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ABSTRACT 8 

As physical chemistry makes the transition to computational chemistry, a new growth in 9 

the field is occurring. With the advent of predictive catalysis, computational chemistry is 10 

becoming a key player in the optimization and development of catalytic processes. 11 

Predictive catalysis refers to the use of computational and theoretical methods to predict 12 

the properties and behavior of chemical systems, and more specifically, their catalytic 13 

activity and selectivity. In this analysis, we take a look at what predictive catalysis has 14 

done to date, and build a picture of how far it can go in the future, while also outlining 15 

the challenges that need to be resolved to make it a powerful tool of general applicability. 16 
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 20 

The advent of predictive catalysis 21 

Computational chemistry is a rapidly evolving field that uses computational methods to 22 

study the structure and properties of molecules and solids [1]. Already in the 1960s, at 23 

the dawn of computational chemistry, the development of theoretical methods to calculate 24 

the electronic structure of molecules was used to understand and anticipate the reactivity 25 

of chemical systems, laying the foundations of predictive chemistry. As computer power 26 

and software improved over time, scientists were able to develop more sophisticated 27 

methods for predicting the behavior of chemical systems, including the role of catalysts 28 

in chemical reactions. In the late 20th century, advances in computational chemistry [2], 29 

along with the growth of the field of catalysis [3], led to the development of predictive 30 

catalysis as a distinct area of research. 31 

The ultimate goal when developing a catalytic process is to grant access to new 32 

compounds or discover new methodologies to synthesize known compounds in a more 33 
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efficient and sustainable way. Most advances are still made through trial-and-error 34 

experimentation, although this is a significantly time consuming and expensive approach 35 

to the problem. In contrast, predictive catalysis provides molecular-level insights into the 36 

catalytic process and helps identify the key parameters that influence activity and 37 

selectivity. This information is then used to predict the activity or selectivity of new 38 

substrates or catalysts and thus reduce experimental effort. 39 

But why stop at predictive catalysis and not dive into machine learning (ML)? ML is 40 

already being used for reaction deployment [4,5], reaction development [6,7], and even 41 

reaction discovery [8] following the classification recently proposed by Coley and 42 

coworkers [9]. Although ML is helping the development of synthetic chemistry, more 43 

accurate algorithms derived from more complete data sets are still needed. Additionally, 44 

there is a need to identify faulty models of existing techniques, which will help push 45 

predictive chemistry beyond current limits. Therefore, there is a lot of room for predictive 46 

catalysis to expand, especially in basic research because reactions are rarely tested with 47 

10 catalysts or more. This number is far from enough to build training, testing and 48 

validation data sets, so a predictive catalysis approach that includes experimental testing 49 

is much more appropriate in this scenario. 50 

Indeed, predictive catalysis has become an important tool used in a wide range of 51 

industrial and academic applications [10,11]. However, there are still a limited number of 52 

articles that include appropriate specific experiments based on the calculations 53 

performed. In other words, computational chemistry is very often used to predict, but still 54 

in some cases the lack of synergy between calculations and experiments means that 55 

experiments are not performed to corroborate the computational results. This only 56 

represents a success in specific cases where no significant changes in the energy of the 57 

rate determining step [12,13] or no clear trends in the electronic or geometric effect [14] 58 

are observed, in which case the calculations indeed avoid inefficient and unnecessary 59 

experiments. In all other cases it is a failure, since measures that could potentially inform 60 

new or better results have not been attempted [15,16,17]. Although in some cases the 61 

absence of experiments can only be explained because they have not yet aroused 62 

sufficient interest [18,19], in other cases this comes down to the inability to efficiently 63 

synthesize the starting materials or catalysts [84,20,21], or making computational 64 

proposals that are too far from what is synthetically possible. 65 

In this review we will focus our attention to works reported in the literature where 66 

theoretical predictive results have ultimately been useful to discover new catalytic 67 



3 
 

reactivity as examples of predictive catalysis. Through the study of these works, we will 68 

analyze important past studies and results, and determine where more focus is needed to 69 

overcome the problems of predictive catalysis, and turn it into a truly useful step that fills 70 

the gaps where machine learning cannot yet be applied. 71 

 72 

A path towards optimization: predictive catalysis by DFT calculations 73 

Predictive catalysis by Density Functional Theory (DFT) calculations refers to the use of 74 

computational methods to reveal the mechanism of a transformation and use the 75 

mechanistic information to predict the outcome when varying the parameters. It involves 76 

the use of DFT calculations to understand the interactions between the catalyst and the 77 

reactants, and how these interactions influence reaction kinetics, product distribution, and 78 

selectivity with the aim of using this knowledge to develop more efficient and sustainable 79 

catalytic reactions. Below are three case studies that exemplify the use of this pathway 80 

towards the optimization of catalytic processes. 81 

A series of publications led by the Poater and Renaud teams focused on the improvement 82 

of Knölker-type iron catalysts for a reductive amination reaction. In this work, DFT 83 

calculations together with a detailed analysis of the chemical structure in terms of 84 

geometry, fragment partial charges, effective oxidation states, and aromaticity were used 85 

to understand the mechanism for the reductive amination of aliphatic carbonyl 86 

compounds catalyzed by a Knölker-type iron catalyst (see Figure 1) [22]. With the 87 

reaction mechanism in hand, different catalyst modifications were explored with the aim 88 

of guiding the catalytic reactions towards milder conditions. It was found that the 89 

presence of electron-withdrawing (EWG) substituents on the cyclopentadienone ring 90 

would lower the activation barrier of the rate determining step (rds). In a follow-up work, 91 

the synthesis of the catalysts that were predicted to show the highest activities was 92 

experimentally attempted [23]. However, an undesired dimerization of the catalyst was 93 

observed, leading the authors to change strategy. The reintroduction of the two phenyl 94 

substituents present on the cyclopentadienone ring of the initial catalyst structure was 95 

undertaken, and also the introduction of EWG substituents on these rings, instead of 96 

inserting them directly on the cyclopentadienone ring. The new catalysts were 97 

experimentally tested and showed a significant increase in catalytic activity on the 98 

reductive amination of certain substrates. This is a clear example that predictive chemistry 99 

with a high degree of synergy between calculations and experiments is extremely useful 100 

for adapting the theoretically formulated hypothesis to experimentally feasible and useful 101 
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results. Along the same lines, several studies carried out by the scientific community 102 

demonstrate the use of predictive catalysis by DFT for the palladium-catalyzed 103 

hydrogenation of polyalphaolefins using palladium catalysts, with the aim of achieving 104 

new lubricants [24]. 105 

 106 

 107 

Figure 1. Two-step predictive catalysis approach for hydrogenation reactions with 108 

Knölker-type catalysts. A series of derivative Renaud catalysts with electron-withdrawing 109 

groups on the aryls of the cyclopentadienone improves the activity and selectivity [22,23]. 110 

 111 

A second case study highlights the importance of elucidating the mechanism to propose 112 

a new catalyst system with better performance. In 2014 D’Elia et al. showed that the 113 

fixation of CO2 by reaction with epoxides to form cyclic carbonates occurred not only 114 

with one NbCl5 unit as the nucleophilicity activating agent on the epoxide oxygen atom, 115 

but that a second unit assists in the rate-determining step of the cyclization [25]. One year 116 

later, the authors decided to develop a heterogeneously catalyzed version of the reaction 117 

by immobilizing the NbCl5 catalyst on silica. Based on the previous results that showed 118 

dual catalysis, as well as using the typical silica support SiO2-700 the catalyst was also 119 

immobilized onto SiO2-200, to bring the active centers closer together, obtaining 120 

remarkably higher efficiency as a result of vicinal niobium centers [26] (see Figure 2). 121 

An analogous change to a bimetallic mechanism was described in the hydrophenoxylation 122 

of alkynes catalyzed by a family of cationic NHC complexes [(NHC)Au-OH-123 

Au(NHC)]+1 [27]. Dual catalysis is a great way to trigger new reactivity to improve on 124 
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reported studies [28], although it should be noted that it is difficult to join two metal 125 

centers, especially in heterogeneous supports. 126 

 127 

Figure 2. The evolution from homogeneous to heterogeneous catalysis in the fixation of 128 

CO2 with epoxides together with dual metal catalysis that overcame the single atom 129 

catalysis by bending the CO2. In the heterogeneous systems the replacement of SiO2-700 130 

by SiO2-200 improved the reactivity demonstrating that the heterogeneous system is more 131 

efficient and follows a dual metal catalysis mechanism as in homogeneous catalysis 132 

[25,26]. 133 

 134 

Finally, a third example shows how the use of predictive catalysis can accelerate the 135 

process of developing new reactivity by reducing the number of experiments performed. 136 

The study was focused on the synthesis of indolizines from the reaction of pyridinium 137 

1,4-zwitterionic thiolates (PZTs) and copper carbenes [29]. Before the study began, PZTs 138 

had been shown to provide access to a wide diversity of products, but the reactivity with 139 

metal carbenes remained unexplored. Thus, the first step consisted of evaluating the 140 

feasibility of the annulation reaction of PZTs and copper carbenes by means of theoretical 141 

calculations. A plausible mechanism was obtained with affordable reaction barriers at 142 

moderate temperature. With this information in hand, the rds was identified and different 143 

copper salts, PZTs and diazo derivatives were modelled to predict their performance 144 

toward the transformation of interest. Experiments were then performed to validate the 145 

accuracy of the predictions with regards to the efficiency of different copper salts (see 146 
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Figure 3), and with the optimized reaction conditions, the scope of the reaction was 147 

evaluated. 148 

 149 

Figure 3. Predictive catalysis work for the reaction of pyridinium 1,4-zwitterionic 150 

thiolate and copper carbenes [29], leading to yields up to 90%. 151 

 152 

It should be noted that, in this last example, the yields did not match with the predicted 153 

rds energies for several of the different substrates being evaluated. This brings to light 154 

one of the main problems of predictive catalysis: the oversight of alternative and 155 

degradation pathways, in the previous case carbene dimerization. The advent of 156 

automated reaction discovery programs although currently not sufficiently developed to 157 

analyze all types of reactions, could be a powerful tool to solve this procedural flaw 158 

[30,31,32]. Methods towards automatic search of reaction mechanisms generated by 159 

Morokuma and coworkers [33,34] or conceptual DFT [39,35,36] should also help in this 160 

task. In the meantime, thorough analysis of the results [37], and use of reactivity 161 

knowledge to propose alternative or degradation pathways, remains the only solution. 162 

 163 

Use of linear regression modelling to predict yield and enantioselectivity 164 

The correlations produced by equating molecular parameters with experimental outcomes 165 

can be used, in a very intuitive way, to evaluate the origin of selectivity and generate new, 166 

experimentally-testable hypotheses. This contrasts with ML, which, although an 167 

extremely powerful methodology, produces results that are challenging to interpret 168 

directly. There are multiple molecular parameters, some of them derived after quantitative 169 

structure-activity relationships (QSAR) [38,39,40], and these can be obtained in different 170 

ways, known as generative chemistry in the drug development arena [41,42]. One 171 

example is the web server designed and created by Cavallo and collaborators to generate 172 
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steric maps [43,44,45] and steric indices such as the %VBur parameter [46]. These maps 173 

and indices help to understand the pockets that the ligands create around a metal in a 174 

catalyst to predict the reactivity that occurs in the first coordination sphere where the 175 

metal center interacts with incoming substrates. Another example of a web server, this 176 

time focused on the prediction of electronic parameters developed by Contreras, is 177 

designed to calculate Non-covalent Interactions (NCIs) and generate NCI plots [47]. Non-178 

covalent interactions such as hydrogen bonding, van der Waals forces, and π-π 179 

interactions, among others [48], play a crucial role in understanding molecular 180 

interconnection. In addition, other web tools like the energetic span tool by Shaik and 181 

Kozuch [49,50], and various tools by the Duarte [51,52] and Paton groups [53], with the 182 

predictions of the Sterimol steric index, as well as the Kraken by Gensch, Sigman and 183 

Aspuru-Guzik groups [54] provide a wealth of molecular parameters. 184 

Pla-Quintana, Poater and coworkers, described in various case studies the potential of 185 

these correlations to rationalize reaction yield and predict new reactivity. An initial study 186 

dealt with photoredox chemistry, where the mechanism for the photocatalyzed reaction 187 

of quinoxalinones with a hypervalent iodine(III) reagent to form triazoloquinoxalinones 188 

was unveiled [55]. A linear relationship between the kinetic cost and the energy of the 189 

LUMO and the electrophilicity of the key radical species was found. Multilinear 190 

regressions were performed and the best agreement was obtained with three mentioned 191 

descriptors. In addition, predictive chemistry gave the recipe for the electronic and steric 192 

requirements of the substituents that led to a faster reaction. The same authors broadened 193 

the definition of "predictive chemistry" by evaluating processes that do not involve the 194 

use of a catalyst. A computational study of the functionalization of nitrous oxide for the 195 

synthesis of triazolopyridine and triazoloquinoline scaffolds was reported [56]. After 196 

identifying the rds of the transformation, the activation energy was correlated to the 197 

experimental yields, allowing for direct prediction of the experimental performance from 198 

kinetic calculations. Moreover, the feasibility of preparing triazolopyrazine, 199 

triazolopyridazine, triazolopyridimidine and triazolotriazine scaffolds was evaluated by 200 

applying the reported methodology to the diazine and triazine family of heterocycles, 201 

demonstrating that the HOMO energy remains constant while the energy of the LUMO 202 

decreases with increasing number of nitrogen atoms in the structure. Another work delved 203 

into the stereoretentive formation of cyclobutanes from pyrrolidines [57]. The 204 

computational study helped to rationalize the mechanism, as well as to propose the 205 

structure of the species responsible for nitrogen transfer to generate the 1,1-diazene 206 
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reaction intermediate. In this case, the knowledge extracted from calculations was used 207 

to predict that the methodology could be amenable to the synthesis of [2]-ladderanes and 208 

bicyclic cyclobutanes, for which synthesis is not straightforward with the currently 209 

available methodologies (see Figure 4A). By studying the concerted decomposition of the 210 

1,1-diazene to the 1,4-biradical intermediate, the desirable geometrical parameters to 211 

obtain the desired product were ascertained, which is an important learning for future 212 

studies.  213 

 214 

 215 

Figure 4. A) Predictive chemistry approach by DFT for the synthesis of [2]-ladderanes 216 

and bicyclic cyclobutanes [56] and B) computational search for trans (thio)amides leading 217 

to the synthesis of trans(tBu-tBu)-N-methylbenzanilide, fully characterized by X-Ray 218 

[57].. 219 

 220 

Another study confirmed the utility of predictive chemistry at the borders of organic and 221 

computational chemistry, unveiling the factors that lie behind the higher preference of the 222 

cis over the trans conformation in (thio)amides [58]. Through a guided predictive 223 

chemistry strategy, the effect of alkyl/aryl substituents on the carbon and nitrogen atoms 224 

on the stability of the isomers was assessed, substituents that favor the trans isomer 225 

identified, and the hypothesis checked by experimental synthesis of the best candidate, 226 

that had sterically demanding t-butyl substituents (see Figure 4B). 227 
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In another study, Bertrand and collaborators introduced cyclic (alkyl)(amino)carbenes 228 

with a six-membered backbone (CAAC-6) as catalysts for the palladium-mediated α-229 

arylation of ketones with aryl chlorides [59], contrasting them with their five-membered 230 

counterparts (CAAC-5). CAAC-6 exhibited increased %VBur and enhanced donor and 231 

acceptor properties, supported by a visible spectrum n → π* transition. Its unique 232 

ambiphilic quality allowed it to insert intramolecularly into inactive C(sp3)–H bonds. As 233 

ligands, CAAC-6 demonstrated superiority over CAAC-5 in palladium-mediated α-234 

arylation of ketones with aryl chlorides. 235 

While predicting reaction yield tends to be difficult due to many on- and off-cycle events 236 

that can substantially alter it, product selectivity is more reliable as it is determined by a 237 

small number of elementary steps. Sigman and coworkers have applied multivariate linear 238 

and polynomial regression analyses to optimize reaction selectivity by predicting catalyst, 239 

ligand, and substrate effects. They elucidate substrate trends in enantioselective reaction 240 

outcomes based on vibrational and Sterimol parameters [60,61] as quantitative 241 

descriptors of mechanistic significance. In all the case studies, that span from peptide 242 

catalyzed desymmetrization of bisphenols to rhodium-catalyzed asymmetric transfer 243 

hydrogenation, the model validity was determined by assessing how well the model 244 

predicts the reaction outcomes of new substrates. They then include the catalyst in their 245 

studies to facilitate catalyst optimization with a data-intensive approach [62]. 246 

Identification of the interactions between substrate and catalyst in a BINOL-based 247 

phosphoric acid catalyzed cross dehydrogenative coupling reaction, supported by 248 

experimental evidence, afforded an efficient means of optimizing catalyst design with 249 

reduced catalytic insight. Furthermore, the enantioselectivity was improved capitalizing 250 

on the prediction that torsion of the triazole ring with respect to the phenyl leads to 251 

enhanced enantioselectivity. The Sigman group is continuing to use data science 252 

techniques to guide catalyst screening and explore the scope of the processes they develop 253 

(for recent examples, see [63,64]). 254 

Also in the field of data science, Paton and co-workers reported quantum chemical 255 

calculations for organic radical species and associated closed-shell molecules [65], and 256 

described how graph neural networks predictions can be incorporated into 257 

mechanistically informed statistical models of chemical reactivity and selectivity 258 

[66,67,68]. 259 

 260 

Further applications of Predictive Catalysis  261 
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Metathesis reactions: new catalysts and tailored stereoselectivity 262 

There are many examples of the use of predictive catalysis in the well-studied olefin 263 

metathesis reaction. Predictive catalysis was used to develop iron-based catalysts for this 264 

purpose. Work by Poater et al. initially described the potential of Fe-based complexes as 265 

olefin metathesis catalysts [69] and was followed by more computational efforts by 266 

Solans-Monfort and coworkers [70]. In 2021 Bukhryakov and coworkers experimentally 267 

reported that iron complexes were able to catalyze the ring-opening metathesis 268 

polymerization of norbornene [71](see Figure 5), and in 2022 Milstein and coworkers 269 

achieved a total of 880 TONs for this reaction [72]. It is important to point out that in this 270 

case the initial theoretical works only served as a basis. They introduced the idea of 271 

replacing the central metal in the catalyst, but it was necessary to experimentally exclude 272 

the NHC ligands, present in the computational studies, from the iron catalyst to observe 273 

reactivity. This was counterintuitive since NHC ligands are the most commonly used in 274 

ruthenium olefin metathesis catalysts [73]. In fact, NHC ligands induced an 275 

overstabilization of the intermediate metallacycle described in the beginning of the 276 

reaction by Chauvin [74]. 277 

 278 

 279 

Figure 5. Evolution towards Fe-based olefin metathesis: In silico Fe-based (pre)catalysts 280 

for olefin metathesis in silico designed, A: homologous to the 2nd Grubbs generation 281 

catalyst (NHC = N-heterocyclic carbene) [75]; B: pincer based including the phosphine-282 

phosphonium ylide [69]; and experimentally tested, C: bis-alkoxide catalyst [71] and the 283 

three-coordinate iron(II) catalysts for ring-opening metathesis polymerization of olefins 284 

[72]. 285 

 286 
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On the other hand, the Jensen group used predictive catalysis to improve the selectivity 287 

of ruthenium-based metathesis catalysts. They developed, through iterative 288 

computational prediction and experimental follow-up, new ruthenium complexes that are 289 

able of catalyzing the metathesis homocoupling of terminal olefins to achieve Z alkenes 290 

[76,77,78,79,80] and more recently E alkenes [81] in a highly selective manner. Since 291 

stereoselective metathesis is achieved by controlling the stereochemistry in the rate-292 

determining step of the Chauvin mechanism [74], typically cycloreversion to release the 293 

olefin product, the authors carried out a comprehensive study by modifying the steric 294 

hindrance and electronics of the anionic ligands (from chloride to thiolate and isocyanate) 295 

and neutral ligands (carbene, phosphines and pyridine) ligands. Although a good 296 

correlation between predictions and experimental results was achieved, in certain cases 297 

decomposition of the catalytic species leading to metathesis-active complexes caused the 298 

predictions to fail. 299 

Some works in this area have focused extensively on the computational studies, but have 300 

not yet piqued interest experimentally even though they could be extremely valuable. For 301 

example, there are in-silico studies of a highly sterically hindered second-generation 302 

Grubbs catalyst with a C60-appended NHC ligand [82,83], and also of two novel bis-303 

ylidene ligands postulated to be active metathesis catalysts computationally, but their 304 

activity and selectivity has not yet been experimentally tested [84]. 305 

 306 

Supra/macromolecular research: modification of carbon-based structures 307 

A second set of examples builds on the chemical modification of carbon-based materials. 308 

The groups of Solà and Langa joined efforts to evaluate the feasibility of modifying 309 

single-walled carbon nanotubes (SWCNTs) through a Pauson-Khand reaction (PKR) 310 

[85]. An initial DFT study on different types of carbon nanotubes (zig-zag, armchair, and 311 

chiral) revealed a new reaction pathway for the PKR with lower energy barriers, 312 

alternative to the widely-accepted Magnus mechanism. The calculations estimated 313 

reasonable energy barriers at room temperature and suggested that semiconducting 314 

SWCNTs exhibit higher reactivity than metallic SWCNTs. Based on the theoretical 315 

prediction, using the theoretically evaluated catalytic system, cyclopentenones were 316 

successfully attached to SWCNTs and the resulting compounds characterized [85]. This 317 

is a good example of the positive impact of putting together a collaborative theoretical-318 

experimental team for the successful development of new reactivity. 319 
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Other carbon nanostructures such as fullerenes can also be modified by transition-metal 320 

catalyzed cyclization reactions. In this topic, Solà, Roglans and Lledó studied the 321 

functionalization of C60 through a [2+2+2] cycloaddition reaction. In an initial predictive 322 

study, whether the reaction could be accomplished with rhodium in a catalytic fashion 323 

was computationally evaluated [86]. The transformation had been previously reported, 324 

but only with stoichiometric amounts of nickel or palladium and in a process with very 325 

limited substrate scope. Once the reactivity was predicted as feasible, the same group 326 

carried out the transformation in the laboratory; however, the reaction did not stop at the 327 

[2+2+2] cycloaddition product, and further evolved through a formal [4+4]/retro [2+2+2] 328 

rearrangement to open the fullerene cage. These functionalized fullerenes could be used 329 

to enhance the open-circuit voltage of perovskite solar cells [87]. Key intermediates in 330 

Pauson-Khand and [2+2+2] cycloaddition reactions are rhodacyclopentenes. Their 331 

formation by oxidative cyclization has been computationally studied by Baik and co-332 

workers, and two mechanistic scenarios – closed-shell and open-shell – have been 333 

recognized as leading to different reaction optimization and control strategies [88]. 334 

Predictive catalysis can also be applied to larger systems. In 2020, Liang et al. reported 335 

the use of computational tools to study the adsorption and catalysis of MnN4 embedded 336 

in carbon structures such as graphene, graphene nanoribbons, graphene nanosheets, 337 

carbon nanotubes and C60 fullerenes for the absorption of toxic gases and their subsequent 338 

transformation [89]. In the first part of their work, DFT calculations were conducted to 339 

model the MnN4-decorated carbon structures and evaluate the adsorption energy, charge 340 

transfer, sensitivity, and Gibbs free energy. The absorption properties were found to be 341 

highly dependent on the doped atoms, curvature, and the size of the substrate. Among all 342 

the supports tested, the MnN4-decorated graphene, graphene nanoribbons, and graphene 343 

nanosheets were labelled as the more effective towards catalytic CO oxidation. In the 344 

second part of the work, molecular dynamics (MD) simulations were performed to 345 

determine the operating temperatures of gas sensors, valuable information necessary for 346 

the design of new high-performance gas sensors. MD were used to speed up the 347 

calculation in such large and computationally demanding systems. 348 

Cross-coupling catalysts: filling the gap to ML 349 

Finally, a notable set of examples focuses on the development of efficient cross-coupling 350 

catalysts. The Doyle group have worked intensively on the development of nickel 351 

catalysts that are active in Suzuki-Miyaura cross-couplings. Based on the results of a 352 

parametrization and modelling study demonstrating that remote steric hindrance was key 353 
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to activity, they developed a novel class of aryl alkyl phosphine ligands, named DinoPhos 354 

[90]. These new monodentate phosphine ligands, with both a large cone angle and small 355 

%VBur value [46], efficiently catalyze the Ni-catalyzed cross-coupling of acetals with aryl 356 

boroxines. In a follow-up study, the groups of Doyle and Sigman, in collaboration with 357 

Merck & Co, capitalized on the observation that preferential formation of monoligated 358 

nickel complexes was essential for reactivity, and that the formation of bisligated versus 359 

monoligated metal species correlated perfectly with the %VBur(min) value [91]. This 360 

correlation is valid not only for nickel complexes but also for palladium ones, which 361 

curiously require two ligands to show catalytic activity. A powerful predictive parameter 362 

of activity was thus determined. More recently, the Doyle group gave more insight into 363 

the comparison of monophosphine and bisphosphine precatalysts for nickel-catalyzed 364 

cross-couplings to provide guidelines for ligand selection when dealing with challenging 365 

substrates and future ligand design tailored to the mechanistic demands of this reactions 366 

[92]. They also reported the analysis of Buchwald-type phosphine structure-reactivity 367 

relationships in Ni-catalyzed cross-coupling reactions using %VBur threshold analysis 368 

alongside mechanistic organometallic investigations by DFT calculations, with the aim 369 

of serving as a guide to predict new catalytic reactivity of nickel complexes [93]. 370 

Notably, the group also made a step forward in the field by using ML to predict the 371 

performance in Pd catalyzed C-N cross-coupling, using data obtained via high-throughput 372 

experimentation (HTE) in collaboration with Merck [94]. As highlighted in Figure 6, they 373 

developed a ML approach to model interaction effects in HTE datasets that were used to 374 

optimize the alcohol deoxyfluorination reaction [95]. 375 

 376 
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Figure 6. Application of ML techniques to analyze HTE datasets is a significant 377 

challenge in capturing interaction effects among reaction components. One bottleneck is 378 

the presence of irrelevant features in the data. To address this issue, there is a proposal of 379 

a two-step statistical modeling approach for HTE datasets. First, classical analysis of 380 

variance to identify systematic effects affecting reaction yields throughout the 381 

experiment, and second, chemistry-informed features to regress individual effects are 382 

used. To validate this methodology a dataset involving alcohol deoxyfluorination was 383 

used comprising 740 reactions [95]. 384 

 385 

The Schoenebeck group addressed the reductive elimination of ArCF3 from palladium 386 

complexes. They computationally designed a ligand that had a small bite angle in a 387 

counterintuitive prediction based on the previous literature. Subsequent experimental 388 

work demonstrated that the new ligand provides very high reactivity in the target reaction 389 

[96]. Later the group also made a step forward to ML to provide insight into the 390 

correlation between ligand and catalyst speciation in palladium complexes [97], and the 391 

identification of suitable ligands that form trialkylphosphine-derived dihalogen-bridged 392 

Ni(I) dimers with applications in site-selective catalysis [98]. 393 

 394 

Concluding remarks 395 

To sum up, predictive catalysis uses computational simulations and theoretical models to 396 

predict the behavior of catalysts and the reactions they catalyze. This approach leverages 397 

advances in computational chemistry, materials science, and machine learning to create 398 

detailed models of catalytic processes. The simulations can consider various factors that 399 

affect catalysis, such as the electronic structure of the catalyst, the adsorption of reactants 400 

and intermediates, the kinetics of reaction steps, and the thermodynamics of the reaction 401 

system. But is predictive catalysis really at a point where calculations allow us to guide 402 

experimental efforts? In our opinion, it is in the right path. It is extremely useful in 403 

exploring reactivity and predicting if a reaction is feasible. Selectivity can also be 404 

predicted with accuracy. However, predicting yields is still hampered by the difficulties 405 

encountered in taking into account all the possible secondary reactivities. The increasing 406 

use and importance of computational chemistry in mechanistic studies and its direct 407 

correlation with experimental data are driving rapid advancements in the field. 408 

Nonetheless, improved methodologies that automatically explore the various reactivities 409 

would be needed to achieve an accurate picture of the interconnected reactions that often 410 
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occur in catalytic processes that are not fully optimized. In summary, the ease of obtaining 411 

mechanistic data and parameters and the straightforward interpretation of the data 412 

obtained make it a valuable tool for cost-effective experimentation. Therefore, we believe 413 

it is a crucial step while we await the full development of machine learning potential. 414 

(see Outstanding Questions) 415 
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