
Treball Final de Màster

Estudi: Màster en Ciència de Dades

Títol: Solving classical astrodynamics problems by means
of Machine Learning approaches

Document: Memòria

Alumne: Isaac de Palau i Viñolas

Tutor: Esther Barrabés Vera
Departament: Departament d’Informàtica, Matemàtica Aplicada i Estadística
Àrea: Matemàtica aplicada

Convocatòria (mes/any): Juny 2023

Solving classical astrodynamics
problems by means of Machine

Learning approaches

Isaac de Palau i Viñolas
Supervisor: Esther Barrabés Vera

Academic year 2022-2023
Version: 1.0

Departament d’Informàtica, Matemàtica Aplicada i Estadística

MSc Data Science

Solving classical astrodynamics problems by
means of Machine Learning approaches

Isaac de Palau i Viñolas
Supervisor: Esther Barrabés Vera

Academic year 2022-2023

Isaac de Palau i Viñolas
Supervisor: Esther Barrabés Vera
Solving classical astrodynamics problems by means of Machine Learning approaches
MSc Data Science, Academic year 2022-2023

Universitat de Girona
Escola Politècnica Superior
Departament d’Informàtica, Matemàtica Aplicada i Estadística
Carrer de Maria Aurèlia Capmany i Farnés, 61
17003, Girona

vi

Abstract
The main goal of this master’s thesis is to analize and explore the usefulness of
Machine Learning and AI tools applied to two classical problems in the field of Dy-
namical Systems, more concretely in Celestial Mechanics and Astrodynamics, and
classic atomic physics: the spacecraft attitude (i.e. orientation) control problem,
and the approximation of the Poincaré map in a dynamical system of a Hydrogen
molecule under a microwave field.

The attitude control problem has the goal of finding the optimal sequence of move-
ments (usually in the form of torques generated with weak impulse thrusters and/or
magnetorquers) that allows for the correction of the angular velocity and orientation
of a space artifact in order to reach a desired final attitude. In this thesis, this prob-
lem has been formulated as a reinforcement learning problem where an agent (the
satellite) tries to learn an optimal policy (strategy) that allows it to decide which
torque should be applied at each moment in order to maximize a reward func-
tion inversely proportional to the attitude error. Several experiments have been
performed, using different satellite shapes and with/without environmental pertur-
bations. The results show that our controller is able to stabilize the full attiude
with a final average error around ±2 degrees, and a maximum error less than ±4
degrees, starting from an arbitrary orientation and a maximum angular velocity of
±4 rad/s in all three body axis.

The second problem of interest of this thesis is the approximation of the Poincaré
map of a dynamical system using a neural network. In the field of dynamical sys-
tems, Poincaré maps are a key mathematical tool that helps scientists to study the
global dynamics in specific regions of the phase space where the problem is defined.
In order to approximate the map using neural networks, we generate a large dataset
that contains the initial conditions, and their respective images under the Poincaré
map. This dataset has been used to train two regressors, each one consisting of
three deep neural-networks. The first regressor has been trained to reproduce the
Poincaré map forwards in time, while the second one reproduces it backwards. Un-
fortunately, results in this second section of the thesis have been poor, and both
neural networks have difficulties for correctly learning the map. Nevertheless, the
results have been discussed and two future research lines have been proposed that
could improve the regressor’s performance.

vii

Abstract (català)
El propòsit d’aquesta tesis de màster és analitzar l’utilitat de mètodes i models de
Machine Learning i Intel·ligència Artificial per resoldre dos problemes clàssics de
l’àmbit de l’astrodinàmica i la mecànica celeste: el problema del control d’actitud
(i.e. orientació) de vehícles espacials i el càlcul de mapes de poincaré d’un sistema
dinàmic.

Referent al problema del control d’actitud, aquest consisteix en determinar la se-
qüència de moviments (normalment en forma de torques generats per motors d’im-
puls feble i/o magnetorques) que permeten corregir la orientació i velocitat angular
d’un vehicle espacial i assolir una actitud final desitjada. Aquest problema s’ha
plantejat com un problema d’aprenentatge per reforç en que un agent (el satèl·lit)
intenta aprendre una política (estratègia) òptima que li permeti decidir quin torque
aplicar per tal de maximitzar una funció de recompensa inversament proporcional
a l’error de l’actitud. S’han realitzat varis experiments, amb satèl·lits de diverses
formes i amb/sense pertorbacions, i els resultats mostren que el nostre controlador
és capaç d’estabilitzar l’actitud amb un error mitjà proper als ±2 graus, sense ar-
ribar mai a superar els ±4 graus, començant des d’una orientació arbitrària i una
velocitat angular màxima de ±4 rad/s en cada un dels tres eixos del cos.

En el segon problema, l’objectiu és aproximar per mitjà d’una xarxa neuronal el
mapa de poincaré d’un sistema dinàmic. En el camp de la Mecànica Celeste, els
mapes de Poincaré són una eina matemàtica clau que permet als científics estudiar
la dinàmica global de regions específiques de l’espai de fase a on es defineix un
determinat problema. Per tal d’aproximar el mapa de Poincaré, hem generat un
gran dataset que conté les condicions inicials i les seves respectives imatges per
l’aplicació de Poincaré d’un determinat problema. Aquest dataset ha estat després
utilitzat per entrenar dos regressors, cada un compost de tres xarxes neuronals pro-
fundes. El primer regressor ha estat entrenat per tal d’aprendre el mapa de Poincaré
integrant el temps cap endavant, mentre que el segon intenta reproduïr-lo integrant
el temps cap enrere. Per desgràcia, els resultats obtinguts en aquesta segona part
del treball han estat bastant dolents, i els dos regressors tenen dificultats impor-
tants per aprendre correctament el mapa de Poincaré del problema considerat. No
obstant, en aquest document es mostren i es discuteixen els resultats, i es proposa
una línia d’investigació futura en la qual es podria treballar per intentar millorar la
precisió obtinguda.

viii

Agraïments / Acknowledgements

Als meus pares i a en Salem, pel seu suport durant aquest últim any.

Als meus companys de master, per haver fet més amenes les hores de classe, d’estudi
i de pràctiques.

A l’Esther Barrabés, per la seva (infinita!) paciència i per haver-me guiat i assistit
de manera molt amable i propera durant l’elaboració d’aquest treball. I també pels
snacks durant les tutories.

Finalment, a David Juher per haver-me donat a conèixer aquest màster en ciència
de dades, i també per haver ajudat indirectament en l’elaboració d’aquest treball.

ix

Contents

0 Introduction 1

1 AI, Machine learning and Reinforcement learning 5
1.1 Reinforcement Learning . 5

1.1.1 Intelligent Agents . 7
1.1.2 Markov Decision Process . 7
1.1.3 Q-values . 8
1.1.4 Policy gradient and actor-critic methods 10
1.1.5 Proximal-Policy Optimization (PPO) 11

1.2 Artificial Neural Networks . 13
1.2.1 Anatomy of the Artificial Neural Network 13
1.2.2 Activation functions . 14
1.2.3 Backpropagation . 15

2 Attitude control 17
2.1 Attitude representation . 17

2.1.1 Reference Frames . 17
2.1.2 Rotation Matrices . 18
2.1.3 Euler Angles . 19
2.1.4 Quaternions . 20

2.2 Rigid Body Dynamics . 21
2.3 Attitude control as a Reinforcement Learning problem 22

2.3.1 Objective . 23
2.3.2 Representation of the states and actions 23
2.3.3 Simulation environment . 23
2.3.4 Controller . 25

2.4 Experiments and Discussion . 26
2.4.1 Experiment I - Angular velocity stabilization 27
2.4.2 Experiment II - Full attitude control 28
2.4.3 Experiment III - Perturbations 32

2.5 Future work . 34

3 Poincaré map approximation 37
3.1 Dynamical systems and Poincaré maps 37
3.2 From Celestial Mechanics to molecular dynamics 38
3.3 Approximating Poincaré maps as a supervised learning problem . . . 39

3.3.1 Dataset generation . 41
3.4 Architecture and hyperparameters of the ANNs 43
3.5 Results . 44

3.5.1 Equidistant dataset . 44
3.5.2 Random dataset . 44

xi

3.5.3 Limited dataset . 47
3.5.4 Conclusions and future work 49

Bibliography 51

xii

0Introduction

Celestial Mechanics is the branch of physics concerned with studying the motion
and dynamics of objects in outer space, such the orbits of planets, the gravitational
fields of stars, or the trajectories of comets, to name a few examples. Astrodynamics
can be considered an offspring of celestial mechanics and ballistics that deals with
the movement of human-made artifacts in space. The motion and orbits of satellites,
rockets and spaceships are typical subjects of study that scientists deal with when
working in the field of astrodynamics.

Machine learning, on the other hand, is a sub-field of artificial intelligence con-
cerned with building machines capable of learning from data (and/or from experi-
ence) by themselves, with limited or no human intervention. In recent years, ma-
chine learning has helped improve and advance numerous scientific fields such as
medicine (with algorithms capable of detecting disorders in medical images), biol-
ogy (automatic folding of proteins), chemistry (automatic identification of chemical
compounds), robotics (automatic navigation, learning locomotion gaits), etc.

In this thesis we ask ourselves what tools does machine learning offer that can
be beneficial to the fields of both astrodynamics and celestial mechanics. Given
the time and scope of this master’s thesis, we will focus in two particular, classi-
cal problems in the field of astrodynamics: the problem of the attitude control of
a spacecraft and the problem of approximating the Poincaré map of a dynamical
system.

Next, we summarize the contents of each chapter of this Master Thesis.

Chapter 1 - Machine learning and AI
In the first chapter of this thesis, we will review some basic notions about Artificial
Intelligence, Machine Learning and Neural networks. We will study the theoretical
foundations of Reinforcement Learning (MDPs, optimal policies, Q-values),we will
introduce the Proximal-Policy Optimization method and we will review the inner
workings of Artificial Neural Networks and the algorithms that allow them to learn
autonomously from data.

Chapter 2 - Attitude control
In Chapter 2 of this thesis, we will study the problem of the attitude control of a
spacecraft. The goal of this problem is to find the optimal sequence of movements
that allow a human-made, spacefaring object to correct its orientation. The move-
ments that allow this correction are usually in the form of torques which can be
generated with a wide range of actuators such as weak impulse thrusters, magne-
torquers, thrust wheels and solar sails, to name a few.

We will begin this chapter by reviewing some theoretical notions about rotations,
attitude representation and rigid body dynamics. Then, we will present the attitude
control problem in terms of a reinforcement learning problem, where an agent (in

1

our case, the control "brain" of a simulated satellite) has to learn by trial and error
an optimal strategy to maximize a reward function inversely proportional to its
current attitude error. The chapter will end with a discussion of three experiments
that have been performed on a satellite running on a custom virtual simulator that
show that reinforcement learning approaches are adequate to face the problem of
attitude control - although further research would be needed in order to obtain a
controller that could be used in an actual mission.

Chapter 3 - Poincaré map approximation
In Chapter 3 of this thesis, we will study the usefulness of neural networks when
trying to aproximate the poincaré map of an arbitrary dynamical system.

In the field Dynamical Systems (in particular, Celestial Mechanics or Astrodynamics,
poincaré maps are a key mathematical tool that helps to study the dynamics around
a specific region of the phase space, in particular, around stable periodic orbits. For
example, when considering an orbital system generated by two large mass objects
(such as the system created by our planet and the Moon), there are five positions in
which a small object placed there would remain stationary with respect to the large
objects. These positions are known as Lagrange points or Libration points, and are
usually surrounded by periodic orbits that are useful for those missions that require
the deployment of an stationary artifact (such as an antenna or a radiotelescope).
To have a good knowledge of these regions is crucial for the design of successful
space missions.

In order to aproximate the map using neural networks, we generated a large dataset
that contains the initial conditions of a dynamical system 1, and their respective
intersections with a predefined poincaré section, integrated using the Runge-Kutta-
Fehlberg 78 method. This generated dataset has been employed to train two re-
gressors, each one consisting of three deep neural-networks of several layers. The
first regressor has been trained in such a way that, when given an initial condition,
it is able to output the intersection point with the poincaré section. The second
regressor does the inverse; when given a final intersection point, it predicts the ini-
tial condition. Unfortunately, results in this second section of the thesis have been
poor, and both neural networks have difficulties when learning the map and giving
accurate predictions. Nevertheless, the results have been discussed and two future
research lines have been suggested that could improve the performance.

GitHub code repository
In addition to the contents of this document, an external GitHub repository has
been created to store all the code and programs developed during this thesis. This
repository can be accessed and reviewed in the following link:

github.com/RecursiveMagus/AstroIA_MasterThesis

1 The original idea was to work with the dynamical system of the restricted three body problem,
but we decided to begin our first tests with the CP problem. The poor results obtained with the
prediction have prevented us to progress further.

2 Chapter 0 Introduction

The software for this thesis has been developed in MATLAB r2022b and r2023a for
Linux, running on Ubuntu 20.04 . The specifications of the hardware used to train
the machine learning models are as follows:

• NVIDIA GeForce RTX 3080.

• Ryzen 9 3900X Processor.

• 32GB RAM.

3

1AI, Machine learning and
Reinforcement learning

In this first chapter we will review some theoretical concepts about AI, Machine
Learning and especially Reinforcement Learning, that we will use to solve the two
problems of interest of this thesis.

Although the terms are often mistakenly used interchangeably, Artificial Intelligence
(AI) and Machine Learning (ML) are not the same concept (see Figure 1.1). Even
though Artificial Intelligence lacks a consensual, precise definition (see [13], Sec-
tion 1.1), it can be considered a scientific discipline concerned in building ma-
chines/algorithms capable of procesing information, reasoning and solving prob-
lems in a similar way that humans and/or other living beings do, often by mimick-
ing problem-solving strategies employed by living organisms. Machine Learning is
a sub-field of AI dedicated to build algorithms capable of learning (in the broad-
est of senses) from data or experience. Reinforcement Learning, in particular, is a
paradigm of Machine Learning that is concerned about how to obtain intelligent
agents capable of learning in an autonomous way, without supervision or labeled
data, by means of rewards and punishments obtained through experience.

1.1 Reinforcement Learning
Suppose we need to build an agent capable of playing (and winning) in the game of
checkers. One way to build such an agent would be not to use a Machine Learning
approach, but to employ a deterministic search algorithm such as minimax, capable
of finding the optimal set of movements. Although this would be perfectly suited
for a simple game such as checkers or even chess, it would be totally impractical
for some of the games that current AIs are capable to play (see [8]). Another
option would be to take a supervised learning approach; this would require that a
dataset is build with thousands of posible board configurations, each one labeled
with the most optimal move. Again, this could be feasible for a game of checkers,
but impractical when playing more complex games. The third option would be to
teach the agent by giving it a reward only when certain events happen during the
game; for example, a negative reward when it loses a token, a positive reward when
the rival loses a token, and a huge positive reward when the agent wins a game.

However, the best actions do not always yield an immediate reward. In chess or
checkers, it is not uncommon to sacrifice a token if this places the oponent in an
unadvantageous position or opens some window for attacking; the short term loss
of having lost a token can be mitigated for the long-term reward winning the game.
Therefore, the problem that Reinforcement Learning tries to solve is: is there any
way to build the agent in such a way that it is able to maximize the sum of these
rewards in the long term?

5

AI

Machine
Learning

Superv.
Learning

Self-
supervised
learning

Transfer
learning

Unsuperv.
LearningClustering

Pattern
mining

Reinf.
Learning

Natural
language

processing
Automatic

Trans-
lation

Sentiment
Analysis

Text
generation

Chatbots

Optimization

Particle
Swarm
Optim.

Evolutionary
Algo-

rithms

Genetic Al-
gorithms

Robotics

Manipulation

Locomotion

Multi-
robot

systems

Swarm
robotics

Formation
control

Sensing

Vision

Motion
analysis

Image/scene
recon-

struction
Recognition

Object
recog.

Facial
recog.

Planning &
Scheduling

SAT /
MAXSAT

Probabilistic
planning

Temporal
planning

Fig. 1.1: AI and (a few of) its subfields and subdisciplines. Although it is not shown in the
figure, these sub-fields often intersect and combine.

6 Chapter 1 AI, Machine learning and Reinforcement learning

1.1.1 Intelligent Agents
The core concept behind most of the perspectives and approaches in the field of AI
is the concept of the rational agent, or simply agent. The precise definition of an
agent will vary depending on the context and the particular problem to solve, but
generally speaking an agent is an entity (a robot, a person, an algorithm, a softbot,
etc) capable of sensing an enviroment (real or simulated, abstract or otherwise)
and acting upon it using actuators in order to achieve a goal (see Figure 1.2).

Fig. 1.2: The actor perceives the environ-
ment and performs actions on it in
order to achieve some goal.

For example, a physical robot is an
agent that exists in a real environment.
It uses its sensors (cameras, IMUs, an-
tennas, etc) to sense its environment,
and acts upon it by using its wheels,
joints or communication devices. Its
goal could be to explore a region, fol-
low a path or deliver a package. In
contrast, the satellite we will train dur-
ing this thesis exists in a virtual environ-
ment; its sensors and actuators are just
software functions that read or change
some variables of the simulation. Still,
it lives inside an environment that is
a reflection of the real world. Other
agents, however, can live in purely abstract environments that do not represent
any aspect of the real world.

1.1.2 Markov Decision Process
Most problems in Reinforcement Learning are modelled as Markov Decision Process.
Informally, a Markov Decision Process can be thought as a random process that can
adopt different discrete states, and where we have some degree of control over the
probabilities that the current state changes into another.

In more formal terms, suppose we have an agent acting on an environment that
can be modelled by a discrete set of states S, and the actions available to the agent
can be codified with the elements of a non-empty discrete set A. We will denote
the state of the agent at time t as Xt, and the action performed at time t as At.
Consider also a probability space (Ω,F ,P), where Ω is the sample space, F is the
set of possible events, and P is the probability function.

Definition 1.1.1 (Markov Decision Process). A Markov Decision Process, or MDP
for short, is a 4-tuple (S,A, T,R) where:

• S is a discrete, non empty set called the set of states. The situation of the
agent in the environment at any given time t ≥ 0 will be codified by a random
process {Xt}t≥0 that takes its values in S. Some states can be considered
terminal, and finish the process.

• A is a discrete, non-empty set called the set of actions. It defines the actions
that the agent is able to perform in a given moment.

1.1 Reinforcement Learning 7

• T (s, a, s′) := P(Xt = s′|Xt = s,At = a) is a stochastic function called the tran-
sition function. It defines the probability to change the state of the system to
s′ when performing the action a on state s.

• R(s, a) : S ×A −→ R is the reward function, which determines the expected
reward received when performing the action a on state s.

The transition function must follow the markovian property: the next state of the
agent must only depend on the current state and the chosen action. Formally,
T (st, at, st+1) = P(Xt+1 = st+1|At = at, Xt = st) = P(Xt+1 = st+1|At = at, Xt =
st, Xt−1 = st−1, ..., X0 = s0).

Definition 1.1.2 (Trajectory). The historic sequence of previous states, actions that
led to them and received rewards is called a trajectory and is often written as
s0, a0, s1, r1, a1, s2, r2, a2, ..., an−1, sn, rn, where st denote the states, at denote the
actions and rt denote the rewards obtained when transitioning from state st−1 to
state st.

Note that in an MDP, due to the markovian property, each action at does not depend
on the previous trajectory up to that time t.

The goal of an MDP is finding a way to maximize the cumulative sum of expected
rewards in the long run.

Definition 1.1.3 (Policy and optimal policy). A policy is a function π : S −→ A
that assigns to each state an action to perform; by choosing a sensible function, this
policy can be followed by the agent in order to pick the action to perform at any
given time.

Ideally, an optimal policy, denoted as π∗, is a policy that maximizes the cumulative
sum of expected rewards ∑

t≥0
R(st, at) .

Unfortunately, this sum diverges in most practical cases, thus forcing us to find an
alternative optimal criteria. A possible alternative is to discount future rewards by
a multiplicative factor β ∈ (0, 1). Thus, we want to find a policy that maximizes∑

t≥0
βtR(st, at)

for each state.

1.1.3 Q-values
The quality of a policy π can be represented through a value function that measures
the expected sum of rewards if the agent follows the policy. Value functions can
be calculated for each state (state value functions), or for each action-state pair
(state-action value functions, sometimes called Q-value functions). We will say
that state value functions measure the utility or value of a state, while state-action
value functions measure the utility or value of an action-state pair.

8 Chapter 1 AI, Machine learning and Reinforcement learning

The state-value function for a state s under a policy π, denoted as V π(s) is the
expected return when the agent starts at state s and follows π afterwards:

V π(s) = E

∑
t≥0

βtR(st, π(st)) | s0 = s

 ,
where E is the expected value associated to the probability space (Ω,F ,P). In
contrast, the state-action value function for a state s and an action a under a
policy π is defined as the expected return of performing action a in state s and
following policy π afterwards:

Qπ(s, a) = E

R(s, a) + β
∑
t≥1

R(st, π(st)) | s0 = s, a0 = a

 .

Theorem 1.1.1 (Bellman equation). The action-value function Q can be re-written
as

Qπ(s, a) = R(s, a) + β
∑
s′∈S

T (s, a, s′)Qπ(s′, π(s′)).

We call this expression the Bellman Equation.

Proof. See [14], Section 3.6 .

The Bellman Equation is a crucial result upon which most classical reinforcement
learning methods are built upon. Its importance lies in the fact that it allows us to
express the Q-value of a state-action pair in terms of the Q-values of other pairs.

Reinforcement Learning can be considered a particular case of an MDP where the
agent does not have a priori direct knowledge of the transition function nor the
reward function. In order to find an optimal policy that maximizes the expected
reward, the agent will have to find a way to estimate this two functions or, at the
very least, to estimate the utility of a state.

Suppose that for each state s ∈ S and action a ∈ A, the agent has learnt the utilities
Q(s, a) (known as the Q-values). In this case, in order to maximize its expected re-
ward the agent only has to calculate these Q-values for each new state and possible
action, and then pick the action that yields the maximum value. However, given
that the agent does not have knowledge of T nor R, the only way to determine the
Q-values Q(s, a) for each state-action pair (s, a) is by learning from experience. One
way to do this is by using the Q-value iteration method, which turns the Bellman
equation into an iterative method:

1.1 Reinforcement Learning 9

Algorithm 1 | Q-value iteration

Require: A table Q with an entry for each possible state-action pair (s, a) (we will
denote each entry as Q(s, a)). Max number of episodes E > 0, a max. number
of training steps M > 0, relaxation parameter α, exploration probability ϵ and
discount factor β with α, ϵ, β ∈ (0, 1).

Begin:
Initialize each element of Q to 0.
for i = 1, 2, ..., E do

Set initial state as s.
for i = 1, 2, ...,M do

Pick random action a with probability ϵ, otherwise pick action a that
maximizes Q(s, a).
Perform a, observe new state s′ and reward r.
Update:

Q(s, a)← (1− α)Q(s, a) + α(r + βmaxa′Q(s′, a′)).
s← s′.

If s is a terminal state, exit loop.
end for

end for

1.1.4 Policy gradient and actor-critic methods
The Q-value iteration methods is one of many of the so called Q-learning methods.
In Q-learning, the agent tries to find an optimal strategy not by learning an actual
policy per se, but by trying to approximate the utility of each state-action pair. There
exists, however, another family of reinforcement learning methods, called the pol-
icy gradient methods, that seek to construct an actual policy from past experiences.
In these methods, policies are defined by a tunable set of parameters (such as the
constants of a PID filter, the weights of a neural network, etc), and the agent will
try to adjust this parameters in a way that maximizes its long-term rewards. This
means that policy gradient methods are directly modelling a policy.

We use the notation θ ∈ Rd, with d > 0, to denote the tunable parameters of a
policy. We will also write as π(a|s, θ) = P(At = a|St = s, θt = θ) the probability
that, at time t, the action a is picked if the current state is s and the current policy
parameters are θ. Note that the policy can be parametrized in any way 1, as long as
π(a|s, θ) is differentiable with respect to θ.

In order to optimize the parameters, policy gradient methods will try to maximize
some scalar performance measure Jπ(θ) using gradient ascent:

θ ←[θ + α∇̂θJπ(θ),

where α ∈ R is the step size (or learning rate) and ∇̂θJπ(θ) ∈ Rd is an estimate
whose expectation approximates the gradient (with respect to θ) of the performance

1 In this thesis we used neural networks (see 1.2), where the parameters are the weights of the
connections between nodes.

10 Chapter 1 AI, Machine learning and Reinforcement learning

measure Jπ(θ). Some methods (such as the Proximal-Policy Optimization used in
this thesis) try to learn approximations of both the optimal policy and value func-
tions. This family of methods are called actor-critic methods.

1.1.5 Proximal-Policy Optimization (PPO)

The challenge we are facing now is to find an adequate Jπ(θ) that tells the agent
"how well is the current policy doing" and helps it find an optimal policy. In addition,
we must find a way to correctly approximate some value function Vπ(s) that tells
the agent the expected long-term reward for reaching each state and following the
current policy afterwards.

The algorithm we have chosen to solve this problem is called the Proximal-policy
optimization (PPO), published in 2017 by OpenAI researchers and currently con-
sidered one of the state-of-the-art reinforcement learning methods (see [7]). Since
the code of the algorithms used in this thesis have been developed using Matlab,
we will present the PPO algorithm according to the steps presented in the official
documentation of this software package (see [12]).

Suppose we have a way to parametrize the policy π(θ; s) and value Vπ(ϕ; s) func-
tions, according to some parameters θ = {θ1, θ2, ..., θn} and ϕ = {ϕ1, ϕ2, ..., ϕm}, for
example by using neural networks (see next section). We will call the function π
the actor and the function V the critic. The objective of the actor will be to output
the probability of taking each action a ∈ A when the current state is s ∈ S, and
the objective of the critic will be to learn the expected long-term reward of a given
state s ∈ S.

Algorithm 2 PPO algorithm
Set a maximum number of "training" episodes. For each episode, do the following:

Step 1: Initialize the actor π(θ; s) with random parameter values θ and V (ϕ; s)
with random parameter values ϕ.

Step 2: Generate a trajectory of N steps by following the current policy dic-
tated by the actor. Let’s denote the trajectory by

s0, a0, r1, s1, a1, ..., sN−1, aN−1, rN , sN ,

where sn is a state observation, an is the action taken from this state Sn (as dictated
by the actor), Sn+1 is the next state after taking the action, and Rn+1 is the reward
received from the state transition from Sn to Sn+1.

Step 3: for each step 1, 2, 3, ..., N of the previous trajectory, calculate the
return Gt using the GAE advantage estimator method:

Gt = Dt + V (ϕ; st)

1.1 Reinforcement Learning 11

where Dt is the advantage estimate:

D =
N−1∑
k=t

(βλ)k−tδk

δk =
{
rk if sk is terminal,
rk + βV (ϕ; sk) otherwise.

β is the discount factor, and λ is a predefined smoothing factor.

Step 4: store the trajectory s0, a0, r1, s1, a1, ..., sN−1, aN−1, rN , sN in a buffer,
along with each calculated advantage Dk and return Gk. We will call this buffer
the experience buffer.

Step 5: retrieve a mini-batch of M examples from the experience buffer.
Step 6: update the critic parameters ϕ by minimizing the loss function Lcritic

across all M samples of the retrieved mini-batch.

Lcritic(ϕ) := 1
2 ·M

M∑
i=1

(Gi − V (ϕ;Si))2

Intuitively, this loss function can be considered a measure of how well the critic is
able to guess the actual value of a state. We will denote the previous parameters as
ϕold and the new updated parameters as ϕ.

Step 7: update the actor parameters θ by minimizing the loss function Lactor

across all M samples of the retrieved mini-batch.

Lactor(θ) := 1
M

M∑
i=1
−min{ri(θ) ·Di , ci(θ) ·Di}+ wWi(θ, si)

where:

• ri(θ) := π(θ;si)
π(θold;si

, and θold are the actor parameters from before the last update.

• ci(θ) := max{min{ri(θ), 1 + ϵ}, 1− ϵ}, and ϵ is a predefined parameter, called
the clipping factor.

• Wi(θ, si) := −
∑

a∈A P(π(θ; si) = a) · ln(P(π(θ; si) = a)) is the entropy loss
function, and w > 0 is a parameter called the entropy weight.

Note that this loss function for the actor is the function Jπ(θ) we introduced in
1.1.4, and can be considered a measure of "how well" the policy learned by the
actor can solve the problem at hand by maximizing the long-term reward.

Repeat Steps 2 through 7 until reaching the maximum number of training
episodes.

Other variants of the PPO method exist, such as methods with different advantage
functions or variants that make use of continuous control actions. However, these
methods are beyond the scope of this master’s thesis.

12 Chapter 1 AI, Machine learning and Reinforcement learning

1.2 Artificial Neural Networks
As the reader might have noticed, in Section 1.1.5 we did not discuss the way
in which the policy function π and value function V should be represented, only
that these functions should be dependent on some parameters θ and ϕ, and also
derivable with respect to them. This omission is deliberate, as there are many
different ways in which these functions can be represented. One of such ways,
which has been chosen for this master’s thesis, is by using Artificial Neural Networks
as function approximations for both the actor and the critic.

Artificial Neural Networks (or ANNs, for short) are mathematical objects that mimic
the way in which brain cells transmit and process information among them. ANNs
are of particular interest in the field of Artificial Intelligence for their ability to
compute large amounts of information in parallel, for being noise-resistant and for
being capable of learning complex patterns and strategies.

1.2.1 Anatomy of the Artificial Neural Network

In their most usual form (see Figure 1.3), ANNs are typically constituted of one or
multiple layers, each on comprised of multiple nodes (sometimes also called units or
simply neurons). In most ANN architectures, neurons in one layer are connected to
all the neurons in the following layer through directed connections. Consequently,
information is propagated from the first layer to the last, but usually not in the
opposite direction even through some architectures allow for recurrent information
propagation.

Fig. 1.3: Example of an Artificial Neural Network, consisting of an input layer of 4 units
(red), two hidden layers of 4 and 3 units each (green) and one output layer of 2
units (yellow)

A node is composed of several parts (see Figure 1.4): the synaptic weights (or
simply weights), the bias, the activation function and the output signal. The neuron
collects the input signals, referred here as x1, x2, ..., xn, and multiplies each one for
its synaptic weight w1, w2, ..., wn. These synaptic weights can be considered the
strength of the connections between the neuron and the ones in the previous layer.
These weighted inputs are then added together (sometimes a bias b is also added to

1.2 Artificial Neural Networks 13

the sum) and a non-linear function f , called the activation function, is then applied
to this sum to produce the output signal.

Output = f

(
b+

n∑
i=1

wi · x1

)
.

Fig. 1.4: Mathematical model for a single neuron/node.

1.2.2 Activation functions
Activation functions serve two purposes. First, they determine whether a neuron
should be activated or not based on its input. If an input encodes some feature
or information that the neuron deems "important", the function should activate
the neuron. Secondly, activation functions add non-linear complexity to the full
network and allow it to learn more complex patterns.

Some of the most commonly used activation functions are the sigmoid, threshold
and ReLU.

1. Sigmoid function: also known as an S-shape function, and is used mainly to
represent probabilities in binary classification tasks (Supervised Learning). Figure
1.5 shows the graph of this activation function.

f(x) = 1
1 + ex

.

2. Threshold function: acts like a logical boolean threshold gate. It outputs
0 if the sum is less than a predefined threshold T , or 1 if the output exceeds the
threshold.

f(x) =
{

0 if x < T,

1 otherwise.

3. ReLU function: the Rectified Linear Unit (or ReLU) is currently the most widely
used activation function, and one that yields the best results in most practical ap-

14 Chapter 1 AI, Machine learning and Reinforcement learning

−5 −2.5 0 2.5 5

0

0.5

1

x

f
(x

)

Fig. 1.5: Graph of the sigmoid activation function.

plications. It simply replaces negative values with zero, and leaves positive values
unchanged.

f(x) = max{0, x}.

1.2.3 Backpropagation

By carefully adjusting the weights of each node, an ANN with enough layers and
connections could, in theory, approximate any real-valued function. The backpropa-
gation algorithm (see [6]), originally published in 1986, offers a simple yet elegant
way to repeatedly adjust the weights of an multi layered ANN in order to minimize
a measure of difference (or Loss) between the actual output of the network and the
desired output given a particular set of examples.

The intuitive idea behind the algorithm is the following: suppose that we have a set
of labeled examples {e1 = (x1, y1), e2 = (x2, y2), ..., en = (xn, yn)} of the function
we want to approximate, where xi are the inputs of the network and yi the desired
outputs. The algorithm iterates through each example ei, feeds the input vector xi

and observes the output y′
i. Then, it calculates the difference between the desired

output yi and the actual output y′
i. This difference is the error produced by the

last layer of the network; then, the backpropagation algorithm propagates back this
error to the previous layers (hence the name of the algorithm) and, for each layer,
calculates the "fraction" of the final error it is responsible for. When the error of
each layer has been calculated, an optimization method (such as gradient descent)
can be applied to adjust the weight values with respect to the error.

Algorithm 3 describes the backpropagation algorithm using a simple gradient de-
scent algorithm as a weight optimizer. In the programs developed during this mas-
ter’s thesis we used the ADAM optimizer since it’s faster and usually converges to
better solutions (see [11]).

1.2 Artificial Neural Networks 15

Algorithm 3 | Backpropagation algorithm
Inputs: a set of n labeled examples (xn, yn), a multilayer ANN with M lay-
ers, weights wji, activation function f(∗) and its derivative f ′(∗), loss function
Loss(yi, ai), learning rate α ∈ (0, 1).

Repeat, for each training example (xi, yi):

Step 1: for each node j in the input layer, calculate its output aj as aj ← xj .

Step 2: for each layer l = 2, ...,M − 1 do:

alj ← f

bj +
∑

j

wjlal−1

 , for each neuron j in layer l.

Step 3: for each node j in the output layer, do:

∆j ← f ′(aM−1j) · Loss(yi, aji).

Step 4: for each layer l = M − 1, ..., 1 do:

Step 4.1: for each node j in layer l do:

∆j ← f ′(aj) ·
∑

j

wjlal−1.

Step 4.1.1: for each node i in layer l + 1 do:

wji ← wji + α · aj ·∆i (Gradient descent).

Stop when some stopping criterion is reached (such as having an average Loss less
than some threshold).

16 Chapter 1 AI, Machine learning and Reinforcement learning

2Attitude control

In this second chapter we want to study attitude control procedures of artificial
satellites by means of modern machine learning techniques. The main goal to build
a controller capable of learning by itself, through trial and error, how to stabilize a
spacecraft by applying small torque corrections.

We will begin this chapter by reviewing some basic theoretical concepts about at-
titude representation and how to mathematically represent the orientation of an
object in the 3D space with absolute precision. After that, we will introduce Eu-
ler’s equations, that will allow us to construct a dynamical system to express the
changes in the orientation of our satellite when an external torque is applied. We
will also study how the attitude control problem can be represented as a Reinforce-
ment Learning problem. Finally, we will present the results obtained during our
experiments and simulations.

2.1 Attitude representation
(Except where otherwise indicated, this full Section 2.1 will follow the steps and con-
cepts presented in Chapter 2 of [2] and Sections 2.5 and 2.6 of [5]).

This section is concerned with finding an effective way to mathematically express
the attitude (i.e. 3D orientation) of a rigid body in space.

A rigid body is an object that cannot be deformed by the action of external forces.
Even though from a philosophically point of view it could be argued that such bodies
cannot exist in reality -every object is deformable to some extent, we will consider
that our satellite is a rigid body from a purely practical point of view, since it will
greatly simplify our calculations.

The mathematical representation of an object’s orientation is indicated as attitude.
Several ways to represent the attitude exist, with Direct Cosine Matrices, Quater-
nions and Euler Angles being the most usual ones. Each of these representations
have their practical advantages and drawbacks. In this section, we will review some
of these representations and justify why Quaternions are the most appropiate for
the problem at hand.

2.1.1 Reference Frames

Let us consider the real space R3. A frame of reference E = {O; e1, e2, e3} (called
a Cartesian frame or simply a frame) is a set containing three orthonormal vectors
e1, e2, e3 ∈ R3, and an origin point O ∈ R3.

Given a three dimensional point P we define its motion trajectory as the coordinate
vector r(t) of r = OP in a frame E during a time interval 0 ≤ t < T .

17

A frame I = {O; i1, i2, i3} is said to be inertial if its origin O is not accelerating and
the axis ij , j = 1, 2, 3 are not rotating. This is

d vO/dt = 0,
d ik/dt = 0 , k = 1, 2, 3,

where vO denotes the velocity of the origin point O.

A rigid body is a continuum distribution of point masses located at a position r with
respect to an inertial frame I. The main property that defines a rigid body is that
the relative positions between any pair of points remain constant regardless of the
external forces applied to the body. That is, given two particles Pa and Pb located
at ra and rb at time t,

||ra(t)− rb(t)|| = constant,

for every vector norm and metric || · ||.

In order to study the attitude of a rigid body we need to consider two reference
frames. The first one is an inertial reference frame I, already introduced. The
second frame is the body frame B = {C; b1,b2,b3}. The choice of the center C is
arbitrary, although the center of mass of the rigid body is often used.

In order to obtain the three orthonormal vectors b1,b2,b3 we suppose that the rigid
body contains three non-aligned particles with coordinates r1, r2 and r3. By taking
the non-colinear vectors

u1 = r1 − r2, u2 = r3 − r1,

an orthonormal basis can be build using the Gram-Schmidt orthonormalization pro-
cess:

b1 = u1
||u1||

,

b2 = u2− < b1,u1 > b1
||u2− < b1,u1 > b1||

,

b3 = b1 × b2.

The attitude of a rigid body is defined as the set R of possible representations
R(B, E) of the body frame B = {C; b1,b2,b3} with respect to an observer’s frame
O = {C; e1, e2, e3}, with both frames sharing the same origin C. The choice of
the observer’s frame is arbitrary. Note that, since the choice of the body frame is
also arbitrary, the attitude representation is uniquely defined only by the particular
choice of {O,B}.

In the following subsections we will study three different possible representations
for the attitude of a rigid body.

2.1.2 Rotation Matrices
Let P be a point with coordinates expressed in a reference frame {OI ; i1, i2, i3}, and
suppose that we want to express it in the reference frame {OF ; f1, f2, f3}. In order
to achieve this, two transformations have to be performed:

18 Chapter 2 Attitude control

1. A translation of the originOI (if necessary), given by the relationship OI P =
OI OF +OF P .

2. A change of basis that allows us to represent the vectors of I = {i1, i2, i3} as a
linear combination of the basis F = {f1, f2, f3}.

We will call a change between two orthonormal basis of R3 with the same orienta-
tion a rotation of the reference frame, or simply a rotation. Therefore, the attitude of
a rigid body can be represented by the rotation which transforms the body reference
frame B into the observer frame O.

Consider now a vector x ∈ R3, and suppose its coordinates in the basis I and F
are

x = x1 i1 + x2 i2 + x3 i3,

x = X1 f1 +X2 f2 +X3 f3,

for some x1, x2, x3, X1, X2, X3 ∈ R. Any change of basis between I and F can be
represented as an orthogonal matrix R that allows us to relate the coordinates of x
in both basis: x1

x2
x3

 = R ·

X1
X2
X3

 =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 ·
X1
X2
X3

 ,
X1
X2
X3

 = R−1 ·

x1
x2
x3

 =

r11 r21 r31
r12 r22 r32
r13 r23 r33

 ·
x1
x2
x3

 .
This matrix R is called the rotation matrix between frames I and F , and is some-
times denoted as R IF . Rotation matrices are sometimes called attitude matrices
when used to denote the attitude of a rigid body.

It can be proven that any rotation R IF is equivalent to a rotation of angle θ around
an axis e with coordinates expressed in I. Therefore, it is often common to denote
a rotation matrix as R(θ, e). This result is known in literature as Euler’s rotation
theorem (see [5] pg. 61-62 and 68-71 for its precise statement and proof).

2.1.3 Euler Angles

An Euler elemental rotation of axis ej and angle θ in any frame O = {C; e1, e2, e3},
denoted by R(θ, ej) represents a rotation of angle θ around the axis ej . For any

2.1 Attitude representation 19

given reference frame O, only three Euler elemental rotations can exist, whose
attitude matrices are denoted by

R1(θ, e1) = X(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,

R2(θ, e2) = Y (θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ,

R3(θ, e3) = Z(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .
It can be proven ([5], Section 2.6.3) that any rotation between two arbitrary frames
can be expressed as a compositon of three elementary rotation matricesX(ϕ)Y (θ)Z(ψ).
The elements of the triad (ϕ, θ, ψ) are called Euler Angles.

Euler Angles are subject to a singularity known as Gimbal Lock whenever the rota-
tion angle θ is either zero or ±π, which results in the loss of at least one Degree of
Freedom on which to rotate (see [5], Section 2.6, Lemma 1).

2.1.4 Quaternions
In order to avoid the Gimbal Lock singularity, we need to find an alternative rep-
resentation to Euler Angles. Although rotation matrices could be useful since they
lack singularities, quaternions are often preferred as they present a more compact
representation of rotations.

Informally, we can think of quaternions as an extension of complex numbers that are
built upon three distinct imaginary units. It can be proven that unitary quaternions
(that is, quaternions of modulus equal to one) can be used to perfectly represent
rotations in R3 and are free of singularities.

Formally, we define the ring H of quaternions as the one generated by a four-
element basis which consists of the real unit 1 and three imaginary elements i, j
and k satisfying the following properties:

1 · i = i , i · j = −j · i = k,

1 · j = j , j · k = −k · j = i,

1 · k = k , k · i = −i · k = j,

i · i = j · j = k · k = −1,

where · denotes the standard product.

The elements q ∈ H are 4-dimensional vectors represented in the form

q = q0 + q1i + q2j + q3k,

20 Chapter 2 Attitude control

where q0, q1, q2, q3 ∈ R. Quaternions are also often represented as four-dimensional
coordinate vectors in R4 as follows:

q =

q0
q1
q2
q3

 =
[
q0
q

]
= [q0 q]T ,

where q is used to denote the vector of coefficients of the three imaginary units.

Given two quaternions a = [a0 a]T , b = [b0 b]T , their sum and product are defined
as follows:

a + b := [a0 + b0 a1 + b1 a2 + b2 a3 + b3]T ,
a⊗ b := [a0 b0 − a · b, a0b + b0a + a× b]T ,

where · denotes the dot product, and × denotes the cross product in R3.

We also define the norm and the conjugate of a quaternion q respectively as fol-
lows:

|q| :=
√
qT q =

√
q2

0 + qT · q,

q−1 := [q0 − q]T = [q0 − q1 − q2 − q3]T .

Quaternions that satisfy |q| = 1 are called unitary quaternions. Given an attitude
matrix R(θ, v), it can be transformed to a unit quaternion by using the following
formula:

q =
[

cos (θ/2)
sin (θ/2)v

]
, |q| = 1.

This result is useful since it allows us to establish a direct relationship between unit
quaternions and rotation matrices.

2.2 Rigid Body Dynamics
(This section is based on Section 2.1 of [17]).

In order to properly describe the changes in attitude of an artificial satellite in space,
we must find a way to correctly establish its dynamic and kinematics models.

The angular velocity (ω) of our satellite, represented in the body frame, can be
described by Euler dynamic equation of a rigid body:

ω̇ =

ωx

ωy

ωz

 := I−1(T − ω × (I · ω)), (2.1)

where I ∈ R3×3 represents the inertia matrix of the rigid body and T = [Tx, Ty, Tz]T
is the torque acting on the centroid of the rigid body. In most simulations, this
torque T will be the control torque produced by the actuators of the spaceship and
(in some cases) wil also contain the enviromental perturbations.

2.2 Rigid Body Dynamics 21

The orientation of the satellite can be described as a rotation between an arbitrary
inertial frame and the body frame using unit quaternions. The changes in this
orientation quaternion can be described with the following formula:

q̇ = 1
2
q⊗

[
0
ω

]
. (2.2)

Therefore, by taking into account Equations 2.1 and 2.2, the full attitude of our
satellite will be described by the following system of differntial equations, some-
times called in literature the state-space equation:

q̇ = 1
2
q⊗

[
0
ω

]
,

ω̇ = I−1(T − ω × (I · ω)),
(2.3)

with some initial conditions q0, ω0. The attitude of the satellite can be known at
any time by integrating these equations.

The attitude control problem of a rigid body has the goal of, given the current
atitude (q,ω), find the maneuver (or sequence of maneuvers) in the form of torque
vectors T that, when applied, drives the system defined by Equation (2.3) to some
desired attitude (qdesired,ωdesired). A controller is an algorithm or procedure that
allows us to solve the attitude control problem by dictating the torque that must be
produced by the actuators of the spacecraft at any given time.

2.3 Attitude control as a Reinforcement Learning
problem

Having introduced the attitude control problem of a rigid body in space, we now
ask ourselves how it can be formulated as a reinforcement learning problem.

As seen in Chapter 1, reinforcement learning is a sub-field of machine learning
that seeks ways to create intelligent agents capable of learning how to optimally
perform tasks in an environment. In our particular case, the environment will be
the dynamical system defined by the state-space equation (2.3), and the agent will
be the controller of the satellite, which dictates the control torque that should be
applied at each time step (see Figure 2.1).

Fig. 2.1: Diagram of the simulator operation flux.

22 Chapter 2 Attitude control

In this section we will review the general design of the reinforcement learning en-
vironment used during the experiments in order to train our AI-based attitude con-
troller. Note that in some experiments this design may vary in some minor details
that will be highlighted during the discussion in Section 2.4.

2.3.1 Objective
Our main goal will be to obtain an attitude controller capable to conduct the satel-
lite to the attitude qdesired = [±1, 0, 0, 0] and ωdesired = [0, 0, 0]rad/s, starting from
an arbitrary attitude.

2.3.2 Representation of the states and actions
The current state of the agent at any time will be encoded by a vector of 7 elements.
The first 4 elements will represent the components of the orientation quaternion,
and the last three elements will represent the angular velocity (in rad/s) around
the three body axis:

[
orientation (quaternion)︷ ︸︸ ︷

q0, q1, q2, q3 , ωx, ωy, ωz︸ ︷︷ ︸
angular vel.

] (2.4)

The version of the PPO algorithm used during this thesis is a discrete control algo-
rithm. This means that the set of actions that the agent is able to perform must be
discrete. Therefore, we must find a way to discretize and encode the control torque
into a set of numerable actions. We will define 31 different actions, each one corre-
sponding to a torque value between ±1 and ±10−4N ·m in one of the three body
axis (see Table 2.1).

Action number Torque (N ·m)

1 [0, 0, 0]
2 and 3 [±1, 0, 0]
4 and 5 [0,±1, 0]
6 and 7 [0, 0,±1]
8 and 9 [±10−1, 0, 0]

10 and 11 [0,±10−1, 0]
12 and 13 [0, 0,±10−1]

...
...

26 and 27 [±10−4, 0, 0]
28 and 29 [0,±10−4, 0]
30 and 31 [0, 0,±10−4]

Tab. 2.1: Available actions and their respective torque values.

2.3.3 Simulation environment
The simulation environment is the component of the code that simulates the be-
haviour of the satellite when a torque is applied. It has various tasks: numerically
integrate Equation (2.3) in order to solve the satellite’s current attitude, manage

2.3 Attitude control as a Reinforcement Learning problem 23

the initalization of each training episode, communicate the reward of each action
to the agent and calculate/apply the environmental perturbations to the satellite.

Numeric integrator (RKF-45)

The Runke-Kutta-Fehlberg 45 method (or RKF45, for short) is a numerical method
to numerically propagate the initial conditions of a differential equation in the form
ẋ = f(t, x(t)). In this thesis we used the Matlab implementation of this method,
called ode45 (see [9]).

In our particular case, f is the function defined by Equation (2.3), which depends
on q, ω and, indirectly, t. The inertia tensor I and the torque T are considered
constants, even though the former may change at every time step.

Although alternative integration methods have been considered during the course
of this thesis (such as the Adams-Bashford method), we have decided to use RKF45
as the integrator method since it is available in most packages and libraries (such
as Python and Matlab), its easy to understand, and offers a good balance between
precision and velocity.

Training episodes and initial conditions

In order for the agent to learn an optimal policy, we will make it try to stabilize the
satellite in various independent simulations (between 2500 and 6000 simulations),
each one lasting 300 seconds with a time-step of 0.1 seconds (resulting in a total of
3000 time steps for each episode). Ideally, we should see that the agent performs
poorly during the first episodes, but it improves its performance as the number of
completed simulations grow.

Each simulation will have different initial conditions. The satellite will begin with
a randomized orientation given by a uniform random rotation (see [15]) and an
angular velocity with each axis taking a random value from a Normal(0, 1.5) distri-
bution.

The inertia matrix configuration is initialized at the begining of each training episode.
In this thesis we used two different inertia matrices during the experiments. The
first one corresponds to a microsatellite (considered to be a cube for practical pur-
poses) with Mass= 5Kg and side= 0.83m:

I = 5 · 0.832

6
·

1 0 0
0 1 0
0 0 1

 . (2.5)

The second inertia matrix used during the experiments represents a cubesat (a class
of cheap and small cubic satellites) with Mass= 1.18Kg and side= 0.1m:

I = 1.18 · 0.12

6
·

1 0 0
0 1 0
0 0 1

 . (2.6)

24 Chapter 2 Attitude control

Reward function

The objective we want our controller to fulfill is to reduce the angular velocity of the
three body axis to zero, and drive the orientation quaternion to [±, 0, 0, 0]. However,
the goal of a reinforcement learning agent is to find a policy that maximizes the
sum of rewards. Therefore, we must carefully design a reward function that, when
maximized, allows the agent to achieve the goal of driving the satellite’s attitude to
the desired values.

In all experiments (except the first one, in which the agent only has to control the
angular velocity), the reward function will be calculated as follows:

Reward = −a · rq − b · rw, (2.7)

where

rq = |q1|+ |q2|+ |q3| , (2.8)

rω = |ωx|+ |ωy|+ |ωz|, a = 3, b = 1. (2.9)

We have tested the reward function 2.8 with different a, b values, although a = 3
and b = 1 seem to yield the best results. Additional reward functions have also been
considered, but this reward function has been the one with the best performance.

Perturbations

When a satellite moves around any orbit, it will encounter constant enviromental
perturbations, in the form of external torques, that will produce small, uninten-
tional changes in its attitude. If not adressed, in the long term this will cause
unstable flying and rolling. In addition, external collisions with dust particles and
debris along with the loss of propellant after long periods of operation might pro-
duce changes in the mass and shape of the spacecraft, thus affecting the inertia
matrix.

In Experiment III (see Section 2.4.3) perturbations are also taken into account.
These perturbations are modelled as a torque vector that is added to the control
torque at each integration time step. Each element of this vector is generated from
a µ = 0, σ = 10−3 normal distribution. Although larger perturbations have been
tried, the controller has not been able to correct them.

In addition to this torque, a small perturbation is added to the inertia tensor of
the satellite during Experiment III at the beginning of each training episode, in the
form of a random symmetric 3x3 matrix with its values taken from a Uniform(0, 0.1)
distribution.

2.3.4 Controller
The controller of the virtual satellite is composed of two neural networks, called
the actor and the critic, that will be trained using the PPO method introduced in
Section 1.1.5.

The agent and critic are both fully connected 5-layer neural networks of 7, 128, 128
and 64 neurons; the output layer for the actor has 31 neurons (one for each posible
action) and the output layer for the critic has a single neuron (since it only has to

2.3 Attitude control as a Reinforcement Learning problem 25

output the value of Vπ). The activation function for each layer is a ReLU, with the
exception of the output layers which have no activation functions.

The hyperparameters for the neural networks and their training process are repre-
sented in Table 2.2.

Hyperparameter Value

Advantage method GAE (factor 0.95)
Reward discount 0.99
Clipping factor 0.02

Entropy Loss Weight 0.01
Learning rate (critic & actor) 10−5

Experience horizon 1024
Batch size 512

Training epochs (critic & actor) 10

Tab. 2.2: Hyperparameters of the actor/critic networks and the training process.

When observing these states of the enviroment (i.e., when feeding state vector 2.4
into the neural networks), the values of ωx,y,z are divided by 10 (a value outside the
usual range of operation for this problem) in order to scale the angular velocity to
values between -1 and 1, which are preferred when training neural networks. The
environment still uses the original non-scaled ω values when integrating, making
computations and showing the results.

2.4 Experiments and Discussion
In this section we will review, in a general way, the results obtained during 4 exper-
iments performed with the simulation environment and the AI-based controller.

• Experiment I: we will train a controller to stabilize the angular velocity of
the satellite, without taking into account the orientation.

• Experiment II: we will try to control the full attitude of the satellite. We will
divide this experiment into two sub-experiments, each one with a different
inertia matrix configuration.

• Experiment III: we will train a controller capable of stabilizing the full atti-
tude of a satellite in the presence of perturbations. We will add environmental
perturbations in the form of small torques, and we will also add small random
changes to the inertia matrix at the beginning of each training episode.

In each experiment, the controller is trained through a certain number of episodes
(see 2.3.3) and then tested on 25 additional episodes, without further learning (i.e.
without modifying the weights of the neural networks).

26 Chapter 2 Attitude control

Fig. 2.2: Training process for the angular velocity controller agent used in Experiment I.
Light blue lines represent the total reward sum for each training episode, while
the dark blue line represents the average reward of the last 50 episodes. No-
tice that the agent experiences a quick improvement during the first 400 training
episodes, and reaches a stable plateau around episode 500.

2.4.1 Experiment I - Angular velocity stabilization
The goal of this first experiment is to train a controller capable of stabilizing the
angular velocity of a satellite by reaching ωdesired = [0, 0, 0] rad/s. In this experi-
ment we will simplify the states of the environment discussed in Section 2.3.2 and
the states will be 3-dimensional vectors that represent the angular velocity in rad/s
around the three body axes

[wx, wy, wz]

The satellite is considered to be the microsatellite of cubic shape with the inertia
tensor given by Equation (2.5). The actions available to the agent are the ones
specified in Table 2.1, and the reward function is given by Equation (2.7).

The agent has been trained for a total of 2500 episodes, each one with a length of
120 seconds and a time-step of 0.1 seconds, resulting in 1200 steps for each training
episode. The hyperparameters of the actor/critic networks and the training process
are the ones specified in table 2.2.

Figure 2.2 shows the shift in total episode reward through the full training process.
After the training process is completed, the agent is run through 25 different simu-
lations in order to evaluate its performance. Figure 2.3 shows the results obtained
during one of these simulations. Notice that the controller is able to quickly control
the angular velocity and keep it stable, with the exception of some instantaneous
spikes due to having discrete control torque actions.

2.4 Experiments and Discussion 27

Fig. 2.3: Simulation results for the angular velocity controller agent used in Experiment I.

2.4.2 Experiment II - Full attitude control
Having been able to train a controller capable of stabilizing the angular velocity of
a satellite, the next step is to control the full attitude (both orientation and angular
velocity). This experiment has been divided into two different sub-experiments,
each one with a unique inertia matrix configuration and slightly different available
actions and training conditions.

II.a - Microsatellite

In this sub-experiment, the satellite is also considered to be a microsatellite with
the same shape and mass defined in Experiment I.

The spacecraft begins each training episode at an arbitrary orientation, as explained
in Section 2.3.3. The goal of the agent will be to drive the satellite to the attitude
qdesired = [±1, 0, 0, 0]T and ωdesired = [0, 0, 0]T . Recall that two unit quaternions
with opposite sign represent exactly the same orientation. Therefore, the quater-
nions [±1, 0, 0, 0] represent the same rotation, and the controller will be successful
if it manages to reach any of them.

The actions available to the agent are the same 31 actions that appear in Table
2.1, and the reward function is given by Equation (2.8). Note that, in contrast to
Experiment I, this reward function takes into account both the orientation and the
angular velocity of the satellite.

The agent has been trained for 6000 episodes, each one with a length of 300 sec-
onds and a time-step of 0.1 seconds, resulting in 3000 steps for each episode. The
hyperparameters for the PPO training process are specified in Table 2.2.

The results of the training process for the control agent are shown in Figure 2.4.
We observe that the agent performs poorly during the first 500 training iterations
and with a great dispersion in total rewards, which is to be expected since the actor
network has not yet learn a suitable control policy. The agent experiences a steep
increase in performance after training iteration 500, and reaches a plateau around

28 Chapter 2 Attitude control

iteration 1000. Afterwards, the improvements are slower and seem to converge
towards 500.

Fig. 2.4: Training process of the microsat. Light blue lines represent the reward for each
individual training episode. The hard blue line is the average reward of the pre-
vious 100 episodes. Left image is shows the full training process, while image on
the right shows the training results after episode 1000.

After the training process is done, the agent is tested in 25 simulation episodes,
without training. Figure 2.5 show the behaviour of the satellite during the full
length of one of these simulations. We can observe that the controller is able to
quickly stabilize the attitude and maintain it stable afterwards, despite some small
spikes in angular velocity due to having a discrete action torque. Figure 2.6 is a
closeup of the attitude error after time step 500, showing that the precision of the
controller is less than ±2.5 degrees, with an average around ±1 degrees.

2.4 Experiments and Discussion 29

Fig. 2.5: Simulation results for the microsatellite control agent.

Fig. 2.6: Closeup on the attitude error of the microsatellite control agent after time step
500.

In conclusion, it would seem that our AI-based controller is perfectly capable to
stabilize a microsatellite in a short time, even with a relatively large initial error in
attitude.

II.b - Cubesat

A Cubesat is a type of miniaturized satellite that tipically perform simple earth ob-
servation tasks or serve as a proof of concept or prototype for new spacecraft tech-
nologies. These types of satellites usually weight no more than 2Kg and are shaped
as cubes (hence the name), tipically with a side length of 10 centimeters or less and
a cost of around $100.000 (excluding launch costs). Cubesats tend to be put into a
Low Earth Orbit (LEO) towed by other bigger spacecrafts.

In this experiment we simulated the 3Cat4 Cubesat [1], currently being manufac-
tured and tested by the Universitat Politècnica de Catalunya (UPC), and tried to
control its attitude using our reinforcement learning controller, with results similar
to those obtained in the previous experiments.

30 Chapter 2 Attitude control

Fig. 2.7: Artistic render of the 3Cat4 cubesat both in its stowed and deployed shapes. We
only consider its stowed form when computing the inertia matrix. Credits: [1].

The inertia matrix of this satellite is represented, according to the specifications in
the official website (Mass = 1.18Kg, side = 100mm), as

I = 1.18 · 0.12

6
·

1 0 0
0 1 0
0 0 1

The discrete actions available have been modified with respect to the ones in Table
2.1, given that a torque produced by the actuators of a cubesat is usually very
limited:

Action number Torque (N ·m)

1 [0, 0, 0]
2 and 3 [±10−1, 0, 0]
4 and 5 [0,±10−1, 0]
6 and 7 [0, 0,±10−1]
8 and 9 [±10−2, 0, 0]

10 and 11 [0,±10−2, 0]
12 and 13 [0, 0,±10−2]

...
...

26 and 27 [±10−5, 0, 0]
28 and 29 [0,±10−5, 0]
30 and 31 [0, 0,±10−5]

Notice that the maximum torque output available to the cubesat is smaller than the
one available to the microsat in the previous experiment. For this reason, the dura-
tion of each training episode has been increased from 300 to 500 seconds in order
to give the spacecraft more time to reach its goal. The reward function used during
the experiment is the same defined Equation (2.8) . The other hyperparameters
of the neural networks and training process remain unchanged with respect to the
other experiments.

2.4 Experiments and Discussion 31

Figure 2.8 shows the training process for the Cubesat controller. Notice that the
agent experiences a quick and steep increase in performance that reaches a plateau
around training episode 300. The average sum of rewards for each episode is lower
than the previous episode, mainly beacause the cubesat can apply less torque than
the microsatellite and also because training episodes are longer (and, therefore, the
agent accumulates more negative reward).

Fig. 2.8: Training process for the cubesat controller. Light blue lines represent the reward
for each individual training episode. The hard blue line is the average reward of
the previous 100 episodes. Left image is shows the full training process, while
image on the right shows the training results after episode 1000.

After the training process has been completed, the agent has been run through var-
ious simulations. Figure 2.9 shows the results for one of these simulations. Figure
2.10 show a closeup on the attitude error after simulation time step 500.

In conclusion, it would seem that our AI-based controller is also able to stabilize a
small cubesat in a very short time, even though the output torque available to the
agent is very limited.

2.4.3 Experiment III - Perturbations

In this third experiment, we will try to obtain a controller capable of controlling and
stabilizing the attitude of the microsatellite employed in Experiments I and II.a, but
being subject to random enviromental perturbations as described in Section 2.3.3.
The characteristics of the environment and actions are the same used in Experiment
II.a (except for the fact that now we have perturbations). The hyperparameters
of the training process and the topology of the critic and actor networks are also
unchanged.

Figure 2.11 shows the training process for the control agent through all 6000 train-
ing episodes. Notice that the agent converges to a stable solution around iteration
500− 1000, and then it improves slowly to an average episodic reward of 550− 600.
This shows that this agent improves more slowly than the one used in Experiment
II.a, which is to be expected since it is facing a much harder problem.

32 Chapter 2 Attitude control

Fig. 2.9: Simulation results for the Cubesat control agent.

Fig. 2.10: Closeup on the attitude error after simulation step 500. Notice that the absolute
error is never superior to ±4 degrees.

Figures 2.12 and 2.13 show the results of a simulation performed on the trained
agent, with the randomized inertia matrix:

I =

0.5777 0.0422 0.0352
0.0422 0.6042 0.0255
0.0352 0.0255 0.6277

In conclusion, this experiment shows that our AI-based controller is able to suc-
cessfully and quickly correct the attitude even in the presence of environmental
perturbations and a varying inertia matrix.

2.4 Experiments and Discussion 33

Fig. 2.11: Training process for the agent trained in an enviroment with perturbations. Left
image is shows the full training process, while image on the right shows the
training results after episode 1000.

2.5 Future work
Although the obtained results are acceptable and in the lines of other recent, sim-
ilar works (see [16], [17]), further research should be made in order to obtain a
controller that could, in theory, be uploaded to the computer of a real mission. In
particular, the author thinks that research efforts should be focused on the following
aspects:

• Precision: the controller should be improved to have greater precision and
achieving a smaller attitude error, since some real-world space missions (such
as radiotelescopes or communication buses) require precise alignment. In or-
der to achieve this, the author suggests exploring alternative reward functions
that exponentially grow when the attitude error decreases, and also using con-
tinuous actions instead of discrete.

• Multiple inertia tensors: the author thinks that a single controller capable of
controlling multiple inertia matrix configurations would be of great use since
the shape, mass and size of spacecraft usually changes during missions (due
to the loss of propellant, collisions with other bodies with the consequent loss
of mass, etc). Some experiments have been performed during this thesis to
obtain a controller able to work with multiple satellite shapes by fully ran-
domizing the inertia tensor at the beginning of each epsiode. Results have
been very poor, even when an approximation of the inertia tensor is encoded
into the input vector of the neural network. In future work, the author would
suggest trying a different class of neural networks, such as Spiking Neural
Networks or LSTMs. These network architectures have the peculiarity that
their current output depends on previous outputs, thus giving the agent some
notion of memory and allowing it to infer the inertia matrix from past experi-
ences in the current training/simulation episode.

34 Chapter 2 Attitude control

Fig. 2.12: Simulation results for the control agent. The graphs show that the agent is able
to quickly orient the satellite and mantain its correct attitude afterwards, despite
constant environmental perturbations.

Fig. 2.13: Closeup on the attitude error after time step 500 (50 seconds). The attitude
error is always less than ±3 degrees.

2.5 Future work 35

3Poincaré map approximation

Suppose we have an orbital system consisting of two large objects with great mass
(e.g. the system composed by the Sun and Earth), and suppose we have a small
object of negligible mass (such as a satellite, or a small spaceship). The Restricted
Three Body Problem (RTBP) is the problem of determining the movement of the
small object with respect to the two large bodies when subject only to gravitational
forces. The RTBP is of great interest, for example, because the knowledge of its
dynamics is the basis to construct real missions such the SOHO or the James Webb
telescope that move through quasi-periodic orbits around equilibrium points.

Another interesting case of dynamical system are models of classical atomic physics.
The Coulomb law is essentially the same as the gravitational (Newtonian) one, so
that the type of systems of differential equations that models the problem are quite
similar. An example that we will present here is the motion of an electron of a
Hydrogen molecule under a circularized polarized microwave field. One challeng-
ing problem is the study on which condition the ionization of the molecule occurs
(when the electron is able to escape). For this, the comprehension of the dynamics
is crucial.

A very useful tool to study the global dynamics of these type of models around
stable equilibrium points or periodic orbits is the Poincaré map. Informally, the
Poincaré map of a dynamical system is a way to represent the dynamics in a lower-
dimensional space, usually a section Σ given by some hyperplane. Roughly speak-
ing, given a point x0 ∈ Σ and the solution (trajectory) that goes through this point,
the Poincaré map is a function P : Σ → Σ which assings to the point x0 the next
intersection of the trajectory with the section Σ.

In this third chapter we want to approximate the Poincaré map of a dynamical
system using an artificial neural network in two different ways. More concretely,
we want to build a neural network that is able to reproduce a Poincaré map, first
forwards in time, second backwards in time.

Unfortunately, results obtained on this second problem have not been as good as ex-
pected, and the Poincaré map approximated with the neural network does not yield
an accurate representation of the phase dynamics. Nevertheless, we will review the
results obtained, try to justify why it might be failing and propose a future line of
research in which we believe this program could be improved upon.

3.1 Dynamical systems and Poincaré maps
(Contents on this section will be based on Sections 1 and 2 of Ch. I of [10]).

In this section we will introduce a broad definition for dynamical systems and
Poincaré maps.

In the context of physics, a system is a collection of objects that can be detected
or measured (the position of a collection of objects, the temperature of a gas, etc).

37

The dynamics (i.e. changes over time) of a system can be usually modelled as a
dynamical system.

Definition 3.1.1 (Dynamical system). Let X be a metric space. A dynamical sys-
tem over X is a triple (X,R, ϕ) where ϕ : R × X → X is a map satisfying the
following three axioms:

• ϕ(0, x) = x, ∀x ∈ X.

• ϕ(t2, ϕ(t1, x)) = ϕ(t1 + t2, x), ∀t1, t2 ∈ R and x ∈ X.

• ϕ is continuous.

The map ϕ is called the phase map, and the space X is called the phase space (of
the dynamical system).

Consider now a differential equation in the following form (for simplicity, we just
consider the autonomous case):

ẋ = f(x), (3.1)

where f : Rn → Rn is a continuous function. Assume that for each x0 ∈ Rn

a unique solution φ(t, x0) of Equation (3.1) exists which is defined over Rn and
φ(0, x0) = x0. It can be proven that the map ϕ : R×Rn → Rn with ϕ(t, x) = φ(t, x)
defines a dynamical system over R.

We will usually call the function φ(t, x0) the flux of x0, or (in the context of astro-
dynamics and celestial mechanics) orbit or trajectory.

Let Σ be a section over X (usually we will work with sections with the form x =
constant, y = constant, etc).

Definition 3.1.2 (Poincaré map). Let Σ ⊂ X be a section. A Poincaré map is a
function

P : Σ −→ Σ
x −→ P (x) = ϕ(tf , x)

where tf is the time that ϕ needs to reach Σ when starting from x at t = 0.

Finally, a system has a first integral if there exists a function F (x) such that it
remains constant along the solutions.

3.2 From Celestial Mechanics to molecular
dynamics

(The contents on this Section are based on [4]).

For the second part of this thesis the original intention was to approximate a Poincaré
map of the RTBP. However, in order perform the first experiments with our neural-
network regressor, we decided to begin with an alternative, more well-behaved
problem: the CP problem, which studies the movement of an hydrogen atom when

38 Chapter 3 Poincaré map approximation

it is subject to a polarized microwave field. Although this is not an astrodynamics
problem, its equations and general behaviour are analogous to the ones found in
restricted three body problem.

Due to the poor results obtained with the neural network trying to approximate the
Poincaré Map of the CP problem, we did not have time to actually work with the
RTBP during this thesis.

The CP problem consists on studying the relative motion of an hydrogen atom when
subject to a circularly polarized (CP) microwave field, and it is similar to the re-
stricted three body problem in celestial mechanics.

The problem can be described in a rotating frame by the system of equations
ẋ = ẋ,

ẏ = ẏ,

ẍ = 2ẏ + x− x
r3 −K,

ÿ = −2ẋ+ y − y
r3 .

(3.2)

where (x, y) are the coordinates position of the particle, r2 = x2 + y2, and K =
F/ω4/3, where F > 0 is the strength of the microwave field (in Volts/meter) and ω
is the angular frequency of the microwave field. The system has a first integral (is
conservative) given by the function

H = 1
2

(p2
x + p2

y)− xpy + ypx −
1
r

+Kx. (3.3)

That is, H = h (called energy) is constant along the solutions.

The problem has several features described in [4]. For example, exists a family of
stable periodic orbits. We fix a value of the energy h and the periodic orbit for that
energy level. To study the dynamics around it, the Poincaré map is a very good tool.
Figure 3.1 shows an example of a Poincare map for system (3.2).

3.3 Approximating Poincaré maps as a supervised
learning problem

Supervised learning is a paradigm of machine learning which uses labeled data
examples to teach a model (such as an ANN, see Section 1.2) to produce a desired
output. Regression is a supervised learning technique in which models try to predict
a continuous value.

The steps to train a neural network using a supervised learning approach are shown
in Algorithm 4.

3.3 Approximating Poincaré maps as a supervised learning problem 39

Fig. 3.1: Example of the Poincaré map of the CP problem with section ẋ = 0, ẏ < 0, with
H = h = −1.7 and K = 0.0015749. It can be proven that a periodic orbit (a
point p such that P (p) = p) exists at x = −0.507008504151148, y = ẋ = 0 and
ẏ = −0.8963. This map has been generated by taking 270 initial conditions,
numerically integrating them and saving the first 5000 intersections of each one
with the Poincaré section. Note that the figure displays some very defined patterns
of invariant curves (which show the existence of quasi-periodic orbits), islands
that surround other periodic orbits, etc.

40 Chapter 3 Poincaré map approximation

Algorithm 4 | Supervised learning (with ANNs)
Inputs: a dataset of n labeled examples (xi, yi), i = 1, . . . , n, a multilayer ANN
Mθ(xi) with weights θ, a measure Loss(y, ŷ) of the error between some predictions
ŷ = {ŷ0,, ŷm} of the ANN and the actual labels y = {y0, ..., ym}, a method for
optimizing the weights θ (such as Backpropagation + ADAM).

Repeat the following steps, until some stopping criterion is reached (such as having
a Loss less than some threshold):

Step 1: Collect a batch of m examples from the dataset, with m ≤ n.

Step 2: for each collected example (x0, y0), ..., (xm, ym), predict ŷi ←Mθ(xi).

Step 3: calculate Loss(y, ŷ), where y = {y0, ..., ym} and ŷ = {ŷ0, ..., ŷm}.

Step 4: optimize the ANN weights θ according the the calculated Loss value.

In our particular case, we want to teach two neural networks to approximate the
Poincaré map of the CP problem. We will generate a dataset that will contain a large
quantity of points of a poincaré map for the CP problem (see Section 3.3.1), and use
it to train two different regressors. The first one will recieve some initial conditions
(x, y, ẋ, ẏ) as input and will try to predict the first intersection with the poincaré
section ẋ = 0, ẏ < 0 of the orbit that runs through this point. The second regressor
will do the oposite: given the coordinates of an intersection point, it will try to
predict the asociated initial conditions. From now on, in order to avoid confusion
(and even though both models are actually regressors) we will call the first model
the progressor, and the second one the regressor.

In this thesis, the chosen Loss function has been the Mean Absolute Error, which is
often employed in machine learning regression tasks:

MAE(y, ŷ) :=
∑m

i=0 |yi − ŷi|
m

,

where m is the length of both y and ŷ. The chosen weight optimization method is
Backpropagation (see Algorithm 3) with the ADAM optimizer.

3.3.1 Dataset generation
The first step towards building both the regressor and the progressor is having a
dataset to train the neural networks. In our case, we generated three different
datasets training datasets plus two testing datasets, each consisting of thousands
of points calculated from the system given by Equation (3.2), with energy level
h = 1.7,K = 0.0015749 and the Poincaré section given by ẋ = 0, ẏ < 0. By having
different training datasets, we can perform multiple experiments and compare the
performance of the various models.

The first dataset has been generated from sequence of equidistant points (xi, 0, 0, ẏi),
with x0 = −0.63, x1 = −0.62, x2 = −0.61, ..., xn = −0.36 and ẏi obtained by solving
Equation (3.3) for ẏ:

ẏ2 = 2h+ r2 + 2
r
− 2Kx. (3.4)

3.3 Approximating Poincaré maps as a supervised learning problem 41

Note that, since x, y, ẋ0 are defined and ẏ must be less than zero (otherwise it would
not belong to our chosen Poincaré section), the previous equation has a unique
solution for ẏ.

For each of these initial conditions (xi, 0, 0, ẏi), Equation (3.2) has been numerically
integrated using RKF78 to find 5000 intersections with the Poincaré section. These
intersections have been saved in a .csv file with the convention shown in Figure
3.2 (this convention is consistent among all other datasets). We will call this first
dataset the equidistant dataset.

Fig. 3.2: Format of the .csv dataset files.

The second dataset has been generated in a similar way than the equidistant dataset,
but the x values of the initial points have been randomly generated by taking 500
values from a Uniform(−0.63,−0.36) distribution, without repetition. As with the
equidistant dataset, Equation (3.2) has been numerically integrated from these ini-
tial points to find 5000 intersections with the Poincaré section. We will name this
second dataset the random dataset.

The third dataset has been generated by taking a grid of points with x ∈ (−0.54,−0.46)
with a step of 0.001, y ∈ (−0.1, 0.1) also with a step of 0.001, ẋ = 0 and ẏ given by
Equation (3.4). Each initial point has been integrated only until its first intersection.
We will call this third dataset the limited dataset. This dataset was generated after
the first tests with the neural networks, due to the poor results obtained. With this
dataset, we wanted to check if by limiting the area which the neural network has to
learn, the precision improved. As seen in Section 3.5.3, this unfortunately has not
been the case.

Two additional dataset has been generated to test the performance of the ANNs.
The first one is called the testing dataset. This dataset has been generated in a
similar way than the equidistant dataset, but using a step of 0.001 between the x
values, and calculating only 300 intersections instead of 5000. This dataset has
been used to test the precision of the networks trained with the random and limited
datasets.

The second testing dataset is called the limited testing dataset, and has been gen-
erated by taking initial x0 conditions between (−0.54,−0.46) with a step of 0.001,
y0 = ẋ0 = 0, ẏ0 given by the energy level, and calculating 1000 intersections for
each one of these initial conditions with the Poincaré section.

42 Chapter 3 Poincaré map approximation

3.4 Architecture and hyperparameters of the
ANNs

Having generated the training and testing datasets, the next step is building both
the progressor and regressor models. Both the progressor and regressor consist of
three fully-connected neural networks. Each of these networks will recieve a 3-
dimensional vector as input, consisting of the coordinates (x, y, ẏ) of an initial point
(ẋ is ignored, since in our Poincaré section it is always zero), and each network
outputs the value of one of the coordinates x, y or ẏ (see Figure 3.3).

Fig. 3.3: Each model consists of three ANNs. Each ANN recieves the coordinates of a point
(excluding ẋ) and outputs the prediction of a coordinate.

In both models, the network that predicts the x coordinate is a fully-connected ANN
with 3, 32, 64, 128, 64, 32 and 1 nodes, ReLU activation function, and a regression
layer as output. The networks that predict y and ẏ are bigger, consisting of 8 layers
of 3, 256, 512, 512, 1024, 1024, 512 and 1 nodes, ReLU activation function, and
a regression layer as output. The hyperparameters used to train all networks are
shown in Table 3.1 . In addition to this, the rows on the dataset have been shuffled
at the beginning of each training epoch.

Hyperparameter Value

Initial learning rate 10−4

Learning rate drop factor 0.1
Learning rate drop period every 5 epochs

Max. training epochs 15
Mini-batch size 4096/2048/64

Tab. 3.1: Hyperparameters used during the training process. Note that the batch size used
is different for the networks trained with the limited dataset. Also note that we
have multiple values for the batch size: the value 4000 was used during the first
tests with the equidistant dataset. The value 2048 was used in the subsequent
attempts to improve the performance, and during the tests performed with the
random dataset. The value 64 is the one used with the limited dataset.

3.4 Architecture and hyperparameters of the ANNs 43

Recall that, as shown in Figure 3.2, columns 1-4 of the datasets contain the values
(x, y, ẋ, ẏ) of the initial points, and columns 5-8 contain the coordinates of the first
intersection with the Poincaré section. The ANNs of the progressor are trained using
columns 1-2-4 as features and columns 5-6-8 as targets/labels, while the regressor’s
ANNs are trained using cols. 5-6-8 as features and cols. 1-2-4 as targets/labels.

3.5 Results
In this section we will review the results obtained with the models when trying to
predict the contents of the test datasets. As stated at the beginning of this chapter,
results obtained have not been as good as expected, and the approximated Poincaré
map learned by the neural networks does not provide an accurate representation of
the phase dynamics of the CP problem. Although in all cases the ANNs have been
trained with a final MAE error less than 10−5, Figures included in this section show
that none of the two models is able to correctly learn the Poincaré map of the CP
problem, regardless of the dataset used for training.

3.5.1 Equidistant dataset
Figure 3.6 shows the predictions of the progressor over the points of the testing
dataset when trained with the equidistant dataset and using the hyperparameters
specified in 3.4. Blue markers represent the real (x, y) values of the intersection
points, and red markers represent the predictions done by the neural network. Ide-
ally, both sets of markers should match perfectly; however, it can be easily noticed
that although the networks seems to preserve some of the global dynamics of the
system, it does not provide an accurate representation of the poincaré map for the
CP problem.

Figures 3.4 and 3.5 show the first results obtained in one of the experiments when
training the networks with the equidistant dataset, and with a batch size of 4096.
Note that both figures show innacurate results, and an important offset betwen
the real and predicted points. However, neural networks are able to learn some
resemblance of the dynamics of the system.

In order to try to palliate this displacement, we have introduced two modifications
to the program. First, we have reduced the batch size to 2048 (as shown in Table
3.1). However the offset (the displacement with respect the location of the central
periodic orbit) was still very large. In order to palliate this offset, we calculated the
distance between the fixed point (that corresponds to a periodic orbit of the system)
x = −0.507, y = ẋ = 0, ẏ = −0.8963 and its prediction. Then, we applied a transla-
tion to each point according to this distance, thus removing this offset. Figure 3.6
shows the predictions of the progressor with the equidistant dataset, while Figure
3.7 shows the predictions of the regressor. We can observe that the predictions are
still very imprecise, although the offset has decreased.

3.5.2 Random dataset
Figure 3.8 shows the predictions of the progressor over the points of the testing
dataset when trained with the random dataset, while Figure 3.9 shows the predic-
tions of the regressor. Results obtained when training the models using the random

44 Chapter 3 Poincaré map approximation

Fig. 3.4: One of the first tests with the Progressor over the testing dataset when trained
with the equidistant dataset. Markers in blue represent the real (x, y) values of
the points, and markers in red represent the predictions calculated by the neural
networks.

Fig. 3.5: One of the first tests with the Regressor over the testing dataset when trained with
the equidistant dataset. Markers in blue represent the real (x, y) values of the
initial conditions, and markers in red represent the predictions calculated by the
neural networks.

3.5 Results 45

Fig. 3.6: Predictions of the Progressor over the testing dataset when trained with the
equidistant dataset, after reducing the batch size and correcting the offset. Mark-
ers in blue represent the real (x, y) values of the points, and markers in red repre-
sent the predictions calculated by the neural networks.

Fig. 3.7: Predictions of the Regressor over the testing dataset when trained with the equidis-
tant dataset, after reducing the batch size and correcting the offset. Markers in
blue represent the real (x, y) values of the initial conditions, and markers in red
represent the predictions calculated by the neural networks.

46 Chapter 3 Poincaré map approximation

Fig. 3.8: Predictions of the progressor over the testing dataset when trained with the ran-
dom dataset. Markers in blue represent the real (x, y) coordinates of the points,
and markers in red represent the predictions calculated by the neural networks.

dataset seem to perform slightly better than the ones shown in the previous section.
Still, the predictions remain very inaccurate.

3.5.3 Limited dataset
Figure 3.10 shows the predictions made by the progressor over the points of the lim-
ited testing dataset when trained with the limited dataset, while Figure 3.11 shows
the predictions made by the regressor using the same training and test datasets. Re-
sults show that the models predict with more accuracy the points closer to the center
(0.5, 0), but they quickly lose accuracy as the distance from this center grows.

3.5 Results 47

Fig. 3.9: Predictions of the regressor over the testing dataset when trained with the ran-
dom dataset. Markers in blue represent the real (x, y) coordinates of the initial
conditions, and markers in red represent the predictions calculated by the neural
networks.

Fig. 3.10: Predictions of the progressor over the limited training dataset when trained with
the limited dataset. Markers in blue represent the real (x, y) coordinates of the
points, and markers in red represent the predictions calculated by the neural
networks.

48 Chapter 3 Poincaré map approximation

Fig. 3.11: Predictions of the regressor over the limited training dataset when trained with
the limited dataset. Markers in blue represent the real (x, y) coordinates of the
initial conditions, and markers in red represent the predictions calculated by the
neural networks.

3.5.4 Conclusions and future work
The predictions of the Poincaré map for the CP problem produced by the models
have been very poor and inaccurate, and further work and research is needed in
order to try to improve these results. It would seem that ordinary, fully-connected
neural networks are unable to accurately represent complex mathematical functions
such as the ones underlying in the behaviour of a dynamical system. Therefore, the
author thinks the architecture of the ANNs of our models should be rebuilt from
scratch using Henon Networks, which have been used successfully to perform cal-
culations and approximations over the Poincaré maps of some particular problems
in physics (see [3]).

The author also considers that it would be interesting to try to investigate the reason
why the current fully connected neural network produces these far-fetched results
and why, despite this fact, it is able to learn and preserve some of the apparent
dynamics of the system (such as isles, quasi-periodic orbits, torus, etc).

3.5 Results 49

Bibliography

[1]3Cat − 4 - NanoSat Lab - UPC. URL: https://nanosatlab.upc.edu/en/missions-
and-projects/3cat-4. (accessed: 12.05.2022).

[2]Alberto Abad. Astrodinámica. Bubok Publishing, 2012. ISBN: 978-84-686-2857-8.

[3]J. W. Burby, Q. Tang, and R. Maulik. „Fast neural Poincaré maps for toroidal magnetic
fields“. In: arXiv (Nov. 2020).

[4]Barrabés E., Ollé M., Borondo F., Farrelly D., and Mondelo J. M. „Phase space structure
of the hydrogen atom in a circularly polarized microwave field“. In: Elsevier (2011).

[5]Canuto E., Novara C., Massotti L., Carlucci D., and C. Perez Montenegro. Spacecraft Dy-
namics and Control - The Embedded Model Control Approach. Butterworth-Heinemann
publications, 2018. ISBN: 978-0-08-100700-6.

[6]Rumelhart D. E., Hinton G. E., and Williams R. J. „Learning representations by back-
propagating errors“. In: Nature 323 (1986), pp. 533–536.

[7]Schulman J., Wolski F., Dhariwal P., Radford A., and Klimov O. „Proximal Policy Opti-
mization Algorithms“. In: arXiv (Aug. 2017).

[8]Vinyals O. and Babuschkin I. et al. „Grandmaster level in StarCraft II using multi-agent
reinforcement learning“. In: Nature 575 (2019), pp. 350–354.

[9]ode45. URL: https://mathworks.com/help/matlab/ref/ode45.html. (accessed:
24.05.2022).

[10]Bhatia N. P. and Szeg. Stability Theory of Dynamical Systems. Cambridge University
Press, 2009. ISBN: 978-0-521-48181-0.

[11]Kingma D. P. and Ba J. „ADAM: A method for stochastic optimization“. In: Nature 323
(1986), pp. 533–536.

[12]Proximal Policy Optimization (PPO) Agents. URL: https://es.mathworks.com/help/
reinforcement-learning/ug/ppo-agents.html. (accessed: 12.05.2022).

[13]Russell S. and Norvig P. Inteligencia Artificial, un enfoque moderno (2nd edition). Pear-
son Prentice Hall, 2004. ISBN: 84-205-4003-X.

[14]Sutton R. S. and Barto A. G. Reinforcement Learning: An Introduction (second edition).
The MIT Press, 2018. ISBN: 978-0-262-03924-6.

[15]Uniformly distributed random rotations. URL: https://mathworks.com/help/nav/
ref/randrot.html. (accessed: 25.05.2022).

[16]Vedant and Alliston J. et al. „Reinforcement Learning for Spacecraft Attitude control“.
In: 70th International Astronautical Congress (2019).

51

https://nanosatlab.upc.edu/en/missions-and-projects/3cat-4
https://nanosatlab.upc.edu/en/missions-and-projects/3cat-4
https://mathworks.com/help/matlab/ref/ode45.html
https://es.mathworks.com/help/reinforcement-learning/ug/ppo-agents.html
https://es.mathworks.com/help/reinforcement-learning/ug/ppo-agents.html
https://mathworks.com/help/nav/ref/randrot.html
https://mathworks.com/help/nav/ref/randrot.html

[17]Ma Z. and Wang Y. et al. „Reinforcement Learning-Based Satellite Attitude Stabilization
Method for Non-Cooperative Target Capturing“. In: MDPI / Sensors (2018).

52 Bibliography

List of Figures

1.1 AI and (a few of) its subfields and subdisciplines. Although it is not
shown in the figure, these sub-fields often intersect and combine. . . . 6

1.2 The actor perceives the environment and performs actions on it in or-
der to achieve some goal. 7

1.3 Example of an Artificial Neural Network, consisting of an input layer
of 4 units (red), two hidden layers of 4 and 3 units each (green) and
one output layer of 2 units (yellow) . 13

1.4 Mathematical model for a single neuron/node. 14
1.5 Graph of the sigmoid activation function. 15

2.1 Diagram of the simulator operation flux. 22
2.2 Training process for the angular velocity controller agent used in Ex-

periment I. Light blue lines represent the total reward sum for each
training episode, while the dark blue line represents the average re-
ward of the last 50 episodes. Notice that the agent experiences a quick
improvement during the first 400 training episodes, and reaches a sta-
ble plateau around episode 500. 27

2.3 Simulation results for the angular velocity controller agent used in Ex-
periment I. 28

2.4 Training process of the microsat. Light blue lines represent the reward
for each individual training episode. The hard blue line is the average
reward of the previous 100 episodes. Left image is shows the full train-
ing process, while image on the right shows the training results after
episode 1000. 29

2.5 Simulation results for the microsatellite control agent. 30
2.6 Closeup on the attitude error of the microsatellite control agent after

time step 500. 30
2.7 Artistic render of the 3Cat4 cubesat both in its stowed and deployed

shapes. We only consider its stowed form when computing the inertia
matrix. Credits: [1]. 31

2.8 Training process for the cubesat controller. Light blue lines represent
the reward for each individual training episode. The hard blue line is
the average reward of the previous 100 episodes. Left image is shows
the full training process, while image on the right shows the training
results after episode 1000. 32

2.9 Simulation results for the Cubesat control agent. 33
2.10 Closeup on the attitude error after simulation step 500. Notice that the

absolute error is never superior to ±4 degrees. 33
2.11 Training process for the agent trained in an enviroment with perturba-

tions. Left image is shows the full training process, while image on the
right shows the training results after episode 1000. 34

53

2.12 Simulation results for the control agent. The graphs show that the
agent is able to quickly orient the satellite and mantain its correct atti-
tude afterwards, despite constant environmental perturbations. 35

2.13 Closeup on the attitude error after time step 500 (50 seconds). The
attitude error is always less than ±3 degrees. 35

3.1 Example of the Poincaré map of the CP problem with section ẋ =
0, ẏ < 0, with H = h = −1.7 and K = 0.0015749. It can be proven
that a periodic orbit (a point p such that P (p) = p) exists at x =
−0.507008504151148, y = ẋ = 0 and ẏ = −0.8963. This map has
been generated by taking 270 initial conditions, numerically integrat-
ing them and saving the first 5000 intersections of each one with the
Poincaré section. Note that the figure displays some very defined pat-
terns of invariant curves (which show the existence of quasi-periodic
orbits), islands that surround other periodic orbits, etc. 40

3.2 Format of the .csv dataset files. 42

3.3 Each model consists of three ANNs. Each ANN recieves the coordinates
of a point (excluding ẋ) and outputs the prediction of a coordinate. . . 43

3.4 One of the first tests with the Progressor over the testing dataset when
trained with the equidistant dataset. Markers in blue represent the real
(x, y) values of the points, and markers in red represent the predictions
calculated by the neural networks. 45

3.5 One of the first tests with the Regressor over the testing dataset when
trained with the equidistant dataset. Markers in blue represent the real
(x, y) values of the initial conditions, and markers in red represent the
predictions calculated by the neural networks. 45

3.6 Predictions of the Progressor over the testing dataset when trained with
the equidistant dataset, after reducing the batch size and correcting the
offset. Markers in blue represent the real (x, y) values of the points,
and markers in red represent the predictions calculated by the neural
networks. 46

3.7 Predictions of the Regressor over the testing dataset when trained with
the equidistant dataset, after reducing the batch size and correcting
the offset. Markers in blue represent the real (x, y) values of the initial
conditions, and markers in red represent the predictions calculated by
the neural networks. 46

3.8 Predictions of the progressor over the testing dataset when trained with
the random dataset. Markers in blue represent the real (x, y) coordi-
nates of the points, and markers in red represent the predictions calcu-
lated by the neural networks. 47

3.9 Predictions of the regressor over the testing dataset when trained with
the random dataset. Markers in blue represent the real (x, y) coordi-
nates of the initial conditions, and markers in red represent the predic-
tions calculated by the neural networks. 48

3.10 Predictions of the progressor over the limited training dataset when
trained with the limited dataset. Markers in blue represent the real
(x, y) coordinates of the points, and markers in red represent the pre-
dictions calculated by the neural networks. 48

54 List of Figures

3.11 Predictions of the regressor over the limited training dataset when
trained with the limited dataset. Markers in blue represent the real
(x, y) coordinates of the initial conditions, and markers in red repre-
sent the predictions calculated by the neural networks. 49

List of Figures 55

List of Figures 57

	Cover
	Titlepage
	Abstract
	Acknowledgement
	0 Introduction
	1 AI, Machine learning and Reinforcement learning
	1.1 Reinforcement Learning
	1.1.1 Intelligent Agents
	1.1.2 Markov Decision Process
	1.1.3 Q-values
	1.1.4 Policy gradient and actor-critic methods
	1.1.5 Proximal-Policy Optimization (PPO)

	1.2 Artificial Neural Networks
	1.2.1 Anatomy of the Artificial Neural Network
	1.2.2 Activation functions
	1.2.3 Backpropagation

	2 Attitude control
	2.1 Attitude representation
	2.1.1 Reference Frames
	2.1.2 Rotation Matrices
	2.1.3 Euler Angles
	2.1.4 Quaternions

	2.2 Rigid Body Dynamics
	2.3 Attitude control as a Reinforcement Learning problem
	2.3.1 Objective
	2.3.2 Representation of the states and actions
	2.3.3 Simulation environment
	2.3.4 Controller

	2.4 Experiments and Discussion
	2.4.1 Experiment I - Angular velocity stabilization
	2.4.2 Experiment II - Full attitude control
	2.4.3 Experiment III - Perturbations

	2.5 Future work

	3 Poincaré map approximation
	3.1 Dynamical systems and Poincaré maps
	3.2 From Celestial Mechanics to molecular dynamics
	3.3 Approximating Poincaré maps as a supervised learning problem
	3.3.1 Dataset generation

	3.4 Architecture and hyperparameters of the ANNs
	3.5 Results
	3.5.1 Equidistant dataset
	3.5.2 Random dataset
	3.5.3 Limited dataset
	3.5.4 Conclusions and future work

	Bibliography

