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A B S T R A C T   

Background: An altered gut microbiome characterized by reduced abundance of butyrate producing bacteria and 
reduced gene richness is associated with type 2 diabetes (T2D). An important complication of T2D is increased 
risk of cognitive impairment and dementia. The biguanide metformin is a commonly prescribed medication for 
the control of T2D and metformin treatment has been associated with a significant reduction in the risk of de
mentia and improved cognition, particularly in people with T2D. 
Aim: To investigate the associations of metformin use with cognition exploring potential mechanisms by 
analyzing the gut microbiome and plasma metabolome using shotgun metagenomics and HPLC-ESI-MS/MS, 
respectively. 

Abbreviations: BMI, Body mass index; MRI, Magnetic resonance imaging; PVF, Phonemic verbal fluency; SVF, Semantic verbal fluency; MEIFLO, The Aging 
Imageomics Study and the CAIBERHJT_MEIFLO-Metformin and Intestinal Microflora Study; MBT-TDFR, The Memory Binding Test-Total Delayed Free Recall; MBT- 
TFR, The Memory Binding Test-Total Free Recall; SDMT, The Symbol Digit Modalities Test; TDS, Total Digits Span; T2D, Type 2 diabetes. 
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Methods: We explored two independent cohorts: an observational study (Aging Imageomics) and a phase IV, 
randomized, double-blind, parallel-group, randomized pilot study (MEIFLO). From the two studies, we analyzed 
four study groups: (1) individuals with no documented medical history or medical treatment (n = 172); (2) 
people with long-term T2D on metformin monotherapy (n = 134); (3) people with long-term T2D treated with 
oral hypoglycemic agents other than metformin (n = 45); (4) a newly diagnosed T2D subjects on metformin 
monotherapy (n = 22). Analyses were also performed stratifying by sex. 
Results: Several bacterial species belonging to the Proteobacteria (Escherichia coli) and Verrucomicrobia 
(Akkermansia muciniphila) phyla were positively associated with metformin treatment, while bacterial species 
belonging to the Firmicutes phylum (Romboutsia timonensis, Romboutsia ilealis) were negatively associated. Due to 
the consistent increase in A. muciniphila and decrease in R.ilealis in people with T2D subjects treated with 
metformin, we investigated the association between this ratio and cognition. In the entire cohort of metformin- 
treated T2D subjects, the A.muciniphila/R.ilealis ratio was not significantly associated with cognitive test scores. 
However, after stratifying by sex, the A.muciniphila/R. ilealis ratio was significantly and positively associated with 
higher memory scores and improved memory in men. 
Metformin treatment was associated with an enrichment of microbial pathways involved in the TCA cycle, and 
butanoate, arginine, and proline metabolism in both cohorts. The bacterial genes involved in arginine meta
bolism, especially in production of glutamate (astA, astB, astC, astD, astE, putA), were enriched following met
formin intake. In agreement, in the metabolomics analysis, metformin treatment was strongly associated with the 
amino acid proline, a metabolite involved in the metabolism of glutamate. 
Conclusions: The beneficial effects of metformin may be mediated by changes in the composition of the gut 
microbiota and microbial-host-derived co-metabolites.   

1. Introduction 

Over the past decade, type 2 diabetes (T2D) has been linked to an 
altered gut microbiota [1]. People with T2D had a decrease in the Fir
micutes phylum and an increase in Bacteroidetes and Proteobacteria 
compared to controls [1,2]. Butyrate-producing bacteria have reduced 
abundance in T2D including Faecalibacterium prausnitzii, and Roseburia 
intestinalis [1,2]. In contrast, Lactobacillus spp., Clostridium ramosum, and 
Desulfovibrio sp. 3_1_syn3 are more abundant in individuals with T2D [2]. 
These changes in the gut microbiota could contribute to developing 
insulin resistance [3], creating a vicious cycle. On the other hand, in
sulin resistance and elevated circulating glucose levels are associated 
with impairments in attention, executive function [4], and memory 
[5,6]. People with T2D are 60 % more likely to develop dementia [7] 
and a higher incidence of cognitive impairment is also associated with 
T2D [8]. 

Metformin is widely used to treat T2D [9]. According to some 
studies, the gut, rather than the liver, is the primary target of metformin. 
This is consistent with the fact that intravenous metformin has no 
glucose-lowering effect [10,11]. Furthermore, metformin is associated 
with altered fecal metagenomes in humans and with microbial- 
dependent anti-aging effects in Caenorhabditis elegans [12]. Both Bifi
dobacterium adolescentis and Akkermansia muciniphila showed increased 
growth when metformin was added to pure cultures [13]. Metformin 
also increased the abundance of beneficial bacteria such as Lactobacillus 
and A. muciniphila in insulin-resistant mice fed a high-fat diet [14]. Thus, 
the impact of metformin on host physiology appears to be influenced by 
its interaction with the gut microbiota. 

Regarding cognition, metformin reduced scopolamine-induced 
cognitive dysfunction in male Wistar rats. Short-term working mem
ory and spatial learning impairments improved after metformin treat
ment [15]. Metformin has also been linked to enhanced spatial learning, 
improved coordination during running tasks, and decreased memory 
deficits in mice [16]. In people with T2D, metformin use was associated 
with improved memory, language, and executive function, [9]. 

Due to the beneficial effects, the interest in the potential effects of 
metformin on cognition and gut microbiota in humans has increased 
over the past decade. To our knowledge, no studies have investigated the 
interplay among metformin, gut microbiota, and cognition in humans. 
To explore this crosstalk, we first investigated the metagenomic and 
metabolomic profiles associated with metformin treatment. Then, we 
examined how the composition of the gut microbiota was associated 
with cognitive functions. Finally, we investigated how metformin was 

linked to cognition. 

2. Subjects and methods 

2.1. Subjects 

We worked with two independent studies: the Aging Imageomics 
Study and the CAIBERHJT_MEIFLO-Metformin and Intestinal Microflora 
Study (MEIFLO). People with subjective memory complaints, mild 
cognitive impairment, or dementia were not included in the studies. 

The Aging Imageomics Study (n = 1030) was an observational study 
in which subjects from the province of Girona (Spain) were enrolled. 
Participants were drawn from two independent cohorts: The Maturity 
and Satisfactory Aging in Girona study (MESGI50 study) and the 
Improving interMediAte RisK management study (MARK study). Data 
collection was between 14 November 2017 and 19 June 2019 at the 
facilities of the Dr. Josep Trueta University Hospital. The Ethics Com
mittee of the Dr. Josep Trueta University Hospital approved the study 
protocol, and all participants gave written informed consent (Project 
Code SLT002-16/00250). Selection criteria were age ≥ 50 years, living 
in the community, no infection or antibiotic usage in the previous 15 
days, and no contraindications to magnetic resonance imaging (MRI). 
Participants were visited twice. A clinical history, physical examination, 
dietary assessment, MRI, and neuropsychological assessment of the 
participants were performed. Samples of blood, urine, and feces were 
collected. Full details of the study protocol can be found elsewhere [17]. 

From the entire Aging Imageomics cohort, we consecutively selected 
three study groups. The first group consisted of individuals with no 
documented medical history or medical treatment (n = 172). The second 
group included people with long-term T2D (more than one year) on 
metformin monotherapy (n = 134). The last group included people with 
long-term T2D treated with oral hypoglycemic agents other than met
formin (n = 45). We excluded from this group people treated with 
another biguanide or with a combination of metformin and other hy
poglycemic agents, such as metformin and sitagliptin. Oral hypoglyce
mic agents used as treatment in this group included: sulfonylureas 
(gliclazide (n = 8), glimepiride (n = 2)), dipeptidyl peptidase-4 in
hibitors (sitagliptin (n = 2), linagliptin (n = 2)), sodium-glucose 
cotransporter-2 inhibitors (dapagliflozin (n = 1), repaglinide (n = 3), 
and combination of drugs (n = 27). The consort diagram showing 
recruitment numbers and flows can be found in the supplementary 
material. 

MEIFLO was a phase IV, randomized, double-blind, parallel-group, 
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randomized pilot study in which n = 40 T2D subjects from the province 
of Girona were enrolled. The subjects were randomly assigned to either 
the metformin group (n = 22) or the placebo group (n = 18) using a 
computational random generator called Aleator. From the entire cohort, 
we selected the group treated with metformin (n = 22). Metformin 
treatment started with an initial dose of 425 mg per day, which was 
gradually increased to 1700 mg during the first week. A clinical history, 
physical examination, and dietary assessment of the participants were 
performed. Fecal and plasma samples were collected at baseline, at two 
months, and at four months after treatment. 

Inclusion criteria included: age between 18 and 65 years; T2D 
diagnosed within the previous 6 months based on the American Diabetes 
Association diagnostic criteria; absence of other systemic, and metabolic 
diseases; no infection in the previous month; absence of diet or drugs 
that could interfere with glucose homeostasis, such as antibiotics in the 
past three months; and glycated hemoglobin levels below 9 %. Exclusion 
criteria included: systemic diseases, including malignancy; clinical evi
dence of hemoglobinopathies or anemia; drug consumption; alcohol 
abuse >80 g/d for men and > 40 g/d for women; history of ischemic 
heart disease in the past six months; acute or chronic inflammatory or 
infectious diseases; and inability to understand the nature, scope, and 
possible consequences of the study. 

The Ethics Committee of the Dr. Josep Trueta University Hospital 
approved the study protocol, and all participants gave written informed 
consent. Full clinical trial registration is available on the EU Clinical 
Trials Register (EudraCT number 2010-022394-34). 

2.2. Laboratory parameters 

Bioimpedance and ad hoc questionnaires were used to obtain 
anthropometric data and clinical history. Fasting plasma glucose, lipid 
profile, serum creatinine, serum urate, hemoglobin, and serum ferritin 
levels were determined by standard laboratory methods using an 
analyzer (Cobas 8000 c702, Roche Diagnostics, Basel, Switzerland). 
Glycated hemoglobin was measured by high-performance liquid chro
matography (ADAMA1c HA-8180V, ARKRAY, Kyoto, Japan). 

2.3. Neuropsychological assessment (aging Imageomics cohort) 

Neurocognitive tests were employed to evaluate four distinct 
cognitive domains: attention, executive function, memory, and lan
guage. Cognitive tests were presented as adjusted normalized data. 
Further details of the neuropsychological protocol can be found in the 
supplementary material. 

2.4. Extraction of fecal genomic DNA and whole-genome shotgun 
sequencing 

The protocol for extraction of fecal genomic DNA and whole-genome 
shotgun sequencing can be found in the supplementary material. 

2.5. Metabolomics analyses (aging Imageomics cohort) 

2.5.1. HPCL-ESI-MS/MS metabolomics analyses 
The protocol for non-targeted metabolomics analysis can be found in 

the supplementary material. 

2.6. Statistical analysis 

Normal distribution and homogeneity of variances were tested. Re
sults are presented as numbers and frequencies for categorical variables, 
means and standard deviations for normally distributed continuous 
variables, and medians and interquartile ranges for non-normally 
distributed continuous variables. R Statistics was used for these statis
tical analyses. The statistics are presented in the form of figures and 
legends. From the entire Aging Imageomics cohort, we extracted three 

distinct study groups. Analyses were performed comparing people with 
T2D treated with metformin with the other two groups (healthy people 
and people with T2D not treated with metformin). We also studied a 
group of newly diagnosed T2D subjects (n = 22) on metformin mono
therapy. In this group, we compared baseline (participants not yet tak
ing metformin) with participants taking metformin for four months. 
Analyses were also performed on all subjects and then stratified by sex. 

2.6.1. Metagenomics statistical analysis 
The identification of metformin-associated microbial species was 

performed using the microbiome compositional analysis methodology 
with bias correction (ANCOM-BC) [18]. ANCOM-BC considers the bias 
resulting from different sampling fractions between samples by incor
porating a sample-specific offset into a linear regression model derived 
from the observed data. To account for the compositional nature of 
metagenomics datasets, the linear regression model in log scale is 
equivalent to a log-ratio transformation, with the offset term functioning 
as a bias correction. All models were adjusted for age, sex, and body 
mass index (BMI). Sequential goodness of fit (SGoF) was used to correct 
p-values for multiple comparisons. SGoF methods increase their statis
tical power as the number of tests increases, differing from FDR 
methods, which decrease their statistical power as the number of tests 
increases. SGoF has been demonstrated to outperform FDR in settings 
with high numbers of tests and small sample sizes, such as large meta
genomic datasets [19]. Statistical significance was fixed at p adjusted 
(padj) < 0.1. For principal component analysis, raw counts were 
transformed using a centered log-ratio (clr) transformation as imple
mented in the “microViz” R package. Pathway overrepresentation ana
lyses were performed by mapping KEGG orthologs to KEGG pathways 
using the R package “ClusterProflier” (“enrichKEGG” function). A hy
pergeometric test was employed to determine the significance of the 
pathway, and a Storey procedure (q-values) was applied to correct for 
multiple testing. Statistical significance was set at Padj < 0.1. 

To calculate the Akkermansia muciniphila / Romboutsia ilealis ratio in 
metformin-treated T2D subjects, the raw read count data of these bac
teria were first centered log ratio-transformed using the R package 
“ALDEx2” (“aldex.clr” function). The A. muciniphila/R. ilealis ratio was 
then constructed from the clr-normalized data. The association between 
this ratio and cognition (Total Digits Span (TDS), Phonemic verbal 
fluency (PVF), Semantic verbal fluency (SVF), Symbol Digit Modalities 
Test (SDMT), the Memory Binding Test (Total Free Recall (MBT-TFR) 
and Total Delayed Free Recall (MBT-TDFR)) was examined by partial 
Spearman correlation, controlling the model for sex, BMI, age, and years 
of education. Wilcoxon's signed rank test was used to compare cognitive 
performance within the two T2D groups, and the results were presented 
using box plots. 

2.6.2. Machine learning analyses (metabolomics) 
Probabilistic quotient normalization was used to normalize the 

metabolomics data. The metabolomics data was then analyzed using 
machine learning methods. To determine the plasma metabolites asso
ciated with metformin treatment, we used an all-relevant machine- 
learning variable selection strategy using multiple random forests as 
implemented in the Boruta algorithm [20]. We adjusted for age, sex, and 
BMI in all models. We ran the Boruta algorithm with 500 iterations, a 
confidence level of 0.005 for Bonferroni adjusted p-values, and 5000 
trees to grow the forest. To improve the interpretability of the models, 
the exact computation of Shapley Additive explanations (SHAP) values 
was used, which exploits the internal structure of random forest models. 
SHAP calculates each metabolite's contribution to the predicted 
response [21]. SHAP values were calculated and plotted using R pack
ages “treeshap” and “SHAPforXGBoost”. Violin plots were used to pre
sent the proline levels in the Aging Imageomics cohort according to T2D 
treatment (Metformin or other oral hypoglycemic agents). Red dots 
represent the mean. Overall significance was assessed using a Kruskal- 
Wallis test and between groups significance using a Wilcoxon test. 
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3. Results 

3.1. Metformin treatment is associated with a specific microbial ecosystem 
(Aging Imageomics) 

The clinical characteristics of the study groups are shown in 
(Table 1). We first assessed the relationships between microbial 
composition and metformin treatment by comparing metformin-treated 
T2D subjects (n = 134) with healthy subjects (n = 172) in a discovery 
cohort (Aging Imageomics). First, we applied principal component 
analysis to the clr-transformed data to reveal global patterns of variance 
in the microbial profiles and functions between the three study groups. 
The most notable differences were found at the level of functionality, 
comparing metformin-treated T2D subjects with healthy subjects and 
T2D subjects treated with other hypoglycemic agents (Supplementary 
Material-Fig. S1). 

We identified 81 (padj < 0.1) metformin-associated microbial spe
cies (Fig. 1A, Table S1). Metformin treatment in T2D subjects was 
associated with an increase in bacterial species belonging to the Pro
teobacteria (Escherichia coli, Shigella sonnei, Klebsiella pneumoniae, and 
Desulfovibrio fairfieldensis) and Firmicutes phyla (Enterocloster bolteae, 
Enterocloster citroniae, and Enterocloster clostridioformis) compared to 
healthy subjects. In addition, metformin treatment was associated with 
an increase in the viral species, CrAssphage ZA, CrAssphage LMMB and 
Podoviridae_uc. Conversely, we observed a decrease in bacterial species 
belonging to the Firmicutes phylum such as Romboutsia timonensis, 
Romboutsia ilealis, and Roseburia faecis in metformin-treated T2D sub
jects compared to healthy subjects (Fig. 1A, Table S1). 

When we stratified this population by sex, we identified 11 
(padj<0.1) metformin-associated microbial species in men after 
comparing men with T2D to healthy men (Fig. 1B, Table S2). Again, we 
observed an increase in bacterial species belonging to the Proteobacteria 
phylum (Escherichia coli, Shigella sonnei, Klebsiella pneumoniae) and a 
decrease in bacterial species belonging to the Firmicutes phylum 
(Romboutsia timonensis, Roseburia faecis) in men with T2D treated with 
metformin compared to healthy men. No increase in virus species was 
found (Fig. 1B, Table S2). We identified 27 (padj<0.1) microbial species 
in metformin-treated T2D women compared to healthy women (Fig. 1C, 
Table S3). Again, we found an increase in Escherichia coli, Shigella sonnei, 

Klebsiella pneumoniae and a decrease in Romboutsia timonensis, Rom
boutsia ilealis, and Roseburia faecis in women with T2D treated with 
metformin compared to healthy women. In metformin-treated women 
with T2D, we observed an increase in the viral species CrAssphage ZA, 
CrAssphage LMMB, and Podoviridae_uc compared to healthy women 
(Fig. 1C, Table S3). 

To confirm whether the changes found in gut microbiota composi
tion were due to T2D or metformin treatment, we compared subjects 
with T2D treated with metformin (n = 134) and T2D treated with other 
hypoglycemic agents (n = 45). We identified 18 (padj<0.1) differential 
microbial species (Fig. 1D, Table S4). Consistent with our previous 
findings, we observed an increase in Escherichia coli (Proteobacteria 
phylum) and a decrease in Romboutsia timonensis, and Romboutsia ilealis 
(Firmicutes phylum) in subjects with T2D treated with metformin 
compared to subjects with T2D treated with other hypoglycemic agents. 
We also found an increase in bacterial species belonging to the Verru
comicrobia phylum such as Akkermansia muciniphila, Unclassified 
Akkermansia, Akkermansia sp., and Unclassified Akkermansiaceae in sub
jects with T2D treated with metformin compared to subjects with T2D 
treated with other hypoglycemic agents (Fig. 1D, Table S4). After sex 
stratification, we identified 7 metformin-associated microbial species in 
men and 24 in women (Fig. 1E, F, and Tables S5, S6). 

Due to the consistent increase in Akkermansia muciniphila and 
decrease in Romboutsia ilealis in people with T2D treated with metfor
min, we aimed to investigate the association between their ratio and 
cognition. In the entire cohort of metformin-treated T2D subjects, the 
A. muciniphila/R. ilealis ratio was not significantly associated with any 
cognitive test scores (Supplementary Material-Fig. S2). However, sex 
stratification, the A. muciniphila/R. ilealis ratio was significantly and 
positively associated with MBT-TFR (r = 0.42, padj = 0.02) and MBT- 
TDFR (r = 0.38, padj = 0.03) scores in men. No significant results 
were found in women (Fig. 2). We also compared cognitive test scores 
between the two groups of people with T2D. No significant results were 
found for the overall cohort of people with T2D and women. At the same 
time, men with T2D treated with other hypoglycemic agents had higher 
TDS (p = 0.04), SDMT (p = 0.001), and SVF (p = 0.04) test scores than 
those treated with metformin (Supplementary Material-Fig. S3). 

Table 1 
Clinical and neuropsychological data of the Aging Imageomics cohort.  

Characteristics T2D subjects treated with metformin. (N = 134) T2D patients not treated with metformin. (N = 45) Healthy subjects (N = 172) 

Age (years) 68.0 [62.5–72.5] 72.7 [67.3–74.6] 63.1 [58.5–68.4] 
Women n (%)/ Men n (%) (56) 41.8 % / (78) 58.2 % (22) 48.9 % / (23) 51.1 % 82(47.7)/90(52.3) 
Education (years) 8.0 [8.0–12.0] 8.0 [8.0–8.0] 12.0 [8.0–12.0] 
BMI (kg/m2) 29.4 ± 4.6 29.4 ± 3.9 26.1 ± 4.0 
Waist (cm) 101.9 ± 11.2 102.6 ± 10.8 94.8 ± 12.2 
MBT-TFR (score) 11.0 [8.0–13] 11.0 [8.8–14.0] 13.0 [9.0–16.0] 
MBT-TDFR (score) 10.0 [8.00–13.00] 10.0 [8.0–13.8] 12.0 [9.0–17.0] 
PVF (score) 9.5 [8.0–11.0] 9.0 [8.0–12.0] 10.0 [8.0–11.0] 
SVF (score) 8.0 [7.0–10.0] 9.0 [8.0–10.0] 10.0 [8.0–11.0] 
SDMT (score) 10 [8.0–12.0] 11.0 [9.0–13.0] 11.0 [10.0–13.0] 
TDS (score) 15 [12.2–18.8] 18.0 [13.0–21.0] 16.0 [13.0–20.5] 
FPG (mg/dL) 143.0 [129.5–160.3] 141.5 [122.8–168.3] 95.0 [90.0–104.0] 
HbA1c (%) 7.1 ± 1.0 7.2 ± 1.1 5.6 ± 0.4 
Fasting Insulin (mU/L) 11.0 [7.7–14.8] 11.8 [7.7–18.4] 7.0 [5.2–10.0] 
Serum creatinine (mg/dL) 0.85 [0.7–1.0] 0.87 [0.7–1.0] 0.79 [0.7–1.0] 
Serum urate (mg/dL) 5.7 [4.9–6.4] 5.2 [4.5–5.9] 5.1 [4.3–6.0] 
Total cholesterol (mg/dL) 182.4 ± 31.2 176.6 ± 29.64 206.1 ± 30.7 
HDL-C (mg/dL) 47.0 [37.0–55.3] 47.5 [42.0–59.0] 55.0 [47.5–69.0] 
LDL-C (mg/dL) 104.3 ± 26.6 100.2 ± 28.9 127.7.2 ± 27.6 
Fasting triglycerides (mg/dL) 130.0 [94.8–176.5] 102.0 [86.3–165.0] 89.0 [70.5–120.0] 
Serum ferritin (ng/ml) 89.0 [35.5–189.3] 84.5 [42.0–149.8] 139.0 [77.5–208.0] 

Results are expressed as numbers and frequencies for categorical variables, mean and standard deviation (SD) for normal distributed continuous variables, and median 
and interquartile range [IQ] for non-normal distributed continuous variables. BMI, body mass index; PVF, phonemic Verbal Fluency; SVF, Semantic verbal fluency; 
FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein cholesterol; LDL-C low-density lipoprotein-cholesterol. 
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3.2. Microbial functions linked to metformin treatment in the aging 
Imageomics cohort 

To further assess the potential impact of the gut microbiome on 
metformin, we performed functional analyses by mapping reads to 
KEGG orthologues. We then identified microbial molecular functions 
associated with metformin treatment compared to other hypoglycemic 
treatments in T2D subjects after adjusting for age, sex, BMI, and years of 
education. We identified 1096 microbial functions (padj<0.1) that were 
enriched and 32 that were depleted by metformin treatment in the 
population with T2D (Fig. 3A, Table S7). In men with T2D, we identified 
780 microbial functions that were enriched and 26 that were depleted 
by metformin treatment (Supplementary Material-Fig. S4, Table S8). In 
women, we identified 581 microbial functions that were enriched and 
119 that were depleted by metformin treatment (Supplementary Mate
rial-Fig. S5, Table S9). 

To obtain insights into the microbial pathways involved in this as
sociation, we performed a pathway overrepresentation analysis of KEGG 
orthologs. A significant over-representation of the pathways involved in 
the TCA cycle, and the metabolism of butanoate, arginine, and proline 
were found in the entire cohort of T2D subjects (Fig. 3B, Table S10). 
Pathways involved in butanoate, propanoate, and pyruvate metabolism 
were significantly enriched in men (Supplementary Material-Fig. S4, 
Table S11). In contrast, we found a significant enrichment of the 
pathway involved in the metabolism of butanoate, arginine, and proline 
in women, as well as a significant overrepresentation of the TCA cycle- 

related pathway (Supplementary Material-Fig. S5, Table S12). Addi
tionally, a gene-concept network was performed to represent the linkage 
between significant KEGG orthologues involved in KEGG pathways 
associated with metformin treatment in the whole cohort (Fig. 3C), in 
men (Supplementary Material-Fig. S4) and in women (Supplementary 
Material-Fig. S5). 

3.3. Microbial functions linked to metformin treatment in the MEIFLO 
cohort 

We next aimed to validate the potential microbial functions associ
ated with metformin treatment in a second independent cohort 
comparing the microbiome before and 4 months after metformin treat
ment in 22 newly diagnosed T2D patients. The clinical characteristics of 
the cohort is shown in (Table 2). A total of 8 men and 14 women 
matched for age, sex, BMI, and glycated hemoglobin were studied 
(Supplementary Material-Table 1). 

We identified 360 microbial functions (padj<0.1) associated with 
metformin treatment in the whole cohort (Fig. 3D, Table S13), 274 in 
men, and 1096 in women (Supplementary Material-Fig. S6, Tables S14, 
S15). Consistent with our previous findings, a significant enrichment of 
the pathways involved in the TCA cycle and the butanoate, arginine, and 
proline metabolism was found in the entire cohort of T2D subjects after 
metformin treatment (Fig. 3E, Table S16). We found a significant 
enrichment of the pathway involved in the metabolism of pyruvate and 
propanoate in men (Supplementary Material-Fig. S6, Table S17). In 

Fig. 1. Gut microbiome profiles associated with metformin treatment. (A) Volcano plot of differential microbial abundance associated with metformin treatment 
between metformin-treated subjects and healthy subjects (Aging Imageomics cohort). (B) Volcano plot of differential microbial abundance associated with metformin 
treatment between metformin-treated men and healthy men. (C) Volcano plot of differential microbial abundance associated with metformin treatment between 
metformin-treated women and healthy women. (D) Volcano plot of differential microbial abundance associated with metformin treatment between T2D subjects 
treated with metformin and other oral hypoglycemic agents (Aging Imageomics cohort). (E) Volcano plot of differential microbial abundance associated with 
metformin treatment between T2D men treated with metformin and other oral hypoglycemic agents. (F) Volcano plot of differential microbial abundance associated 
with metformin treatment between T2D women treated with metformin and other oral hypoglycemic agents. Significant species were identified using the ANCOM-BC 
from shotgun metagenomics data adjusted for age, sex, and BMI. For each taxon, the log2 fold change associated with a unit change in metformin treatment and 
log10 p-values adjusted for multiple testing (padj) are plotted. Significantly different taxa are coloured according to phylum. Significance was set at padj<0.1. 
Metformin (+): T2D subjects' metformin-treated; Metformin (− ): T2D subjects treated with other oral hypoglycemic agents. 

Fig. 2. Association between the Akkermansia muciniphila/Romboutsia ilealis ratio and cognitive scores by sex. Scatter plot showing the partial Spearman correlation 
between Akkermansia muciniphila/Romboutsia ilealis ratio and memory tests by sex, (A) MBT-TFR, and (B) MBT-TDFR. MBT-TFR, the Memory Binding Test-Total Free 
Recall; MBT-TDFR, the Memory Binding Test - Total Delayed Free Recall. 
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women, we found a significant enrichment of the pathway involved in 
the longevity regulating pathways, among others (Supplementary Ma
terial-Fig. S6, Table S18). Additionally, a gene-concept network was 
performed to represent the linkage between significant KEGG ortho
logues involved in KEGG pathways associated with metformin treatment 
in the whole cohort (Fig. 3F). The most consistent results were found in 
the metabolism of arginine and proline, where enriched genes were 
involved in the synthesis of glutamate from arginine (astA, astB, astC, 
astD, astE, putA, E.1.2.1.88). Hence, a summary of the main microbial 
molecular functions associated with metformin treatment and involved 
in the arginine, proline, and glutamate metabolism is shown in Fig. 3G. 

3.4. Metabolites of arginine and proline metabolism are associated with 
metformin treatment (aging Imageomics) 

To further explore the microbiome functionally, we next performed 
metabolic profiling of plasma samples from T2D subjects treated with 
metformin (n = 134) and T2D subjects treated with other hypoglycemic 
agents (n = 45). Subsequently, metabolic signatures associated with 
metformin treatment were identified using a machine-learning variable 
selection strategy. We found that metformin treatment was strongly 
associated with proline (Fig. 4A, B, Table S19). Subjects taking met
formin had significantly higher proline levels than those taking other 
oral hypoglycemic agents (Fig. 4C). When subjects were stratified by 
sex, metformin treatment was strongly associated with proline levels 
both in men (Fig. 4D, E) and women (Fig. 4F, F). 

4. Discussion 

Metformin is a widely used drug for the treatment of T2D. Recent 
human investigations suggest that metformin could alter the gut 
microbiome, and improve memory, semantic memory, and executive 
function [9]. To our knowledge, no studies have investigated the 
interplay among metformin, gut microbiota, and cognition in humans. 
Hence, we aimed to investigate this potential crosstalk. This study 
included two cohorts with slightly different inclusion criteria, but the 
findings could be replicated and thus ensure consistency of results. 

In T2D subjects treated with metformin, we found an increase in 
A. muciniphila and a decrease of R. ilealis compared with people with T2D 
taking other hypoglycemic agents. Then, we assessed the association 
between the A. muciniphila/R. ilealis ratio and cognition. In men, this 
ratio was associated with higher memory scores and improved memory. 
Differences in sex hormones may explain these differences between men 
and women. Clinical and preclinical studies have shown that the gut 
microbiota is different in females and males [39]. In addition to differ
ences in microbial diversity, studies in animals and humans showed a 
clear difference in the abundance of certain bacteria, which is higher in 
one sex than the other [39] while sex hormone levels have been shown 
to be directly influenced by the gut microbiota. There is also evidence 
that sex hormones can reciprocally affect the gut microbiome [39]. 

Consistent with our findings, human studies have described an in
crease in the abundance of A. muciniphila after metformin treatment 
[13,22,23]. In addition, the increase in A. muciniphila was positively 
associated with the number of mucin-producing goblet cells in 
metformin-treated mice [24]. Goblet cells may provide a barrier to li
popolysaccharides by increasing the thickness of the mucus layer 

Fig. 3. Metformin treatment is associated with microbial molecular functions involved in glutamate metabolism. (A) Volcano plot of differential microbial gene 
abundance associated with the metformin treatment in Aging Imageomics cohort calculated by ANCOM-BC from shotgun metagenomics data adjusted for age, sex, 
and BMI (Aging Imageomics cohort). Microbial functions that are positively associated with metformin treatment are shown in green (upregulated), and those that 
are negatively associated are shown in red (downregulated). The log2 fold change associated with a unit change in metformin treatment and the log10 p-values 
adjusted for multiple testing (padj) are plotted for each taxon. Significance was set at padj<0.1. Only genes involved in the arginine, proline, and butanoate 
metabolism and the citrate cycle are labelled. (B) Barplot plot of enriched KEGG pathways (q-value <0.1) from significantly differentially expressed microbial 
molecular functions associated with metformin treatment in the Aging Imageomics cohort. (C) KEGG pathway enrichment network displaying the significant KEGG 
orthologues associated with metformin treatment and involved in the arginine, proline, and butanoate metabolism and the citrate cycle, coloured according to the 
fold change (Aging Imageomics cohort). (D) Volcano plot of differential microbial gene abundance associated with the metformin treatment in Aging Imageomics 
cohort calculated by ANCOM-BC from shotgun metagenomics data adjusted for age, sex, and BMI (MEIFLO cohort). Microbial functions that are positively associated 
with metformin treatment are shown in green (upregulated), and those that are negatively associated are shown in red (downregulated). The log2 fold change 
associated with a unit change in metformin treatment and the log10 p-values adjusted for multiple testing (padj) are plotted for each taxon. Significance was set at 
padj<0.1. Only genes involved in the arginine, proline, and butanoate metabolism and the citrate cycle are labelled. (E) Barplot plot of enriched KEGG pathways (q- 
value <0.1) from significantly differentially expressed microbial molecular functions associated with metformin treatment in the MEIFLO cohort. (F) KEGG pathway 
enrichment network displaying the significant KEGG orthologues associated with metformin treatment and involved in the arginine, proline, and butanoate 
metabolism and the citrate cycle, coloured according to the fold change (MEIFLO cohort). (G) Overview of the arginine, and proline pathway involved in glutamate 
metabolism. The microbial functions in the yellow, red, blue and grey boxes are those present in the Aging Imageomics cohort, MEIFLO cohort, donor 13 and 49 
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Clinical data of the MEIFLO cohort.  

Characteristics Newly diagnosed T2D subjects at 0 months. (N = 22) Newly diagnosed T2D subjects at 4 months. (N = 22) 

Age (years) 53.5 [47.8–59.0] – 
Females n (%)/Males n (%) (14) 37.5 % / (8) 62.5 % (14) 37.5 % / (8) 62.5 % 
BMI (kg/m2) 36.4 ± 6.95 35.37 ± 6.79 
Waist (cm) 111.4 ± 14.1 110.05 ± 12.05 
FPG (mg/dL) 124.0 [110.25–137.00] 108.0 [103.5–115.5] 
HbA1c (%) 6.6 [6.3–7.0] 6.0 [5.75–6.3] 
Serum creatinine (mg/dL) 0.72 [0.67–0.92] 0.77 [0.7–0.9] 
Serum urate (mg/dL) 6.05[4.65–6.85] 6.6 [4.8–7.6] 
Total cholesterol (mg/dL) 211.5 [182.5–232.0] 196.0 [174.5–231.5] 
HDL-C (mg/dL) 46.0 [36.25–57.75] 51.5 [37.0–63.0] 
LDL-C (mg/dL) 129.0 [115.5–154.5] 119.0 [99.0–149.5] 
Fasting triglycerides (mg/dL) 103.5[82.25–161.75] 116.0 [100.0–158.5] 
Serum ferritin (ng/ml) 123.0 [52.5–254.75] 93.0 [45.30–180.0] 

Results are expressed as numbers and frequencies for categorical variables, mean and standard deviation (SD) for normal distributed continuous variables, and median 
and interquartile range [IQ] for non-normal distributed continuous variables. BMI, body mass index; PVF, phonemic Verbal Fluency; SVF, Semantic verbal fluency; 
FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein cholesterol; LDL-C low-density lipoprotein-cholesterol. 
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[25–27]. In mice, A. muciniphila also had a negative association with 
low-grade inflammation, T2D, and insulin resistance [28]. Additionally, 
the increased abundance of A. muciniphila associated with metformin 
use correlated with reduced levels of the systemic inflammatory 
biomarker IL-6 in aged mice [29]. Systemic production of IL-6 has the 
potential to cross the blood-brain barrier and disrupt neurotransmission 
in key brain regions that regulate cognition, such as the hippocampus 
and prefrontal cortex [30,31]. Increases in A. muciniphila could partially 
restore the increased intestinal permeability caused by T2D and the 
high-fat diet. All the biological functions identified in A. muciniphila are 

consistent with improved cognition. 
However, when we compared the two groups of people with T2D 

according to their cognitive performance, we found no differences or 
trends in the overall cohort or women. In men treated with other hy
poglycemic agents, we found higher scores on tests of attention, working 
memory, and semantic memory compared with men treated with met
formin. We believe that sample size could explain these findings on 
cognition. Metformin has been shown to reduce the incidence of de
mentia compared with other treatments in observational studies with 
larger populations [32]. Metformin treatment has also been associated 

Fig. 4. Untargeted plasma metabolomics signatures associated with metformin treatment in the Aging Imageomics cohort. (A) Boxplot of the normalized variable 
importance measure for the metabolites associated with metformin treatment in all T2D patients (n = 179). Significant metabolites (confirmed) were identified using 
a machine learning variable selection strategy based on the application of multiple random forests as implemented in the Boruta algorithm. The Boruta algorithm was 
run with 500 iterations, a confidence level of 0.005 for Bonferroni adjusted p-values, and 5000 trees to grow the forest. The model was controlled for age, BMI, and 
sex. (B) SHAP summary of the metabolites associated with metformin treatment in all patients with T2D. Significant metabolites related to the glutamate pathway are 
highlighted in bold. Each dot represents a single sample. The x-axis represents the SHAP value. Bold indicates the overall importance of the final prediction (average 
absolute SHAP). Colors represent metabolite levels, from blue (low concentrations) to yellow (high concentrations). (C) Violin plots of the proline levels in the Aging 
Imageomics cohort according to the T2D treatment in all subjects (Metformin (− ), T2D subjects treated with other oral hypoglycemic agents; Metformin (+), T2D 
subjects treated with metformin). Overall significance was assessed using the Kruskal-Wallis test. Significance between the T2D groups was assessed using the 
Wilcoxon test. Red dots represent the mean. #p < 0.1 *p < 0.05, **p < 0.01; ***p < 0.001. (D) SHAP summary of the metabolites associated with metformin 
treatment in men with T2D (n = 101). Significant metabolites related to the glutamate pathway are highlighted in bold. Each dot represents a single sample. Bold 
indicates the overall importance of the final prediction (average absolute SHAP). Colors represent metabolite levels, from blue (low concentrations) to yellow (high 
concentrations). (E) Violin plots of the proline levels in the Aging Imageomics cohort according to the T2D treatment in men (Metformin (− ), T2D men treated with 
other oral hypoglycemic agents; Metformin (+), T2D men treated with metformin). Overall significance was assessed using the Kruskal-Wallis test. Significance 
between the T2D groups was assessed using the Wilcoxon test. Red dots represent the mean. #p < 0.1 *p < 0.05, **p < 0.01; ***p < 0.001. (F) SHAP summary of the 
metabolites associated with metformin treatment in women with T2D (n = 78). Significant metabolites related to the glutamate pathway are highlighted in bold. 
Each dot represents a single sample. Bold indicates the overall importance of the final prediction (average absolute SHAP). Colors represent metabolite levels, from 
blue (low concentrations) to yellow (high concentrations). (G) Violin plots of the proline levels in the Aging Imageomics cohort according to the T2D treatment in 
women (Metformin (-), T2D women treated with other oral hypoglycemic agents; Metformin (+), T2D women treated with metformin). Overall significance was 
assessed using the Kruskal-Wallis test. Significance between the T2D groups was assessed using the Wilcoxon test. Red dots represent the mean. #p < 0.1 *p < 0.05, 
**p < 0.01; ***p < 0.001. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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with improved memory and executive function [7]. Likewise, long-term 
metformin treatment has been shown to reduce vitamin B12 levels [33]. 
Vitamin B12 plays an important role in the reduction of homocysteine 
levels in the brain by participating in the synthesis of methionine from 
homocysteine. Elevated total plasma homocysteine levels can lead to 
central nervous system damage, cognitive impairment, dementia, and 
Alzheimer's disease [34]. Long-term treatment with metformin without 
monitoring vitamin B12 levels could, therefore, explain less favorable 
results when comparing metformin treatment with other oral hypogly
cemic agents. 

On the other hand, in T2D subjects treated with metformin, we found 
an increase in bacterial species belonging to the Proteobacteria phylum, 
particularly Escherichia coli, compared with healthy subjects and T2D 
subjects treated with other hypoglycemic agents. Consistent with our 
findings, in a cohort of newly diagnosed T2D patients, an increase in 
E. coli abundance was found at two and four months in metformin- 
treated T2D patients compared with placebo-treated T2D patients 
[13]. Another study found an increase in Escherichia spp. in subjects with 
T2D treated with metformin compared with subjects with T2D not 
treated with metformin [35]. Additionally, in healthy subjects treated 
with metformin an increase of these genera and species has also been 
described [36,37]. Finally, 18 healthy volunteers treated with metfor
min (2 × 850 mg) showed a significant increase in the abundance of the 
Escherichia-Shigella genera when comparing samples obtained seven 
days after treatment to the baseline [36]. This interaction between 
metformin and proteobacteria is counterintuitive. Indirect metformin 
treatment effects, including reduced intestinal lipid absorption and 
lipopolysaccharide-triggered local inflammation can provide a 
competitive advantage to Escherichia species possibly triggering a posi
tive feedback loop further contributing to the observed taxonomic 
changes [35]. Growth of E. coli in an in vitro analysis was not affected 
directly by metformin, in contrast to other species like Bifidobacterium 
adolescentis [13]. This supports the hypothesis that metformin's effects 
on the abundance of Escherichia species is likely indirect and may result 
from altered bacteria-bacteria interactions or other physiological and/or 
environmental changes in the gut due to metformin treatment [13]. 

Changes in the gut microbiota, with a predominance of 
lipopolysaccharide-synthesizing bacteria such as Escherichia, are known 
to be associated with an increase in gut permeability. This in turn could 
lead to bacterial translocation into the systemic circulation and wors
ening of insulin resistance [38]. Furthermore, the increased abundance 
of Escherichia/Shigella genus was associated with elevated levels of pro- 
inflammatory cytokines, including IL-6, CXCL2, NLRP3, and IL-1β 
[39–42]. Hence, it appears paradoxical that an increase in E. coli 
abundance could lead to favorable effects. One possible hypothesis is an 
increase in the production of microbial agmatine by E. coli after met
formin treatment [43]. In animal studies, agmatine reduced neuronal 
loss caused by excitotoxins or ischemia. Agmatine has also been reported 
to have anticonvulsant and antidepressant effects. Thus, agmatine seems 
to act as an endogenous neuromodulator of mental stress [44]. 

In the two cohorts of subjects with T2D, functional analyses identi
fied an upregulated expression of microbial functions involved in argi
nine and proline metabolism (astA, astB, astC, astD, astE, putA, 
E.1.2.1.88) in metformin-treated patients. However, the bacterial func
tions with upregulated expression and associated with metformin 
treatment were implicated in synthesis of glutamate from arginine. 
Consistent with our results, in a gut simulator experiment using fecal 
samples from two participants (donor 13 and donor 49), metformin use 
was associated with an enrichment of microbial functions involved in 
arginine, proline and glutamate metabolism pathways [13]. Similarly, in 
the metabolomic analysis, we found that metformin treatment was 
strongly associated with proline, a metabolite derived from the micro
bial catabolism of glutamate. However, the proline catabolic pathway 
can potentially generate glutamate and GABA [45]. Glutamate, the 
primary neurotransmitter in the central nervous system, is essential for 
the normal functioning and development of the brain. It regulates 

communication among neurons and influences brain plasticity. Gluta
mate plays a key role in memory and learning [46,47]. Low levels of 
glutamate in the grey matter of the brain, have been associated with 
poorer performance on several cognitive tests [47]. In another study, 
fecal glutamate was associated with better performance on the Trail 
Making Test-A test, suggesting better visual and motor processing speed, 
and therefore better executive function [46]. Notably, E. coli strains are 
among the glutamate-GABA producers. In fact, E. coli strains with the 
ability to produce GABA from glutamate inhibited neurodegeneration in 
C. elegans models expressing a neurotoxic allele [48]. 

In conclusion, our results suggest that although metformin's exact 
mechanism of action remains elusive, some of its beneficial effects may 
be mediated by changes in the composition of the gut microbiota and 
microbial-host-derived co-metabolites. However, these results should be 
interpreted with caution. To provide understanding of potential cau
sality and mechanism of action further animal studies as well as large 
human cohort studies with long-term follow-up are required. 
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