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Abstract: Generative models are used as an alternative data augmentation technique to alleviate the
data scarcity problem faced in the medical imaging field. Diffusion models have gathered special
attention due to their innovative generation approach, the high quality of the generated images, and
their relatively less complex training process compared with Generative Adversarial Networks. Still,
the implementation of such models in the medical domain remains at an early stage. In this work,
we propose exploring the use of diffusion models for the generation of high-quality, full-field digital
mammograms using state-of-the-art conditional diffusion pipelines. Additionally, we propose using
stable diffusion models for the inpainting of synthetic mass-like lesions on healthy mammograms.
We introduce MAM-E, a pipeline of generative models for high-quality mammography synthesis
controlled by a text prompt and capable of generating synthetic mass-like lesions on specific regions
of the breast. Finally, we provide quantitative and qualitative assessment of the generated images
and easy-to-use graphical user interfaces for mammography synthesis.

Keywords: diffusion models; mammography; lesion inpainting

1. Introduction

Data scarcity is an important problem faced in the medical imaging domain, caused by
several factors, such as expensive image acquisition, processing and labeling procedures,
data privacy concerns, and the rare incidence of some pathologies [1]. This leads to a
reduction in the volume of medical data available for the training of deep-learning models,
which limits the models’ performance and holds back the development of computer-aided
systems, compared with non-medical imaging applications.

Generative models have been used to complement traditional data augmentation
techniques and expand medical datasets, with generative adversarial networks (GANs)
being, for many years, the state-of-the-art (SOTA) due to their high image quality and
photorealism. Nevertheless, unstable training, low diversity generation, and low sample
quality make the use of GAN-like architectures challenging for medical imaging synthe-
sis [1]. Because medical diagnosis can depend on subtle changes in organ appearance
reflected in the images, realistic high-quality synthetic generation is crucial for the reliable
performance of computer-assisted diagnosis and intervention systems [2].

Diffusion models (DM) captured special attention from the generative models com-
munity when they were proposed by Dhariwal and Nichol [3] for image generation and
seemingly outperformed GANs in 2021 . Since then, applications and research papers for
medical images have been published to explore this new image generation principle. For in-
stance, Dorjsembe et al. [4] proposed using the original pipeline of diffusion models on
computer vision, called denoising diffusion probabilistic models (DDPM) [5], for the gen-
eration of high-quality MRI of brain tumors. This first implementation of diffusion models
for 3D medical images reached SOTA results and outperformed the baseline models based
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on 3D GANs. Further advances in the field led to latent diffusion [6], which introduces
the use of a latent space for higher image resolution. Latent diffusion was used by Pinaya
et al. [7] to generate high-resolution 3D brain images, increasing the image resolution from
64 × 64 × 64 to 160 × 224 × 160 without requiring more GPU memory usage or overall
training time. The Fréchet inception distance (FID) [8] for image fidelity and the multi-scale
structural similarity index measure (MS-SSIM) for generation diversity were computed,
and in both cases DM surpassed the GANs’ baseline metrics.

A more controlled generation process can be achieved by feeding additional input
during training and inference. An example of this is stable diffusion (SD) [6], a conditional
diffusion model with text prompts as generation conditioning. An SD implementation for
medical images was introduced by Chambon et al. [9], who proposed a model for chest
X-ray generation. Their model, named RoentGen, was able to create visually convincing,
diverse chest X-rays, controlling the generation output using text prompts with radiology-
specific language. A key characteristic of this work is the use of SD weights pretrained
with natural images as the baseline. Instead of training from scratch, specific parts of the
network are fine-tuned to adapt the weights from its original domain into a specific chest
X-rays medical domain. This DM fine-tuning approach is called Dreambooth and was first
introduced by Ruiz et al. [10] for natural images.

Besides image generation, DM can be used for other tasks, such as super-resolution,
image denoising, and inpainting. Hung et al. [11] used a conditional diffusion model to
inpaint MRI prostate images to recover their original information, outperforming other
generation methods in both qualitative visual inspection and quantitative generation
metric comparison. Some works have explored lesion inpainting using DM for brain
MRI. Rouzrokh et al. [12] developed a DDPM to execute several inpainting tasks, such as
generating synthetic lesions or healthy tissue on slices of the 3D MRI volumes in various
sequences. Their model was capable of generating realistic tumoral lesions and tumor-free
brain tissue, although the performance of the model was only assessed visually.

1.1. Generative Models for Mammography

In the specific case of mammography, the generation of synthetic images can be
used to improve the performance of computer-aided detection and diagnosis (CADe and
CADx) systems, the main artificial intelligence techniques used to assist clinical decision-
making [13]. Classification tasks such as breast density classification [14,15] and immuno-
histochemical status classification [16,17] are examples of mammography-based CAD
systems suffering from an imbalanced dataset problem. Other applications, such as lesion
classification, could benefit from the generation of specific objects, such as synthetic lesions
inpainting to augment the sample size. Some works have explored the use of GANs to
generate synthetic images, such as [18,19] for full-field mammograms generation and [20]
for lesion generation. Their result show that although GANs are a viable technique for
image generation, they suffer from important limitations, such as high-resolution scalability
limits, mode collapse, and difficulty training the adversarial models.

Diffusion models are being presented as a plausible alternative for data augmenta-
tion, and their implementation may complement other data augmentation techniques.
Nevertheless, the use of diffusion models in the medical imaging field continues at early
stages, specially for mammography. Prior to this publication, we released the source code,
weights, and user interface for the first implementation of SD for mammographic image
synthesis in the author’s personal GitHub repository [21]. Following works have explored
the generation of synthetic mammograms using DM, such as the release of one synthetic
mammography dataset from Pinaya et al. [22], composed of 100 k 512 × 512 synthetic
images with masking level labeling, and the proposal of Kidder [23] to explore the use of
SD for contrast-enhanced spectral mammography generation.
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1.2. Our Proposal

In this paper, we introduce MAM-E, a pipeline of diffusion models for high-quality
mammographic image synthesis, capable of generating images based on a text prompt
description, and also capable of generating lesions on a specific section of the breast using
a mask. Our pipeline was developed using stable diffusion, a SOTA diffusion model tech-
nique that leverages both conditioning, to control the image generation, and a latent space
to allow high resolution without requiring large computational resources. The generated
images are for presentation, meaning that their appearance and pixel intensities are meant
for radiologist inspection, with the limitations on resolution and pixel depth inherent to
the diffusion pipelines. Our main workflow can be separated into two tasks: healthy
mammogram generation and lesion inpainting. For the first task, the generation process
is controlled by text conditioning, with a description of the image including view, breast
density, breast area, and vendor. For the second task, we use a stable diffusion inpainting
model designed to generate synthetic mass-like lesions in desired regions of the mammo-
gram. The name of our model was inspired by OpenAI’s DALL-E image generation AI
system [24].

The main contributions of this paper are the following: (1) To the knowledge of the
authors, this is the first work that offers customized mammographic image generation
using text-conditioning stable diffusion, which can be used by both computer scientists
for the improvement and optimization of AI algorithms, and by radiologists and medical
practitioners for educational proposes. (2) This is also the first work that implements stable
diffusion for lesion inpainting for mammography. (3) The combination of both tasks into
a single pipeline allows the generation of completely synthetic mammograms with or
without mass-like lesion. (4) Through the combination of two datasets of different popula-
tions, we discovered that concepts such as breast density and area can be shared among
datasets, allowing the generation of mammograms with labels not included in their original
individual datasets, a phenomenon we called concept extrapolation (See Section 3.1.2).

This work source code publication is the first implementation of SD for mammographic
image generation and can be found at https://github.com/VICTORIA-project/mam-e
(accessed on 21 March 2024), along with the pretrained weights at https://huggingface.
co/Likalto4 (accessed on 21 March 2024). Additionally, graphical user interfaces for both
synthesis tasks were designed, as shown in Figure 1, for easy-to-use image generation.

Figure 1. Graphical user interface of MAM-E for generation of synthetic healthy mammograms.

https://github.com/VICTORIA-project/mam-e
https://huggingface.co/Likalto4
https://huggingface.co/Likalto4
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2. Materials and Methods
2.1. Datasets

We decided to use two datasets for the training of the diffusion models so that different
patient populations and mammography unit vendors were considered. A summary of the
distribution of the cases can be found in Table 1.

Table 1. Distribution of cases for both datasets.

OMI-H VinDr Combined

Healthy 33,643 13,942 47,585
With lesion 6908 809 7717
Total 40,551 14,751 55,302

2.1.1. OMI-H

We used a subset of the OPTIMAM Mammography Image Database, consisting of
approximately 40 k Hologic full-field digital mammograms (FFDM) from several UK
breast-screening centers and with different image views [25]. The dataset was composed of
mammograms with and without lesions (masses of type benign, malignant, and interval-
cancers), and expert annotations are included in the respective cases, including the coordi-
nates of a bounding box surrounding the lesion. The images were in CC and MLO views
and no breast implant was present in any image.

2.1.2. VinDr-Mammo

A second dataset composed of approximately 20 k FFDM with breast-level assessment
and extensive lesion annotation was also used. It consists of 5000 mammography exams,
each with 4 standard views (CC and MLO for both lateralities), coming from two primary
hospitals from Vietnam, giving a total of 20,000 images in DICOM files [26]. The metadata
of each image, consisting of both technical and clinical information, was also available in a
CSV file. We filtered the images so that only mammograms coming from a Siemens vendor
unit were used, obtaining a final set of 15,475 mammograms. The lesions present in the
images correspond to masses and in some cases masses with suspicious microcalcifications.

2.2. Data Preprocessing and Preparation

Both datasets were subject to the same preprocessing and preparation steps. First,
mammograms were saved as PNG files to ensure faster access and less disk memory space.
Secondly, to be able to use pretrained weights, the images were saved in RGB format,
repeating the original gray-channel into each RGB channel. The original image intensities
with uint16 data types were scaled to a [0, 255] range with a reduced uint8 data type.

Additionally, in order to use the pretrained weights available for SD, the images were
resized to a 512 × 512 square using bilineal interpolation and center cropping, as shown in
Figure 2. Images with right laterality were horizontally flipped so that all images had the
breast region on the same side.

Figure 2. Resizing and cropping of an OMI-H mammogram. The same process was conducted for
VinDr mammograms.
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2.2.1. Healthy Image Generation

For each healthy mammogram, a text prompt description was created and saved along
with the image ID in a JSON file. In the case of the OMI-H dataset, we created a prompt
with the image view and breast area size information. To compute the breast area size,
we first obtained a breast mask using the intensity information of the image and then
applied a threshold to separate background and breast tissue. Later, the ratio of pixels
in the mask compared with the total image was computed and criteria for three different
breast area sizes was defined, as shown in Table 2. For the VinDr dataset, the breast density
information was included instead of the breast area for the prompt description. Breast
density was available in BI-RADS scale, so we needed to transform this information into a
semantically meaningful text following the criteria in Table 2, based on the BI-RADS breast
density descriptions [27]. Examples of the text–image training samples can be found in
Figure 3.

(a) “a Hologic mammogram in MLO view with
small area”

(b) “a Hologic mammogram in CC view with
big area”

(c) “a Siemens mammogram in CC view with
very low density”

(d) “a Siemens mammogram in MLO view
with very high density”

Figure 3. Examples of training mammograms (real) and their respective text prompts for OMI-H (a,b)
and VinDr (c,d).
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Table 2. Criteria for breast area size and breast density.

Breast area size

Small ratio < 0.4
Medium 0.4 < ratio < 0.6
Big ratio > 0.6

Breast density

Very low Density A
Low Density B
High Density C
Very high Density D

2.2.2. Lesion Inpainting

The inpainting task requires mammograms with confirmed lesions only. Using the
bounding boxes coordinates available in the metadata, binary masks were generated. Nat-
urally, due to the resizing and cropping preprocessing performed previously, the original
coordinates required a proper redefinition using simple geometrical properties. The mask
has pixel values of 255 inside the bounding box and zero elsewhere. Because the SD archi-
tecture used for the inpainting task requires an input text prompt for the generation, a toy
prompt with “a mammogram with a lesion” text was used for all training images.

2.3. Diffusion Models

The original diffusion model idea was presented by Sohl-Dickstein et al. [28] and
consisted of using a Markov chain, a sequence of stochastic events whose time steps
depend on the previous one, to gradually convert one known distribution (e.g., Gaussian
distribution) into another (target distribution). Inspired by non-equilibrium statistical
physics, the main idea is to systematically and iteratively destroy structure in a data
distribution through a process called forward diffusion. Then, the reverse diffusion process
is learned and used to restore structure in the data. The first practical implementation of
the DM premise on images was developed by Ho et al. [5] introducing Denoising diffusion
probabilistic models (DDPM). In this framework, the data are destroyed by adding Gaussian
noise to the image in an iterative fashion described by the Markov chain, as seen in Figure 4.
The total number of diffusion timesteps, T, is decided by the user, but a usual number is
around T = 1000. To learn the reverse process, a UNet is used to carry on the denoising
process. As such, a DM is built from three fundamental components: a noise scheduler
to add noise in the forward process, a UNet to denoise in the reverse process, and a
timestep encoder to encode the timestep, t, into the UNet. More information regarding
each component is provided in the following sections.

Figure 4. Forward and reverse diffusion process.
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2.3.1. Forward Diffusion Process

Let x0 be the original image and xt the noisy version of that image at time t. For the
forward diffusion, we can define the Markov chain process as

q(x1:T |x0) = ΠT
t=1q(xt|xt−1), (1)

where q is a probability distribution from which the noisy version of the image at time t
can be sampled, given xt−1. The proposal of the DDPM framework [5] is to define q as a
Gaussian (normal) distribution given by

q(xt|xt−1) = N(xt;
√

1 − βtxt−1, βt I), (2)

where xt is the output of the distribution sampling,
√

1 − βtxt−1 is the mean, and β is the
variance of the distribution. Therefore, the sampling of the next noisy version of the image
is essentially controlled by β, as its value affects both the mean and the variance of the
sampling distribution. Selecting the manner in which β changes through time is called
beta scheduling and is control by the noise scheduler. In Figure 5a,c two examples of beta
scheduling are shown.

(a) Linear beta schedule (b) Linear mean and variance

(c) Scaled beta schedule (d) Scaled mean and variance
Figure 5. Linear and scaled beta schedulers (left) and their effects on the mean (blue) and variance
(orange) of the noise sampling distributions (right).

Thanks to the additive properties of Gaussian distributions, we can obtain a noisy
image at any timestep, t, directly by rewriting the sampling distribution Equation (2) as

q(xt|x0) = N(xt;
√

α̃tx0, (1 − α̃)I), (3)

with α̃t = Πt
s=1αs and αt = 1 − βt, where α can be interpreted, as a measure of much infor-

mation from the previous image is being kept during the diffusion process. The importance
of α̃t, and therefore of βt, can be understood by looking at Figure 5. For t values close to
0, the distribution from which we sample has µ ≈ 1 and σ ≈ 0, meaning that the sample
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images are every similar to the original image. On the other hand, for large t values where
µ ≈ 0 and σ ≈ 1 the distribution is close to a standard normal distribution (SND) and the
sampled image will be essentially pure Gaussian noise.

Finally, to be able to define the training goal in the reverse diffusion process, we express
the sampling from the probability distribution in Equation (3) using the reparameterization
trick [29]. The reparameterization trick allows us to write the generation of a sample X
from a normal distribution N(µ, σ) as X = µ + σZ, where Z ∼ N(0, 1), i.e., Z was sampled
from an SND. With this, the forward diffusion sampling process can be expressed by

xt =
√

α̃tx0 +
√

1 − α̃tϵ, (4)

where ϵ ∼ N(0, 1). The stochastic variable epsilon (ϵ) in Equation (4) is crucial to under-
stand the reverse diffusion process as it is essentially the prediction target of the UNet.

2.3.2. Reverse Diffusion Process

The reconstruction of the data destroyed by noise can be performed using a UNet that
has learned to denoise the images. Formally, the reverse process is also a Markov chain
that can be defined in a similar way as

pθ(x0:T) = p(xT)ΠT
t=1 pθ(xt−1|xt), (5)

where pθ is the learned probability distribution from which the denoised images are
sampled at each timestep, t. θ indicates that the distribution is parameterized as it was
learned by the UNet. This also explains why the term p(xT) has no subscript θ as it is the
starting point of the reverse process, i.e., pure Gaussian noise.

Assuming that p can also be modeled as a normal distribution, it can be expressed as

pθ(xt−1|xt) = N(xt−1; µθ(xt, t), Σθ(xt, t)), (6)

where µθ and Σθ are the learnable mean and variance of the reverse sampling distribution.
To reduce the training complexity, and because it has been shown to provide similar results,
Σθ = βI; therefore, only µθ has to be learned. Due to limitations of space, the complete
formulation of the optimization of the usual variational bound on negative log likelihood is
not fully described, but key considerations of this formulation are given instead. The first
consideration is that µθ can be computed as

µθ(xt, t) =
1√
αT

(xt −
β√

1 − α̃t
ϵθ(xt, t)), (7)

where the key is to notice that only ϵθ is needed to predict µθ .
The second consideration is that the optimization term, which consequently defines

the loss function of the UNet, is
L = ∥ϵ − ϵθ∥2, (8)

where epsilon (ϵ) is the same Gaussian noise defined in Equation (4), sampled from a
Gaussian distribution ϵ ∼ N(0, 1), and ϵθ is the output of the UNet. In other words,
the UNet objective is to implicitly learn the data distribution by predicting the scaled
Gaussian noise, ϵ, added to the images at timestep t. To include the timestep as an
additional input to the Unet, a timestep encoder is used to embed this information and use
it during training.

Figure 6 shows the components of the denoising UNet used during the reverse process.
It should be noted that the output of the UNet is the noise, ϵ0, that must be removed from
the input image to approximately recover the original image without noise.
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Figure 6. Reverse diffusion process using a denoising UNet. The upblock layers are a mirror of the
downblock layers.

2.3.3. Latent and Stable Diffusion

To solve the image size limitation, latent diffusion was introduced by Rombach et al. [6],
using encoders to compress images from their original sizes in the image space into a
smaller representation in the latent space. The motivation behind this is that images usually
contain redundant information and an encoder can produce a smaller representation that
can later be reconstructed back using a decoder. Therefore, in latent diffusion the diffusion
process is performed on the latent representations rather than on the original images.

Stable diffusion is an improvement to latent diffusion, in which text conditioning is
added to the model for additional control on the generation process [6]. The text condi-
tioning is a prompt with the description of the image. To create a numeric representation
of the prompt, a pretrained transformer called CLIP is used [30]. CLIP, which stands for
Contrastive Language-Image Pretraining, maps both text and images into the same repre-
sentational space, allowing comparison and similarity quantification between them [31].

2.3.4. Fine-Tuning SD: DreamBooth

In 2022, Stability AI and LAION made the pretrained weights of their stable diffusion
models [6] publicly available, which allowed the GM community to train domain-specific,
fine-tuned SD models. Nevertheless, fine-tuning a large text-to-image model and teaching
it new concepts can be challenging as difficulties such as catastrophic forgetting, overfitting,
and low image generation diversity may emerge.

Ruiz et al. [10] presented an approach for fine-tuning SD called DreamBooth. They
proposed using only a few images of the new subject with its respective text prompt to train
the model using a small learning rate. Additionally, if the subject semantically exists in the
model domain, prior generation images can be included for the training. This allows the
binding of the new subject to a new unique identifier in the text-embedding space, as well
as a learned representation in the pretrained data distribution. This fine-tuning technique
has been tried for chest X-rays by Chambon et al. [9] and showed promising results on
adapting the SD domain into their images to generate high-fidelity and diverse images
thanks to the control given by the text prompt.

2.3.5. Inference: Image Generation

With the UNet prediction, we can denoise pure Gaussian noise and generate new
mammograms. The procedure is as follows:

1. Sample random Gaussian noise ϵ ∼ N(0, I)
2. for t = T, . . . , 1 do:
3. z ∼ N(0, I) if t > 1 else z = 0
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4. xt−1 = 1√
αT
(xt − β√

1−α̃t
ϵθ(xt, t)) + σtz

5. end for
6. Decode image using VAE

First, random Gaussian noise is sampled as a starting point. Then, the denoising
process is repeated for T steps. The loop consists of using the predicted noise, ϵθ , to
compute the distribution mean using Equation (7). By adding σtz to this mean term, we
are essentially sampling from the learned data distribution of the reverse diffusion process.
After the denoising process is finished, the image is send back to the image space using the
VAE decoder.

The inference process has two main hyperparameters to consider: number of timesteps,
T, and the guidance scale. First, the number of timesteps, T, will depend on the type of
sampling method that we use for denoising. The traditional DDPM sampling requires
approximately 100 steps to generate good quality images, which is time consuming and
represents a bottleneck in the image generation. The best alternative we found was to use
the DPM-solver proposed by Lu et al. [32], which allows fast diffusion sampling with only
20 steps for good-quality image generation. In the result section, we show how the change
of T affects the image quality.

The second hyperparameter is called the guidance scale. Even though the SD archi-
tecture uses cross attention in several parts of the network, so that the generation process
focuses on the text prompt, in practice the model tends to ignore the text prompt at inference
time. To solve this issue, Ho and Salimans [33] proposed a technique called classifier-free
guidance. In essence, classifier-free guidance consists of generating two noise predictions,
ϵ, at each step, one using the prompt (ϵtext) and one without it (ϵ f ree). Then, the differ-
ence between the prompt-generated noise and the free-generated noise is computed. This
difference can be considered as a vector in the image distribution space, which points
in the direction of the image with text. As such, we can scale this vector and sum it to
the free-generated noise to force it to go more in the direction of the prompt text. This
geometrical trick is illustrated in Figure 7.

Figure 7. Classifier-free guidance geometrical interpretation. As the guidance scale increases, the im-
age is pushed further in the prompt direction.

Formally, the scaling factor is called guidance scale, and the formulation can be
summarized as follows:

ϵθ = ϵ f ree + guidance ∗ (ϵtext − ϵ f ree). (9)

2.4. Implementation Details

Our experiments were conducted using stable diffusion models for both generation
tasks, adapting the DreamBooth fine-tuning technique with pretrained stable-diffusion-v1-5
weights as the baseline, publicly available in the Hugging Face model hub repository [6].
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Figure 8 provides an overview of the full MAM-E pipeline proposed, which includes
both image generation and lesion inpainting tasks. The following sections explain the
specific details of each generation task.

Figure 8. Overall MAM-E pipeline combining both full-field generation and lesion inpainting tasks.
In dark green, the inputs needed for a full synthetic mammogram generation with lesion. In light
green, the optional input for lesion inpainting on real images, instead of full-field synthetic images.
In red, the outputs of each task.

2.4.1. Latent Space Encoding

We decided not to fine-tune the VAE encoder and decoder after testing its encoding–
decoding performance on our mammograms using pretrained natural image weights,
as shown in Figure 9. Moreover, Chambon et al. [34] found that a pretrained VAE on natural
images can perform well on Chest X-ray images. Using this VAE encoder, an original image
of 512 × 512 pixels can be compressed to 4 latent representations of 64 × 64, reducing
16 times its original shape [29]. Consequently, the diffusion process is performed on the
latent representations rather than on the original images, allowing lower memory usage,
fewer layers in the UNet, and faster training and generation.

(a) Latent representations.

(b) The original image and its reconstruction.
Figure 9. Example of the latent space representation of an image on the top and the original and
reconstructed images on the bottom.
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2.4.2. Healthy Image Generation

For each dataset, we trained a separate model using only healthy images, as the
datasets contain independent semantic information in the prompt and because the intensity
ranges and image details differ between populations. Additionally, a third model with the
combination of mammograms from both datasets was trained, adding the vendor’s name
to the prompt.

Freezing the VAE weights, only the CLIP text encoder and the UNet weights were
trained. The UNet architecture was the original stable diffusion denoising UNet proposed
by [6] and can be seen in Figure 10. The network has four down- and upsampling blocks.
Except for the last downsampling block (and its corresponding upsampling block), all
blocks are composed of two ResNet blocks and two transformer blocks, one after the
other. The timestep embedding is added to the first-layer ResNet blocks, whereas the text
embeddings are added through cross attention into the Transformer blocks of all layers.
For the last downblock (and first upblock), only the timestep information is fed.

The main training hyperparameters explored were the following:

• Batch size: 8, 16, 32, 64, 128, and 256.
• Training steps: Experiments ranged from 1 k up to 16 k.
• Learning rate: Three main values 1 × 10−6 , 1 × 10−5, 1 × 10−4.

To select the best hyperparameters and to track the performance of the models, a val-
idation process was conducted by generating 4 sample images from the same random
Gaussian noise every 100 or 200 training steps. The training loss (mean squared error) and
the GPU memory usage were also logged.

Figure 10. Denoising UNet architecture used for the reverse diffusion process. The upblock structure
is a mirror of the downblock.

2.4.3. Lesion Inpainting

The SD pipeline described for healthy mammogram generation can be modified in
some key aspects to perform the inpainting of realistic mass-like lesions on mammograms.
We propose using the modified DreamBooth fine-tuning pipeline to inpaint a lesion in a
designated region of the breast. This pipeline was originally proposed for the inpainting of
natural images in the Hugging Face hub to complete missing parts of images with specific
text-prompted objects.
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At training time, for each mammogram with the presence of a lesion two new elements
are added per example: the mask and a masked version of the original image. The masked
version of the original image is a copy of it where the pixel values inside the bounding box
are set to zero. At training time, both the image and the masked image are first encoded
into the latent space using the VAE encoder. Then, the mask is reshaped to match the latent
representation size of the images. The text prompt and the timesteps were given similarly
to the full-field image generation training pipeline. The training of the reverse diffusion
process remains the same, except for one crucial difference: instead of feeding only the
latent representation to the UNet, the latent representation, the mask, and the masked
latent representation are stacked into one tensor and fed into the UNet, as seen in Figure 11.
This small change in the training process allows the network to pay attention only to the
pixels inside the mask, as the pixels outside it are always provided. This process is repeated
for each dataset, meaning that two inpainting models were trained, one for each dataset.

Figure 11. Inpainting training pipeline. The mask is reshaped to match the image size of the latent
representations (64 × 64). The same UNet as in the Stable Diffusion pipeline is used.

At inference time, different to a normal SD inference pipeline, two extra inputs must
be given: an image, on top of which the lesion will be inpainted, and a mask, with the
designated region to inpaint. The diffusion process will be carried out as explained in
Section 2.3.5, with the only difference being the conditional added by the two new inputs.
Although a text prompt was given at training time, because it is the same for all samples,
the same input prompt must be given during inference time, as described in Section 2.2.2.

2.5. Resources Management

Having three large models loaded at the same time, namely the denoising Unet, CLIP,
and the VAE encoder, and enabling the gradient tracking for two of them during training,
can represent a dramatic increase of GPU and processor resources. There exist techniques
and frameworks to reduce this computing demand and fit the training requirements in a
GPU memory of circa 20 GB with an efficient batch size of 256.

We used mixed precision using the fp16 arithmetic, and the revision model specifically
for that precision. When training in the (Ampere) A30 or A40 GPU, we activated the bf16
precision, with no improvement in the time or apparent quality of the training. Addition-
ally, we used a lighter version of the AdamW optimizer, the 8-bit AdamW optimizer by
Dettmers et al. [35], included in the Bitsnadbytes lightweight CUDA wrapper. Additionally,
because our three models use attention layers, we used the Xformers efficient memory usage
for transformers, which speeds up the training time and decreases the GPU usage.
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To achieve a 256 batch size in one single GPU, we used gradient accumulation, a tech-
nique that consists of computing the gradient for a mini-batch without updating the model
variables, for a set number of times, summing the gradients. In our case, using a mini-batch
size of 16 and 16 gradient accumulation steps, the resulting accumulated batch size is 256.
This technique, however, increased the overall training time.

Gradient checkpointing is another technique to reduce GPU memory usage. In this
case, the CPU processors are used to release some GPU memory at the expenses of a slower
training time. Gradient checkpointing saves strategically selected activations throughout
the computational graph of the model tensors, so only a fraction of the activations must be
re-computed for the gradients. A final memory reduction can be achieved by setting the
optimizer gradients to None instead of zero after the weight updates have been completed.
This will in general have a lower memory footprint and can modestly improve performance.
Most of these techniques can be implemented directly using the Hugging Face Accelerate
library and framework for distributed training and resources management.

3. Results
3.1. Healthy Mammogram Generation

As an initial experiment, we trained an unconditional diffusion model with the Hologic
dataset using the same text prompt for all images: “a mammogram”. The evolution of the
diffusion process as the training steps progress is shown in Figure 12. It can be seen that
from the first epoch the generated image has essentially no signs of residual Gaussian noise,
although the synthetic image does not resemble a mammogram. This implies that diffusion
models pretrained on natural images have learned to denoise images and that the new task
is to learn a new concept by finding its representation in the data distribution of the model.
We can also notice that in three epochs the model has learned the significant characteristics
of a mammogram and can generate realistic images. In the following epochs, the model
focuses on improving smaller details on the image, such as the edges of the breast and the
details of the breast parenchyma.

Figure 12. Training evolution of the diffusion process on an unconditional pretrained model at epochs
1, 3, 6, and 10.

3.1.1. Conditional Models

Training examples of the two separate conditional models using prompt text are shown
in Figure 13 for the OMI-H dataset and Figure 14 for the VinDr dataset. We observe that the
fine-tuning technique allows the generation of meaningful images from epoch one. For the
Hologic example, we can observe that, as the training process increases, the mammogram
reduces its shape in accordance to the area described in the prompt text. Moreover, it can
be noticed that our models differentiate the overall intensity appearance of mammograms,
which is different between Hologic and Siemens systems.

Thanks to the combined fine-tuning of the CLIP text encoder and the UNet weights,
our conditional models can learn the anatomical structure and form of a mammogram,
and can also push the generated image in the direction of the text prompt semantics as the
training process increases.
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Figure 13. Training evolution of SD with Hologic images at epochs 1, 3, 6, and 10. The prompt is: “a
mammogram in MLO view with small area”.

Figure 14. Training evolution of the diffusion process on a conditional pretrained model trained
with Siemens images at epochs 1, 3, 6, and 10. The prompt is: “a mammogram in CC view with
high density”.

3.1.2. Joint OMI-H and VinDr Model: Concept Extrapolation

Besides allowing us to select the vendor type of the generated mammogram, the com-
bination of both datasets permitted us to extrapolate the characteristics of one dataset into
the other. This means that, e.g., the breast density of the generated Hologic mammograms
can be controlled, even though this information was not available in the Hologic dataset.
Figure 15 shows how the generated mammogram matches the text prompt characteristics
as the training process advances, reducing the area and increasing the breast density.

Figure 15. Training evolution of the diffusion process on a conditional pretrained model trained with
both Siemens and Hologic images at epochs 1, 3, 7, and 40. The prompt is: “a siemens mammogram
in MLO view with high density and small area”.

3.1.3. Guidance Scale: Quantitative Assessment

All of the synthetic examples above, despite being logged during training time, involve
an inference pipeline. As explained in Section 2.3.5, there are two main hyperparameters
that have to be tuned during inference.

First, the denoising steps, T, must be set. In our case, because we leveraged the DPM-
solver of Lu et al. [32], 24 timesteps were enough for properly denoising the images. This
usually means an average time of 2 s for the denoising of one sample. In some cases, due to
the increase of the guidance scale, the number of T steps must be increased to completely
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remove the noise. The longest generation samples that we ran used T = 50, needing a
maximum of 4 s to denoise.

The guidance scale, on the other hand, played a more crucial role in the quality
and diversity of the generated images. Figure 16 shows the effect of the guidance scale
on the image generation. We observe that a guidance scale of 1 does not suffice for a
meaningful generation. This is a common behavior for stable diffusion pipelines, as the
image must be pushed further in the prompt direction (see Figure 7). It can be seen that
the increase in the guidance value not only generates a more meaningful image but also
adjusts the characteristics of the mammogram to better match the text prompt. For example,
at guidance 2, the mammogram still presents low breast density, contrary to the text prompt
description. In the following 3 and 4 guidance values, the breast density increases, as does
the overall quality of the image.

Figure 16. Guidance effect on the generation output. From upper-left to lower-right, the guidance
varies in a range from 1 to 4. Prompt: “A siemens mammogram in MLO view with small area and
very high density”.

Nevertheless, there exists a trade-off between prompt fidelity and generation diversity.
If the guidance scale is high, the generated images diversity decreases, creating a similar
behavior to the mode collapse suffered by GANs. To quantitatively assess this phenomenon,
we computed the MS-SSIM metric for different guidance scale values. The MS-SSIM (Multi-
Scale Structural Similarity Index) is usually used to assess the generation diversity of
geenrative models. MS-SSIM is an extension of the traditional SSIM metric and measures
the similarity between two images based on luminance, contrast, and structure.
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The mean and standard deviation of the MS-SSIM values among 20 images at different
guidance values using the same text prompt were computed and are shown in Table 3.
The experiment was repeated for both vendors and the combined model. It can be seen that,
overall, the higher the guidance value the lower the generation diversity, as the MS-SSIM
value decreases. This suggests that the value of the guidance scale must be carefully
selected, as a very low value will generate low quality images but with high diversity.
Conversely, a high guidance value (above 6) will generate a mammogram more faithful
to the prompt description but with low diversity. We attest that the optimum guidance
scale will depend on the model, so empirical experiments using the MS-SSIM metric are
encouraged. Nevertheless, the experiments we performed on all three models suggest that
a guidance scale of 4 will suffice for a meaningful and diverse generation.

Table 3. Guidance scale effect on the MS-SSIM metric for the three SD models. The lower the
MS-SSIM, the higher the image diversity.

Hologic Siemens Fusion

Guidance Mean↓ STD Mean↓ STD Mean↓ STD

4 0.29 0.16 0.38 0.19 0.37 0.14
5 0.34 0.16 0.36 0.17 0.44 0.16
6 0.38 0.12 0.41 0.17 0.51 0.15
7 0.38 0.1 0.34 0.17 0.49 0.19
8 0.43 0.11 0.42 0.2 0.53 0.14
9 0.42 0.13 0.43 0.16 0.44 0.17

10 0.49 0.12 0.41 0.13 0.6 0.11
11 0.5 0.12 0.47 0.17 0.51 0.14
12 0.52 0.11 0.46 0.16 0.47 0.12
13 0.48 0.1 0.42 0.16 0.51 0.17
14 0.5 0.11 0.4 0.18 0.47 0.14

3.1.4. Radiological Assessment

Visual assessment was performed with the radiological evaluation of 53 synthetic
images by a radiologist. The experiment consisted of asking a radiologist with 30 years
of experience to rate the mammograms on a scale of 0–4, where 0 means definitely syn-
thetic image, 1 probably synthetic, 2 unsure, 3 probably real, and 4 definitely real image.
The distribution of the mammograms had a 50/50 real–synthetic ratio. The results of the
test are summarized as an ROC curve in Figure 17. The shape of the ROC curve bears
resemblance to the random guess curve, suggesting that the radiologists cannot easily
identify the difference between real and synthetic images. Moreover, the AUROC value
obtained by the radiologist for this synthetic classification task was 0.49.

Figure 17. Receiver Operating Characteristic curve of radiological assessment.

3.2. Lesion Generation

Initial results of the lesion generation pipeline show the possibility to inpaint mass-like
lesions in any part of the mammogram. Visually, the lesions generated have a realistic
appearance, although no radiological evaluation was carried out. As a preliminary ex-
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periment, we showed healthy Hologic mammograms with inpainted synthetic lesions to
an in-house lesion classification CAD system trained with full field real Hologic mammo-
grams containing masses and normal lesions. The heatmaps of three Explainability AI
(XAI) methods were computed for those mammograms. The XAI interpretation methods
applied were gradcam, saliency, and occlusion, and their respective heatmaps can be seen
in Figure 18. The hypothesis is that when a synthetic mammogram is used as input the
algorithm should highlight the synthetic lesion area, indicating that synthetic lesions have
a similar pixel distribution to those present in real images.

(a) Inpainted synthetic lesion. (b) Gradcam heatmap.

(c) Saliency heatmap. (d) Occlusion heatmap.

Figure 18. Explainability AI method heatmaps of synthetic lesion inpainted on real healthy mammograms.

3.3. MAM-E Graphical User Interfaces

We decided to build GUIs to make the pipelines of both tasks available to the public
and easy to use. Our GUIs can run on remote servers and be accessible on the web thanks
to GradIO, an open-source Python package for the rapid generation of the visual interface
of ML models, by [36].

We developed five GUIs, one for each of our main diffusion pipelines. Two were
designed for the conditional generation of mammograms of the original Siemens and
Hologic datasets separately, with their own prompt characteristics. Similarly, one pipeline
was created for the combination of both datasets, and it is presented as an example in
Figure 1. In these three cases, the personalization options are set fixed and the user can only
pick from the available options. Nevertheless, we added the option of a negative prompt,
which allows the user to further personalize the generation.
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The idea of the negative prompt is to specify some features that the user would like
to be avoided. For instance, in the cases when a synthetic image presents a gray or white
background, a negative prompt of “white background” or “no black background” has been
shown to make the background black.

In the case of the inpainting task, the GUI has the option to upload the image that will
be inpainted, although a default image is available. An interactive drawing brush is then
activated, with which a lesion can be inpainted in any part of the mammogram, as shown
in Figure 19.

Figure 19. MAM-E lesion drawing tool.

Given that the pretrained weights are available in the Hugging Face personal repository
of the first author, and that the code to run the GUI interface is publicly available in the
GitHub repository of the same authorship, all five GUIs can be run with graphic cards of
approximately 4 GB of GPU memory capacity.

4. Discussion

Our stable diffusion models show satisfactory results for the mammography gen-
eration task, capable of synthesizing visually realistic mammograms that are difficult to
differentiate from real cases by a radiologist. Moreover, thanks to the text conditioning,
we are capable of controlling the generation process and obtaining mammograms with
specific features. Comparison with the work of Pinaya et al. [22] shows a similar visual
quality of our synthetic images, with the main difference being that our conditional models
control more than one image feature, namely vendor, view, breast density, and breast area.
Additionally, regarding image diversity, even though the experiments of Pinaya et al. [22]
do not completely correspond to ours, as we generated different scores for various guidance
scales and datasets, we can attest from Table 3 a lower MS-SSIM score for our generated
images compared with their 0.5356 MS-SSIM score, even for the largest guidance scales,
meaning a higher image diversity.

Nevertheless, selecting the proper diffusion hyperparameters is challenging as, in some
cases, the model may generate images with errors. Figure 20 shows some of the common
generation issues faced by our SD models, in this case coming from the same text prompt
at a guidance scale of 4.
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(a) Small noise residual left. (b) Grey background.

(c) Unsatisfied text description. (d) Nonsensical generation.

Figure 20. Examples of unsuccessful image generation of the combined dataset models coming from
the same text prompt. The prompt was “A siemens mammogram in MLO view with small area and
very high density” with a guidance scale of 4.

These generation errors have different possible solutions, each of them with their
drawbacks and limitations. For instance, the noise residuals in Figure 20a could be removed
if the inference diffusion steps are increased, leading to longer generation time. The gray
background issue in Figure 20b could be solved by using a negative prompt, which essentially
specifies some features in the image that must be avoided, such as “white background”
or “no black background”. The unsatisfied prompt description of Figure 20c and the
nonsensical generation of Figure 20d could be solved by increasing the guidance scale at the
expenses of the generation diversity, as previously discussed. Therefore, the selection of the
optimal diffusion hyperparameter must be defined for each individual model empirically.
For instance, as Table 3 shows, the optimal guidance scale value may not be the same across
models. Moreover, in some cases, such as in the Siemens model, the effect of the guidance
scale on the MS-SSIM value may not be significant and other metrics for image diversity
must be computed for a better informed decision.

Another important outcome was the concept extrapolation property of the SD models.
In this context, it means that semantic information among datasets can be shared between
them during inference time. For instance, as seen in Figure 15, our model can generate
a Siemens vendor mammogram controlling the breast area, even though this character-
istic was not labeled in the original VinDr dataset. This property presents as a powerful
additional characteristic of diffusion-based models as it increases the overall generation
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diversity of the model. The further exploration of this property is out of the scope of this
work and will be addressed in future work.

The limitations of this work include the reduced resolution of the synthetic mammo-
grams, which affects the use of our synthetic images on CAD system that require higher
resolution, such as micro-calcification detection. The pixel depth was also reduced from
its original 16 bits to 8 bits to match the pretrained model requirements, which leads to
some information loss from the images and reduces the overall image contrast. Regarding
model assessment, image synthesis is difficult to evaluate if not linked to a final application,
such as a complete CAD pipeline implementation using synthetic images, but preliminary
results are promising. Specific implementations include the use of the lesion inpainting
pipeline for data augmentation on CAD systems where the number of lesion cases is much
lower compared to normal cases, as happens in a screening population. However, this
implementation may require the generation of other mammographic findings, such as
microcalifications, architectural distortions, asymmetries, etc.

5. Conclusions

Conditional diffusion models are a promising generative model implementation to
synthesize mammograms with specific characteristics and properties. In this work, we
showed that fine-tuning a stable diffusion (SD) model pretrained on natural images with
mammography data proves to be an effective strategy for the controlled generation of
synthetic mammographic images. Additionally, we found that SD can be modified for
the inpainting of synthetic lesions over healthy mammograms. The developed inpainting
pipeline requires the modification of the input latent representation to include a mask
to focus the generation process only in the masked region. Inference pipelines for these
diffusion models were made accessible and ready-to-use through graphical user interfaces,
and their weights and code can be found in the authors personal repositories.

We found initial evidence that synthetic images coming from our SD implementation
could potentially be used for CAD systems in need of specific image characteristics, such
as breast density, breast area, mammographic unit vendor, and the presence of lesions.
A radiological assessment showed that the initial image quality can be compared with real
mammograms, which indicates the prospective use of synthetic images for the training
of radiologist or other educational usages. Moreover, explainability AI models allowed
us to explore the behavior of a lesion classification model when processing our synthetic
images, showing sensibility of the model to the synthesized lesions. Finally, we discovered
a property of stable diffusion models we called concept extrapolation. When trained using
datasets of populations with different labeled characteristics (breast density or area), stable
diffusion allows controlling the generation process using labels not originally included in
the training set of a specific dataset, augmenting the model’s generation customization.

Future work includes using the pretrained weights of the most recent SD models,
such as the 768 × 768 resolution model or the incoming stable diffusion v3, which could
allow higher resolution and diverse mammography generation. MAM-E could be used to
generate population-based synthetic images for algorithm development and evaluation.
Specifically, we plan to train complete CAD pipelines with and without synthetic images
to analyze enhancement on the models performance when augmenting with synthetic
images. In terms of assessment, we aim to perform a new radiological assessment including
more radiologists to avoid bias and provide a more representative clinical opinion of the
images. For the lesion inpainting task, we plan to add text conditionals to the training
process to generate specific types of mammographic findings, such as microcalcifications
and architectural distortions, with different biopsy diagnostics. Finally, we plan to explore
the effects and benefits of concept extrapolation in more detail.
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