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Abstract

Both quality differentiation and capacity commitment have been shown to relax price compe-

tition. However, their joint influence on the outcome of price competition has not yet been as-

sessed. In this article, we consider a three stage game in which firms choose quality, then commit

to capacity and, finally, compete in price. When the cost of quality is negligible, we show that

firms do not differentiate their products in a subgame perfect equilibrium, in other words, ca-

pacity precommitment completely eliminates the incentive to differentiate by quality.

JEL codes: L13

Keywords: Vertical Differentiation, Capacity, Bertrand Competition

1 Introduction

It is well-known since Gabszewicz and Thisse (1979)’s seminal contribution that quality differenti-

ation offers a powerful way out of the Bertrand paradox. Many scholars have elaborated on their

pioneering work and today a robust “principle of differentiation” prevails in the literature on verti-

cally differentiated industries. As nicely summarized in Shaked and Sutton (1982), firms are indeed

likely to “relax price competition through product differentiation”.

Interestingly, capacity commitment also has the virtue of relaxing price competition. The seminal

contribution in this area is Kreps and Scheinkman (1983). They show how capacity commitment

may be instrumental in sustaining Cournot outcomes in pricing games. Since Kreps and Schein-

kman (1983) , the strategic value of capacities has been widely studied, though almost exclusively in
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markets for non-differentiated goods. For instance, Brock and Scheinkman (1985), Lambson (1994),

Compte et al. (2002), Davidson and Deneckere (1990) and Benoît and Krishna (1987) study the role

of limited capacities in a repeated game of price competition. Deneckere and Kovenock (1992) rely

on capacity constraints to provide a model where, in equilibrium, the dominant firm chooses to be

the price leader. More recently, Allen et al. (2000) show that capacity precommitment may act as a

barrier to entry when price competition takes place post-entry.

Casual observation suggests that in many industries firms sell products differing by quality while

being limited by their production capacities. In those industries, it is hard to see a priori whether

strategic behavior at the price competition stage is mainly determined by the quality dimension, the

capacity restrictions or both. More generally, to what extent are firms’ quality choices dependent

on the possibility of committing to capacities? How does the strategic value of capacities depend

on the degree of differentiation? Despite their relevance, these questions do not seem to have been

addressed in the literature, either theoretically or empirically. Our paper takes a first step in this

direction.

We study a three stage game of complete information where firms first decide on quality. Then,

when the specifications of the product are known, firms build production capacities and, finally,

they compete in price on the consumer market. The possibility of committing to capacities before

price competition takes place sheds new light on vertical differentiation issues. We show indeed that

within the standard model of vertical differentiation, capacity commitment may supplant quality

differentiation in relaxing price competition. The possibility of committing to capacities before price

competition tends to destroy much of the incentive to choose different qualities in the first stage. In

particular, if quality costs are sufficiently low, firms sell homogeneous products in equilibrium.

This “no-differentiation” result may seem surprising at first sight because it runs against the well-

established “principle of differentiation”. According to this principle, firms always differentiate their

products in order to relax price competition. In fact our finding is quite intuitive. Eaton and Harrald

(1992) have already shown that under quantity competition, firms are not inclined to differentiate

in quality unless this allows a reduction in sunk costs. In particular, under quantity competition,

choosing the best available quality is a dominant strategy for all firms when there are no costs to

quality upgrading. In the present paper, we show how capacity commitment may transform the ini-

tial pricing game into a quantity game. More specifically, in a duopoly game, when production costs

are symmetric and products are differentiated, the reduced form of firms’ payoffs at the quality stage

are the Cournot payoffs. The no-differentiation outcome then naturally follows if quality costs are

low.

Our result does not invalidate vertical differentiation as such; instead, it underlines that in a

duopoly framework, quality differentiation is more crucially rooted in asymmetries of costs than

in a desire to relax competition. In this last respect, indeed, quality differentiation is supplanted by

capacity commitment.

Like the present analysis, the literature on multidimensional differentiation can be regarded as

dealing with models where firms are endowed with multiple commitment tools, aimed at relaxing

competition. In a setting of multidimensional horizontal differentiation, Irmen and Thisse (1998)
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show that firms always differentiate in equilibrium, but along one dimension only.1 Neven and

Thisse (1990) deal with a two-dimensional model where firms may differentiate their product by

quality and (or) variety. They also show that firms differentiate along one dimension only. Further-

more, maximal differentiation obtains (in equilibrium) either in quality or variety depending on the

distribution of consumers’ tastes. Even closer to our present analysis is Economides (1989)’s set-

ting where quality and variety can be combined. He shows that minimal quality differentiation and

maximal variety differentiation are likely outcomes.2 However, unlike the current paper, he does not

consider a population of consumers whose preferences are heterogeneous with respect to quality.

All in all, these papers suggest that firms tend to concentrate on one instrument (one dimension of

differentiation) in order to relax competition. Our paper does so as well, with the difference that it is

differentiation itself which turns out not to be retained as an equilibrium strategy.

Our findings might also be interpreted to suggest that the standard result of Kreps and Schein-

kman (1983) could be obtained within a more general game since Cournot outcomes3 for homoge-

neous goods can be sustained as subgame perfect equilibrium outcomes of our three-stage game.

We will show however that this is not the case for two main reasons. On the one hand, our model for-

mally differs in a crucial respect from that of Kreps and Scheinkman (1983) and, on the other hand,

Cournot outcomes do not obtain as the unique subgame perfect equilibrium outcome of our game.

Many other outcomes, including the joint profit maximizing one,4 are sustainable as well.

The paper is organized as follows. Section 2 introduces the model and review properties of the

equilibrium of a quality-price game when production capacities are assumed to be arbitrarily large.

In section 3, we analyze the class of subgames where products are differentiated and show that these

subgames cannot belong to the equilibrium path. We then turn in section 4 to the class of subgames

where firms sell homogeneous products and establish the existence of a subgame perfect equilib-

rium in which firms enjoy equilibrium payoffs equal to the collusive ones. Section 5 concludes.

2 Quality, Capacity, Price : a Three Stage Game

2.1 Model

Consumers’ preferences are set according to the simplified framework of Mussa and Rosen (1978),

as popularized by Tirole (1988). The good with label i has a quality si drawn from the interval [0,1].5

Consumers have unit demand for the good and are characterized by a “taste for quality” x uniformly

distributed on [0,1]. The indirect utility function of a consumer with taste for quality x is u(i , x) =
xsi − pi for i = 1,2. Not consuming yields a normalized nil utility. In case of a tie among the two

1See Palma et al. (1995) and Anderson and Palma (1988) for early results pointing in the same direction.
2Ireland (1987) reports comparable results.
3Namely, firms sell Cournot quantities at the Cournot price.
4In this outcome each firm sells half of the monopoly quantity at the monopoly price.
5We assume the existence of a normalized upper bound for quality. This bound is best understood as having been

determined by the current state of technology. We show later that it is not a severe restriction. It is however necessary to

ensure that firms’ payoffs are bounded from above in the case where quality costs are negligible (see Baye and Morgan

(2002)).
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products, the consumer randomly chooses among the two with equal probability.

We consider the three-stage game G developing as follows. In stage 1, firms i = 1,2 simultane-

ously choose quality levels si . Since we are essentially interested in analyzing the implications of ca-

pacity commitment on the intensity of competition, we concentrate on the cases where quality costs

are negligible. This way, the presence of quality differentiation must result from strategic concerns

and not from costs saving concerns (we address positive cost for quality in Appendix II). In stage 2,

the subgame is denoted G(s1, s2). Firms have the opportunity to simultaneously commit to capaci-

ties k1 and k2 at a nearly zero positive unit cost δ. In stage 3, the subgame is denoted G(s1, s2,k1,k2).

Firms simultaneously compete in price. The analysis will be conducted with the concept of subgame

perfect equilibrium (hereafter SPE).

In G(s1, s2,k1,k2), the installed capacity ki allows firm i = 1,2 to produce up to ki units at constant

unit cost c; producing beyond capacity is feasible but at a constant unit cost c +θ, with θ > 0. The

marginal cost function is therefore discontinuous at ki . This cost framework was originally proposed

by Dixit (1980) within a quantity competition model and was used by Bulow et al. (1985) and Maggi

(1996) under price competition.6 We assume in the following that c = 0 and θ = 1 to capture the

notion of limited production capacity; under this assumption, there exist no prices for which it is

profitable to produce beyond capacity.

Given costs, firms produce to satisfy demand, i.e. firms cannot turn consumers away once they

have named their prices. We follow in this respect the definition of Bertrand competition used for

instance by Bulow et al. (1985), Vives (1989, 1990), Kuhn (1994), Dastidar (1995, 1997) and Maggi

(1996). This assumption is best viewed as a black-box for complex reputation or regulation effects

that are not modeled here.7 Note that this assumption of no rationing considerably simplifies the

formal analysis of the capacity game. Yet, it should be mentioned that it is at odds with the more

standard literature on capacity commitment such as Kreps and Scheinkman (1983) . Indeed, this

literature assumes Bertrand-Edgeworth competition. The nature of the restriction induced by the no

rationing assumption will become clear in the analysis of the price-setting subgames.

2.2 Pure Bertrand Competition

Having defined our game completely, we now review the standard quality–price game where capacity

commitment is not possible. This will provide a suitable benchmark for the analysis of the full game.8

We denote GB the benchmark game where firms cannot commit to capacities. Formally, we restrict

the analysis to the class of subgames G(s1, s2,k1,k2) with k1,k2 ≥ 1. When s1 6= s2 we may relabel firm

l for low quality and h for high quality with sh > sl .

Lemma 1 Whatever the quality chocies, GB (s1, s2) has a unique price equilibrium.

• If firms sell homogeneous products, the equilibrium is p∗
1 = p∗

2 = 0.

6In contrast to our approach, Maggi (1996) implicitly concentrates on small θ.
7For instance car makers could often ration consumers but tend to avoid it and instead engage in costly supplemen-

tary production.
8Lutz (1997) provides more detailed proofs for this game with unlimited capacities. Since the analysis is rather stan-

dard, we refer the interested reader to his paper.
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• If firms sell different qualities, the equilibrium is p∗
l = sl (sh−sl )

4sh−sl
, p∗

h = 2sh (sh−sl )
4sh−sl

.

Proof The first part of Lemma 1 follows directly from the fact that at the no-differentiation limit, our

model corresponds to a standard Bertrand model with a linear demand function and zero production

costs. Therefore the unique equilibrium is p∗
1 = p∗

2 = 0.

For sh > sl , at the price stage the demands resulting from consumers’ choices, given prices ph

and pl , are

Dl (pl , ph) =


1− pl

sl
if pl ≤ ph − sh + sl

ph sl−pl sh
sl (sh−sl ) if ph − sh + sl ≤ pl ≤ ph

sl
sh

0 if pl ≥ ph
sl
sh

(1)

Dh(pl , ph) =


1− ph

sh
if ph ≤ sh

sl
pl

1− ph−pl
sh−sl

if sh
sl

pl ≤ ph ≤ pl + sh − sl

0 if ph ≥ pl + sh − sl

(2)

Straightforward computations yield the following best response functions:

ψl (ph) =


ph

sl
2sh

if ph ≤ 2sh (sh−sl )
2sh−sl

ph + sh − sl if 2sh (sh−sl )
2sh−sl

≤ ph ≤ sh − sl
2

sl
2 if ph ≥ sh − sl

2

(3)

ψh(pl ) =


sh−sl+pl

2 if pl ≤ sl (sh−sl )
2sh−sl

pl
sh
sl

if sl (sh−sl )
2sh−sl

≤ pl ≤ sl
2

sh
2 if pl ≥ sl

2

(4)

The best response functions intersect at
(
p∗

l , p∗
h

) = (
sl (sh−sl )

4sh−sl
, 2sh (sh−sl )

4sh−sl

)
which is the unique pure

strategy price equilibrium.

Because of non-negativity constraints, demands are not concave and we cannot exclude directly

the existence of a mixed strategy equilibrium. As we show in Lemma 3, we may rule out the existence

of mixed strategy equilibria. ■

Note that quantities demanded at the equilibrium prices are

D∗
l = sh

4sh − sl
and D∗

h = 2sh

4sh − sl
(5)

and that the closed form equilibrium payoffs are

ΠB
h (sh , sl ) ≡ 4s2

h (sh − sl )

(4sh − sl )2 (6)

ΠB
l (sh , sl ) ≡ sl sh (sh − sl )

(4sh − sl )2 (7)

We now turn to the first stage of the game where qualities are chosen.

Lemma 2 Up to a permutation of players, there is a unique SPE of GB in which chosen qualities are

s∗h = 1 and s∗l = 4
7 .
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Proof Note first that s1 = s2 cannot be part of an equilibrium because it yields zero profits to both

firms while any deviation in quality leads to a price subgame where products are differentiated, so

that payoffs resulting from this deviation are strictly positive. Therefore, product differentiation must

prevail in any SPE. Standard computations using (6) and (7) enable to show the existence of a unique

SPE (up to a permutation of players) where one firm chooses the best available quality sh = 1 and the

other one optimally differentiates to the lower quality sh = 4
7 . ■

3 Differentiated Goods

A key assumption of our Bertrand competition model is that firms are not allowed to ration con-

sumers. Therefore, raising one’s price in order to increase the competitor’s demand beyond installed

capacity is not profitable since it does not generate spillovers. In other words the lack of quasi-

concavity associated with Bertrand-Edgeworth competition is not present in this model. On the

other hand, since the extra marginal cost of producing beyond capacity is θ = 1, no firm will find it

profitable to name a price such that its demand exceeds capacity.

We build on these observations to identify the nature of the set of equilibria in G(s1, s2,k1,k2) with

s1 6= s2. We then go backward to the capacity stage and characterize equilibrium capacity levels. Last,

we establish the non-existence of a subgame perfect equilibrium displaying product differentiation.

3.1 Price Competition under Capacity Commitment

The best response of firm i to price p j is the “classical” best response ψi (p j ) as defined in equations

(3-4), provided the corresponding demand does not exceed capacity i.e., whenever Di
(
ψi (p j ), p j

)≤
ki . Solving this equation for equality defines a critical level p̃ j (ki ), above which firm i would face a

demand that exceeds its capacity if it were to play along ψi (p j ). When p j > p̃ j (ki ), firm i prefers to

respond by selling its capacity at the highest possible price, i.e. the price pi that solves Di (pi , p j ) = ki .

Let us denote this price pk
i (p j ). The best response functions are therefore piecewise linear with a

“classical” branch, ψi (p j ), where firms fight for market shares and a strategic branch, pk
i (p j ) where

they exactly sell their capacity. In equilibrium it may be the case that two, one or zero firms are

capacity-constrained. The formal analysis (developed in the Appendix) reveals that there are four

possible equilibrium configurations in the space of capacities, as displayed on Figure 1.

In region A, installed capacities are sufficiently large to sustain the Nash equilibrium in prices

characterized in Lemma 1; hence the lower left-hand corner of region A is the pair of quantities

(D∗
l ,D∗

h) sold at the equilibrium of GB given by equation (5). For a smaller kh , we move to area B

where firm h is capacity-constrained in the price equilibrium. Likewise if kl is smaller we pass from

area A to C where firm l is capacity-constrained in the price equilibrium. Finally, in region D, the

Nash equilibrium is the pair of prices which equate each firm’s demand to its capacity. We prove the

following theorem in the Appendix .
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2sh
4sh- sl

AB

CD

kl

kh

sh
2sh- sl

sh
4sh- sl

sh
2sh- sl

Figure 1: The capacity space

Theorem 1 Consider k1,k2 ≤ 1 and s1 6= s2, G(s1, s2,k1,k2) has a unique price equilibrium. Four dif-

ferent formulas apply according to the combination of capacities:

[A] p A
l = sl (sh−sl )

4sh−sl
, p A

h = 2sh (sh−sl )
4sh−sl

if kl ≥ sh
4sh−sl

and kh ≥ 2sh
4sh−sl

[B] pB
l = (1−kh )sl (sh−sl )

2sh−sl
, pB

h = 2(1−kh )sh (sh−sl )
2sh−sl

if kl ≥ (1−kh )sh
2sh−sl

and kh ≤ 2sh
4sh−sl

[C] pC
l = (1−2kl )sl (sh−sl )

2sh−sl
, pC

h = (sh−kl sl )(sh−sl )
2sh−sl

if kl ≤ sh
4sh−sl

and kh ≥ sh−kl sl
2sh−sl

[D] pD
l = (1−kh −kl )sl , pD

h = (1−kh)sh −kl sl if kl ≤ (1−kh )sh
2sh−sl

and kh ≤ sh−kl sl
2sh−sl

(8)

3.2 Capacity Choice

Going backward in the game tree, we analyze firms’ strategic incentives with respect to capacity lev-

els. The intuition is captured by referring to Figure 2 and by relying on the intermediate results es-

tablished in Theorem 1.

1
2

A

B

C

D

kl

kh

*kh

kl
*

1
4

1
2

Figure 2: Capacity best responses

If the pair (kh ,kl ) lies in area A or B , then firm l is never capacity constrained i.e., neither the price
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nor its demand depend on its capacity. As capacity is costly, it is in the interest of firm l to reduce

it. Thus, her capacity best response cannot lie in the interior of A or B . In region B , firm h’s payoffs

depend only on its own capacity; it is thus possible to identify a constant capacity best response in

the interior of this region. Likewise, firm h avoids areas A and C by reducing its capacity, and firm l

has a constant best response candidate in region C . Accordingly, there exists no equilibrium in the

interior of regions A, B or C .

In area D, both firms have "small" capacities and sell their full capacity in the corresponding

price equilibrium. If an equilibrium exists, it must lie in region D . Using the characterization of

equilibrium prices in G(s1, s2,k1,k2) given in (8), we formally define payoffs in region D by kl pD
l and

kh pD
h for firm l and h respectively. The best responses candidates in region D are easily computed as

κl (kh) = 1−kh
2 and κh(kl ) = sh−kl sl

2sh
. Since the two best reply lines are obtained from the frontier lines

by rotation at their common axis point,9 their intersection

k∗
l = sh

4sh − sl
and k∗

h = 2sh − sl

4sh − sl
(9)

lies within area D . By comparing each firm’s best response candidate in region D and B or C respec-

tively, we can characterize capacity best responses; they are shown in bold face on Figure 2. Both

correspondences jump up when facing a competitor with a large capacity. These jumps occur for ca-

pacity levels which exceed the candidate equilibrium values so that the existence of a pure strategy

equilibrium is not called into question. This is why (k∗
l ,k∗

h ) is the unique SPE of G(sh , sl ).

To see that the capacity equilibrium replicates Cournot outcomes, observe that the demand sys-

tem (1-2) is invertible from quantities to prices and yields exactly the market clearing prices obtained

in (8-D): pD
l and pD

h . The payoffs in the corresponding quantity game are

Π̂l (ql , qh) = ql pD
l = ql (1−qh −ql )sl (10)

Π̂h(qh , ql ) = qh pD
h = qh

(
(1−qh)sh −ql sl

)
(11)

The best responses (in this quantity game) are easily characterized as ql = 1−qh
2 and qh = sh−sl ql

2sh
.

Solving for a Nash equilibrium, we immediately obtain q∗
l = k∗

l and q∗
h = k∗

h , as given by (9). We

can therefore claim that in our duopoly framework, under Bertrand competition and vertical differ-

entiation, capacity precommitment yields Cournot outcomes. This claim is summarized in the next

theorem which is formally proved in the Appendix

Theorem 2 For s1 6= s2, G(s1, s2) has a unique SPE, replicating the Cournot outcome of the correspond-

ing quantity setting game with product differentiation.

Some comments are in order at this step. Theorem 2 states that Cournot outcomes are subgame

perfect equilibrium outcomes of a game where capacity commitment precedes price competition in

vertically differentiated markets. This is strongly reminiscent of the Kreps and Scheinkman (1983) re-

sult. Let us stress however that the present analysis cannot be viewed as an extension of their analysis

9The best reply κl (kh) = 1
2 (1−kh) involves a factor 1

2 whereas the frontier kl = sh
2sh−sl

(1−kh) involves a greater coef-

ficient i.e., flatter on Figure 2. Likewise, the best reply κh(kl ) = 1
2sh

(sh −kl sl ) involves a factor 1
2sh

whereas the frontier

kh = 1
2sh−sl

(sh −kl sl ) involves a greater coefficient i.e., steeper on Figure 2.
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to the case of a differentiated market. Indeed, the rules of the pricing game are quite different, since

we consider Bertrand competition whereas they deal with Bertrand-Edgeworth competition. Study-

ing the behavior of our model at the no-differentiation limit unambiguously reveals this difference.

While Kreps and Scheinkman (1983) obtain a unique subgame perfect equilibrium (replicating the

Cournot outcome), we indeed obtain multiple subgame perfect equilibria which may entail lower

installed aggregate capacity than the Cournot ones, and therefore higher prices.

3.3 Quality Competition

Recall that in the first stage of G , qualities are chosen at no cost. We limit ourselves in this section to

quality choices s1 6= s2. Thanks to Theorem 2, we can compute the firms’ gross payoffs arising from

the subgame perfect capacity equilibrium. Using capacities (9) and the price equilibrium associated

to region D as defined in (8), we obtain:

Πh (sh , sl ) ≡ πD
h (k∗

l ,k∗
h ) = sh (2sh − sl )2

(4sh − sl )2 (12)

Πl (sh , sl ) ≡ πD
l (k∗

l ,k∗
h ) = sl s2

h

(4sh − sl )2 (13)

In the benchmark case GB where firms have unlimited capacities (so called Bertrand competi-

tion), Lemma 2 shows that the best response of the low quality firm is to set sl = 4sh
7 and thus remain

the low quality firm. The ability to commit in capacity alters the price competition landscape. In

G , the low quality firm’s payoff is monotonically increasing in its own quality (as is the case under

Cournot competition). Therefore, the low quality firm tends to imitate the high quality one and we

reach the no-differentiation limit.

Proposition 1 In game G, there exists no SPE where firms choose different qualities.

Proof Observe that ∂Πh
∂sh

= (2sh−sl )
(4sh−sl )3

(
7s2

h + (sh − sl )2
) > 0 and ∂Πl

∂sl
= (4sh+sl )s2

h

(4sh−sl )3 > 0. We restrict our atten-

tion to pure strategies. If s1 = sh > sl = s2 was true in a SPE, then the high quality firm would surely

choose the highest possible quality sh = 1. Then no choice sl < 1 can be optimal since ŝl = 1+sl
2 ∈

(sl ;1) would be a better choice than sl . If firm #1 plays a mixed strategy F1, the payoff for firm #2

outside F1’s atoms is given by a weighted average ofΠh andΠl . Since both terms are increasing with

quality, π2 is increasing. If top quality is not an atom of F1, then firm #2 must be playing top quality;

we are back to the pure strategies case. If top quality is an atom of F1, then firm #2 has no best reply

(using the previous argument) which means that F1 cannot be part of an equilibrium. ■

Corollary 1 If there exists a SPE of G, firms must chose the same quality and earn at least the Cournot

payoff associated to maximal quality.

Proof The first statement is a logical consequence of the previous proposition. Let s∗ be the common

choice in a SPE. If s∗ < 1, a firm can deviate to s = 1 and earn Πh(1, s∗) = (2−s∗)2

(4−s∗)2 > 1
9 . If s∗ = 1, a firm

can deviate to s < 1 and earn Πl (s,1) = s
(4−s)2 ≤ 1

9 . Since the limit of this deviation payoff is 1
9 at s = 1,

it cannot be the case that the equilibrium payoff is lesser than 1
9 . ■
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4 Homogeneous Goods

Having ruled out the presence of product differentiation in a SPE of the overall game G , we must

tackle the case of identical qualities s1 = s2 = s. Our model then simplifies to a linear demand D(p) =
max

{
0,1− p

s

}
. In the subgame G(s, s,k1,k2), firms simultaneously name prices and produce to satisfy

demand. We assume that demand is split equally between the two firms in case of a tie.

In the presence of capacity constraints, a firm may typically end up facing a demand level which

exceeds installed capacity. Since rationing is not allowed, this firm meets demand even if it exceeds

capacity and therefore sells at a loss those units beyond capacity. When prices are low, individual

demand addressed to each firm may exceed capacity even when the firms share the market. These

two configurations add to those usually prevailing under Bertrand competition. Accordingly, the

profit function for i = 1,2 in G(s, s,k1,k2), assuming prices are chosen in [0, s], is defined by relying

on five branches.

Πi (pi , p j ) =



ki − (1−pi )
(
1− pi

s

)
if pi < p j and pi < (1−ki )s (a)

pi (1− pi
s ) if (1−ki )s ≤ pi < p j (b)

pi
2 (1− pi

s ) if pi = p j ≥ (1−2ki )s (c)

ki − 1
2 (1−pi )

(
1− pi

s

)
if pi = p j < (1−2ki )s (d)

0 if pi > p j (e)

(14)

Branch (a) defines the firm’s payoff when firm i is a price leader which faces a demand exceeding

installed capacity. Branch (b) corresponds to the standard Bertrand price leader. Branch (c) defines

payoffs in case of tie where the firm is unconstrained. Branch (d) corresponds to a tie at a low con-

straining price. Lastly, branch (e) corresponds to the case where firm i ’s price is strictly larger than

j ’s.

The equilibrium analysis starts by observing that three different strategy profiles are relevant: un-

dercutting, pricing above and matching the other firm’s price. Introducing quantitative restrictions

while preventing rationing has two direct effects. Because the “no-rationing” rule prevents the exis-

tence of demand spillovers, the kind of high price strategic deviation that generates price instability

in Bertrand-Edgeworth models is not at work here. However “pricing above” may be a relevant strat-

egy because it allows a firm to avoid losses by securing zero sales. Since demand is discontinuous

(goods are homogeneous), undercutting the other firm’s price may lead to losses if one’s capacity is

low relative to the demand that has to be served (recall indeed that pi ≤ s ≤ 1 implies that the second

term in (14:a) is negative).10 Best responses then conform to intuition i.e., one should price above an

aggressive price, match an intermediate one and undercut a large one.

Theorem 3 in the Appendix shows there is a multiplicity of equilibria in the pricing subgames. If

capacities are not too dissimilar, matching the other’s price is a best reply for both; there is thus a con-

tinuum of equilibria featuring positive payoffs for both firms. If capacities are too dissimilar, there

are no pure strategies equilibria. A priori, the multiplicity of equilibria prevents the straightforward

application of backward induction. Nevertheless, we are able to construct a SPE of G where firms

10Care must be taken though that undercutting is not a properly defined optimal response.
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play almost collusively by choosing top quality, the collusive capacity and the monopoly price; they

are deterred from large capacity deviation by the credible threat of Bertrand cutthroat competition

with arbitrary small payoff.

Proposition 2 There exists a symmetric SPE of G where firms select top quality (s = 1) and share the

monopoly profits.

Proof On the equilibrium path, firms play s = 1,k = 1
4 and p = 1

2 . Firms earn 1
8 in equilibrium. If a

firm deviates to s 6= 1, she earns Πl (s,1) as defined by equation (13). Straightforward computations

indicate that Πl (s,1) ≤ 1
9 < 1

8 ; this is thus a dominated choice. We now tackle capacity deviations in

G(1,1). If a firm deviates to k < 1
4 , the best she can do is sell exactly her capacity at monopoly price,

thus earn k
2 < 1

8 ; this is a dominated choice. For a deviation to k > 1
4 , we construct in Lemma 5 of the

Appendix, an equilibrium of G(1,1, 1
4 ,k) where the deviant firm earns an arbitrary small payoff. This

particular continuation price equilibrium allows to prevent upwards capacity deviations. ■

Three comments are appropriate at this step. First, Proposition 2 establishes the existence of a

SPE where firms choose the best available quality. Notice that other SPE displaying no-differentiation

and a lower quality level exist as well in game G . However, lower qualities are associated with lower

profits and since a firm can jump over her competitor to earn a high-quality differentiated payoff,

there is a lower bound to the quality level that can be sustained in a SPE. To show that common

quality must be large in any SPE of G , let us define the critical quality level s̄ making a top-quality

firm indifferent between i) enjoying duopoly profits obtained by relying on capacity commitment

and top quality level and ii) half of the monopoly payoff obtained when matching the other’s quality

s (and colluding afterwards). Formally, With this definition in hand we may state:

Proposition 3 In every SPE of G, the common quality is s∗ ≥ s̄ ' 0.95.

Proof Proposition 1 has shown that differentiation cannot take place while Proposition 2 has shown

existence of an equilibrium, hence there is a common quality s∗ in every SPE. We first prove that the

equilibrium payoff in G(s∗, s∗) is bounded by 1
8 s∗.

Observe that 1
8 s∗ is the maximum payoff for a firm, conditional on both firms naming the same

price with probability one. To earn more than this, a firm, say #2, must succeed to undercut her

opponent with positive probability. Since the equilibrium payoff can be computed at any price in the

support of the strategy, firm 2 must undercut firm 1 with positive probability at her own maximum

price p̄2 which means that firm 1’s equilibrium strategy puts mass above p̄2. Since the equilibrium

payoff of firm 1 can be computed at her top price, she would get zero demand, thus zero profit, a

contradiction with the minimum payoff bound established in Corollary 1.

By switching to the top quality, a deviant firm earns Πh(1, s∗). In a SPE, this cannot be greater

than 1
8 s∗ i.e., s ≥ s̄ ' 0.95, the solution to the cubic equation Πh (1, s) = s

8 over the interval [0;1] (see

eq. (12)).11■
11The exact value of s̄ is as follows: s̄ ≡ 1

3

(
16−4

p
7
(
cos

(
1
3 arctan

(
3
p

111
67

))
−sin

(
1
3 arctan

(
3
p

111
67

))))
.
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Notice that the maximum payoff associated to s̄ is s̄
8 ' 0.118 whereas in G(1,1) (top quality), the

equilibrium payoff is in the range
[1

9 ; 1
8

]' [0.111;0.125].

Notice also that Proposition 2 extends to costly quality. The no-differentiation result is exactly

preserved whenever the cost of quality is small, otherwise product differentiation prevails in a SPE of

G but to a lesser degree than in the no-commitment situation. The argument is straightforward. One

can compute the equilibrium quality choices under Bertrand and Cournot without capacity com-

mitment. In the former case, product differentiation always prevail. In the latter case, we show in

Lemma 7 that when quality costs is defined by c(s) = s2

F , there exists a treshold F̃ below which firms

choose identical qualities under Cournot competition (cf. Appendix II). Last, although the time se-

quence we assumed seems natural, the robustness of our result to the ordering of strategic choices

can be questioned. Appendix III studies the alternative sequence where firms commit to capaci-

ties and then choose qualities; it is shown that if there is no cost for quality, firms choose identical

qualities in a SPE. More generaly, equilibrium product differentiation is systematically lower under

Cournot competition than under Bertrand competition without capacity commitment.

5 Conclusion

In this article, we have shown that quality differentiation as a tool for relaxing price competition is

not a robust principle once capacity commitment is allowed. More precisely, our analysis concludes

that capacity commitment and Bertrand competition systematically induce less product differenti-

ation relative to the game where capacity commitment is not possible. Furthermore, if the cost of

quality is low enough, then the ability to commit to capacities before Bertrand competition leaves

no room for quality differentiation as a strategic decision aimed at relaxing competition.

Considering a richer game where capacity precommitment is possible, we shed new light on

quality choice as well as on price competition. In our setting, capacity commitment relaxes price

competition so effectively that differentiation may become unprofitable. More generally, the resid-

ual incentive to differentiate by quality is the one that prevails under quantity competition. It is well-

known in this respect that quantity competition induces less differentiation than price competition

(cf. Motta (1993)). Our analysis therefore leads us to concur that quality differentiation may rely

more heavily on quality costs considerations than on a desire to relax competition per se.

As we make apparent in the analysis of the capacity-setting subgame, Bertrand competition (as

opposed to Bertrand-Edgeworth competition) is central in obtaining our minimum-differentiation

result so easily. Allowing for rationing severely complicates the analysis because the non-existence

of pure strategy equilibria is endemic in the pricing subgames where product differentiation pre-

vails. Moreover, the computation of mixed strategy equilibria in such games is not straightforward.

Preliminary results obtained in a more simple setting (Boccard and Wauthy (2000)) suggest that our

present findings could generalize to Bertrand-Edgeworth games. At this step however, this remains

an open conjecture.

Finally, from an empirical point of view, our analysis suggests that in industries whose technology

exhibits rigid production capacities, quality differentiation should basically reflect cost differentials;

12



if upgrading quality is not too costly, less product differentiation should be observed.

Appendix

I Proofs

Proof of Theorem 1 If sh > sl , then G(sh , sl ,kh ,kl ) has a unique pure strategy equilibrium.

When firm h names a price ph , the demand addressed to firm l is Dl (pl , ph) since rationing is not

allowed (equation (1)). Firm l ’s profit is therefore

Πl (pl , ph) =
{

pl Dl (pl , ph) if Dl (pl , ph) ≤ kl

(pl −θ)Dl (pl , ph)+θkl if Dl (pl , ph) ≥ kl

Given ph , firm l always has the opportunity to set its price so as maintain the equality Dl (pl , ph) = kl ;

this particular price is

pk
l (ph) =

{ sl
sh

(
ph −kl (sh − sl )

)
if ph ≤ sh −kl sl

(1−kl )sl if ph ≥ sh −kl sl

Observe now that since θ = 1, firm l is better off serving exactly its capacity by raising price if

necessary than meeting excess demand. Thus, there are only two best response candidates against

any ph : the “classical” best response ψl (ph) or the “strategic” pk
l (ph). It is immediate to see that the

best response is σl (ph) = max
{
ψl (ph), pk

l (ph)
}

and since the maximum operator is applied to a pair

of continuous and piecewise linear functions, σl is likewise continuous and piecewise linear. We

now proceed to derive its exact formulation. Observe firstly that since pk
l (0) < 0 =ψl (0), σl =ψl in a

neighborhood of 0. More precisely,

• if kl ≥ sh
2sh−sl

then,

σl (ph) =ψl (ph) =


ph

sl
2sh

if ph ≤ 2sh (sh−sl )
2sh−sl

ph − sh + sl if 2sh (sh−sl )
2sh−sl

≤ ph ≤ sh − sl
2

sl
2 if ph ≥ sh − sl

2

• if sh
2sh−sl

≥ kl ≥ 1
2 then,

σl (ph) =


ph

sl
2sh

if ph ≤ 2kl (sh − sl )
sl
sh

(
ph −kl (sh − sl )

)
if 2kl (sh − sl ) ≤ ph ≤ sh −kl sl

ph − sh + sl if sh −kl sl ≤ ph ≤ sh − sl
2

sl
2 if ph ≥ sh − sl

2

• if kl ≤ 1
2 then,

σl (ph) =


ph

sl
2sh

if ph ≤ 2kl (sh − sl )
sl
sh

(
ph −kl (sh − sl )

)
if 2kl (sh − sl ) ≤ ph ≤ sh −kl sl

(1−kl )sl if ph ≥ sh −kl sl

13



For firm h, a similar analysis takes place; the price solving Dh(pl , ph) = kh is

pk
h(pl ) =

{
pl + (1−kh)(sh − sl ) if pl ≤ sl (1−kh)

(1−kh)sh if pl ≥ sl (1−kh)

and as above the best response σh(pl ) is the maximum of pk
h(pl ) and

ψh(pl ) =


sh−sl+pl

2 if pl ≤ sl (sh−sl )
2sh−sl

pl
sh
sl

if sl (sh−sl )
2sh−sl

≤ pl ≤ sl
2

sh
2 if pl ≥ sl

2

.

More precisely,

• if kh ≤ 1
2 then σh(pl ) = pk

h(pl )

• if kh > 1
2 , then

σh(pl ) =



sh−sl+pl
2 if pl ≤ (2kh −1)(sh − sl )

pl + (1−kh)(sh − sl ) if (2kh −1)(sh − sl ) ≤ pl ≤ sl (1−kh)

pl
sh
sl

if sl (1−kh) ≤ pl ≤ sl
2

sh
2 if pl ≥ sl

2

We have seen that best response functions are continuous and piecewise linear, hence a pure

strategy equilibrium must be at their intersection. Notice that when a firm is in a monopoly situation

(σh or σl is constant) the other firm faces a zero demand. This latter firm will therefore decrease her

price to secure a positive demand.

Accordingly, only branches
ph

sl
2sh

(l1)

ph − sh + sl (l2)
sl
sh

(
ph −kl (sh − sl )

)
(l3)

and


sh−sl+pl

2 (h1)

pl + (1−kh)(sh − sl ) (h2)

pl
sh
sl

(h3)

for firm l and h can arise in an equilibrium. We have thus 9 possible but mutually exclusive configu-

rations for candidate equilibria. We rule out 5 of them.

• (l 1−h1): the solution is denoted [A] with p A
l = sl (sh−sl )

4sh−sl
, p A

h = 2sh (sh−sl )
4sh−sl

.

• (l 1−h2): the solution is denoted [B ] with pB
l = (1−kh )sl (sh−sl )

2sh−sl
, pB

h = 2(1−kh )sh (sh−sl )
2sh−sl

.

• (l 1−h3): leads to pl
ph

= sl
2sh

= sl
sh

, a contradiction.

• (l 2−h1): leads to 2ph = ph , a contradiction.

• (l 2−h2): leads to ph −pl = sh − sl = (1−kh)(sh − sl ), a contradiction.

• (l 2−h3): leads to pl = pl
sl
sh
− sh + sl < pl , a contradiction.

• (l 3−h1): the solution is denoted [C ] with pC
l = (1−2kl )sl (sh−sl )

2sh−sl
, pC

h = (sh−kl sl )(sh−sl )
2sh−sl

.

• (l 3−h2): the solution is denoted [D] with pD
l = (1−kh −kl )sl , pD

h = (1−kh)sh −kl sl .

• (l 3−h3): leads to sl
sh

(
ph −kl (sh − sl )

)= sl
sh

ph , a contradiction.

It is easily verified that the four regions A,B ,C and D form a partition of the capacity space (see

Figure 1). Thus, we have identified the unique pure strategy equilibrium for all configurations of

parameters.
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• In region [A] where installed capacities are large, the solution is valid if p A
l ≤ (2kh−1)(sh−sl ) ⇔

kh ≥ 2sh
4sh−sl

and if p A
h ≤ 2kl (sh − sl ) ⇔ kl ≥ sh

4sh−sl
.

• In region [B ], the high quality firm is capacity constrained, the solution is valid if

pB
l > (2kh −1)(sh − sl ) ⇔ kh ≤ 2sh

4sh−sl
and if pB

h ≤ 2kl (sh − sl ) ⇔ kl ≥ (1−kh )sh
2sh−sl

.

• In region [C ], the low quality firm is capacity constrained, the solution is valid only if pC
l ≤

(2kh −1)(sh − sl ) ⇔ kh ≥ sh−kl sl
2sh−sl

and if pC
h ≥ 2kl (sh − sl ) ⇔ kl ≤ sh

4sh−sl
.

• In region [D], both firms are capacity constrained, the solution is valid only if pD
l ≥ (2kh −

1)(sh − sl ) ⇔ kh ≥ sh−kl sl
2sh−sl

and if pD
h ≥ 2kl (sh − sl ) ⇔ kl ≤ (1−kh )sh

2sh−sl
.

It is readily observed that the above set of inequalities covers the whole range of capacities; we

have thus characterized the whole class of equilibria and shown that for any pair (kl ,kh) there exists

a unique price equilibrium. Lemma 3 takes care of mixed strategies. ■

Lemma 3 The pricing game G(sh , sl ,kh ,kl ) has no non degenerate mixed strategy equilibrium.

Proof We limit ourselves to probability distributions, composed of a density function and a denu-

merable number of atoms. In a mixed strategy equilibrium (Fl ,Fh), sl and sh are upper bounds on

prices. As Dh is zero for pl < ph − sh + sl , we can write πh(ph ,Fl ) = ∫ sl
ph−sh+sl

g (ph , pl )dFl (pl ) where

g (ph , pl ) ≡
{

phDh(ph , pl ) if Dh(ph , pl ) ≤ kh

phkh + (ph −1)(Dh(ph , pl )−kh) if Dh(ph , pl ) > kh

Notice that g is concave in ph and almost everywhere (a.e.) twice differentiable in both variables.

The distribution Fl is composed of a density fl and atoms
(
αm , pm

)
m∈M . We have

πh(ph ,Fl ) =
∫ sl

ph−sh+sl

g (ph , x) fl (x)d x + ∑
m∈M

αm g (ph , pm)

thus, using “˙” to denote derivation w.r.t. ph

π̇h =
a.e.

∫ sl

ph−sh+sl

ġ (ph , x) fl (x)d x + g (ph , ph − sh + sl ) fl (ph − sh + sl )+ ∑
m∈M

αm ġ (ph , pm)

=
∫ sl

ph−sh+sl

ġ (ph , pl )dFl (pl )+ ∑
m∈M

αm ġ (ph , pm)

since Dh(ph , ph − sh + sl ) = 0. We then derive

π̈h =
a.e.

∫ sl

ph−sh+sl

g̈ (ph , pl )dFl (pl )+ ġ (ph , ph − sh + sl ) fl (ph − sh + sl )+ ∑
m∈M

αm g̈ (ph , pm) < 0

as g̈ <
a.e.

0 and ġ (ph , ph − sh + sl ) =− ph
sh−sl

< 0.

Since the derivative of the profit is a.e. decreasing and may eventually jump down, profit which

is continuous must be concave; hence the best response to Fl is a pure strategy ph . Since the best

response to a singleton ph for firm l is a pure strategy, the equilibrium has to be in pure strategies.

This proof can be modified to prove that the Bertrand pricing game GB (s1, s2,k1,k2) has no non-

degenerate mixed strategy equilibrium. ■
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Proof of Theorem 2 The capacity pair (k∗
l ,k∗

h ) defines the unique equilibrium of G(sh , sl ).

Since demand is bounded by unity, sales are also bounded by unity, thus there is nothing that a

firm could do with excessive capacity that she could not do with unit capacity. We may thus restrict

capacities to [0;1].

The frontiers of areas A, B , C and D derived in Theorem 1 are the thin plain lines of Figure 2.

Let us consider first the optimal kl against kh . The equilibrium payoff of firm l resulting from price

competition does not depend on her own capacity level in region A and B . Thus a point interior

to A ∪B cannot be optimal due to the positive cost δ for capacity. Since the equilibrium prices are

continuous with respect to capacities (cf. equation (8)) so are demands and profits in the capacity

game. Hence we can search for the best response of firm l in C ∪D.

Using the equilibrium characterization of Theorem 1, we derive the payoff of firm l in region C

as πC
l (kl ,kh) = kl (1−2kl ) sl (sh−sl )

2sh−sl
, so that the best response against kh is 1

4 . In region D , the payoff is

πD
l (kl ,kh) = kl (1−kh −kl )sl , leading to the best response 1−kh

2 . We thus have to compare the profits

associated to those two best response candidates; the solution of πD
l

(
1−kh

2 ,kh

)
= πC

l

(1
4 ,kh

)
in kh is

k̃h = 1−
√

sh−sl
2(2sh−sl ) . We obtain the best response

κl (kh) =
{

1−kh
2 if kh ≤ k̃h

1
4 if kh ≥ k̃h

(15)

A similar analysis shows that the best response of firm h lies in area B ∪D. As πB
h (kl ,kh) = kh(1−

kh) 2sh (sh−sl )
2sh−sl

the best response is 1
2 in area B while πD

h (kl ,kh) = kh ((1−kh)sh −kl sl ) yields the best

response sh−kl sl
2sh

for area D. Hence firm h’s best response is

κh(kl ) =
{ sh−kl sl

2sh
if kl ≤ k̃l

1
2 if kl ≥ k̃l

(16)

where k̃l = sh
sl

(
1−

√
2(sh−sl )
2sh−sl

)
is the solution of πD

h

(
sh−kl sl

2sh
,kl

)
=πB

h

(1
2 ,kl

)
in the domain where kl ≤ 1.

Using Figure 2, it is clear that the first branches of (15) and (16) are obtained from the frontier

lines by rotation at their common axis point, thus their intersection k∗
l = sh

4sh−sl
and k∗

h = 2sh−sl
4sh−sl

is

within area D . To prove that this candidate is the equilibrium, we only need to check that k∗
i < k̃i for

i = h, l . Algebraic manipulations show that k∗
l < k̃l ⇔ 2s2

l (3sh − sl ) > 0 which is true over the relevant

domain (sl < sh). Likewise, k∗
h < k̃h ⇔ 1

2 sl
(
sh (16sh −9sl )+ s2

l

)> 0.

In order to establish the equivalence of this equilibrium with Cournot outcomes, observe that the

demand system defined by equations (1) and (2) is invertible and yields the system characterizing the

price equilibrium of region D i.e., pD
l and pD

h as functions of quantity variables kl and kh . Solving for

a Nash equilibrium of this new quantity game we immediately obtain (k∗
l ,k∗

h ). Lemma 4 takes care

of mixed strategies. ■

Lemma 4 Equilibria of G(sl , sh) are in pure strategies.

Proof Assume that in equilibrium firm i = 1,2 plays a capacity distribution Fi over [0,1] whose lower

and upper bounds are denoted k i and k̄i . Observe that kh ≥ κh
(1

2

) = 1
2 − sl

4sh
> 0 because πh is in-

creasing in kh for all kl whenever kh < 1
2 − sl

4sh
so that πh(kh ,Fl ) is increasing over this range. Since
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πh is decreasing over areas A and C (see figure 3 below) and decreasing down to 1
2 (or less) in areas D

and B , k̄h ≤ 1
2 . Hence the analysis of πl (kl ,Fk ) will concentrate on areas B and D because the vertical

limit of A is greater than 1
2 .

A
B

CD

kl

kh

1
2

1
2

kl ( )1
2

k
h( )1

2

 k l

 k l

Figure 3: Elimination of mixed strategy equilibria

We claim that k̄l ≤ k̂l ≡ κl
(
κh

(1
2

))= 1
4+ sl

8sh
. Indeedπl is decreasing in kl over area B and over area

A down to the κl line, thus for kl > k̂l , πl (kl ,Fk ) is also decreasing. The frontier BD intersects with

the vertical at kh = 1
2 for k̃l = sh

2(2sh−sl ) and we can check that k̃l − k̂l = s2
l

8(2sh−sl )sh
> 0 which means that

for any kh in
[
kh , k̄h

]
and any kl in

[
k l , k̄l

]
, the pair (kh ,kl ) lies in area D so that πh(kh ,Fl ) is concave

and has a unique maximizer. Since the best response of firm l to a pure strategy kh is another pure

strategy we have indeed shown that
(
k∗

l ,k∗
h

)
characterized earlier is the unique equilibrium. ■

Theorem 3 The price game G(s, s,ki ,k j ) has a multiplicity of equilibria.

• If capacities are similar, a continuum of equilibria exists, in which firms name identical prices.

• Otherwise, there exists no pure strategy equilibrium.

Proof

Step 1: Pseudo best replies

In order to characterize the best reply of firm i , we denote p = p j the competitor’s price and adopt

the shorthands p−, p=, p+ in order to identify respectively undercutting, matching and pricing-above

strategies. Unless the domain of admissible prices is finite, undercutting is not properly defined so

that we speak of pseudo best responses.

We first identify the critical price levels which define the relevant payoff regimes. Equating (14:a)

to zero, we use the relevant root to define

νs(ki ) ≡ 1

2
max

{
0,1+ s −

√
(1− s)2 +4ki s

}
, (17)

The threshold νs(ki ) defines the critical price for which undercutting yields so much demand that

the profit made over inframarginal units is exactly compensated by the losses made over the units
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beyond the current capacity. This cutoff plays a role comparable to that of the marginal cost in the

standard Bertrand competition: no firm would ever undercut the other’s price below this treshold.

Notice that p ≤ νs(ki ) ⇒Πi (p−, p) ≤ 0 =Πi (p+, p).

Next, we define the critical price level for which a firm is indifferent between matching and pric-

ing above (the other’s price), i.e. is indifferent beween sharing the market and facing no demand. To

this end, we equate (14:d) to (14:e) and use the relevant root to define

φs(ki ) = 1

2
max

{
0;1+ s −

√
(1− s)2 +8ki s

}
. (18)

We may state that p ≤φs(ki ) ⇒Πi (p, p) ≤ 0 =Πi (p+, p).

Last, equating (14:a) and (14:c), we define ρs(ki ) the treshold at which a firm is indifferent be-

tween serving full demand beyond capacity and matching the other’s price while selling below ca-

pacity.

ρs(ki ) ≡ 1

2
max

{
0; s +2−

√
(2− s)2 +8ki s

}
(19)

Notice that p ≶ ρs(ki ) ⇒Πi (p−, p) ≶Πi (p, p).

Bringing together this information, we may characterize the pseudo best reply:

• If p < φs(ki )(< νs(ki )), both undercutting and matching yield negative profits so that the best re-

sponse is pricing above (p+) to guarantee zero losses.

• If φs(ki ) ≤ p ≤ max{0;(1−2ki )s}, the first inequality means that firm i can secure positive profits

by matching so that matching dominates pricing above. The second inequality means that

matching leads to a constrained capacity (14:d) and as one can see from (14:a), undercutting

leads to an even more stringent constraint (see the unit weight instead of 1
2 over negative term).

• If max{0;(1−2ki )s} ≤ p ≤ ρs(ki ) then matching is optimal. Since p ≥ φs(ki ) remains true, match-

ing keeps dominating pricing above and by construction of ρs(ki ), matching dominates un-

dercutting.

• If p > ρs(ki ), the reversal in (19) makes undercutting the optimal strategy.

Step 2: Equilibrium characterization

Assume w.l.o.g. ki ≤ k j and observe that

ρs(k j ) <φs(ki ) ⇔
{

ki < 1

2
and k j > γs(ki ) ≡ ki + s−1+

p
(1−s)2+8ki s

4s

}
The analysis of Step 1 can now be used fairly easily. When ρs(k j ) ≥ φs(ki ), any pair (p, p) where

p ∈ [
φs(ki ),ρs(k j )

]
is a symmetric equilibrium since both undercutting and pricing above are domi-

nated by matching. Observe that there are no other pure strategy equilibria. In such equilibria, firms

earns p
2 (1− p

s ) ≤ s
8 . When ρs(k j ) >φs(ki ), the previous equilibria cease to exist and given the nature

of pseudo best replies, no pair of single prices may define a pure strategy equilibrium. Equilibria, if

they exist, are fully mixed. Lemma 5 constructs a mixed strategy equilibria of G(1,1,k1,k2); the same

arguments can be used to construct a mixed strategy equilibria of G(s, s,k1,k2) for s < 1.■
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Lemma 5 For k1 < k2, there exists an equilibrium of G(1,1,k1,k2) where firm 2 earns an arbitrary

small payoff.

Proof The proof is by construction. Let firm 2 play the pure strategy p while firm 1 plays a distribution

F1 over the support
(
p; p̄

]
. Since k2 ≤ 1, ∀ε ∈ (0;k2), it is true that p ≡ ν1(k2 − ε) = 1−

√
k2 −ε < p̄ ≡

1−k2 + ε (cf. eq. (17)). On the equilibrium path, firm 1 has zero demand and zero payoff while firm

2 is a monopoly earning π2(p,F1) = ε > 0 as (14:a) applies. If firms 2 chooses p2 < p, she becomes

an even more constrained monopoly and thus make a lower profit. If she picks p2 > p̄, she has zero

demand and zero payoff. The case p ∈
(
p; p̄

]
forces us to taylor F1.

• For p ≤ 1−k2, (14:a) applies, thus π̄2(p2,F1) = (
1−F1(p2)

)(
k2 − (1−p)2

)
. A sufficient condition

to make p optimal is

∀p ∈
(
p;1−k2

]
,

∂π̄2

∂p2
≤ 0 ⇔ f1(p)

1−F1(p)
≥ 2(p −1)

k2 − (1−p)2
(20)

• For p ≥ 1−k2, (14:b) applies, profit is π̂2(p2,F1) = (
1−F1(p2)

)(
p(1−p)

)
. A sufficient condition

to make p optimal is

∀p ∈ (
1−k2; p̄

]
,

∂π̂2

∂p2
≤ 0 ⇔ f1(p)

1−F1(p)
≥ 1−2p

p(1−p)
(21)

Solving π̄2(p, .) = ε = π̂2(p, .), we find solutions F̄ (p) = 1− ε
k2−(1−p)2 and F̂ (p) = 1− ε

p(1−p) with

associated densities f̄ and f̂ . Notice that F̂ (1−k2) = F̄ (1−k2). For a small ε, we define f1(p) ≡ f̄ (p)+ε
over

(
p;1−k2

]
and f1(p) ≡ f̂ (p)+ε over

(
1−k2; p̄

]
. Observe that ∀p ∈

(
p;1−k2

]
,

f1 > f̄ ⇒ F1(p) =
∫ p

p
f1(x)d x > F̄ (p) ⇒ f1(p)

1−F1(p)
> f̄ (p)

1− F̄ (p)

Likewise, ∀p ∈ (
1−k2; p̄

]
, since f1 > f̂ , we have

F1(p) = F1(1−k2)+
∫ p

1−k2

f1(x)d x > F̂ (1−k2)+
∫ p

1−k2

f̂ (x)d x = F̂ (p)

hence f1(p)
1−F1(p) >

f̂ (p)
1−F̂ (p)

. The distortions applied to F̄ and F̂ guarantee that (20) and (21) are satisfied.

It remains to make sure that F1 is a probability distribution by setting an atom α ≡ 1− limp̄ F1 at p̄.

We have

lim
p̄

F1 = F̂ (1−k2)+ε(1−k2 −p)+
∫ p̄

1−k2

(
f̂ (x)+ε)d x = F̂ (p̄)+ε(p̄ −p)

thus α= ε
p̄(1−p̄) −ε(p̄ −p) > 0 ⇔ 1 > p̄(1− p̄)(p̄ −p) which is true.

Lastly, we must check that firm 1 has no incentive to undercut p. Since k1 < k2, we have ν1(k1) >
ν1(k2). Hence, whatever the difference k2−k1, there is a ε small enough making ν1(k1) > ν1(k2−ε) = p

which proves that firm 1 would be a constrained monopolist making losses, if she was to price below

p. ■
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II Costly quality

In this Appendix, we extend the analysis to the case where quality is costly. We treat Bertrand price

without capacity commitment and Cournot quantity competition. Recall that the later is the synthe-

sis of capacity choice and price competition under commitment i.e., G(s1, s2).

Lemma 6 In a SPE of GB , firms choose different qualities. The ratio of optimal qualities
s∗l
s∗h

increases

towards 4
7 as quality costs become negligible.

Proof In the game GB with unlimited capacities, a pure strategy equilibrium for the choice of quali-

ties is characterized by the first order conditions

∂ΠB
h (sh , sl )

∂ sh
= 2sh

F
and

∂ΠB
l (sh , sl )

∂ sl
= 2sl

F
(22)

Both equations have a unique analytical real solution under the relevant quality hierarchy, which

we denote by sh(F, sl ) and sl (F, sh). Direct computations also show that the second order conditions

are satisfied for a maximum. Next, we have
∂2ΠB

h (sh ,sl )

∂ s2
h

=−8s2
l (5sh+sl )

(4sh−sl )4 < 0 and
∂2ΠB

h (sh ,sl )
∂ sh∂ sl

= 8sh sl (5sh+sl )
(4sh−sl )4 > 0

while
∂2ΠB

h (sh ,sl )

∂ s2
h

= −2s2
l (8sh+7sl )

(4sh−sl )4 < 0 and
∂2ΠB

h (sh ,sl )
∂ sh∂ sl

= 2sh sl (8sh+7sl )
(4sh−sl )4 > 0. Hence, best responses are posi-

tively sloped. As shown by Aoki and Prusa (1997) in a similar setting, the equilibrium quality differ-

ential does not depend on F as long as the high quality is not constrained (s∗h < 1). Indeed,

(22) ⇔ 4
(
4s2

h −3sh sl +2s2
l

)= s2
h

4sh−7sl
sl

= 2
F (4sh − sl )3

⇔ 4
(
4z2 −3z +2

)= z2 (4z −7) = 2sl
F (4z −1)3 (23)

where z = sh
sl

. The solution of the LHS of (23) is12 z̃ ' 5.25 leading to a quality ratio
s∗l
s∗h

of 1
z̃ ' 19%.

Plugging z̃ into the RHS of (23), we can single out s∗l (F ) = z̃2(4z̃−7)
2(4z̃−1)3 F ' 0.024F and s∗h(F ) ' 0.127F .

Observe that s∗h < 1 ⇔ F < 2(4z̃−1)3

z̃3(4z̃−7)
' 7.79.

For F ≥ 7.79, the high quality firm chooses top quality and the equilibrium value s∗l (F ) for the

low quality firm ceases to be given by (23); it now solves
∂ΠB

l (1,sl )
∂ sl

= 4−7sl

(4−sl )3 = sl
2
F ⇔ F = g (s∗l ) where

g (z) ≡ 2z(4−z)3

4−7z . Since g is an increasing convex function, s∗l (F ) = g−1(F ) is uniquely defined and is an

increasing concave function of F with limit 4
7 ' 57%.13 ■

Lemma 7 When firms compete a la Cournot,

• If F < 54
5 , firms differentiate their products in equilibrium.

• If F ≥ 54
5 , they do not differentiate in equilibrium.

12 z̃ = 1
12

((
8927−24

p
39279

)1/3 + (
8927+24

p
39279

)−1/3 +23
)
.

13The apparent arbitrariness of setting a finite upper bound to qualities is now easy to justify: if F < 7.79, that is to say,

the cost of quality matters, then no firm wishes to choose top quality and the differentiation index sl−sh
sh

remains constant

and equal to 81%. It is only when F becomes large that there is a problematic tendency to adopt an infinite quality.
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Proof Let us consider a pure strategy SPE
(
s∗i , s∗j

)
with differentiation i.e., s∗i > s∗j . We relabel firm

h and l . The payoffs (net of quality costs) are Πh (sh , sl ) = sh (2sh−sl )2

(4sh−sl )2 and ΠC
l (sh , sl ) = sl s2

h

(4sh−sl )2 . The

two FOCs for an interior equilibrium ∂Πh
∂sh

= 2sh
F and ∂Πl

∂sl
= 2sl

F can be combined to give the following

system
(2sh − sl )

(
8s2

h −2sh sl + s2
l

)
sh

= (4sh + sl ) s2
h

sl
= 2

F
(4sh − sl )3

⇔ (2−1/z)
(
8z2 −2z +1

)= (4z +1) z2 = 2
F sl (4z −1)3 (24)

where z = sh/sl . The first equation of (24) has solution z̄ '2.79.14 In our model with bounded max-

imum quality, the quality leader reaches the top s∗h = 1 as soon as F ≥ 7.75. Then the equilibrium

value s∗l (F ) for the low quality firm solves F = 2sl (4−sl )3

(4+sl ) , which a concave function of s with maximum

at s = 4
p

7−8
3 ' 0.86. We deduce that s∗l (F ) is uniquely defined and is an increasing convex function

of F i.e., reaches also the upper bound. We may then look for the solution of
∂ΠC

l (1,1)

∂sl
= 2 1

F which is

exactly F=54
5 . ■

III Capacity choice before quality choice

The game G is altered into a new game Γ as follows: firms choose first capacities ki and k j and then

qualities si and s j .

Lemma 8 In any SPE of Γ, firms choose identical qualities and earn at least the Cournot payoff asso-

ciated to top quality.

Proof Notice first that whenever sh > sl , and whatever capacitiy levels have been selected, the price

equilibrium derived in the proof of Theorem 1 still applies in the last stage of the game. Let us con-

sider a SPE
(
k∗

i ,k∗
j

)
of Γ. We prove by contradiction that any equilibrium

(
s∗i , s∗j

)
of Γ

(
k∗

i ,k∗
j

)
fea-

tures identical qualities. If not, we have equilibrium qualities s∗h > s∗l in Γ
(
k∗

i ,k∗
j

)
and the pricing

game Γ
(
k∗

i ,k∗
j , s∗h , s∗l

)
has a unique equilibrium. We may then use the areas A, B, C and D of figure

3. The argument of the proof is then the following: first we show that it is impossible to end up in

equilibrium in region A,B or C . We are then left with region D . However, in this region, both firms’

payoff increase in own quality. Accordingly, we should not expect quality differences to prevail. The

only remaining candidate equilibria exhibit no differentiation. The argument developed in game G

for the cases where products were homogenoeus may then be applied.

If the price equilibrium of Γ
(
k∗

i ,k∗
j , s∗h , s∗l

)
is interior to area A of figure 3 above, then the closed

form payoffs in Γ
(
k∗

i ,k∗
j

)
are

ΠA
l = sh sl (sh − sl )

(4sh − sl )2 and ΠA
h = 4s2

h(sh − sl )

(4sh − sl )2

in a neighborhood of (s∗h , s∗l ). The best responses are s A
l = 4sh

7 and s A
h = 1 hence the equilibrium

of Γ
(
k∗

i ,k∗
j

)
is either

(
s∗i , s∗j

)
= (4

7 ,1
)

or
(
1, 4

7

)
and furthermore capacities must satisfy k∗

l ≥ 7
24 and

14 (4z̄+1)z̄2F
2(4z̄−1)3 ' F

22.47 and s∗h = z̄s∗l ' F
7.75 .
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k∗
h ≥ 7

12 (we evaluate the conditions for interiority of region A for sl = 4
7 and sh = 1). Consider the

following deviation: kl = 7
24 ≤ k∗

l . Then, the equilibrium of Γ
(
kl ,k∗

h

)
must be

(
s∗l , s∗h

)= (4
7 ,1

)
because

firm l has now a too small capacity to adopt the high quality (condition k∗
h ≥ 7

12 ); neverthelesss it

benefits from the capacity cost reduction given that payoffs in area A are capacity independent. Now

firm h can also reduce its capacity down to 7
12 because it is assured of being the high quality firm. We

have thus proved that the quality equilibrium of Γ
(
k∗

l ,k∗
h

)
(if differentiated) cannot be interior to

area A.

If the price equilibrium of Γ
(
k∗

i ,k∗
j , s∗h , s∗l

)
is interior to area C , then payoffs are

ΠC
h =

(
1− pC

h −pC
l

sh − sl

)
pC

h = (sh − sl ) (sh −kl sl )2

(2sh − sl )2

and

ΠC
l = kl pC

l = kl (1−2kl )
sl (sh − sl )

2sh − sl

in a neighborhood of (s∗h , s∗l ). Since ΠC
h is increasing with sh , the best response of firm h is sC

h = 1. As
∂ΠC

l
∂sl

∝ 2s2
h−4sh sl+s2

l

(2sh−sl )2 , the best response of firm l is sC
l = (

2−p
2
)

sh . The equilibrium is thus
(
s∗i , s∗j

)
=(

2−p
2,1

)
or

(
1,2−p

2
)

where capacities must satisfy k∗
l ≤ 1

2+p2
' 0.29 and k∗

h ≥ 1−kl
(
2−p2

)
p

2
(frontiers

of C computed for equilibrium values), the latter value being itself greater than 0.59. Whenever firm l

plays kl < 1
2+p2

, the equilibrium of Γ
(
kl ,k∗

h

)
must be

(
2−p

2,1
)

because firm l does not have enough

capacity to be the quality leader. The low quality firm gets ΠC
l ∝ kl (1−2kl ) and optimally chooses

kl = 1
4 < 1

2+p2
. When facing kl < 1

2+p2
, the high quality firm h receives a profit independently of its

capacity thus she should reduce it down to the frontier value k∗
h = 1− 1

4

(
2−p2

)
p

2
' 0.60.

We have thus shown that the quality equilibrium of Γ
(
k∗

i ,k∗
j

)
(if followed by differentiation) can-

not be interior to area C . A symmetric result holds for area B where the high quality firm is capacity

constrained in the price equilibrium. The previous steps have shown that the price equilibrium of

Γ
(
k∗

i ,k∗
j , s∗h , s∗l

)
lies within area D whose definition can be inverted to fit the order of strategic moves:

kh < sh−kl sl
2sh−sl

⇔ sl

sh
> max

{
2kl −1+kh

kl
,

2kh −1

kh +kl

}
(25)

In a neighborhood of (s∗h , s∗l ), payoffs are

ΠD
h = ((1−kh)sh −kl sl )kh and ΠD

l = (1−kh −kl )sl kl

We observe that profits increase with own quality and that small increases by each firm are compat-

ible with (25), hence no differentiated quality equilibrium exists. It must be the case that s∗i = s∗j in

the quality equilibrium of Γ
(
k∗

i ,k∗
j

)
. Furthermore the common quality s∗ is larger than s̄ because

any firm could deviate to s = 1 in Γ
(
k∗

1 ,k∗
2

)
(cf. proof of Proposition 1). Although there is multiplicity

of equilibria in the pricing game Γ
(
k∗

i ,k∗
j , s∗, s∗

)
, a perfect equilibrium of Γ

(
k∗

1 ,k∗
2

)
gives each firm

at least its Cournot payoff for top quality (an ε-deviation guarantees it). ■
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