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Abstract
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game perfect equilibrium, thereby showing that vertical differentiation is not robust to

Bertrand-Edgeworth competition.

Keywords: Capacity Constraint, Quality, Differentiation, Bertrand-Edgeworth Com-

petition

JEL Classification: D43, L13, L51

*This paper is a revised and shortened version of a CORE DP 2009/50. We are grateful to seminar

participants at ECARES, Ecole Polytechnique, UAB, University of Valencia and EARIE for comments. We

thank Paul Belleflamme for comments on a preliminary draft and a referee of this journal for his constructive

comments. We retain responsibility for any remaining errors.
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1 Introduction

Building on the original intuition of Edgeworth (1925) and the preliminary results of Levitan

and Shubik (1972), the seminal paper of Kreps and Scheinkman (1983) analyses the role

of capacity constraints under price competition with homogeneous goods. No comparable

analysis has been performed for the case of differentiated goods. As discussed in Wauthy

(2014), very little is known about the structure of Nash equilibria in Bertrand-Edgeworth

differentiated industries. The aim of this note is to offer a theoretical contribution to this field

of research and to show that the presence of capacity constraints may drastically impinge on

firms incentives to differentiate their products.

To this end, we consider a market where an incumbent sells a high quality product and

enjoys an arbitrarily large production capacity. We study the entry strategy of a challenger

who may install a limited production capacity and commit to some degree of product differ-

entiation. After entry has taken place, firms simultaneously set prices. We show that there

exists a subgame perfect equilibrium of our stage-game in which the entrant chooses not to

differentiate by quality but relies exclusively on capacity commitment to optimally relax price

competition.

This note, though mainly of a technical nature, nevertheless offers a methodology to

identify the structure of equilibrium prices and payoffs in price subgames with capacity con-

straints and differentiated products. Our results should prove useful in better understanding

the nature of price competition in those, empirically relevant, markets where product differ-

entiation and various forms of decreasing returns to scale co-exist.

2 Preliminaries

2.1 The model

We follow the Mussa and Rosen (1978) setup popularized by Tirole (1988) to model quality

differentiation. A population of consumers with personal characteristic x is considered. The

indirect utility function is given by U(x, s, p) = xs − p when buying one unit of a product

displaying quality s. Characteristics are uniformly distributed in the interval [0, 1] and the

mass of consumers is normalized to 1. We study the following stage game G:

� Stage 0: the incumbent, i, selects a quality and capacity both equal to 1.

� Stage 1: an entrant e selects his quality s ≤ 1 at no cost and capacity k ≤ 1.
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� Stage 2: firms compete simultaneously in prices and produce at no cost up to capacity.

Producing beyond capacity is not feasible.

We denote G(s, k) the pricing game occurring at the last stage. Our solution concept

for the game G is Subgame Perfect Nash Equilibrium. Subgames G(1, k) correspond to the

Bertrand-Edgeworth games first studied by Levitan and Shubik (1972) whereas subgames

G(s, 1) are studied in Choi and Shin (1992). Obviously, the subgame G(1, 1) is the standard

Bertrand, homogeneous good, pricing game.

2.2 Demand Functions

Consumers make their choice at the last stage by comparing the respective surpluses they

derive when buying from the incumbent, the entrant or when refraining from consuming i.e.,

they compare x− pi, xs− pe and 0. The typical partition of the population as a function of

optimal choices is obtained as follows. First, one identifies the so-called indifferent consumer.

By definition, this consumer enjoys the same surplus when buying the high or low quality

product. Formally x̃(pi, pe) solves x− pi = sx− pe. We obtain

x̃(·) =
pi − pe
1− s

Then we identify the marginal consumer who, by definition, is indifferent between buying

quality product j = i, e and refraining from consuming. Formally, xj solves xsj− pj = 0. We

obtain

xj =
pj
sj

In the presence of differentiation (s < 1), it is a straightforward exercise to show that

notional demands are given by

Di(pi, pe) =


0 if pe + 1− s ≤ pi

1− x̃(·) if pe
s
≤ pi ≤ pe + (1− s)

1− xi if pi ≤ pe
s

(1)

De(pi, pe) =


0 if pe ≥ pis

x̃(·)− xe if pi − 1 + s ≤ pe ≤ pis

1− xe if pe ≤ pi − 1 + s

(2)

Two remarks are in order. First, whenever s = 1 i.e., whenever products are homogeneous,

the demand functions (1) and (2) degenerate to the usual, discontinuous Bertrand demand
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functions. For simplicity we assume that consumers are split equally among the two firms

in case of a price tie. Second, in subgame G(s, 1), these functions define not only notional

but effective demands resulting from consumers’ optimal choices given prices and products’

qualities. By contrast, in the price subgames G(s, k) with k < 1, notional demands may

or may not define consumers’ actual consumptions since the entrant’s capacity constraint

may prohibit him from serving all consumers. Should that happen, some rationed consumers

may turn to the incumbent. Accordingly, we shall distinguish in the forthcoming analysis

demands, as expressed by consumers, from sales, as realized by the firms given the capacity

limitation.

2.3 Sales Functions in the presence of rationing

If the entrant has built a limited capacity (k < 1), there exist prices levels leading up to more

demand than can be served by firm e i.e., prices such that De(pe, pi) > k. In such cases,

some consumers will be rationed and possibly report their purchase on the incumbent. In

order to characterize firms’ sales in that situation, we assume that efficient rationing is at

work. Under this rule, rationed consumers are those exhibiting the lowest willingness to pay

for the good. The limited k units sold by the entrant are contested by potential buyers and

end-up being acquired by the most eager.1

Two configurations must be distinguished depending on whether prices are such that,

according to consumers’ optimal choices the market is shared between the two firms or

preempted by the entrant.

In the case of duopoly competition, i.e. for price constellations such that both firms enjoy

a positive demand, we identify a price threshold, ρe, above which the entrant’s capacity is

binding:

De(pe, pi) =
pi − pe
1− s

− pe
s
> k ⇔ pe < (pi − k(1− s))s ≡ ρe (3)

In the monopoly case, i.e. for prices such that Di(·) = 0, we identify the following capacity

binding threshold:

De(pe, pi) = 1− pe
s
> k ⇔ pe < s(1− k) (4)

Using (3) and (4), the entrant is capacity constrained i.e., Se(pe, pi) = k, whenever

pe ≤ min {ρe, s(1− k)} (5)

1A particular way to rationalize this rationing rule amounts to assume that a secondary market opens

where consumers may take advantage of the arbitrage possibilities at no cost.
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Now, using the notional demand (1), we obtain the residual demand addressed to the

incumbent firm when the entrant rations as

Dr
i (pi) ≡ 1− ks− pi. (6)

Combining these expressions with consumers’ demand defined by equations (1) and (2),

we may express the firms’ effective sales functions:2

Se(pi, pe) =



0 if pe ≥ pis (a)

pi−pe
1−s −

pe
s

if pe ∈ [max {pi − (1− s), ρe} ; pis] (b)

1− pe
s

if pe ∈ [s(1− k); pi − (1− s)] (c)

k if pe ≤ min {ρe, s(1− k)} (d)

(7)

Si(pi, pe) =



0 if pi ≥ pe + 1− s (a)

1− ks− pi if pi ∈
[
pe
s

+ k(1− s); pe + 1− s
]

(b)

1− pi−pe
1−s if pi ∈

[
pe
s

; pe
s

+ k(1− s)
]

(c)

1− pi if pi ≤ pe
s

(d)

(8)

We end-up with a partition of the price space characterized by piecewise linear sales

functions. Starting from an arbitrarily high entrant price pe, and given some incumbent

price pi, the entrant’s sales are first equal to zero, then whenever sales become positive as

a result of price decreases, they correspond to a situation where both firms enjoy positive

market shares (7:b). When price decreases further, either the entrant monopolizes the market

(if pi is large enough), or he hits the capacity constraint. The corresponding sales segments

for the incumbent are given by equation (8): starting from high prices where sales are nil, the

incumbent starts to enjoy sales originating in the set of rationed consumers (8:b). Then when

decreasing her price, she relaxes the capacity constraint for the entrant, and for sufficiently

low prices, she simply pulls him out of the market and sells along her monopoly demand.

Obviously, whenever k = 1, the sales function degenerate into the demand functions defined

by (1) and (2).

3 Equilibrium analysis

With these sales functions in hand, we are now ready to study the prices subgames G(k, s).

The analysis proceeds in three steps. First, we characterize firms’ best responses in subgames

2Notice that branch (7:c) is void if pi < 1− ks.
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G(s, k). Second, we characterize firms’ payoffs in the price equilibria of G(s, k). Third, we

establish an upper bound for the entrant’s payoff over the whole set of price subgames G(s, k)

which, finally, enables us to characterize the set of subgame perfect equilibria of G.

3.1 Price best responses

In the absence of production cost, firms’ profits in the pricing game are

Πe(pi, pe) = peSe(pi, pe) and Πi(pi, pe) = piSi(pi, pe) (9)

The presence of the capacity constraint introduces a novel strategic consideration into our

inquiry. Whenever k < 1, the analysis of G(k, s) must take account of the possibility that the

entrant’s capacity is strictly binding and that the incumbent recovers rationed consumers.

In such a case, optimal strategy amounts for the entrant to sell his capacity at the highest

price3. On the other hand, the incumbent maximizes profits by acting as a monopolist along

the residual demand. In this case, he collects her minimax payoff.4

Incorporating this argument into the traditional analysis, we may informally discuss the

shape of each firm’s best reply.

Consider first the entrant and concentrate on the price constellations such that the demand

addressed to firm e is positive. The best this firm can hope is to share the market as long

as it does not hit his own capacity. For price constellations such that the capacity is binding

(relatively low pe, relatively high pi), the best for the entrant is to sell his capacity at the

highest possible price. The entrant’s payoff is concave throughout the domain so that the

corresponding best response is continuous and kinked. A typical configuration is depicted as

a bold solid line on Figure 1.

The best reply of the incumbent in the region where the capacity constraint is binding

is to name the minimax price p̄i ≡ 1−ks
2

. In the region where the capacity is not binding,

the incumbent either shares the market with the entrant or sets the limit price that excludes

the entrant from the marketContrary to the case of the entrant, the rationed consumers

recovered by the incumbent in the capacity binding region break the concavity of his payoff

function. Accordingly, for many values of pe, there are two local maxima of the incumbent

profit function to be considered. It is then a matter of computations to show that there exists

a critical level of pe below which the minimax strategy strictly dominates the standard one

3which is ρe as defined by equation (3)

4Formally, by setting p̄i ≡ 1−ks
2 she collects πi ≡ (1−ks)2

4 .
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(i.e. when an incumbent faces a very aggressive entrant, she prefers to retreat on her residual

market in order to enjoy a quasi-monopoly).

A typical shape for the corresponding best reply is depicted as a bold dashed line in

Figure 1.

pe

2
s

Binding capacity

pe = pi spe = pi -1+s

high quality	
monopoly

ρe

pi

pi

s(1−k)

Figure 1: The price space with binding capacity

The complete formal derivation of the best replies is a bit tedious because different sub-

cases must be considered depending on the relevant constellations of parameters (s, k). How-

ever, since we are ultimately interested in deriving optimal choices of capacity and quality

levels, we have to cover all possible configurations. Moreover, it is worth mentioning that

this characterization of best replies is, to the best of our knowledge, a new result which

shall prove useful in any future analysis of Bertrand-Edgeworth pricing games under quality

differentiation.

Regarding the entrant, along the segments (7:b,c), his best response is obtained from

the first order conditions computed respectively along segment (7:b) with pis
2

or as a corner

solution with pi−1 + s, and along the segment (7:c), the best response is the monopoly price

1
2
s. Plugging the constraints defining the domain of the definition of the various demand

segments, we obtain:
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BRe(pi, k) =



pis
2

if pi ≤ 2k(1− s) (a)

ρe if 2k(1− s) ≤ pi ≤ min
{

1− s
2
, 1− ks

}
(b)

pi − 1 + s if 1− ks ≤ pi ≤ 1− s
2

(c)

max
{

s
2
, s(1− k)

}
if pi ≥ min

{
1− s

2
, 1− ks

}
(d)

(10)

Notice that the entrant’s payoff function remains concave in own prices (over the domain

where De(.) ≥ 0), hence the best response is a continuous function.

Regarding the incumbent, along segment (8:b) her best response is to name the minimax

price p̄i. Along segment (8:c), the best response is given by the first order condition of the

relevant payoff specification; computations yield pe+1−s
2

. Along segment (8:d), the monopoly

price 1
2

defines the best reply. As should appear from the inspection of Si(pe, pi), the payoff of

the incumbent is likely to be non-concave when her sales switch from segment (8:b) to (8:c).

Accordingly, the best response to pe might be non-unique and we must formally compare

the payoffs obtained under the minimax strategy with those prevailing under the traditional

Bertrand competition. Solving πi

(
pe+1−s

2
, pe
)

= πi for pe, we obtain:

p̂e(s, k) ≡
√

1− s
(
1− ks−

√
1− s

)
(11)

Equation (11) defines the critical price level of the entrant below which the incumbent

prefers to retreat on her protected residual market and name the minimax price, rather than

competing upfront with the entrant by setting the market sharing price. We shall refer to

this price as the cut-off price. Notice however that there may exist constellations where

πi > πi

(
pe+1−s

2
, pe
)

over the whole domain where pe+1−s
2

is defined. In this case, the minimax

strategy dominates the market sharing best reply candidate over the entire domain (8:c). If

this is the case, we must compute the incumbent’s payoff at the frontier of segment (8:c,d),

i.e. for pi = pe
s

. Solving pe
s

(
1− pe

s

)
= πi for pe, we obtain a second cutoff price :

p̃e(s, k) ≡ s

2

(
1−

√
ks(2− ks)

)
(12)

Lastly, we need to identify when each of these cut-off prices applies i.e., we solve p̂e(·) =

p̃e(·) to obtain:

h(s) ≡ 1

s

(
1− 2

√
1− s

2− s

)
(13)

Equation (13) partitions the capacity-quality space according to the definitions of the

relevant cut-off price. Notice that this function is increasing in s, i.e. the larger s, the lower
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the degree of product differentiation and the larger the domain of capacities for which the

first cutoff p̃e(s, k) applies.

Formally we have:

� if k ≥ h(s), then

BRi(pe) =



1−ks
2

if pe ≤ p̂e (a)

pe+1−s
2

if p̂e < pe ≤ 1−s
2−ss (b)

pe
s

if 1−s
2−ss ≤ pe ≤ s

2
(c)

1
2

if pe ≥ s
2

(d)

(14)

� if k ≤ h(s), then

BRi(pe) =


1−ks
2

if pe ≤ p̃e (a)

pe
s

if p̃e < pe ≤ s
2

(b)

1
2

if pe ≥ s
2

(c)

(15)

The critical values p̂e and p̃e therefore identify the price levels at which the incumbent

is indifferent between naming the security price p̄i = 1−ks
2

or naming a lower price which

ensures a larger market share. The resulting discontinuity is likely to destroy the existence

of a pure strategy equilibrium.5

3.2 Price Equilibrium

We analyze the Nash equilibria for each price subgame G(s, k). We shall consider in turn

the two limit cases G(1, k) and G(s, 1) before considering the interior cases where k < 1 and

s < 1.

3.2.1 Equilibrium in G(1, k) and G(s, 1)

In G(1, k), the vertical differentiation model degenerates into Bertrand-Edgeworth competi-

tion for a homogeneous product. Levitan and Shubik (1972) analyze this game under efficient

rationing and derive the following result.6

5In order to avoid any misunderstanding, let us stress that it is only the existence of a pure strategy

equilibrium which is problematic here. Since payoffs are continuous as long as products are differentiated,

the existence of a mixed strategy equilibrium is ensured by Glicksberg (1952)’s theorem.
6Note that if we apply Gelman and Salop (1983)’s Stackelberg sequentiality to the current demand, we

obtain exactly the same optimal capacity.
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Lemma 1 The game G(1, k) has a unique price equilibrium in which the entrant earns ex-

actly kp̃e(1, k). Furthermore the maximum of this payoff is π†e ≡ 3
4
− 1√

2
' 0.043 and is

reached for k† ≡ 1− 1√
2
' 0.293.

In G(s, 1), the capacity constraint ceases to bind and we end-up in a standard Bertrand

game under vertical differentiation. Choi and Shin (1992) analyzes this game and show the

following result.7

Lemma 2 For s < 1, the game G(s, 1) has a unique pure strategy equilibrium:

p∗i =
2(1− s)

4− s
and p∗e =

s(1− s)
4− s

(16)

The optimal quality for the entrant in the class of pricing games {G(s, 1), s < 1} is s∗ = 4
7
,

yielding the profit π∗e = 1
48
' 0.021.

3.2.2 Price Equilibrium in G(s, k)

When products are differentiated and one firm faces a capacity constraint, three relevant

equilibrium configurations exist. First, for a high enough capacity level the pure strategy

Bertrand equilibrium is preserved as documented for instance by Canoy (1996). Second, for

intermediate capacity levels, there exists a semi-mixed equilibrium where the entrant plays a

pure strategy while the incumbent mixes over two atoms as documented by Krishna (1989).

Third, for smaller capacity levels, fully mixed strategy equilibria i.e., equilibrium in which

the two firms use non-degenerate mixed strategies, exist. To the best of our knowledge, no

general characterization of an equilibrium exists yet for this last category of price subgames.

It is a matter of algebra to identify the partition the capacity-quality space where each type

of equilibria prevails.

Computations have been relegated to the appendix but the main intuitions can be summa-

rized as follows. The presence of a capacity constraint allows the incumbent to contemplate

a new strategy, namely setting a high price which creates rationing at the entrant’s shop

and therefore generates demand spillovers. The profitability of such a deviation to the mini-

max price depends on the size of the residual market. When the entrant’s capacity is large

enough, the residual market is too small and the incumbent is better off playing the stan-

dard Bertrand strategy i.e., “fight”. Moreover, given the entrant’s capacity, the standard

equilibrium is more likely to be preserved if product differentiation is strong. Putting these

7Since these results are not knew, their proof has been omitted for the sake of brevity.
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two forces together, we may identify a critical level of capacity (whose value depends on the

degree of product differentiation) above which the presence of the capacity constraint does

not affect equilibrium behavior. Notice that this bound g(s) is strictly larger than the sales

level of the incumbent at the equilibrium defined by Lemma 4 below.8

Whenever k < g(s), a pure strategy equilibrium fails to exist. Two results can never-

theless be established. For intermediate capacities, there exists an equilibrium in which the

incumbent randomizes over two atoms while the entrant plays the pure strategy p̂e.
9 How-

ever, there also exists a domain of small capacities where this equilibrium fails to exist. When

this is the case, both firms use a non-degenerate mixed strategy in equilibrium. In any mixed

equilibrium strategy, the following result holds:

Lemma 3 Let k < g(s). In equilibrium of G(k, s), p−e ≤ p̂e if k ≥ h(s) and p−e ≤ p̃e if

k ≤ h(s). The entrant’s equilibrium payoff is bounded from above by kp̂e(s, k) if k ≥ h(s)

and by kp̃e(s, k) if k ≤ h(s).

The proof of this Lemma is developed in the Appendix.

3.3 Optimal Selection of Capacity and Quality

Although we do not have a characterization of the mixed strategy equilibrium for all possible

subgames, we have derived enough information at this step to establish our main proposition.

This proposition formalizes the existence of an optimal strategy that consists for the entrant

to match the incumbent’s quality and rely exclusively on capacity limitation to relax com-

petition. In other words, this proposition states that as a mean to relax price competition in

the last stage of the game, capacity limitation may dominate quality differentiation.

Proposition 1 There exists an optimal quality-capacity pair s = 1 and k = k†.

Proof For k < h(s), we have that πe(Fe, Fi) ≤ kp̃e(s, k) = ks
2

(
1−

√
ks(2− ks)

)
which

is a function of the product x = ks. Its maximum is reached for x = k† and yields an overall

8Hence, this result can be viewed as the application for a case of vertical differentiation of the analysis

developed in Benassy (1989) or Canoy (1996) for various cases of horizontal differentiation: given some degree

of product differentiation, there exists a lower bound for the entrant’s capacity above which the residual

market is so small that it is not profitable for the incumbent to deviate from the Bertrand equilibrium price

to the minimax strategy.
9We do not construct this equilibrium explicitly in the present paper. The interested reader is referred to

Krishna (1989) for an early characterization. Boccard and Wauthy (2010a) offer a comparable characteriza-

tion for a vertical differentiation set-up.

11



maximum profit π†e. It then remains to observe that this is precisely the optimal quality and

the maximum entrant’s payoff for s = 1 and k = k† as shown in Lemma 1. The maximum

payoff over the domain s < 1 and k < h(s) is therefore dominated by that in G(1, k†).

A similar analysis applies for s < 1 and h(s) ≤ k ≤ g(s). The upper bound, computed

in the previous lemma, kp̂e(s, k) = k
√

1− s
(
1− ks−

√
1− s

)
reaches its maximum for k =

1−
√
1−s

2s
. Replacing by the optimal value and simplifying, the objective is now

√
1−s(1−

√
1−s)

2

4s
.

The maximum is achieved at s̄ ≡ 2(
√

2− 1) ' 0.83 and leads to the optimal capacity k†/s̄ '

0.35 and profit π†e exactly. We have thus shown that the entrant’s profit for h(s) ≤ k ≤ g(s)

is lower than a function whose maximum is π†e.

Finally, for s < 1 and k ≥ g(s), the optimum strategy is to differentiate with s∗ = 4
7

to

earn π∗e = 1
48
' 0.021 < π†e ' 0.043. Overall, the pair

(
1, k†

)
is an optimal strategy. �

Notice that other optimal quality-capacity pairs may exist; they necessarily satisfy s ≥ s̄

and sk = k†.

4 Comments

Proposition 1 has proven that quality imitation and an exclusive reliance on capacity con-

straint is an optimal course of action for the entrant. This finding therefore demonstrates

that vertical differentiation is not robust to the presence of Bertrand-Edgeworth competition,

at least as a means to relax price competition.10 This result needs however to be qualified be-

cause it has been established in a highly stylized model. In particular, the efficient rationing

rule and the fact that quality is not costly are instrumental in obtaining such a clearcut

result. When quality costs are quadratic and sunk, it is easy to show that we do not end-up

with a no-differentiation result. Still, the presence of capacity constraints clearly weakens

the incentives to differentiate by quality.11

More generally, our analysis suggests that the presence of capacity constraints carries

dramatic implications in models where product differentiation is endogenous. Within the

limited scope of our model, the supposedly ubiquitous “principle of differentiation” ceases to

hold. Whether such a conclusion carries on more generally is an open question which calls

first for deeper investigation of the nature of equilibria in pricing games with differentiated

products and capacity constraints.

10Boccard and Wauthy (2010b) establish a comparable result under Bertrand and soft capacity constraints

as opposed to the present case of hard constraints known as Bertrand-Edgeworth competition.
11Actually a comparable tendency is observed if we allow for quality leap-frogging.
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Appendix

A Proof of Lemma 4

We identify the quality-capacity constellations where a pure strategy equilibrium exists i.e.,

where the pure strategy equilibrium prevailing in the limiting case where k = 1 and identified

in Lemma 2 is preserved.

Lemma 4 For s < 1, the pair (p∗i , p
∗
e) is a pure strategy equilibrium of G(s, k) whenever

k ≥ g(s) ≡ 1− 4
√
1−s

4−s .

Proof Recall by Lemma 2 that p∗i is a best response to p∗e in the absence of capacity constraint.

Hence, p∗i remains a best response to p∗e only if p∗e ≥ p̂e(·); a straightforward manipulation of

this condition shows it is equivalent to k ≥ 1− 4
√
1−s

4−s = g(s).

Notice now that the following property holds: g(s) > h(s) = 1
s

(
1− 2

√
1−s

2−s

)
since this

is equivalent to 16s2 (1− s) + s4 (3 + s) > 0 which is always true over the relevant domain

0 ≤ s ≤ 1. We may now check that p̂e(·) was indeed the benchmark to use i.e., best reply

(14) applies, not (15). �

B Proof of Lemma 3

The equilibrium strategy used by firm j = i, e in equilibrium of G(k, s) is denoted Fj; the

lower bound and upper bound of the support of Fj are denoted respectively by p−j and p+j .12

With these notations in hand, we now establish a set of lemmata which allows us to identify

an upper bound for the entrant’s equilibrium payoffs in pricing subgames.

Lemma 5 Let k < g(s) and s < 1. In equilibrium of G(k, s), p+i ≤ 1−ks
2

and p+e ≤

BRe

(
1−ks
2

)
.

Proof: We proceed by iteration; Observe firstly that p+i ≤ 1
2

(the monopoly price) because

at any pi >
1
2
, πi(pi, pe) is decreasing in pi, thus the average πi(pi, Fe) is also decreasing in

12W.l.o.g. pure (price) strategies belong to the compact [0; 1] since prices are positive and bounded by

the maximal WTP. A mixed strategy is F ∈ ∆, the space of (Borel) probability measures over [0; 1], its

support Γ(F ) is the set of all points for which every open neighborhood has positive measure. We then have

p− = inf(Γ(F )) and p+ = sup(Γ(F )).
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pi which proves that such a price cannot belong to the support of Fi. Next, since BRe(pi)

is increasing and p+i ≤ 1
2
, BRe(

1
2
) is the largest best reply for the entrant to consider. This

means that for pe > BRe(
1
2
), πe(pe, pi) is decreasing in pe whatever pi ≤ 1

2
, thus the average

πe(pe, Fi) is also decreasing in pe which proves that p+e ≤ BRe(
1
2
).

One then observes that because BRi(pe) for pe > p̂e and BRe(pi) are both increasing,

they cannot cross anymore. Reiterating the previous reasoning, we can sequentially reduce

the upper price played by each firm in a Nash equilibrium. This iteration comes to an end

at p̄i = 1−ks
2

which defines a local maximum, which is independent of pe. There is no reason

to exclude the incumbent from putting mass on that price in equilibrium. We thus end up

with p+i ≤ 1−ks
2

and therefore p+e ≤ BRe

(
1−ks
2

)
. �

Lemma 6 Let k < g(s). In equilibrium of G(k, s), p+i = 1−ks
2

and the incumbent payoff is

the minimax πi.

Proof We may check by algebra that when k < g(s), it is true that 2k(1 − s) < p̄i = 1−ks
2

.

This implies that BRe(p̄i) = ρe and by the previous lemma, that p+e ≤ ρe. Hence, for pi

in a neighborhood of p̄i, the incumbent’s sales are the residual ones Dr
i so that we have

πi(pi, Fe) = pi(1− ks− pi).

If 2k(1 − s) ≤ p+i < p̄i, then πi(pi, Fe) is strictly increasing over
]
p+i ; p̄i

[
which implies

that p+i cannot be part of an equilibrium strategy for the incumbent.

If, on the contrary, p+i < 2k(1−s), then the previous argument does not apply because the

incumbent’s sales might vary. However, if this case occurs then the entrant’s demand, when

facing Fi, is always of the duopolistic kind without capacity constraint, hence his best reply

is the pure strategy φe computed at the average of pi. Since the pure strategy equilibrium

does not exist over the present domain, the incumbent must be playing a mixed strategy and

the only candidate when the entrant plays a pure strategy involves playing the security price

p̄i, a contradiction with p+i < p̄i.

We have thus shown that p+i = 1−ks
2

and since the equilibrium payoff can be computed at

any price in the support of Fi, we have πi(p
+
i , Fe) = p+i (1− ks− p+i ) = (1−ks)2

4
= πi. �

Lemma 7 Let k < g(s). In equilibrium of G(k, s), p−e ≤ p̂e if k ≥ h(s) and p−e ≤ p̃e if

k ≤ h(s). The entrant’s equilibrium payoff is bounded from above by kp̂e(s, k) if k ≥ h(s)

and by kp̃e(s, k) if k ≤ h(s).
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Proof: Let us consider first the case k < h(s). If p−e > p̃e then for any pi <
p−e
s

, the

incumbent’s demand is the monopoly demand whenever pe ≥ p−e . Hence, πi(pi, Fe) = pi(1−

pi) is strictly increasing, which means the lowest price of the mixed strategy Fi cannot

belong to this area. We have thus shown that p−i ≥
p−e
s

holds true. If p−i = p−e
s

, then

at p−i , the incumbent is a monopoly whenever pe ≥ p−e , thus πi(p
−
i , Fe) = p−i (1 − p−i ) =

p−e
s

(
1− p−e

s

)
> p̃e

s

(
1− p̃e

s

)
= (1−ks)2

4
= πi by definition of p̃e and by the previous lemma.

This inequality is a contradiction with p−i being in the support of Fi. The last case is

thus p−i > p−e
s

. Then, πi(p
−
i , Fe) ≥ πi

(
p−e
s
, Fe

)
since p−i is an optimal price and p−e

s
is not;

observing that πi

(
p−e
s
, Fe

)
= p−e

s

(
1− p−e

s

)
, the previous argument applies and we obtain

again a contradiction. This proves that p−e > p̃e is not true, making true our first claim.

The second claim is then a simple consequence of the fact that the equilibrium payoff can

be computed at any price in the support of Fe, hence

πe(p
−
e , Fi) = p−e

∫
Se(p

−
e , pi)dFi(pi) ≤ kp−e ≤ kp̃e

since sales are bounded by the capacity. The case for k ≥ h(s) is identical since the bench-

marks p̃e and p̂e play a symmetric role. �
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