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Abstract: Pathobionts have been implicated in various chronic diseases, including Crohn’s disease
(CD), a multifactorial chronic inflammatory condition that primarily affects the gastrointestinal tract,
causing inflammation and damage to the digestive system. While the exact cause of CD remains
unclear, adherent-invasive Escherichia coli (AIEC) strains have emerged as key contributors to its
pathogenesis. AIEC are characterized by their ability to adhere to and invade intestinal epithelial cells
and survive and replicate inside macrophages. However, the mechanisms underlying the virulence
and persistence of AIEC within their host remain the subject of intensive research. Toxin–antitoxin
systems (TAs) play a potential role in AIEC pathogenesis and may be therapeutic targets. These
systems generally consist of two components: a toxin harmful to the cell and an antitoxin that
neutralizes the toxin’s effects. They contribute to bacterial survival in adverse conditions and regulate
bacterial growth and behavior, affecting various cellular processes in bacterial pathogens. This
review focuses on the current information available to determine the roles of TAs in the pathogenicity
of AIEC. Their contribution to the AIEC stress response, biofilm formation, phage inhibition, the
maintenance of mobile genetic elements, and host lifestyles is discussed.
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1. Introduction

The discovery of novel targets for antimicrobial agents is essential to fight against bac-
terial pathogens that cause diverse pathologies, including chronic diseases. Toxin–antitoxin
systems (TAs) are present in nearly all bacterial and archaeal strains, and they have emerged
as potential virulence factors, as they not only affect pathogenicity but are also related to
biofilm formation and persistence. In addition, they play a role in the stabilization of mobile
genetic elements (MGEs) and stress response [1,2]. As a result, components of TAs have
been recognized as promising therapeutic targets [3]. They were initially found to promote
plasmid maintenance by selectively eliminating daughter cells that do not inherit a plasmid
copy during cell division (i.e., PSK systems) [4], and their plasmid maintenance function
has been well established. Subsequently, TA modules were found to be highly abundant
in the chromosomes of almost all free-living bacteria, and despite their abundance and
prevalence, their biological roles have remained poorly defined and even controversial [5].

Canonical TA modules consist of two genes in an operon: a stable toxin whose
overexpression affects bacterial growth and a usually unstable antitoxin that neutralizes
the toxin’s action. Based on the antitoxin mechanism, six major types of TAs are recognized.
While almost all known TA toxins are proteins, antitoxins can be small RNAs that repress
toxin protein expression by interacting with the toxin mRNA (type I) or sequester the toxin
by direct binding (type III). Antitoxins can also be proteins that directly bind and inhibit
the toxin (type II), function as a toxin antagonist (type IV), cleave the toxin mRNA (type V),
or promote the degradation of the toxin serving as a ClpXP protease adaptor (type VI).
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However, there are examples of newly discovered TAs classified as type VII and VIII, in
which the antitoxin chemically modifies the toxin post-translationally to neutralize it [6] or
the toxin is a small RNA whose activity is masked by the antitoxin anti-sense binding [7],
respectively. On the other hand, most toxins are enzymes that interfere with translation,
although they can affect a wide variety of cellular processes such as DNA replication, cell
division, and membrane stability [2].

Stresses to which TAs respond when they are upregulated and/or the toxin is activated
are also stresses that are encountered by pathogens in different niches inside their hosts,
such as nutrient starvation, bile salts, acidic pH, and oxidative stress [8–10]. Hence, TAs
could modulate bacterial physiology and, consequently, play a crucial role in bacterial
virulence and pathogenesis.

2. Crohn’s Disease and Adherent-Invasive Escherichia coli

Crohn’s disease (CD) is a subtype of inflammatory bowel disease (IBD) characterized
by a severe and recurrent chronic immune-mediated granulomatous inflammation, which
can affect any region of the gastrointestinal tract and cause diarrhea, intestinal bleeding,
abdominal pain, anemia, and weight loss [11]. As a global disease, CD (and IBD in general)
has increased its incidence worldwide in the 21st century, particularly in the Western
hemisphere [12].

The etiology of CD has not been elucidated, although it is known to be a multifactorial
process driven by an aberrant immune response to gut bacteria in a genetically susceptible
host [13]. Microbial factors have proven to be indispensable for the onset of this disease. IBD
patients share microbial patterns such as reduced microbial diversity, a decreased relative
abundance of Firmicutes, and increased Proteobacteria [14]. Among the Proteobacteria,
adherent-invasive E. coli (AIEC) are frequently isolated from CD patients [15,16], suggesting
their role in disease development. Indeed, evidence was recently found of AIEC’s causal
role in intestinal inflammation [17].

AIEC are a clonally diverse E. coli pathotype that genetically clusters with extrain-
testinal pathogenic E. coli (ExPEC) [18], but they can penetrate the mucin layer, adhere to
and invade intestinal epithelial cells (IECs), translocate to the intestinal epithelium, and
colonize macrophages [19–22]. While they lack the known virulence factors and invasive
determinants of other E. coli pathotypes, their pathogenic mechanisms are not fully under-
stood, and most of their virulence genes are not AIEC-specific [23,24]. The prototypes for
AIEC are the E. coli LF82 [25] and NRG857c [18] strains, which are included in most studies
analyzing E. coli strains associated with CD.

AIEC rely on metabolic adaptations to outcompete the native microbiota and suc-
cessfully colonize the intestinal mucosa [23,24] and can modulate the immune responses
to persist in the gut [26]. The pathogenic potential of AIEC manifests under certain host
conditions, e.g., AIEC upregulates L-serine metabolism pathways in the inflamed gut to
adapt to the inflammatory microenvironment [27]. Moreover, exposure to bile salts upregu-
lates the expression of metabolic genes such as eut and pdu, allowing AIEC to metabolize
1,2-propanediol (pdu operon) and ethanolamine (eut operon) [23,28]. Consequently, the pdu
and eut operons, which are both enriched in AIEC genomes [24], represent a metabolic
adaptation that may foster AIEC blooms in the gut. In addition, the ability of AIEC to
secrete mucinolytic enzymes such as Vat promotes mucosal invasion [21]. The adhesion
to and invasion of IECs is mediated by the bind of FimH adhesin of type I pili to the Car-
cinoembryonic Antigen-related Cell Adhesion Molecules 6 (CEACAM6) receptor, which
indeed is upregulated in CD patients [29]. On the other hand, some AIEC strains have
FimH adhesin variants that more efficiently bind IECs [30]. OmpC [31], ChiA [32], and the
flagella [33] are also important for AIEC to adhere to IECs.

An outstanding feature of AIEC is their ability to survive inside macrophages [20],
and genes such as hrtA [34], dsbA [35], ibeA [36], and hfq [37] are important for AIEC
intramacrophage fitness, along with the SOS and stringent responses [38], the capacity
to form biofilm-like structures within phagolysosomes to avoid lysis [39], and the ability
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to switch to a non-replicative state after phagocytosis, with a fraction of the population
becoming persister cells [38].

3. Putative TA Roles in AIEC’s Pathogenesis

The array of TAs in AIEC became known some time ago [9] with the revelation that
the NRG857c chromosome contains a minimum of 33 TAs belonging to types I, II, IV, and
V. Some of these TA toxin genes exhibited in vitro responsiveness to bile salts and acid
stress, as well as to conditions found within macrophages [9]. A recently updated online TA
database, TADB 3.0 [40], reports 16 and 20 TAs in LF82 and NRG857c genomes, respectively,
in both the chromosome and extrachromosomal plasmids (Tables 1 and 2). Discrepancies
in NRG857c between both sources are due to non-annotated genes that are not contained in
TADB 3.0, as well as novel genes (type VIII SdsR-RyeA) or plasmid systems not considered
in the first report [9]. Nevertheless, these findings suggest that AIEC possess a responsive
arsenal of TAs, which are intriguing bacterial factors whose exploration can deepen our
comprehension of AIEC’s pathogenesis and their involvement in the chronicity of CD.

Table 1. TA loci of the AIEC LF82 reference strain according to TADB 3.0 [40].

TA ID Toxin Antitoxin Family/Domain Comments

TA214828 K8B90_RS03460 (symE) -(symR) symER/SymE (toxin) Type I
TA214832 K8B90_RS03850 (hokC) -(sokC) hok-sok/- Type I
TA214852 K8B90_RS22020 (ldrD) -(rdlD) ldrD-rdlD/Ldr (toxin) Type I
TA214826 K8B90_RS00850 (higB) K8B90_RS00855 (higA) higBA (relBE)/HTH (antitoxin) Type II
TA214834 K8B90_RS04020 (ccdB) K8B90_RS04015 (ccdA) ccdAB/CcdA (antitoxin) Type II
TA214835 K8B90_RS05120 (yafO) K8B90_RS05115 (yafN) yafN-yafO (relBE)/YafO-YafN Type II
TA214836 K8B90_RS06040 (Hha) K8B90_RS06045 (TomB) Hha-TomB/- Type II
TA214837 K8B90_RS11255 (higB) K8B90_RS11250 (higA) higBA (relBE)/HigB-HigA Type II
TA214838 K8B90_RS11415 (hipA) K8B90_RS11420 (hipB) hipBA/HipA-HipB Type II; related to MGE
TA214847 K8B90_RS14005 (pemK) K8B90_RS14010 (pemI) pemIK/PRK09812-MazE Type II; related to MGE
TA214848 K8B90_RS14290 (yoeB) K8B90_RS14295 (yefM) yefM-yoeB (relBE)/YoeB-YefM Type II
TA214849 K8B90_RS17940 (mazF) K8B90_RS17945 (mazE) mazEF/PRK09907-MazE Type II
TA214851 K8B90_RS19925 (yhaV) K8B90_RS19920 (prlF) prlF-yhaV (relBE)/YhaV-PrlF Type II
TA214850 K8B90_RS18545 (cptA) K8B90_RS18550 (cptB) cptAB/CptA (toxin) Type IV
TA214827 K8B90_RS02180 (ghoT) K8B90_RS02175 (ghoS) ghoTS/ghoT-GhoS Type V
TA214839 -(SdsR) -(RyeA) SdsR-RyeA/- Type VIII

Table 2. TA loci of the AIEC NRG857c reference strain according to TADB 3.0 [40].

TA ID Toxin Antitoxin Family/Domain Comments

TA027329 NRG857_RS00075 (hokC) -(sokC) hok-sok/- Type I; TA1 at [9]
TA027349 NRG857_RS17965 (ldrD) -(rdlD) ldrD-rdlD/Ldr (toxin) Type I; TA14 at [9]
TA027353 NRG857_RS22450 (symE) -(symR) symER/SymE (toxin) Type I; TA16 at [9]
TA027597 NRG857_RS23200 (srnB) -(sok) hok-sok/- Type I; on plasmid pO83_CORR
TA027602 NRG857_RS23320 (hok) -(sok) hok-sok/- Type I; on plasmid pO83_CORR
TA027331 NRG857_RS00245 (ccdB) NRG857_RS00240 (ccdA) ccdAB/CcdA (antitoxin) Type II; TA17 at [9]
TA027332 NRG857_RS01300 (yafO) NRG857_RS01295 (yafN) yafN-yafO (relBE)/YafO-YafN Type II; TA18 at [9]
TA027333 NRG857_RS02210 (Hha) NRG857_RS02215 (TomB) Hha-TomB/- Type II
TA027334 NRG857_RS07485 (higB) NRG857_RS07480 (higA) higBA (relBE)/HigB-HigA Type II; TA20 at [9]
TA027335 NRG857_RS07640 (hipA) NRG857_RS07645 (hipB) hipBA/HipA-HipB Type II; TA21 at [9]; related to MGE
TA027344 NRG857_RS10225 (pemK) NRG857_RS10230 (pemI) pemIK/PRK09812-MazE Type II; TA22 at [9]; related to MGE
TA027345 NRG857_RS10510 (yoeB) NRG857_RS10515 (yefM) yefM-yoeB (relBE)/YoeB-YefM Type II; TA23 at [9]
TA027346 NRG857_RS13925 (mazF) NRG857_RS13930 (mazE) mazEF/PRK09907-MazE Type II; TA24 at [9]
TA027348 NRG857_RS15890 (yhaV) NRG857_RS15885 (prlF) prlF-yhaV (relBE)/YhaV-PrlF Type II; TA25 at [9]
TA027351 NRG857_RS19860 (higB) NRG857_RS19865 (higA) higBA (relBE)/HTH (antitoxin) Type II; TA27 at [9]
TA027596 NRG857_RS22890 (vagD) NRG857_RS22885 (vagC) vagCD/VapC-VagC Type II; on the plasmid pO83_CORR
TA027601 NRG857_RS23235 (vapC) NRG857_RS23230 (vapB) vapBC/VapC-VagC Type II; on the plasmid pO83_CORR
TA027347 NRG857_RS14535 (cptA) NRG857_RS14540 (cptB) cptAB/CptA (toxin) Type IV; TA31 at [9]
TA027352 NRG857_RS21190 (ghoT) NRG857_RS21185 (ghoS) ghoTS/ghoT-GhoS Type V; TA32 at [9]

TA027336 1894846..1894948 (-)
-(SdsR) -(RyeA) SdsR-RyeA/- Type VIII
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TAs reportedly control a broad range of cell transition states in response to various
environmental stresses and are involved in different biological processes. However, there
are four currently accepted bona fide TA roles in bacterial cell physiology, including growth
diminution during stress, phage inhibition, MGE maintenance, and biofilm formation [2].
All of them may play a role in AIEC’s pathogenesis and are discussed here.

3.1. Roles in Stress Response

Although the physiological role of TAs as stress response modules is questioned [5],
there are several reports of TAs playing important roles in pathogenic bacteria activity
in response to various environmental stress, with not all TAs responding to the same
stress [8,10,41].

The presence of bile salts is a host signal encountered by enteric bacteria as they travel
through the gastrointestinal tract, and enteric pathogens utilize bile as a signal to modulate
virulence factor expression [42]. Accordingly, in the presence of bile salts, AIEC induce
long polar fimbriae expression to allow the bacteria to interact with Peyer’s patches and
M cells [43]; they undergo metabolic adaptations [23], and some of their chromosomal TA
toxins are upregulated [9]. Homologs of toxin genes yafO, parE, hipA, mazF, yoeB, cptA,
and ortT, are upregulated in response to bile salt treatment in both NRG857c and another
phylogenetically distant AIEC strain, HM605 [9,44].

In addition to bile salts, AIEC encounter diverse stressful conditions during host
infection, as the intracellular environment of macrophages is a great threat to survival.
In this setting, AIEC must face acid stress and oxidative stress, toxic metal cations, and
antimicrobial peptides. Under in vitro acidic conditions and intramacrophage conditions,
AIEC respond, inducing expression of an arsenal of toxin genes, such as ccdB, yafO, parE,
yoeB, mazF, cptA, ghoT, and ortT [9]. As TA genes can respond to different stress condi-
tions, activation of different toxin genes could be triggered by diverse intramacrophage
stresses, collectively contributing to AIEC survival. Indeed, toxin genes upregulated
within the macrophage, such as mazF, cptA, and ortT, do not necessarily respond to acid
stress in vitro [9], which suggests that they could be responsive to different stress in the
intramacrophage environment.

CcdB toxin targets DNA gyrase, affecting bacterial DNA replication [45]; it belongs
to the CcdAB system, which is well known for ensuring F-plasmid maintenance [46]. Its
chromosomal counterpart in pathogenic E. coli O157:H7 has been found to contribute to
antibiotic tolerance [47]. C-terminal residues W99, G100, and I101 are important for CcdB
toxicity but not for its regulatory function as a transcriptional regulator of its own operon
(as part of the TA complex with its cognate antitoxin CcdA) [48]. AIEC NRG857c harbors a
CcdB W99D variant, identical to its homolog from the ExPEC CFT073 strain [9], but it is
unknown if these are bona fide TA toxins. However, in Salmonella, a CcdB W99R variant is
known to be non-toxic but is still expressed in vitro and within the host [41]. Similarly, in
AIEC NRG857c, the ccdB gene is upregulated in bile salt and acidic stress conditions, as
well as within macrophages [9]. As suggested for Salmonella [41], these CcdB toxins may be
diverging and losing properties compared to their functional homologs, highlighting that
their contributions to bacterial pathogenicity should be tested.

YafNO, ParDE, and YefM/YoeB all belong to the TA relBE family, a diverse family
whose members are classified by similarities in secondary and/or tertiary structures [49],
although they may have different properties and respond differentially to environmental
stresses [49,50]. In AIEC, the exposure to bile salt and acidic stress conditions upregulates
the yafO, parE, and yoeB homologs [9].

YafO is a ribosome-dependent mRNA interferase that inhibits protein synthesis [51]. E.
coli yafO toxin gene is induced by several stressful conditions, including antibiotic treatment,
amino acid starvation, and glucose starvation [50]. yafO is also upregulated by the SOS
response [52], which is crucial for AIEC survival inside the macrophage [38]. Consequently,
yafO is highly upregulated in response to bile salts and stresses inside the macrophage [9].
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ParE is a DNA gyrase inhibitor that blocks DNA replication [53]. Ectopic expression
of parDE from conjugative IncI and IncF plasmids found in E. coli and Salmonella species
was observed to promote biofilm formation in E. coli [54]. NRG857c parE genes are encoded
downstream of higA genes, which appear to be their cognate antitoxins. The HigBA system,
also a member of the relBE family, is involved in tolerance to bile salts in the Gram-positive
bacteria Weissella cibaria. When bacteria were exposed to bile salts, HigBA was activated,
and persister cells were formed to escape the stress, improving viability [55]. In addition,
HigBA was shown to be a growth regulator during DNA damage stress in Caulobacter
crescentus [56]. Although they remain to be characterized, parE/higA TA pairs could be
bona fide TAs and play a role as stress response elements in AIEC.

YoeB is a ribosome-dependent mRNA interferase involved in the stress response of dif-
ferent pathogens. In E. coli, YoeB is activated during thermal stress without eliciting growth
arrest [57]. In the Gram-positive Streptococcus pneumoniae and the aquatic Edwardsiella
piscicida pathogens, a yefM-yoeB deletion reduces the response to oxidative stress [58,59],
while in the ExPEC isolate CFT073, yefM-yoeB enhances bladder colonization [8]. During
their intramacrophage lifestyle, AIEC must face acidic and oxidative stresses to survive;
in consequence, yoeB expression is induced under acidic stress and is one of the most
expressed toxin genes inside macrophages [9].

Altogether, antecedents of the NRG857c and HM605 strains and other pathogens sug-
gest that relBE members probably affect AIEC’s response to the diverse stressful conditions
found during host infection.

Another relBE member corresponds to the MqsRA system, which influences E. coli
during bile acid stress [60] and whose antitoxin MqsA is considered a regulator of other cell
regulators [61]. However, the role of MqsRA in stress response has been questioned [62].
Wang et al. [61] proposed that MqsA regulates the general stress response through the direct
transcriptional repression of the stationary phase sigma factor RpoS, reducing metabolism
through mRNA decay and activating type V toxin GhoT. Homologous MqsRA was not
identified in NRG857c or LF82; indeed, ghoT, a target regulated by MqsA, was down-
regulated in response to bile salts [9]. Conversely, the GhoT-related orphan toxin gene,
ortT-1, was highly upregulated in these conditions and in different AIEC strains [9]. In E.
coli, OrtT was found to be important for maintaining cell fitness during stringent stress,
diminishing both growth and metabolism [63]. As AIEC rely on their stringent response to
survive inside the macrophage, OrtT toxin, as well as other TA toxins, may be important
to triggering survival strategies in this intracellular environment, as discussed below (see
Section 3.5.2).

In E. coli, the type IV CptAB system comprises a membrane-associating toxin, CptA,
that inhibits cell division by interfering with the polymerization of cytoskeletal proteins [64].
However, homologs in Serratia sp. strain ATCC 39006 [65] and Shewanella oneidensis [66]
are not part of a bona fide TA system, although the genes conserve synteny and a CptA
homolog still might interact with multiple cell division proteins. The homologous antitoxin
CptB in S. oneidensis is required for normal growth and contributes to stress tolerance [66].
In AIEC, the cptAB system identified in silico (Tables 1 and 2, [9]) is identical to the
one characterized by Masuda et al. [64], and a homologous cptA toxin gene is slightly
upregulated under bile salt and acidic stress, as well as inside macrophages [9]. On the
contrary, in Acinetobacter baumannii, cptAB genes are downregulated under oxidative and
antibiotic stress [67]. This emphasizes the variability within TA systems and that each
system must be studied considering its natural genetic context to decipher its contribution
to bacterial physiology.

Different TAs may independently provide significant advantages to AIEC within
specific host environments where they must deal with diverse stresses. However, although
the role of TAs in stress response has been questioned [5,62], it is important to characterize
them in their native strain’s background and biological context, especially in pathogens like
AIEC. Here, it is relevant to consider AIEC’s special features, which contrast with those of
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other E. coli strains, to uncover the real contribution of TAs to stress response, physiology,
and pathogenicity.

3.2. Roles in Biofilm Formation

Biofilms consist of organized bacterial communities embedded within polysaccharide
polymers, providing protection against antibiotics and evasion of host innate immunity;
they can exist both extracellularly and intracellularly. Interestingly, biofilm formation can
be a strategy to sustain intracellular bacterial populations inside host cells, contributing
to persistence [39]. Moreover, microbial biofilms are often linked to chronic diseases like
IBD [68]. Several studies indicate that TAs may influence biofilm development, although
the exact mechanisms remain unclear.

AIEC are known biofilm producers [39,69] and possess TAs that can be involved in
biofilm formation. In particular, AIEC possess homologs of TA mazEF, hipBA, ccdAB, higBA,
yefM-yoeB, and other parE toxins (Tables 1 and 2) that are reportedly involved in biofilm
formation in other bacteria.

MazF, the toxin component of TA MazEF, is a ribosome-independent sequence-specific
endoribonuclease [70]. The deletion of mazEF was observed to reduce biofilm formation
in E. coli MC4100relA+, and it was suggested that TA-mediated cell death was important
for optimal biofilm formation [71]. In contrast to its role in E. coli, mazF is proposed
to inhibit biofilm formation and promote biofilm antibiotic tolerance in Staphylococcus
aureus [72]. Moreover, the deletion of mazEF along with four more TAs (relBE, chpB, yefM-
yoeB, dinJ-yafQ) influenced biofilm formation in a temporal manner in E. coli MG1655
(less biofilm formation at 8 h and more biofilm formation at 24 h). Deleting these five TA
systems promotes the expression of yjgK, an uncharacterized protein that represses fimbria
genes in E. coli MG1655 [73]. On the other hand, the deletion of each of these five toxins
independently (mazF, relE, chpB, yoeB, and yafQ) increased early biofilm formation while
overexpression of the toxins repressed biofilm formation in E. coli BW25113, suggesting the
role of the antitoxins in the regulation [73].

RelE is a ribosome-dependent codon-specific endoribonuclease [74], and deletion of
relBE also reduced biofilm formation in E. coli K12 [75]. Similar to the role in E. coli, deletion
mutants of relBE systems formed significantly less biofilm than the wild-type strain in Vibrio
cholerae, and deletion mutants of relBE and yefM-yoeB also decreased the biofilm formation in
Streptococcus pneumoniae [58,76]. It has been suggested that the RelBE family influences the
entire process of biofilm development in V. cholerae because different relBE deletion mutants
decreased biofilm formation at different stages of biofilm development [76]. However,
mazF, relE, or double deletion mutants had no effect on biofilm formation in Streptococcus
mutants [77]. Moreover, yefM-yoeB inhibited biofilm formation in Edwardsiella piscicida [59],
and overexpression of toxins resembling RelE and VapC in Burkholderia cenocepacia showed
a positive effect on biofilm formation [78]. In addition, ectopic expression of parDE TA
promoted biofilm formation in E. coli [54], and deletion of parDE in Caulobacter crescentus
increased biofilm formation [79].

Homologs of mazEF, relBE, and yefM-yoeB are encoded by AIEC, and we can speculate
on their similar roles in biofilm formation. In AIEC, these systems are induced in the
presence of bile salts [9], a condition that also increases the transcription of genes involved
in biofilm formation [23]. Notably, enteric pathogens like Salmonella and Shigella form a
biofilm in the presence of bile salts [42,80], which might favor gut colonization.

higAB was found to play no role in biofilm formation in E. coli. In Pseudomonas
aeruginosa, HigB toxin from the higAB system reduces biofilm formation by reducing the
intracellular levels of c-di-GMP, which, in turn, induces motility [81,82]. In addition, the
deletion of higAB and higB influences biofilm formation in Edwardsiella piscicida [83].

HipA is a serine/threonine kinase that phosphorylates elongation factor thermal
unstable (EFTu) and inhibits protein synthesis [84]. hipBA is reported to be involved in
the production of eDNA, an important structural component of biofilms in E. coli [85]. In
line with this, transcriptional silencing of hipBA and ccdAB significantly reduced biofilm
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formation in the probiotic strain E. coli Nissle 1917 [86]. Homologs of hipA and ccdB are
induced in AIEC both in the presence of bile salts and inside macrophages [9], conditions
where biofilm formation is important to successfully colonize and persist.

As noted, several TAs could influence the development of biofilm formation in AIEC.
Given the significance of biofilm formation in AIEC pathogenicity, exploring the involve-
ment of TAs in this process represents a novel and clinically relevant area of research.

3.3. Role as Phage Inhibition Systems

Bacteriophages reside within the gut environment and form a major part of the gut
microbiota. They selectively infect bacterial strains and naturally aid the maintenance
of the gut microbiota and its composition [87]. There is growing evidence that TAs play
critical roles in protecting bacteria against bacteriophages, and these systems are thought
to mediate abortive infection, wherein the host cell dies in response to phage infection [88].

AIEC are susceptible to phage infection and possess TAs as part of their genomic
repertoire, which may be involved in defending against phage predation [9]. Type II mazEF
system and type I hok/sok system, which are included in the AIEC TA repertoire, were
reported to participate in phage defense in E. coli. mazEF was described to mediate cell
death as a phage P1 defense mechanism [89]. However, the role of mazEF remains uncertain
because these results could not be replicated [90]. Moreover, the hok/sok system from the R1
plasmid was found to protect against the T4 phage in E. coli K12, although the mechanism
is still not clear [91].

Prophages are not unusual on AIEC genomes. While some defective prophages
are present on NRG857c [18], LF82 encodes five prophages considered to be complete
and functional [25], and homologs have been identified in contigs from E. coli isolated
from CD patients [92]. However, phage resistance assays performed with E. coli isolated
from CD patients revealed that sensitivity or resistance to some tested phages was not
necessarily related to the presence or absence of a particular prophage in a genome [92],
which suggests a putative role for TAs in mediating abortive infection in AIEC. On the
other hand, it has been hypothesized that the survival of LF82 in macrophages is partly due
to its ability to control the induction level of its most active prophage [93]. Notably, inside
macrophages, AIEC express an arsenal of TA toxin genes [9], and we can speculate on the
role of TAs in controlling prophage induction levels in these conditions by a mechanism
similar to abortive infection. Overall, TA’s activation could contribute to the survival and
persistence of AIEC within the gut environment and macrophage by providing phage
defense mechanisms.

In recent years, phage therapy has regained attention as a therapeutic approach to
combat infectious diseases [94]. Bacteriophages that target AIEC were found to reduce DSS-
induced colitis symptoms in CEABAC10 transgenic LF82-colonized mice and significantly
reduce the number of AIEC in feces and in the adherent microbiota of intestinal sections [95].
Therefore, phages targeting AIEC strains are a promising new treatment for IBD, and
elucidating whether their TAs mediate abortive infections is crucial for the design of
efficient bacteriophage therapies.

3.4. Roles in MGEs Maintenance

Although TAs are nearly ubiquitous within bacterial genomes, individual TAs exhibit
restricted gene synteny, and they are commonly part of the accessory genome. Indeed,
TAs were originally discovered on plasmids and associated with the PSK of plasmid-
free cells [4], leading to plasmid maintenance in the bacterial population. Nowadays,
it is recognized that, regardless of their location in plasmids or chromosomes, TAs may
influence the maintenance of genetic elements to which they are physically linked, such
as genomic islands (GIs) [96–99]. This maintenance role may influence the host-adapted
lifestyle and evolution of important pathogens [100].

Plasmids play a critical role in enabling bacteria to adapt to specific environments
and stresses, as they often carry genes that confer resistance to antibiotics and/or genes
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associated with pathogenicity [101,102]. AIEC LF82 and NRG857c harbor different extra-
chromosomal plasmids, whose contribution to AIEC evolution and pathogenicity remains
to be investigated. Nevertheless, plasmids seem to be ubiquitous in AIEC, as sequencing
data from AIEC clinical isolates retrieved plasmid contigs similar to sequences of plasmids
from pathogenic bacteria, e.g., UPEC and Salmonella [92].

AIEC LF82 contains a plasmid of size 108,379 bp (plLF82), which may be acquired via
horizontal gene transfer from Yersinia or Salmonella [25]. plLF82-homologous sequences
in CD-associated E. coli have also been identified [92]. A different plasmid is carried by
AIEC NRG857c (pO83_CORR, 147,060 bp), resembling an antimicrobial multi-resistance
plasmid [18]. According to the database TADB 3.0 [40], plLF82 is devoid of TAs, while
pO83_CORR possibly carries at least three putative TAs belonging to type I hok-sok and
type II VagCD and VapBC families (Table 2).

The hok/sok locus is well known for its plasmid stabilization function, but it also
affects growth control and may complement the existing or defective SOS mechanism [103].
Besides being chromosomally encoded, VapBC and VagCD TA systems are abundant on
plasmids from different bacterial pathogens [104,105], where they might participate as
plasmid maintenance modules. VapC and VagD toxins belong to the PIN-domain family
of proteins and inhibit translation through the cleavage of RNAs [106]. On Shigella, a
large virulence plasmid, pINV, critical for virulence, relies on a member of the VapBC
family (MvpAT) to ensure its retention inside the host [107]. In consequence, type I
hok/sok and VapBC (VagCD) in pO83_CORR may function similarly to their plasmidial
homologs in other bacteria, which would enhance the ability of AIEC NRG857c to establish
infections and propagate the antibiotic resistance elements carried on pO83_CORR, thereby
contributing to its pathogenicity.

Besides plasmids, GIs are mobile elements known to contribute to bacterial fitness and
could encode genes involved in pathogenicity. AIEC carry different GIs not exclusive to the
pathotype. For instance, 9 large GIs were identified in the LF82 genome [25] and 35 GIs on
NRG857c, which are also highly conserved in LF82 [18], suggesting that they may encode
traits relevant to the AIEC pathotype.

HipBA and PemKI type II TAs were identified on chromosomal MGEs in AIEC
(Tables 1 and 2). HipBA (hipBA-1, TA21 at [9]) is encoded close to a variable region up-
stream of an F9 fimbrial operon. This hipBA locus is conserved between non-pathogenic
and pathogenic bacteria; in addition, a complete F9 operon is only present in pathogenic
E. coli [9,108]. In UPEC, F9 fimbrial expression is regulated by H-NS and temperature;
it plays a role in biofilm formation [108,109], and it provides a fitness advantage during
inflammatory conditions in a mouse model [110]. The regulation and contribution of the F9
operon to AIEC pathogenicity are unknown, along with the contribution of the hipBA locus.
For instance, in AIEC NRG857c, hipA-1 is upregulated under in vitro stress conditions
and those found inside macrophages; on the other hand, it is completely switched off
inside macrophages in the HM605 strain [9]. Differential expression regulation between
AIEC strains and TAs highlights the diversity of both the AIEC pathotype and TAs, and
it underscores the importance of studying the biological roles of TAs in their specific
genetic contexts.

PemKI was originally considered responsible for the stable maintenance of plasmid
R100 [111] but is now known to have different roles in several plasmids and bacteria [112,113].
In AIEC NRG857c, the pemKI locus (mazEF-1, TA22 at [9]) is encoded within an MGE
containing the genes of a phosphoenolpyruvate-dependent sugar phosphotransferase
system [9]. PemKI is known to be plasmid-encoded, its chromosomal counterpart being the
MazEF system (also known as ChpBA) [114]. However, several pemKI loci have been found
on plasmids and chromosomes from different bacteria [115]. These recall the mobile nature
of TAs, which can jump from extrachromosomal elements to the chromosome or within the
same chromosome. However, the functionality of these systems must be tested. Of note,
Janczak et al. [116] reported that the location of a pemKI locus in the bacterial chromosome
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results in the loss of its toxicity. Thus, it is important to test whether AIEC’s mobile TAs are
bona fide systems and how they contribute to bacterial pathogenicity.

3.5. Role in the Host Lifestyle

AIEC’s main pathophysiological features are the adhesion to and invasion of IECs
and replication inside macrophages without inducing cell death [15,19,20]. Although some
genetic factors were shown to be important for these intracellular lifestyles, much remains
to be revealed. TAs were reported to be involved in bacterial pathogenicity, including
intracellular survival [41,117]. Indeed, different TAs control the Salmonella lifestyle inside
eukaryotic cells [41]. For AIEC, distinct microenvironments found inside different eukary-
otic cells could trigger disparate arsenals of TAs. In consequence, AIEC could rely on their
TA repertoire to ensure their intracellular survival, which is critical for the progression of
the infection, as is discussed here.

3.5.1. Intra-IECs Lifestyle

To date, both type I and II TAs have been reported to influence bacterial intracellu-
lar survival within epithelial cells, though only a few studies have been performed on
epithelial cells of intestinal origin. Within IECs, LF82 is in vacuoles or free in the host
cell cytoplasm [19]; however, besides some transcriptomic studies of AIEC during in vitro
infection [118], its physiological status inside IECs remains unknown. Further research on
the role TAs might play in IECs’ intracellular survival is necessary.

The AIEC array of TAs previously reported to be involved in intracellular eukaryotic
lifestyles in other bacteria includes hok, ldrA, and higB toxins (Tables 1 and 2).

Several studies performed on the well-known intracellular pathogen Salmonella report
that TAs control bacteria lifestyle inside eukaryotic cells. A proteomic and expression
analysis confirmed that intracellular S. Typhimurium produces functional toxins encoded
by type I (Hok, LdrA, and TisB) and type II (T2ST, T4ST, T5ST and VapC2) TAs in fibrob-
lasts. Deletion mutants of hok-sokST, ldrA-rdlAST, tisB-istRST, ta4ST, and vapBC2ST showed
reduced intracellular survival inside fibroblasts [41]. Notably, only the vapBC2ST deletion
mutant showed reduced intracellular survival inside HeLa epithelial cells [41]. Further-
more, the deletion mutant of hha and tomB4 from type II TAs showed reduced invasion
ability across HCT116 colon carcinoma cells compared to the wild-type strain in Salmonella
enterica [119]. The downregulation of the master regulator hilA and the reduced expres-
sion of Salmonella Pathogenicity Island-1 (SPI-1) genes in the mutant strain is proposed to
cause the decreased invasion ability [119]. Similarly, Song et al. reported the activation
of type II TA PA1030/PA1029 (not yet characterized), PA1878/PA1879 (VapBC homolog),
and PA4674.1/PA4674 (denoted as HigBA) during the P. aeruginosa infection of A549 lung
epithelial cells. Deletion mutants of these TAs showed no difference in the adhesion ability
to A549 epithelial cells compared to the wild-type strain, whereas the higB mutant strain
showed reduced invasion ability [120]. Other studies performed using a model of the
primary human upper airway tissue indicated that deletion mutants of type II TA tox-
AvapA, vapBC-1, vapXD had lower intracellular survival levels over the 8 days of co-culture
compared to the wild-type strain in non-typeable Haemophilus influenzae [121,122].

On the other hand, TA disruption was also found to increase intracellular survival.
Disruption of the fit (fast intracellular trafficker) locus (fitAfitB) TA caused an accelerated
replication rate of Neisseria gonorrhoeae within the A431 epithelial carcinoma cell line and
T84 colonic carcinoma cell line and a quick transit through the polarized T84 epithelial
monolayer compared to the wild-type strain [123].

The role of TAs in intracellular survival has been demonstrated in several bacterial
species, though it is very limited in E. coli. Deciphering the role TAs may play in intracellular
survival and replication within IEC could lead to the design of new therapies for CD
patients colonized by AIEC.
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3.5.2. Intra-Macrophage Lifestyle

The hallmark of AIEC is their capacity to survive longer and replicate within
macrophages [20]. In this intracellular environment, LF82 remains in mature phagolyso-
somes [35] and forms biofilm-like structures [39] to confront several stresses. As we have
noted, the stress response is key to the survival of AIEC in macrophages, and some genes
have been identified supporting AIEC survival and replication in this niche, including htrA,
dsbA, ibeA, and hfq [34–37], as well as the SOS and stringent responses [38].

The role of TAs in the survival of bacteria inside macrophages has been studied almost
exclusively in Salmonella Typhimurium. S. Typhimurium strain 12023s cells enter a non-
growing state upon entry to host macrophages through a mechanism dependent on type
II TAs [124]. Fourteen type II TA operons were upregulated within 30 min of Salmonella
phagocytosis, and although their deletion did not impair intracellular replication rates, the
deletion of these TA genes reduced the proportion of nonreplicating bacteria in infected
macrophages [124]. TacT, a novel GCN5-related N-acetyltransferase (GNAT)-like toxin,
was responsible for promoting the Salmonella non-growing state through acetylation of
tRNA [125]. The participation of different GNAT toxins in the macrophage survival of
clinical invasive strains of S. Typhimurium and Enteritidis was later revealed [126]. In
addition to GNAT toxins, Rhs toxins were shown to comprise functional type II TAs and to
affect the proliferation of Salmonella during macrophage infection [127].

On the other hand, in Enterococcus faecalis, the type I ef0409-ef0408 system was shown
to be involved in the infection process and survival inside host cells. A ∆ef0408 antitoxin
mutant exhibited a hypervirulence phenotype in the infection model Galleria mellonella
and in macrophages, as the mutant survived better than the wild-type [128]. Michaux
et al. [128] hypothesized that free toxin ef0409 might have contributed to the hypervirulent
phenotype and that ef0408 sRNA could be acting as a sensor and suppressor of ef0409
toxin activity to control growth and virulence. They proposed an equilibrium between
favorable colonization (by repressing virulence) and pathogenicity according to the host
environment, and sRNA such as that from type I TA could act as a key regulator in the
transition from a commensal relationship to virulence [128,129].

As in Salmonella [124], an arsenal of TAs is upregulated in AIEC after phagocytosis [9].
However, GCN5 toxins have not been identified in AIEC, and currently, no Rhs toxin is
characterized in this pathotype, meaning different toxins should be involved in the growth
regulation of AIEC within macrophages. Among them, ccdB, yafO, hipA, parE, yoeB, mazF,
cptA, ghoT, and ortT are putative candidates as they are highly upregulated after AIEC
phagocytosis [9].

TAs may participate in different processes important for AIEC intramacrophage sur-
vival. For instance, they could serve as stress response modules (See Section 3.1), in the
formation of intracellular biofilm-like structures (see Section 3.2), and as phage inhibition
systems (see Section 3.3). However, forming persister cells is also a strategy of AIEC to
avoid macrophage killing and favor survival [38], and the participation of TAs in this
process is discussed in the following subsection.

3.6. Roles in Persister Cell Formation

Bacterial persistence corresponds to a reversible phenotypic state in which a small
subpopulation of bacteria remains non-replicative, which allows them to survive deadly
stress conditions such as antibiotic treatments. In consequence, persister cells hinder the
treatment of bacterial infections and chronic diseases [130] like CD. For instance, AIEC rely
on their biofilm and persister cell formation to acquire the maximum protection against
macrophage attack or antibiotics [131], which could allow them to establish a long-term
survival niche within phagocytic cells in CD patients, making treatment more challenging.

Persister cells are produced spontaneously or stress-induced; however, the molecular
mechanisms underlying their formation remain elusive. Activations of stringent response
through (p)ppGpp [132,133], SOS response [134], and TAs [124,125] are some of the molec-
ular mechanisms linked to persister cell formation. Nevertheless, the participation of TAs
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is controversial [5,135–137], in part because some experiments were conducted in exper-
imental conditions not relevant to TA activation. Of note, certain TA mutants displayed
altered levels of persisters in a specific biological context but not when they were studied
in in vitro laboratory conditions.

Remarkably, the first gene associated with persistence corresponded to a TA toxin,
hipA [138]. In E. coli HipA corresponds to a serine/threonine-protein kinase that phospho-
rylates glutamyl-tRNA-synthetase, leading to the accumulation of uncharged tRNA-Glu
in the cell and the consequent activation of stringent response [139]. A variant HipA7
(G22S and D291A) is non-toxic and associated with a high-persistence phenotype in E.
coli [132]. Similarly, a homologous HipA was associated with persistence in Caulobacter
crescentus [140].

TAs other than hipA have been shown to contribute to persistence in several bacterial
species, for example, yafQ/dinJT, tisAB/istR, hokB/sokB, and mqsRA in E. coli [141–144]; tacT
toxin, relBE, parDE, higBA, and vapBC in Salmonella [124,125]; and smuATR in S. mutans [145].
Recently, Ma et al. described the role of the MazEF system in S. aureus chronic infection [72].
They examined MazEF in virulence using a murine model and found that mazF increases
antibiotic tolerance and allows bacteria to transition from acute to chronic infection [72].

AIEC encode homologs of TAs previously reported to be involved in persister cell
formation. While homologs of tacT, yafQ/dinJT, and mqsRA were not identified, hok/sok,
relBE, higBA, vapBC, mazEF, and hipA genes are present on AIEC genomes (Tables 1 and 2).
Of them, mazF and hipA were shown to be upregulated inside macrophages [9], where
AIEC persister cells increase [38]. Curiously, hipA homologs were highly upregulated
in NRG857c under conditions found inside the macrophage but completely repressed in
HM605 [9]. An AIEC HipA homolog lacks the described mutations of the high-persister
HipA7 variant but instead shares some amino acid variants with its phylogenetically close
ExPEC CFT073 [9].

Undoubtedly, further research on the effect TAs might have on AIEC persistence will
be meaningful, with special attention paid to the contribution of hipA and its variants.

4. Conclusions

Bacteria are constantly evolving to improve their fitness and pathogenicity, so discov-
ering new targets for antimicrobial strategies is vital in the fight against bacterial pathogens
involved in infectious and chronic diseases. Conversely, understanding the mechanisms
and virulence factors contributing to different pathogenesis stages may enable the rational
and successful development of new treatments for those diseases.

For AIEC, potential therapeutic strategies include targeting bacterial colonization of
gut mucosa using phage therapy, bacteriocins, and anti-adhesion molecules, as well as
genetically engineered microbes as biosensors or delivery vehicles to potentially deliver
therapeutics to disease sites [146]. However, given the special lifestyle of AIEC, which
differs from that of other E. coli pathotypes, strategies to target intracellular bacteria should
also be considered.

TAs have arisen as novel therapeutic targets [3] partly because there are no eukaryotic
homologs, and TAs produce toxins that are not secreted but instead act only within the
producing cell, disabling their microbial host from the inside. As we have reviewed here,
TAs can have a role in different stages of AIEC pathogenicity, for instance, stress response,
biofilm formation, phage inhibition, MGE maintenance, and persister cell formation; all are
also important for AIEC intracellular lifestyles (Figure 1). Therefore, understanding the
contribution of TAs to AIEC physiology and pathogenicity is meaningful.

In a previous study, the expression of an AIEC toxin array was determined in different
stress conditions, such as bile salts, acidic pH, and inside macrophages [9]. However, we
lack functional studies assessing the role of the toxins since the transcription of a TA does
not indicate activity [147]. Moreover, since genetic context and growth conditions will
undoubtedly affect the possible biological role of a TA, the contribution of TAs to AIEC
pathogenicity should be verified in light of their special growth characteristics, which are
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different from those of laboratory E. coli strains and other E. coli pathotypes, in which most
TAs were previously characterized.
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Figure 1. Overview of AIEC’s pathogenic route and the TAs that could contribute to pathogenicity:
(A) AIEC must outcompete the native microbiota and challenge exposure to bile salts to successfully
colonize the intestinal mucosa. There, AIEC can adhere to and invade IEC, where they stay in
vacuoles, as well as translocate across M cells and colonize macrophages. Once phagocytosed, AIEC
form biofilm-like structures and persister cells within phagolysosomes to survive. (B) TAs could
affect different stages of the AIEC pathogenicity route shown in (A) and successfully confront stress
conditions. For instance, TAs could be involved in the AIEC bile salt response (number 1), IEC
(number 2), and macrophage (number 3) lifestyles. Inside macrophages, TAs could be involved in the
AIEC response to acidic pH, oxidative and stringent stress, and the formation of persister cells and
biofilm-like structures. In addition, the roles TAs might play in abortive phage infection and MGE
maintenance could also be important for AIEC pathogenicity, although there is no clear evidence
regarding which pathogenicity stage they might affect. The circled numbers indicate where TAs
could be involved in the scheme in (A). TA toxin gene names are given for those with evidence in the
literature [9] and colored according to the legend. Figure created with BioRender.com.

Undoubtedly, although more research is needed, TAs have the potential to contribute to
AIEC pathogenicity, with roles in different stages. As AIEC face changing stress conditions
inside the host, each encoded TA could be activated and contribute to their fitness in
different ways.

BioRender.com
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