjusted the scale of the loads entering water bodies (parameter 
γ) and the attenuation in water bodies (parameter k) to best fit the 
observed concentrations of the contaminants, calibrating a single 
parameter value for the extent of the model. The treatment parameters ϵt 
were not calibrated, and were set equal to the ‘toxicity removal rates’ 
found by Pistocchi et al. (2022). That study found a toxicity removal rate 
of 70% for secondary treatment. This toxicity removal rate was used for 
all specifications, including the specifications in which an individual 
contaminant was calibrated. The exact values of the treatment param
eters do not affect the results significantly as 98% of wastewater 
discharge comes from WWTPs with secondary treatment and we adjust 
for scale. 

Observations from 273 sampling sites in Wilkinson et al. (2022) were 
used. The fit to the data was measured by the R2 metric. Let Oi be the 
occurrence for the (lumped) contaminant at site i and Ôi be the model 
prediction at site i. O is the mean value of all the occurrences. The R2 is 
equal to eq. (15). 

R2 =1 −

∑

i
(Ôi − Oi)

2

∑
(Oi − O)

2 (15) 

The optimal value for the scale parameter γ was derived analytically 
(see, S6). Let RTl,i be the residence time [h] between some discharge 
point l and some location i. Let, dl be the contamination coming from a 
discharge point (in persons) and k the attenuation parameter in water 
bodies. qi is the river discharge. The set A is the set of all observations for 
the contaminant. The sum for yi is over Di, which is the set of discharge 
points whose discharge ultimately ends up in cell i. The optimal value for 
the scale parameter γ is given by eq. (16). 
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γ =

∑

n∈A
Onyn

∑

m∈A
y2

m
,with yi :=

1
qi

∑

l∈Di

dl exp
{
− RTl,ik

}
. (16)  

Where yi has dimension 
[
persons h m− 3]. The scale parameter γ adjusts 

such that the predictions Ôi = γyi have the same dimension as the ob
servations Oi. The formula Ôi = γyi may be derived by iterating the 
recursive eq (12). When calibrating a lumped contaminant, γ has 

dimension 
[
μg μg− 1h− 1 /person

]
. 

We calculated the optimal value for attenuation in water bodies k 
numerically with the SciPy package (Virtanen et al., 2020). We adjusted 
the scale parameter γ during this calibration such that k and γ were 
simultaneously optimal. One of the implications of running a calibration 
with the attenuation parameter and the scale parameter is that structural 
biases in residence times, river discharges and wastewater discharges do 
not affect the model predictions. The parameters γ and k absorb those 
structural biases and leave model predictions unaffected (see, S6). This 
is useful if the goal is to predict contamination rather than to find un
biased estimates of parameters. 

2.5. Representation of results 

The raw output of the model has a resolution of 15″, which is too 
large to gain general insights into the chemical state of a basin, or the 
state of rivers in a country. For this reason, the raw data needs to be 
aggregated such that we can assign a comparable contamination score to 
(geographical) areas, even if they are diverse in area size, in river 
discharge or in the extent that is covered by rivers. For instance, the 
score may compare countries as diverse as Germany and Spain, or basins 
as diverse as the Rhine (Switzerland) and the Manzanares (Spain). 
Hence, we constructed an aggregated measure of contamination for an 
area j that contains at least one river cell indexed by i. We call this 
aggregated measure of contamination the (contamination) score. The 
main parameters of the score are p and a, which determine the extent to 
which we allow cleaner rivers to compensate for more contaminated 
rivers, and the extent to which we weigh river cells with larger 
discharge. If p is large, then the score is higher if one river is highly 
contaminated and the other is not, as opposed to when both rivers are 
moderately contaminated. If q is large, then if a small river is heavily 
contaminated but the larger river is not, the score remains small, since 
the larger river has larger weight. 

The first step in calculating the contamination score is to take the 
concentrations of a contaminant predicted by the model (our results use 
the lumped contaminant) and to exponentiate it with a free parameter p. 
If we set p larger than 1, then the contamination score increases faster 
than the contamination. If we set p smaller than 1, the score grows less 
than linearly. Large values for p hence punish unequal distributions of 
contamination, whereas smaller values for p result in a smaller score 
when contamination is homogeneous across water bodies. The score is 

given by eq. (17). 

si = cp
i . (17) 

The cells are weighted by cell discharge qi. This weight is expo
nentiated by a. For larger values of a, rivers with more discharge have a 
larger weight in the aggregated value than do rivers with little 
discharge. If the value of a is 0, then all rivers are weighted equally. If 
the value for a is equal to p, then rivers are weighted such that the score 
is entirely determined by contamination loads, not by concentrations. 
The formula to determine the weight of a river cell is given by (18). The 
weight also increases linearly by length of the cell. 

wi = βj*qa
i *cell lengthi. (18) 

The parameter βj =
1∑

i in j
qa

i *cell lengthi 
normalizes the weights such that the 

sum of weights in an area j is equal to 1. This ensures that areas with 
more rivers or larger river discharges do not, ceteris paribus, have larger 
scores. Note that the sum is over all the river cells i that are geograph
ically located in area j. 

The score of an area j in the set of areas J is given by eq. (19). 

Sj = δ
∑

i in j
wisi. (19) 

The parameter δ =
|J|∑

j∈J

∑

i in j
wisi 

normalizes the score such that the 

average of the measure is 1. In the formula |J| is the number of areas. 
Score under results was shown for p = 1.2 and a = 0.5. We chose 

these values to punish areas that exhibit unequal distributions of 
contamination and to weigh river cells with much discharge more 
heavily than smaller those cells with smaller discharge. The score can be 
calculated quickly for other values of p and a, and there is no single 
correct combination of parameter values. We do not find large differ
ences in the results when applying different p and a (results not shown). 
To conclude the materials and methods section we provide in Table 1 a 
summary of important parameters and variables used in wOtter. 

3. Results 

3.1. Goodness of model fit 

The model adjustment of the calibrations is shown in Fig. 2. The 
calibration gives an adjustment for the R2 of 77.5% (Fig. 2 (a)). While 
the graph shows logarithmic values for visibility, we used absolute 
values for calculating the R2 and for the model calibration. The model 
performed better for smaller rivers than for larger rivers, with adjust
ments of 79% (Fig. 2 (c)) and 72% (Fig. 2 (b)) respectively. This is likely 
since smaller rivers often receive no wastewater discharge both in the 
model and in reality, such that the model accurately predicts the 
contamination level. The optimal attenuation rate for the lumped 
contaminant was 0.005 h− 1. With an attenuation of 0.005 h− 1, the total 

Table 1 
Selection of important parameters and variables used in wOtter. Dimension is included in the value column if the variable is not dimensionless.  

Variable/ 
parameter 

Source Value Purpose 

Discharge qi HydroSheds River i dependent [m3h− 1] Determines dilution 
Residence time RTi Own calculations using HydroSheds 

data 
River i dependent [h] Determines compound attenuation 

Treatment efficacy 
ϵt 

Pistocchi et al. (2022) 
Treatment t dependent 0, 0.33, 0.70, 0.92 (none, primary, 
secondary, tertiary) 

Account for role of wastewater treatment. 

Unscaled load dl Own calculations using UWWTD 
and WASH 

Treatment plant l dependent [persons] Determines wastewater load for rivers 

Scale parameter γ Calibration Dependent on application to compound Rescale model predictions to observations 
Attenuation k Calibration Dependent on application to compound 

[
h− 1

]
Determines the compound attenuation per hour of 
residence time 

Concentration ci Model output River i dependent [μg /l] [μg*μg− 1/l for lumped contaminants] Estimates degree of contamination in river  
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load of contamination entering oceans in the model is 38% lower than 
when no attenuation is assumed. 

We compare the goodness of model fit obtained with the lumped 
contaminant of 14 pharmaceuticals to the average goodness of fit ob
tained from the individual calibration of 21 contaminants (obtained in 
step one of contaminants selection, Sect. 2.3), as well as to the lumped 
contaminants of 61 and 21 obtained in step one. The model fit using the 
lumped contaminant of 14 pharmaceuticals (77.5%) was much better 
than the average fit for individual contaminants (− 3.5%). The negative 
average R2 for the individual contaminants means that one could more 

accurately estimate contamination levels using only the mean. This 
shows the model is poor at predicting individual contaminant levels (see 
section 4.1). Among the alternatives of lumped contaminants, the one 
with 14 pharmaceuticals provided the best model fit (77.5%). The model 
attained an R2 of 56.2% when predicting the lumped contaminant of 61. 
Since the lumped contaminant of 61 included all contaminants reported 
in Wilkinson et al. (2022), it permits no data dredging. 

Calibration for the attenuation rates did not always result in 
acceptable estimates for the parameters. Predictions for the lumped 
contaminants of 21 and 61 best fit the data when the attenuation rate in 
water bodies was negative. For 19 out of the 21 individual contaminants, 
optimal attenuation rates were also found to be negative. In these cases, 
attenuation rates were set to 0 h− 1. Such unreasonable estimates of the 
attenuation rate are likely due to insufficient observations and lack of 
explanatory power of the attenuation parameter. 

Table 2 reports the results of the different lumped calibrations. In 
addition to the R2 and the attenuation parameter k, it also shows the 
scale parameter γ. The scale parameter γ does not have a physical 
interpretation for the normalized contaminants. Table 3 shows the same 
calibration results for the individual contaminants in the lumped 
contaminant of 21. 

3.2. Model simulation 

The predicted (normalized) concentrations of the lumped contami
nant can range from zero to infinity. The value zero indicates that there 
is no wastewater discharge into the river. For rivers with discharge 
smaller than two cubic meters per second, we find that 79.4% of the 
rivers receive no wastewater (percentage of length). For rivers with 
discharges larger than 2 m3 s− 1, 44.7% of rivers are found to be un
contaminated. The Lorenz curve in Fig. 3 shows that river contamination 
is unequal, with 10% of river sections (corresponding to around 
120,000 km assuming equal discharges) contributing to 50% of the sum 
of concentrations. The Gini index is equal to twice the area between the 
diagonal and the Lorenze curve. The Gini index is therefore 1 if only a 
single river section is contaminated and is 0 if all rivers are equally 
contaminated The resulting Gini index of 0.77 suggests contamination is 
very unequally distributed. 

In the supporting material S3, we provide an interactive figure as an 
html file to visualize (normalized) concentrations of the lumped 
contaminant in European river streams. It contains the discharge points 
as well as the sample observations and model predictions. By zooming 
into the interactive figure in the supplement, one can see the degree of 
contamination in rivers, the contamination effect of wastewater dis
charges, and the accuracy of the model in predicting specific sample 
observations. Fig. 4 is a snapshot of S3 that depicts wastewater-derived 
contamination in central and southern Europe. Fig. 5 shows snapshots of 
the map limited to a wastewater treatment plant in Madrid, with a 
visualization of the available data for rivers, observations, and discharge 
points. 

Fig. 6 shows that the basins most contaminated by wastewater are in 
Holland and Flevoland (Netherlands), Murcia (Spain) and Vojvodina 
(Serbia). The contamination score for these basins is more than eight 
times larger than the standardized score of 1. The causes of 

Fig. 2. WOtter model fit using the lumped contaminant. (a) using observations 
from 273 sampling sites, (b) using observations from sampling sites with 
discharge higher than median sampling site discharge of 10.4 m3 s− 1 (bigger 
rivers), (c) using observations from sampling sites with discharge lower than 
median sampling site discharge of 10.4 m3 s− 1 (smaller rivers). Observations 
concentrations are logarithmic only for visualization. 

Table 2 
Goodness of fit and calibrated parameter values using different lumped con
taminants. The R2 is a measure of goodness of fit and is calculated by eq. (15). 
The scale parameter γ adjusts the scale of the model to that of the observations 
and is given by eq. (16). The attenuation parameter k determines the attenuation 
in rivers (see eq. (12)).   

R2 
γ
(

μg μg− 1 h− 1 /person
)

k
(

h− 1
)

Lumped 14 77.5% 1.88 0.46% 
Lumped 21 58.1% 2.32 0.00% 
Lumped 61 56.2% 3.47 0.00%  
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contamination in these basins are diverse. According to the model, 
contamination in the Netherlands is primarily caused by large pop
ulations within the country, with only a minor contribution from large 
populations upstream in Germany. Water scarcity is the primary cause of 
high contamination levels in the Murcia basin. However, the model does 
not consider that most wastewater is recycled in Murcia for agriculture 
(esamur, 2022). As a result, contamination levels in Murcia are likely 
overestimated. Vojvodina (Serbia) is contaminated primarily due to a 
lack of sanitation in Serbia. WASH estimates that 42% of waste enters 
rivers untreated for Serbia. 

Table 4 summarizes results on wastewater-derived contamination for 
all countries included in the study. The data shows that for some 
countries, contamination is a local problem whereas for others it is 
widespread. The Gini index is relatively low in the Netherlands and 
Hungary, indicating that contamination is spread evenly. The Gini index 
is much higher for countries such as Spain or Cyprus. This implies that 
only a few river sections are highly contaminated. As a result, efforts to 
reduce contamination in those countries should target a few hot spots. 

The findings from this study can be compared to those of 

hydroWASTE (Ehalt MacEdo et al., 2022). We consistently find that 
more rivers receive wastewater-derived contamination when compared 
to hydroWASTE. We find between 1.2 and 1.8 times more length of 
rivers affected by wastewater in 23 of 31 countries. Other countries, 
such as Sweden, Norway, and Iceland, have even higher ratios. This is 
likely because some WWTPs in inner, sparsely populated regions are not 
reported or included in hydroWASTE, whereas our model includes an 
artificial discharge point for those areas. 

3.3. Model functionality 

The code and the model are available on GitHub as wOtter (htt 
ps://github.com/icra/wOtter). We extensively commented all scripts, 
allowing any potential user to both understand our approach, and adapt 
it to any other goal. We used the NetworkX package to represent the 
river network as a graph object. This package enables users to store 
information within each river node, such as the country in which the 
node is located, the river node’s ecological status or whether the node is 
part of a lake. In addition, the Networkx package includes a useful li
brary, with functions that generate a topological sort of the river 
network or split the river network into basins. 

We have also published a library with the model that provides useful 
operations. This library included functions to cut the river network by a 
geographical area or to find the closest river to a point in a shapefile. The 
library additionally contains functions for pre and post processing 
(Table 5). 

The runtime of an individual simulation for the entire domain of 
European rivers is around 25 s on a standard laptop (Dell Latitude 5420). 
This runtime per individual simulation can be reduced if the user needs 
to implement many simulations, for instance when doing Monte-Carlo 
analysis. For such computationally intensive purposes, we have pre
pared a matrix-based implementation (see, S6) that simulates the model 
catchment-wise. The catchment is determined by the connectedness of 
the river cells. This implementation can complete a simulation for the 
Danube basin in 0.8 s. 

4. Discussion 

4.1. Use of the lumped contaminant 

Our results show that wOtter predicts lumped contaminants better 
than it predicts any single contaminant. The model attains an R2 of 
77.5% when predicting the lumped contaminant of 14, whereas the best 
predicted contaminant, propranolol, is only predicted with an R2 of 
4.3%. Such accuracy in predicting individual contaminants is not un
typical for the literature, which often does not report the R2 but rather 
focuses on differences in distributions or magnitudes (Pistocchi et al., 
2010, see section 4.2). 

The lumped contaminant was better predicted by wOtter because it is 
a more reliable indicator for contamination by wastewater than any 
single substance (Kahle et al., 2009). This reliability is a consequence of 
filtering those compounds that best correlate with wastewater and a 
consequence of averaging out fluctuations in the occurrence of indi
vidual compounds. As such, observed concentrations for the lumped 
contaminant are less affected by (1) differential removal rates in 
wastewater treatment, (2) differential consumption patterns and (3) 
diffuse sourcing. 

First, differential removal rates may result in magnitude differences 
in the concentrations of individual compounds (Verlicchi et al., 2012). 
Elimination ranges for Caffeine, for instance, may range from 81 to 
99.9% (Buerge et al., 2003). This implies that Caffeine may be found in 
concentrations up to 190 times larger in effluent depending on the 
treatment plant, even if both have secondary treatment. Caffeine may 
then still be a biomarker for wastewater if it is the predominant source of 
environmental entry, but it is hence a poor marker for the degree of 

Table 3 
Goodness of fit and calibrated parameter values for the individual contaminants 
included in the lumped contaminant of 21. The first entry in the table contains 
the average R2, γ and k of the entries below. The R2 is a measure of goodness of 
fit and is calculated by eq. (15). The scale parameter γ adjusts the scale of the 
model to that of the observations and is given by eq. (16). The attenuation 
parameter k determines the attenuation in rivers (see eq (12)).   

R2 
γ
(

μg h− 1 /person
)

k
(

h− 1
)

Average of 21 individual calibrations − 3.5% 21.91 0.00% 
Atenolol 0.5% 1.88 0.00% 
Carbamazepine − 0.2% 2.32 0.04% 
Caffeine − 21.1% 3.47 0.00% 
Cetirizine − 2.9% 12.19 0.00% 
Citalopram − 0.7% 30.47 0.00% 
Codeine − 2.1% 56.46 0.00% 
Cotinine − 2.9% 14.96 0.00% 
Desvenlafaxine − 2.4% 2.71 0.00% 
Diltiazem − 0.3% 6.99 0.00% 
Fexofenadine − 8.6% 2.78 0.00% 
Gabapentin − 0.7% 29.59 0.00% 
Lidocaine − 3.2% 1.90 0.00% 
Metformin − 16.3% 8.33 0.00% 
Nicotine − 6.3% 107.00 0.00% 
Paracetamol − 5.3% 3.22 0.00% 
Propranolol 4.3% 156.44 0.08% 
Ranitidine − 0.2% 5.20 0.00% 
Sitagliptin 1.1% 22.57 0.00% 
Sulfamethoxazole − 0.2% 4.70 0.00% 
Trimethoprim − 2.3% 10.04 0.00% 
Venlafaxine − 3.9% 28.15 0.00%  

Fig. 3. Lorenz cure and Gini index of river contamination in European river 
sections. Percentage of rivers is determined according to weights. The weight of 
each river cell is equal to the distance it covers times the square root of the 
flow discharge. 

J. Klink et al.                                                                                                                                                                                                                                    

https://github.com/icra/wOtter
https://github.com/icra/wOtter


Environmental Modelling and Software 178 (2024) 106049

8

wastewater contamination. Second, some countries use or prescribe 
some compounds more commonly (e.g., Diener et al., 2008; Hoffman 
et al., 2019; Reyes and Cornelis, 2018). Gabapentin, for instance, differs 
by a magnitude of eight between Sweden and Switzerland in 2018 (Chan 
et al., 2023). Such discrepancies in use can be corrected for, but this 
requires reliable data on general use. Third, diffuse sources such as 
inappropriate disposal, urban runoff or illegal dumping may heavily 
affect the prevalence of a single compound in a single water sample. For 
instance, Nicotine may enter rivers through disposal of cigarette stubs. 

Diffuse sourcing may be especially relevant for Caffeine and Nicotine, as 
they are effectively removed by WWTPs. The results from Buerge et al. 
(2008), for instance, show that more than 30 percent of Nicotine does 
not derive from treated wastewater, and the author suggests that these 
may derive from raw wastewater through sewer overflows. 

The occurrence of the lumped contaminant is not only easier to 
predict, but also more relevant due to being a reliable marker of 
wastewater contamination. Even when authors have used single com
pounds in validation, their presence is often argued to be important not 

Fig. 4. An exported image of the interactive map in S3. The discharge is illustrated by the thickness of the river line and the contamination is given by the color. 
Reddish hues imply more contaminated rivers. The circles are wastewater discharge points that cause contamination in the rivers. 

Fig. 5. The figure shows the wastewater plant EDAR SUR in Madrid Spain. The images are snapshots from the interactive figure from Kelper. gl in S3 Figure (a) 
shows the data fields for river sections, this includes the contamination. Figure (b) shows the discharge points, which have information on the treatment levels and 
the populations. Figure (c) shows the observations from Wilkinson et al. (2022) that are used for the model calibration. Figure (d) shows that the three datasets can be 
displayed simultaneously. 
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individually, but as a marker for wastewater contamination (e.g., Acuña 
et al., 2015a; Grill et al., 2018). Acuña et al. (2020) studies diclofenac 
because the study argues that it is a ‘model’ compound for the typical 
pharmaceutical. Anderson et al. (2004) corroborates the model Phate 
with what it calls ‘surrogate compounds’ that are meant to correlate 
with a more general conception of pharmaceutical contamination. Au
thors such as Abily et al. (2022), Rice and Westerhoff (2015) and Ehalt 
MacEdo et al. (2022) forego studying one contaminant and instead 

directly identify contamination with wastewater by using dilution 
factors. 

4.2. Comparison against existing models 

The high R2 of 77.5% obtained in this study is, to our knowledge, the 
largest reported in the literature for MFT models. It improves on a study 
by Lämmchen et al. (2021) that obtained an R2 of 57% when predicting 
median Metformin concentrations. However, that study separated 
occurrence data into those taken in summers and winters. They also 
introduced contamination from outside the model by performing a 
regression with intercept. Nevertheless, our goodness of fit and that of 
Lämmchen et al. (2021) are significant achievements, as many studies in 
this field do not report an R2, and instead rely on other methods of 
validation (Pistocchi et al., 2010). For example, Anderson et al. (2004), 
Font et al. (2019), Grill et al. (2018), and Duarte et al. (2022) compare 
magnitude differences between observations and model predictions, 
while Kapo et al. (2016), and Lämmchen et al. (2021) validate their 
studies by comparing distributions of observations and model pre
dictions. Such methods of validation are widely accepted because in 
many cases MFT models are not accurate enough to use the R2 as a 
metric of fit. 

Our results suggest that MFT models can accurately predict waste
water contamination, but have had low to medium performance pre
cisely because individual contaminants are poor indicators of 
wastewater contamination. Since wOtter predicts the lumped contami
nant accurately, MFT models with similar methodology such as iStreem, 
GREAT-ER, hydroROUT and globalFATE should too. Anderson et al. 
(2004) and Grill et al. (2018) find a much lower goodness of fit despite 
methodological similarity. We hypothesize that this is mostly because 
the surrogate compound used in these studies (caffeine and estrogen 
respectively, among others) does not correlate well with overall waste
water contamination. 

Fig. 6. Contamination per sub-basin. Sub-basins are taken from hydroSHEDS, 
who derive them with the Pfafstetter algorithm. Red hues signify more 
contaminated basins. The parameters of the measure are such that inequality in 
contamination is penalized, with p = 1.2 and a = 0.5 (see sec. 2.5). The score 
generally has no physically interpretable unit, and is unitless after normaliza
tion. An interactive version of Fig. 6 can be found in S4. 

Table 4 
Summary of contamination score, Gini indices and length of contaminated rivers in European water bodies. The column ratio gives the kilometers affected by our 
model over the kilometers affected by wastewater according to HydroWASTE.  

Count Score Gini (%) 0 (km) 0 (%) 0-2 (km) 0-2 (%) >2 (km) >2 (%) wOtter (km) Hydro-WASTE (km) Ratio 

NLD 3.30 43 4621 56 1118 14 2522 31 3639 2892 1.26 
SRB 3.20 75 17373 85 1782 9 1297 6 3078 2100 1.47 
CYP 3.06 90 1572 86 101 6 152 8 253 192 1.32 
BEL 2.66 61 3961 52 2075 27 1522 20 3596 2235 1.61 
LUX 2.00 63 298 45 243 37 120 18 363 246 1.47 
DEU 1.96 50 48740 57 22442 26 14110 17 36552 28206 1.30 
POL 1.58 62 43148 61 20598 29 6925 10 27522 20539 1.34 
BGR 1.54 68 18930 75 2613 10 3720 15 6334 3536 1.79 
HUN 1.52 47 9968 46 6794 31 5062 23 11856 7731 1.53 
SVK 1.51 64 7630 65 3028 26 1101 9 4129 3015 1.37 
ITA 1.45 69 44854 60 20486 27 9630 13 30117 19177 1.57 
ESP 1.30 81 83591 72 20193 17 12182 11 32375 22858 1.42 
CZE 1.29 57 10479 58 5571 31 2047 11 7618 5641 1.35 
GBR 1.19 85 52050 77 10641 16 4586 7 15227 10358 1.47 
ROU 0.69 53 30754 54 24085 42 1908 3 25993 11458 2.27 
HRV 0.57 57 9478 73 2740 21 838 6 3578 1145 3.12 
FRA 0.56 64 92800 68 39183 29 4914 4 44097 30248 1.46 
GRC 0.44 88 20827 83 3694 15 513 2 4207 1647 2.55 
AUT 0.41 54 15658 69 6555 29 323 1 6878 5295 1.30 
DNK 0.32 83 6717 72 2355 25 256 3 2611 1590 1.64 
LTU 0.30 75 12589 80 2940 19 276 2 3216 2444 1.32 
CHE 0.27 64 8218 65 4261 33 254 2 4516 2736 1.65 
SVN 0.25 62 4009 72 1557 28 27 0 1583 931 1.70 
PRT 0.24 79 14502 69 6124 29 498 2 6622 4367 1.52 
EST 0.12 87 8668 84 1613 16 79 1 1692 1133 1.49 
LVA 0.07 81 12543 80 3147 20 75 0 3222 2585 1.25 
IRL 0.06 80 17473 85 2972 14 78 0 3050 1932 1.58 
FIN 0.05 96 65850 87 9889 13 376 0 10265 3953 2.60 
SWE 0.04 95 89182 84 16967 16 364 0 17331 8663 2.00 
NOR 0.02 95 83390 92 6945 8 219 0 7164 3202 2.24 
ISL 0.00 98 40058 97 1060 3 5 0 1065 68 15.7 
MLT 0.00 NA 23 100 0 0 0 0 0 0 NA  
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4.3. Implications 

The accuracy of MFT models in predicting contamination levels is of 
great importance, particularly in light of recent proposed EU regulations 
aimed at reducing concentrations of toxic and persistent chemicals in 
surface water and groundwater (European Commission, 2022). Current 
knowledge on the spatial distribution of microcontaminants is based on 
monitoring programs implemented independently by each EU country, 
with limited coordination on sampling and analysis. MFT models such as 
wOtter can help fill gaps in observations to better understand spatial 
variation in wastewater-derived contamination in water bodies. Such 
models can locate hot spots of contamination and direct sampling ef
forts, as well as simulate counterfactuals such as the impact of upgrades 
to wastewater treatment facilities. 

We intend to use wOtter in future work to optimize investment in 
wastewater treatment given limits on contamination in river bodies. 
wOtter will also be used to evaluate the influence of climate change on 
WWTP upgrades (as in Abily et al. (2021) but now including river 
attenuation). Additionally, we plan to use wOtter to determine the 
sources of contamination and price them according to cost-sharing 
algorithms. 

4.4. Limitations 

When there existed a trade-off between consistency with theory and 
simplification to improve predictive power, we prioritized simplifica
tion. This is most evident in the process of attenuation in water bodies. 
Microcontaminants attenuation in water bodies is relevant and should 
be included in MFT models (Acuña et al., 2015b; Aymerich et al., 2016). 
We only applied first-order attenuation, even when simulating the 
lumped contaminant despite consisting of multiple compounds with 
different rates. We believe first-order attenuation is a reasonable 
simplification, but some studies add more complexity. For example, 
GREAT-ER considers sedimentation, volatilization, photolysis, hydro
lysis, and biodegradation (Kehrein et al., 2015). Jones et al. (2022) adds 
temperature as a parameter to the attenuation process. 

The implementation of wOtter for Europe yielded a large goodness of 
fit, but there are several limitations to the conclusions of the model. The 
first limitation is that the model does not predict toxicity but rather an 
index of toxicity. This means that although we may say that one basin is 
in a worse state than another, we cannot say that the ecological state is 
bad. We could attempt to predict toxic units instead of an index, but this 
would result in a worse proxy for toxicity (see, S6). In addition, quan
tification of toxicity is difficult due to interactions between contami
nants and a simple sum of toxic units may not give a good indication of 
the ecological state (Varaksin et al., 2014). 

The second limitation is that we only considered microcontaminants 
from households, not other types of contamination. Contamination from 
industry, farming or illegal dumping may affect water bodies more than 
micro contamination. For example, a mass death of fish in the river Oder 

was attributed to salinity caused by industrial pollution (Schulte et al., 
2022). In addition, eutrophication due to nitrogen and phosphorus may 
also adversely affect river ecosystems. Hence microcontaminants are 
only one aspect of contamination of waterbodies. 

The third limitation is that wOtter may not be as accurate for smaller 
basins. The challenges posed to modeling European rivers by anthro
pogenic changes in river networks (e.g. artificial diversions of water, 
canals, etc.) limit the preciseness of our implementation for Europe. For 
example, the heavily urbanized river and canal network in Utrecht was 
unsuitable for analysis because residence times, water flow directions 
and discharges could not be estimated accurately. When using wOtter 
for a specific basin, we recommend cross-validating the location of 
WWTPs and contaminants discharge points to water bodies as wOtter 
does not function properly in some specific areas. 

5. Conclusions 

wOtter is an open-source, rapid and user-friendly MFT model that 
can be used to predict wastewater-derived contamination in European 
river networks. A full simulation of the model requires 25 s, although 
faster times are possible using different simulation methods. With the 
speed of implementation, the model is suited for the application of al
gorithms that require many simulations, such as calibrations, optimi
zation algorithms or Monte-Carlo methods. The model calibration 
attained an R2 of 77.5% when using simulation quantities to predict 
occurrences of a lumped contaminant. This suggests that wOtter and 
other MFT models can predict spatial variation in wastewater contam
ination accurately. As such, wOtter may be used in conjunction with 
sampling efforts to tackle micro contamination of water bodies. 

Software availability 

Name: wOtter. 
Contact: Lluís Corominas at lcorominas@icra.cat. 
Year First Available: 2023. 
Hardware required: 8 GB ram (16 GB recommended), 60 GB free 

memory for inputs and outputs used in this study. 
Program language: Python. 
Program available at: https://github.com/icra/wOtter; manual 

available in SI. 
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Table 5 
Some example functions that are included in the wOtter source code library.  

Functions names Description and use. 

Print_sub_graph Converts a river graph into a raster with a user-specified attribute from the river graph. This function, for example, was used to create the 
interactive figure depicting river contamination. 

Graph_to_csv Converts the river network graph into a csv file with a series of selected attributes. This is useful for additional statistical analysis, such as 
calculating aggregated contamination by basins or countries. 

Absorb_shapefile Extracts attributes from a shapefile and appends these attributes to the river graph. The river node that is located within a polygon from the 
shapefile receives the value of the selected attribute of the polygon. This function can be used to create a field within the river graph that 
contains the country or province in which a river cell is located. 

Extract_river_network_by_shapefile Extracts rivers in a region defined by a polygon in a shapefile. An option exists to also include rivers from regions that enter the shapefile. For 
example, one can extract all rivers in Spain using a polygon for Spain, with the additional option to include rivers that flow into and out of Spain. 
The output is a graph object. 

Find_discharge Finds the closest river to a raster cell. This is used to link the wastewater discharge points to the closest river section. 
Load_selected_attributes_graph Loads the river graph with a selection of attributes. While this function takes longer than loading all the attributes, speed of subsequent 

simulation is greatly increased. This function is used in the calibration.  
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Silvani, M., Whelan, M.J., 2006. Modeling the fate of down-the-drain chemicals in 
rivers: an improved software for GREAT-ER. Environ. Model. Software 21 (7), 
925–936. https://doi.org/10.1016/j.envsoft.2005.04.009. 
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Schulze, K., Hunger, M., Döll, P., 2005. Simulating river flow velocity on global scale. 
Adv. Geosci. 5, 133–136. 

Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., von 
Gunten, U., Wehrli, B., 2006. The challenge of micropollutants in aquatic systems. 
Science 313 (5790), 1072–1077. https://doi.org/10.1126/SCIENCE.1127291. 

Varaksin, A.N., Katsnelson, B.A., Panov, V.G., Privalova, L.I., Kireyeva, E.P., Valamina, I. 
E., Beresneva, O.Y., 2014. Some considerations concerning the theory of combined 
toxicity: a case study of subchronic experimental intoxication with cadmium and 
lead. Food Chem. Toxicol. 64, 144–156. https://doi.org/10.1016/j.fct.2013.11.024. 

Verlicchi, P., Al Aukidy, M., Zambello, E., 2012. Occurrence of pharmaceutical 
compounds in urban wastewater: removal, mass load and environmental risk after a 
secondary treatment-A review. Sci. Total Environ. 429, 123–155. https://doi.org/ 
10.1016/j.scitotenv.2012.04.028. 

Vigiak, O., Grizzetti, B., Zanni, M., Aloe, A., Dorati, C., Bouraoui, F., Pistocchi, A., 2020. 
Domestic waste emissions to European waters in the 2010s. Sci. Data 7 (1), 1–13. 
https://doi.org/10.1038/s41597-020-0367-0, 2020 7:1.  

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., 
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., 
Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., 
et al., 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. 
Nat. Methods 17 (3), 261–272. https://doi.org/10.1038/s41592-019-0686-2. 

Whalley, C., Busch, W., van den Roovaart, J., van Dujnhoven, N., Kirst, I., Schmedtje, U., 
Altenburger, R., Sommer, L., 2018. Chemicals in European waters : knowledge 
developments. https://www.eea.europa.eu/publications/chemicals-in-europe 
an-waters. 

Wilkinson, J.L., Boxall, A.B.A., Kolpin, D.W., Leung, K.M.Y., Lai, R.W.S., Galban- 
Malag, C., Adell, A.D., Mondon, J., Metian, M., Marchant, R.A., Bouzas-Monroy, A., 
Cuni-Sanchez, A., Coors, A., Carriquiriborde, P., Rojo, M., Gordon, C., Cara, M., 
Moermond, M., Luarte, T., et al., 2022. Pharmaceutical pollution of the world’s 
rivers. Proc. Natl. Acad. Sci. U.S.A. 119 (8), e2113947119 https://doi.org/10.1073/ 
PNAS.2113947119/SUPPL_FILE/PNAS.2113947119.SD12.XLSX. 

Young, A.R., Grew, R., Holmes, M.G.R., 2003. Low Flows 2000: a national water 
resources assessment and decision support tool. Water Sci. Technol. 48 (10), 
119–126. https://doi.org/10.2166/wst.2003.0554. 

J. Klink et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/J.ENVSOFT.2014.10.018
https://doi.org/10.1016/j.envsoft.2005.04.009
https://doi.org/10.1007/s40710-021-00530-2
https://doi.org/10.1007/s40710-021-00530-2
http://refhub.elsevier.com/S1364-8152(24)00110-5/sref33
http://refhub.elsevier.com/S1364-8152(24)00110-5/sref33
http://refhub.elsevier.com/S1364-8152(24)00110-5/sref33
https://doi.org/10.1016/J.SCITOTENV.2022.157124
https://doi.org/10.1016/j.scitotenv.2009.10.046
https://doi.org/10.3390/nu10111772
https://doi.org/10.1021/ES5048057/SUPPL_FILE/ES5048057_SI_001.PDF
https://doi.org/10.1021/ES5048057/SUPPL_FILE/ES5048057_SI_001.PDF
https://www.bmuv.de/en/download/status-report-on-fish-die-off-in-the-oder-river
https://www.bmuv.de/en/download/status-report-on-fish-die-off-in-the-oder-river
http://refhub.elsevier.com/S1364-8152(24)00110-5/sref39
http://refhub.elsevier.com/S1364-8152(24)00110-5/sref39
https://doi.org/10.1126/SCIENCE.1127291
https://doi.org/10.1016/j.fct.2013.11.024
https://doi.org/10.1016/j.scitotenv.2012.04.028
https://doi.org/10.1016/j.scitotenv.2012.04.028
https://doi.org/10.1038/s41597-020-0367-0
https://doi.org/10.1038/s41592-019-0686-2
https://www.eea.europa.eu/publications/chemicals-in-european-waters
https://www.eea.europa.eu/publications/chemicals-in-european-waters
https://doi.org/10.1073/PNAS.2113947119/SUPPL_FILE/PNAS.2113947119.SD12.XLSX
https://doi.org/10.1073/PNAS.2113947119/SUPPL_FILE/PNAS.2113947119.SD12.XLSX
https://doi.org/10.2166/wst.2003.0554

	Coupling hydrological and sanitation datasets to simulate wastewater-derived contamination in European rivers: Model develo ...
	1 Introduction
	2 Materials and methods
	2.1 Data
	2.1.1 Water bodies
	2.1.2 Sanitation
	2.1.3 Microcontaminant occurrence dataset

	2.2 Model construction
	2.2.1 Creation of the river graph
	2.2.2 Creation of the contamination discharge
	2.2.2.1 Wastewater collection and treatment pathway
	2.2.2.2 Other pathways

	2.2.3 Contaminants routing

	2.3 Creation of a lumped contaminant
	2.4 Model calibration
	2.5 Representation of results

	3 Results
	3.1 Goodness of model fit
	3.2 Model simulation
	3.3 Model functionality

	4 Discussion
	4.1 Use of the lumped contaminant
	4.2 Comparison against existing models
	4.3 Implications
	4.4 Limitations

	5 Conclusions
	Software availability
	Funding sources
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


