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We develop a mathematical model for adsorption based on averaging the flow around, and 
diffusion inside, adsorbent particles in a column. The model involves three coupled partial 
differential equations for the contaminant concentration both in the carrier fluid and within 
the particle as well as the adsorption rate. The adsorption rate is modelled using the Sips 
equation, which is suitable for describing both physical and chemical adsorption mechanisms. 
Non-dimensionalisation is used to determine the controlling parameter groups as well as to 
determine negligible terms and so reduce the system complexity. The inclusion of intra-particle 
diffusion introduces new dimensionless parameters to those found in standard works, including a 
form of internal Damköhler number and a new characteristic time scale. We provide a numerical 
method for the full model and show how in certain situations a travelling wave approach can be 
utilized to find analytical solutions. The model is validated against published experimental data 
for the removal of Mercury(II) and CO2. The results show excellent agreement with measurements 
of column outlet contaminant concentration and provide insights into the underlying chemical 
reactions.

1. Introduction

Column sorption is a popular practical sorption method and is used for a wide range of processes, such as the removal of 
emerging contaminants, volatile organic compounds, CO2, dyes and salts. With this technique, pollutants are removed from a fluid 
by letting the mixture flow through a column filled with a porous material, the adsorbent, which captures the contaminant. The 
mathematical description of these processes may be traced back to the 20th century and the most commonly used model is that of 
Bohart and Adams [1]. Recently, the validity and physical accuracy of this model have been discussed [2–7] highlighting a need for 
mathematical descriptions that better describe the underlying physical and chemical processes.

Many sorption filters may be described as dual-porosity filters, i.e., they comprise an array of grains each of which is itself porous. 
This leads to two distinct regions: the ‘inter-particle’ region (between the grains) and the ‘intra-particle’ region (within each porous 
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Fig. 1. Flow of fluid carrying solute through a dual-porosity filter. (a) The fluid travels in the 𝑍 direction with the inlet defined by 𝑍 = 0 and outlet by 𝑍 = 𝐿, (b) 
the cross-section of the arbitrarily shaped filter is spanned by the 𝑋-𝑌 plane. (c) Within any given identical but arbitrarily shaped three-dimensional grain, positions 
are determined via a local (𝑥, 𝑦, 𝑧) coordinate system.

grain). This distinction is neglected in standard models, where it is assumed that the adsorbate (i.e., the contaminant once adsorbed) 
immediately attaches to the adsorbent. However, as the size of the adsorbing particles increases (for example, as the scale of the 
process is increased from experimental to industrial scale) it is clear that the intermediate step where the contaminant first diffuses 
into the adsorbent and then attaches to its inner surface has to be accounted for. This observation is supported by the recorded 
differences in qualitative behaviour of the breakthrough curves (the contaminant concentration at the column outlet) as the particle 
size increases [4,8].

A classic kinetic model for adsorption is attributed to Langmuir [9] and it is based on the assumption that the underlying 
mechanism is caused by the attraction between a monolayer of adsorbate and the available sites on the surface of the adsorbent 
(physisorption). The rate of adsorption is then proportional to the contaminant concentration and available sites. In practice, many 
adsorbents remove contaminants via a chemical reaction (chemisorption). If the chemical reaction is such that one molecule of 
contaminant reacts with one molecule of adsorbent then the Langmuir model also proves effective. However, in reality these chemical 
reactions can often be more complex, involving a chain of chemical reactions or a non one-to-one relation between the number of 
molecules of adsorbent and number of molecules of contaminant. A model proposed for these cases is the Sips model [10], which 
has two parameters that depend on the underlying chemistry (on the global order of the reaction) within the system.

In the context of physical adsorption and intra-particle diffusion, Mondal et al. [11] propose a model that is applied to the 
removal of arsenic from drinking water in India, but the averaging process conducted there shows some inconsistencies that have 
been recently addressed by Valverde et al. [4]. Seidensticker et al. [12] present an intra-particle diffusion model for investigating 
the potential of microplastics to adsorb and transport contaminants. In the present paper, we propose a model to account for 
chemical adsorption utilizing the Sips model, which has been shown to provide accurate results for small particles, when intra-
particle diffusion is negligible [13]. This is particularly interesting as this kinetic model reduces to more standard ones, such as the 
Langmuir or Freundlich models, in certain limits. To support the mass transfer model developed in Valverde et al. [4], we re-develop 
the mathematical description with a higher degree of mathematical rigor while simultaneously extending the model to account for 
porous grains of arbitrary shape and coupling the intra-particle model to the Sips model, rather than Langmuir’s model.

This article is structured as follows. In §2 we develop a macroscopic model based on a series of averages of microscopic variables, 
and discuss the related dimensionless parameters. In §3 we investigate numerical and semi-analytical solutions for physically realistic 
parameter combinations using a travelling wave approach. Further, we provide general results that determine in which situations 
such travelling wave solutions exist. The analytical expressions are validated against experimental data in §4. Finally, §5 contains 
the conclusions and thoughts on possible future research.

2. Model problem

We consider the flow of fluid carrying a solute through a rigid porous cylinder of length 𝐿. The solute advects, diffuses, and is 
removed via adsorption to the solid structure (the adsorbent). The spatial coordinate within the cylinder is 𝑿 ∶= (𝑋, 𝑌 , 𝑍)⊺ with 𝑍
the longitudinal coordinate and 𝑋 and 𝑌 are the coordinates in the plane of the cross-section (see Fig. 1a,b). The fluid enters the 
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porous medium uniformly through the inlet, at 𝑍 = 0, and exits at 𝑍 = 𝐿.
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The entire domain of the porous medium, denoted Ω, comprises an array of 𝑁 identical but arbitrarily shaped porous grains. 
Within any porous grain we define a local spatial co-ordinate 𝒙 ∶= (𝑥, 𝑦, 𝑧)⊺ (Fig. 1c). Note that although every grain is identical, 
when taking a cross-section the plane of intersection can contain obstacles of different sizes and shapes.

The solute molecules are assumed to be much smaller than the solid obstacles. We measure the local molar concentration of 
solute (amount of solute per volume of fluid surrounding the porous grains) via the inter-particle concentration field 𝑐(𝑿, 𝑡), measured 
in moles/m3. This is defined over the inter-particle fluid domain, denoted Ω𝑖, and we impose that 𝑐(𝑿, 𝑡) ≡ 0 inside the porous grains. 
We denote the domain comprising the union of all porous grains as Ω𝑝 ∶= Ω ⧵Ω𝑖 ≡⋃Ω𝑗

𝑝, where Ω𝑗
𝑝 denotes the domain of the 𝑗th

porous grain (Fig. 1a).
As we have both local and global spatial coordinates, 𝒙 and 𝑿, respectively, we also define the domain of any porous grain 

relative to 𝒙 to be 𝜔 so that 𝒙 ∈ 𝜔 ≡ 𝑋 ∈ Ω𝑗
𝑝, for some 𝑗. Each porous grain is bounded by a fluid-fluid interface which is a smooth 

surface 𝜕𝜔 that is the enclosure of the porous grain (see Fig. 1c). We denote the local molar concentration of solute (amount of solute 
per volume of fluid contained within a given grain) via the intra-particle concentration field 𝑐𝑗

𝑝(𝒙, 𝑿, 𝑡), measured in moles/m3, which 
is defined within the internal fluid region denoted 𝜔𝑓 . We extend the definition of 𝑐𝑗

𝑝 across the entire porous particle domain by 
enforcing that 𝑐𝑗

𝑝 ≡ 0 in 𝜔𝑠 ∶= 𝜔 ⧵𝜔𝑓 , that is the solid domain in the particle.

We track how much solute adsorbs to the 𝑗th porous grain via a mass sink 𝑀𝑗
𝑝 (𝑿, 𝑡), measured in moles, however, we neglect any 

impact of this adsorption on the size and volume of the solid, that is, we take 𝜔𝑠, and consequently every domain, to be independent 
of time. This is justified by the fact that the solute molecules are negligible in size relative to the obstacles and also because in this 
work the fluids under consideration are assumed to have low contaminant concentrations.

We define the total porosity of the cylinder to be Φ, that is, the void fraction of the porous material which comprises both 
the void space between the grains and the void space within each grain. We take the average porosity within any grain to be the 
same and define this value to be the ‘intra-particle’ porosity 𝜙𝑝 ∶= |𝜔𝑓 |∕|𝜔|, for all 𝑗. Finally, we define the ‘inter-particle’ porosity 
𝜙 ∶= |Ω𝑖|∕|Ω| to be the value that would be calculated if the grains had zero porosity (i.e., 𝜙 ≡Φ ⟺ 𝜙𝑝 = 0). Thus we relate Φ, 𝜙𝑝

and 𝜙 via

1 −Φ ≡ (1 −𝜙)(1 −𝜙𝑝) . (1)

2.1. Full model

We now derive equations for both the inter-particle concentration of adsorbate, 𝑐(X, 𝑡) and the intra-particle concentration, 
𝑐
𝑗
𝑝(𝒙, 𝑿, 𝑡).

2.1.1. Inter-particle model

In the inter-particle region we model the flow as unidirectional and uniform along the length of the cylinder, that is, we take a 
constant Darcy flux 𝑸 ∶= Φ𝑣𝒆𝑍 such that 𝑣 is the average interstitial velocity of the fluid and where 𝒆𝑍 is the unit vector along the 
length of the filter. The transport is then described by an advection-diffusion equation

𝜕𝑐

𝜕𝑡
+ 𝜕

𝜕𝑍
(𝑣𝑐) = 𝛁𝑿 ⋅

(
𝕯 ⋅𝛁𝑿𝑐

)
, 𝑿 ∈Ω𝑖 , (2a)

where

𝕯(𝑿) ∶=
⎛⎜⎜⎜⎝
𝐷11(𝑿) 𝐷12(𝑿) 0
𝐷21(𝑿) 𝐷22(𝑿) 0

0 0 𝐷

⎞⎟⎟⎟⎠ =
(
𝕯𝑋,𝑌 (𝑿) 0

0 𝐷

)
, (2b)

is the effective diffusivity tensor and where 𝛁𝑿 is the gradient vector with respect to the spatial coordinate 𝑿 . Note that 𝕯 comprises 
contributions from molecular diffusion, Taylor or shear dispersion, and turbulent mixing; we allow for shear in the in plane compo-
nents of 𝕯 and further allow for dependence on 𝑿 but we take the longitudinal component to be a purely unidirectional constant 
whose value is an experimentally determined average. That the predominant flow is in the axial direction is a standard assumption 
in the field. It may be verified through the work of Mondal et al. [11] who use the Darcy-Brinkman approximation to permit the 
inclusion of radial flow in column adsorption. They obtained a Darcy number of the order 10−7, so confirming that the flow was 
predominantly unidirectional, except for in a very narrow boundary layer at the column walls.

The condition at the impermeable wall of the cylinder, 𝜕Ω, reads(
𝕯 ⋅𝛁𝒙𝑐

)
⋅ 𝒏𝑜 = 0, 𝑿 ∈ 𝜕Ω, (2c)

where 𝒏𝑜 is the unit, outward-facing normal to 𝜕Ω. At the fluid-fluid interface which bounds the porous grains, we enforce a mass 
balance between the inter- and intra-particle regions such that the mass transfer is determined by an empirical relation (discussed in 
§2.2). These conditions couple the inter-particle and intra-particle regions, thus before considering any conditions here, we present 
829

the problem in the intra-particle problem.
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2.1.2. Intra-particle model

As stated we consider a dual-porosity limit, i.e., there is a preferential flow path in the inter-particle domain. As such we as-
sume that the flow, and consequently contaminant transport via advection, is negligible within the porous grains and so model the 
contaminant concentration 𝑐𝑗

𝑝 within each grain via a diffusive transport equation

𝜕𝑐
𝑗
𝑝

𝜕𝑡
= 𝛁𝒙 ⋅

(
𝕯𝑝(𝒙) ⋅𝛁𝒙𝑐𝑗

𝑝

)
, 𝒙 ∈ 𝜔𝑓 , 𝑿 ∈Ω𝑗

𝑝
, (3)

where 𝕯𝑝(𝒙) is an effective diffusivity tensor and 𝛁𝒙 is the gradient vector with respect to the spatial coordinate 𝒙. At the fluid-solid 
interface, 𝜕𝜔𝑠, the adsorption reaction occurs

∫
𝜕𝜔𝑠

(
𝕯𝑝(𝒙) ⋅𝛁𝒙𝑐𝑗

𝑝

)
⋅ 𝒏𝑠d𝑆𝑥 =

𝜕𝑀
𝑗
𝑝

𝜕𝑡
, 𝑿 ∈Ω𝑗

𝑝
, (4)

where 𝒏𝑠 is the outward facing unit normal to the solid in a porous grain, d𝑆𝑥 is the area element with respect to 𝒙 and we recall that 
𝑀

𝑗
𝑝 (𝑿, 𝑡) is the number of moles that have been adsorbed by the 𝑗th porous grain. Equation (4) is then a mass flux balance through 

the surface 𝜔𝑠; 𝑀
𝑗
𝑝 will be specified based on the chemical behaviour of the system.

At the fluid-fluid interface 𝜕𝜔, we apply a condition describing the total flux of mass 𝐹𝑗 entering the 𝑗th porous grain

∫
𝜕𝜔

(
𝕯𝑝(𝒙) ⋅𝛁𝒙𝑐𝑗

𝑝

)
⋅ 𝒏𝑝d𝑆𝑥 = 𝐹𝑗, 𝑿 ∈Ω𝑗

𝑝
, (5)

where 𝒏𝑝 is the outward-facing unit normal to the porous grain. Here we leave the form of 𝐹𝑗 unspecified, but we provide an 
expression in §2.2 when dealing with a simplified model. We later specify the functional form of 𝐹𝑗 . Note that the same condition 
must apply in the interparticle region to ensure conservation of mass (see §2.2).

The aim of this model is to predict the macroscopic and filtration behaviour of materials. As such, we are not concerned with 
modelling the diffusive behaviour within a single grain but rather the effect of these grains on the macroscale filtration properties. 
Thus, we consider the intrinsic (fluid) average over a porous grain for a given quantity ⋆ = ⋆(𝒙, 𝑿, 𝑡)

⟨⋆⟩(𝑿, 𝑡) ∶= 1|𝜔𝑓 | ∫
𝜔𝑓

⋆(𝒙,𝑿, 𝑡) d𝑉𝑥 ≡ 1
𝜙𝑝|𝜔| ∫

𝜔𝑓

⋆(𝒙,𝑿, 𝑡) d𝑉𝑥 , 𝑿 ∈Ω𝑗
𝑝
, (6)

for some 𝑗, where |𝜔𝑓 | is the total fluid volume in a given porous grain and where d𝑉𝑥 is a volume element in the intra-particle fluid 
region, with respect to 𝒙. Taking the intrinsic average of Equation (3), applying the divergence theorem, and recalling that 𝑐𝑗

𝑝 ≡ 0 for 
𝒙 ∈ 𝜔𝑠, yields

𝜕⟨𝑐𝑗
𝑝⟩

𝜕𝑡
= 1|𝜔𝑓 | ∫

𝜕𝜔𝑓

(
𝕯𝑝(𝒙) ⋅𝛁𝒙𝑐𝑗

𝑝

)
⋅ 𝒏𝑓d𝑆𝑥

≡ − 1|𝜔𝑓 | ∫
𝜕𝜔𝑠

(
𝕯𝑝(𝒙) ⋅𝛁𝒙𝑐𝑗

𝑝

)
⋅ 𝒏𝑠d𝑆𝑥 +

1|𝜔𝑓 | ∫
𝜕𝜔

(
𝕯𝑝(𝒙) ⋅𝛁𝒙𝑐𝑗

𝑝

)
⋅ 𝒏𝑝d𝑆𝑥 (7)

≡ − 1
𝜙𝑝|𝜔| 𝜕𝑀

𝑗
𝑝

𝜕𝑡
+ 𝐹

𝜙𝑝|𝜔| , 𝑿 ∈Ω𝑗
𝑝
,

where 𝒏𝑓 is the outward-facing unit normal to the fluid within a porous grain and where the last equality follows from the con-

ditions (4) and (5). Note that by taking the intrinsic average over each porous grain, ⟨𝑐𝑗
𝑝⟩ is now independent of 𝒙. We define the 

extension operator 𝐸[𝑦𝑗 ] to be

𝐸[𝑦𝑗 ] ∶=
{

𝑦𝑗 , for 𝑿 ∈Ω𝑗
𝑝 , 𝑗 ∈ {1,2,⋯ ,𝑁} ,

0 , if 𝑿 ∈Ω𝑖 ,
(8)

leading to the piecewise extended version of the intra-particle concentration field, 𝑐𝑝, the removal sink, 𝑀𝑝, and the mass flux, 𝐹 ,

𝑐𝑝(𝑿, 𝑡) = 𝐸

[⟨𝑐𝑗
𝑝
⟩] , 𝑀𝑝(𝑿, 𝑡) = 𝐸

[
𝑀𝑗

𝑝

]
, 𝐹 (𝑿, 𝑡) = 𝐸

[
𝐹𝑗

]
, (9)

which are now defined over the whole domain Ω.
To close the problem we must prescribe the behaviour of the removal 𝑀𝑝 and the mass flux 𝐹 . This is carried out in the following 
830

section.
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Fig. 2. Cross-section of the filter spanned by the 𝑋-𝑌 plane.

2.2. Model simplification

The aim of this paper is to develop a simple model for flow and adsorption in a dual-porosity material. Consequently, we employ 
cross-sectional averaging over the macroscale which is inspired by an ensemble average [4,6,7]. This approach has previously 
shown good agreement with experimental data [4,13]. Mirroring the definitions of Ω we now define notation in an arbitrary two-
dimensional cross-section of the filter 𝑍 = 𝑍⋆ ∈ Ω: the inter-particle domain is denoted 𝑊𝑖(𝑍⋆), the union of the distinct particle 
domains (𝑊 𝑗

𝑝 (𝑍⋆)) is denoted 𝑊𝑝(𝑍⋆), with the domain of the entire cross-section denoted 𝑊 with boundary 𝜕𝑊 (Fig. 2). Note 
that although 𝑊𝑝 and 𝑊𝑖 are functions of 𝑍⋆, 𝑊 is independent of 𝑍⋆ as the shape of the filter is constant. Note further that a 
consequence of the ensemble average is that 𝜙 ∶= |Ω𝑖|∕|Ω| ≡ |𝑊𝑖|∕|𝑊 |. Finally, we define a set of integers 𝐴(𝑍⋆) ⊂ {1, 2, … , 𝑁}
where 𝑗 ∈ 𝐴(𝑍⋆) if and only if the plane determined by 𝑍 = 𝑍⋆ intersects 𝜕Ω𝑗

𝑝.
Given any function △ =△(𝑿, 𝑡) defined on Ω we define the cross-sectional average via

△̄(𝑍, 𝑡) ∶= 1
𝜙|𝑊 | ∫

𝑊𝑖

△(𝑿, 𝑡) d𝑆𝑋 + 1
(1 − 𝜙)|𝑊 | ∫

𝑊𝑝

△(𝑿, 𝑡) d𝑆𝑋, 𝑍 ∈ (0,𝐿), (10)

where d𝑆𝑋 is a cross-sectional area element, with respect to 𝑿. In particular, recall that 𝑐 ≡ 0 for 𝑿 ∈Ω𝑝 so that

𝑐(𝑍, 𝑡) = 1
𝜙|𝑊 | ∫

𝑊𝑖

𝑐(𝑿, 𝑡) d𝑆𝑋 , 𝑍 ∈ (0,𝐿) . (11a)

Application of Equation (10) to 𝑐𝑝, defined in Equation (9), yields

𝑐𝑝(𝑍, 𝑡) = 1
(1 − 𝜙)|𝑊 | ∫

𝑊𝑝

𝑐𝑝 d𝑆𝑋 = 1
(1 − 𝜙)|𝑊 | ∑

𝑗∈𝐴(𝑍)
∫

𝑊
𝑗
𝑝

⟨𝑐𝑗
𝑝
⟩d𝑆𝑋 , 𝑍 ∈ (0,𝐿) . (11b)

Similarly, we calculate the cross-sectional average mass flux between the inter- and intra-particle regions given by

𝐹 (𝑍, 𝑡) = 1
(1 − 𝜙)|𝑊 | ∫

𝑊𝑝

𝐹 d𝑆𝑋 , 𝑍 ∈ (0,𝐿) . (11c)

Note that 𝑐(𝑍, 𝑡), 𝑐𝑝(𝑍, 𝑡) and 𝐹 (𝑍, 𝑡), are now independent of 𝑋, 𝑌 and 𝑗.
At the fluid-fluid boundary we prescribe 𝐹 on 𝜕𝜔 combining a mass balance and a Newton cooling law:

𝐹 ∶= ∫
𝜕𝜔

𝑘𝑝(𝑐 − 𝑐𝑝) d𝑆𝑥 ≡ |𝜕𝜔|𝑘𝑝(𝑐 − 𝑐𝑝) , (11d)

where we have introduced the proportionality constant 𝑘𝑝 and the last equality follows from the fact that 𝑐 and 𝑐𝑝 are independent 
of 𝒙, by construction. Thus, Equation (11c) simply yields

𝐹 ≡ 𝐹 . (11e)

So that conservation of mass requires

∫
𝜕𝑊𝑝

(
𝕯𝑋,𝑌 ⋅𝛁𝑋,𝑌

𝑿
𝑐

)
⋅ 𝒏𝑋,𝑌

𝑝
d𝑠𝑋 = |𝑊 |(1 − 𝜙)|𝜔| 𝐹 , (12)

( )⊺

831

where 𝒏𝑋,𝑌
𝑝 is the normal to 𝑊𝑝, 𝛁𝑋,𝑌

𝑿
∶= 𝜕

𝜕𝑋
,

𝜕

𝜕𝑌
and d𝑠𝑋 is the scalar line element with respect to 𝑿.
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2.2.1. Inter-particle

Taking the cross-sectional average (10) of Equation (2a) yields

𝜕𝑐

𝜕𝑡
+ 𝑣

𝜕𝑐

𝜕𝑍
= 1

𝜙|𝑊 | ∫
𝑊𝑖

(
𝛁𝑋,𝑌

𝑿
⋅
(
𝕯𝑋,𝑌 ⋅𝛁𝑋,𝑌

𝑿
𝑐

)
+ 𝜕

𝜕𝑍

(
𝐷

𝜕𝑐

𝜕𝑍

))
d𝑆𝑋, 𝑍 ∈ (0,𝐿) , (13a)

where the left-hand side is a consequence of our assumption that changes to the volume and porosity of the solid structure are 
negligible and where we have decomposed the diffusive flux into the in plane and out of plane components. Noting 𝜕𝑊𝑖 ≡ 𝜕𝑊 ∪(
−𝜕𝑊𝑝

)
, where the minus sign is used to preserve orientation, application of the Divergence theorem on Equation (13a) gives

𝜕𝑐

𝜕𝑡
+ 𝑣

𝜕𝑐

𝜕𝑍
−𝐷

𝜕2𝑐

𝜕𝑍2 = 1
𝜙|𝑊 |

⎡⎢⎢⎢⎣∫𝜕𝑊

(
𝕯𝑋,𝑌 ⋅𝛁𝑋,𝑌

𝑿
𝑐

)
⋅ 𝒏𝑋,𝑌

𝑜
d𝑠𝑋 − ∫

𝜕𝑊𝑝

(
𝕯𝑋,𝑌 ⋅𝛁𝑋,𝑌

𝑿
𝑐

)
⋅ 𝒏𝑋,𝑌

𝑝
d𝑠𝑋

⎤⎥⎥⎥⎦ , 𝑍 ∈ (0,𝐿) , (13b)

where we have once again used our assumption that changes to the volume and porosity of the solid structure are negligible and 
where 𝒏𝑋,𝑌

𝑜 is the in plane normal to the outer edge of the cylinder. As we assume that the filter is a cylinder of arbitrary cross-
sectional shape, we have that the condition (2c) is equivalent to(

𝕯𝑋,𝑌 ⋅𝛁𝑋,𝑌

𝑿
𝑐

)
⋅ 𝒏𝑋,𝑌

𝑜
= 0 𝑿 ∈ 𝜕𝑊 . (14)

Thus, applying (14) and (12) to Equation (13b) yields the cross-sectionally averaged equation for the inter-particle concentration

𝜕𝑐

𝜕𝑡
+ 𝑣

𝜕𝑐

𝜕𝑍
−𝐷

𝜕2𝑐

𝜕𝑍2 = −
𝑘𝑝(1 −𝜙)

𝜙

|𝜕𝜔||𝜔| (𝑐 − 𝑐𝑝

)
, 𝑍 ∈ (0,𝐿), (15)

where the quantity |𝜕𝜔|∕|𝜔| is known as the specific surface; in the case of spherical grains this is three times the inverse of the 
radius of the sphere.

2.2.2. Intra-particle

Currently, the governing equations for ⟨𝑐𝑗
𝑝⟩ and 𝑀𝑗

𝑝 are given in Equations (7) and (4), respectively, for a single arbitrary grain, 
the location of which depends on 𝑿; now we take a cross-sectional average of these equations to determine their behaviour uniformly 
over the desired one-dimensional domain 𝑍 ∈ Ω — that is, 𝑍 ∈ [0, 𝐿]. Firstly, we define 𝑚̄𝑝 with units moles∕kg, to be the amount 
of adsorbate per unit mass of adsorbent,

𝑚̄𝑝(𝑍) ∶=
(1 − 𝜙)𝑚̄𝑝

𝜌𝑏|𝜔| ≡ 1
𝜌𝑏|𝑊 ||𝜔| ∑

𝑗∈𝐴(𝑍)
∫

𝑊
𝑗
𝑝

𝑀𝑗
𝑝
(𝑿, 𝑡)d𝑆𝑋, (16)

where 𝜌𝑏 is the bulk density and is defined to be the initial mass of the adsorbent divided by the total volume of the filter. We choose 
these units for 𝑚̄𝑝 since this is a standard quantity use in experimental papers, e.g., [4,14–16]. Consider

𝜕𝑐𝑝

𝜕𝑡
= 1

(1 − 𝜙)|𝑊 | ∑
𝑗∈𝐴(𝑍)

∫
𝑊

𝑗
𝑝

𝜕⟨𝑐𝑗
𝑝⟩

𝜕𝑡
d𝑆𝑋

= 1
(1 − 𝜙)|𝑊 | ∑

𝑗∈𝐴(𝑍)
∫

𝑊
𝑗
𝑝

(
− 1

𝜙𝑝|𝜔| 𝜕𝑀
𝑗
𝑝

𝜕𝑡
+

𝐹𝑗

𝜙𝑝|𝜔|
)
d𝑆𝑋

= −
𝜌𝑏

𝜙𝑝(1 − 𝜙)
𝜕𝑚̄𝑝

𝜕𝑡
+

𝑘𝑝

𝜙𝑝

|𝜕𝜔||𝜔| (𝑐 − 𝑐𝑝

)
for 𝑍 ∈ (0,𝐿),

(17)

where we have used Equation (7), the definitions (11b) and (16) of 𝑐𝑝 and 𝑚̄𝑝, 𝐹 as defined in Equations (11c)–(11e) and the fact 
that |𝜕𝜔|, |𝜔|, 𝜙, 𝜙𝑝 are constant.

Now, we fix the macroscale function which describes the removal; we use the Sips model (see [10]) given by

𝜕𝑚̄𝑝

𝜕𝑡
= 𝑘+𝑐𝑎

𝑝
(𝑚̄max − 𝑚̄𝑝)𝑏 − 𝑘−𝑚̄𝑏

𝑝
, 𝑍 ∈ (0,𝐿) , (18)

where 𝑎 and 𝑏 are integer exponents, 𝑘+ and 𝑘−, are the adsorption and desorption rate constants, respectively, and 𝑚̄max is the 
maximum amount of adsorbate that can attach to the adsorbent surface per mass of adsorbent. As is standard in literature surrounding 
chemistry and chemical engineering, the units of 𝑘+ and 𝑘− are not the same. Note that, when 𝑎 = 𝑏 = 1 Equation (18) reduces to 
the classical Langmuir-removal model.

At equilibrium, the concentration 𝑐 is the same as the feed (or inlet) concentration, and the adsorbed amount, denoted 𝑚̄𝑒 is

𝑚̄ ∶=
𝑚̄𝑚𝑎𝑥

, (19)
832

𝑒

1 +
(𝑐𝑎

𝑖𝑛

)−1∕𝑏
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where  ∶= 𝑘+∕𝑘− is known as the equilibrium constant. Equation (19) this is known as the Sips isotherm.

2.3. Boundary conditions

We take the standard boundary and initial conditions [4–7,13]; conservation of flux at the inlet (Dankwert’s condition), a passive 
outflow condition at the outlet, and initial conditions that the material is contaminant free:

𝑣𝑐(0, 𝑡) −𝐷
𝜕𝑐

𝜕𝑍

||||𝑍=0
= 𝑣𝑐𝑖𝑛 , for all 𝑡 , (20a)

𝜕𝑐

𝜕𝑍

||||𝑍=𝐿

= 0 , for all 𝑡 , (20b)

𝑐 = 𝑐𝑝 = 𝑚̄𝑝 = 0 , at 𝑡 = 0. (20c)

The asymmetry between the inlet and outlet conditions is explored and justified in Pearson [17].

2.4. Non-dimensionalisation

Our system is modelled by the coupled system of partial differential equations formed by Equations (15), (17), and (18), and 
subject to the boundary conditions (20). We non-dimensionalise via the scalings

𝑐 = 𝑐𝑖𝑛𝐶, 𝑐𝑝 = 𝑐𝑖𝑛𝐶𝑝, 𝑚̄𝑝 = 𝑚̄𝑒𝑚𝑝, 𝑍 =𝜁, and 𝑡 =  𝜏 , (21a)

where 𝑐𝑖𝑛 is the inlet concentration, 𝑚̄𝑒 is defined in Equation (19),  is the reaction length scale and  is the reactive timescale. 
The reaction length scale is obtained via balancing advection with the rate of removal (𝜕𝑚𝑝∕𝜕𝑡) in Equations (15) and (17) and the 
reactive timescale is obtained via balancing the rate of removal with adsorption in Equation (18) giving

 ∶=
𝑣 𝜙𝑐𝑖𝑛

𝜌𝑏𝑚̄𝑒

with  ∶=
𝑚̄1−𝑏

𝑒

𝑘+𝑐𝑎
𝑖𝑛

. (21b)

We denote the dimensionless length of the filter as 𝑙 ∶= 𝐿∕. Employing the scaling (21) on Equations (15), (17), (18), and the 
boundary conditions (20) yields

Da 𝜕𝐶

𝜕𝜏
+ 𝜕𝐶

𝜕𝜁
− Pe−1 𝜕2𝐶

𝜕𝜁2
= −

(
𝛼

𝜕𝐶𝑝

𝜕𝜏
+

𝜕𝑚𝑝

𝜕𝜏

)
, (22a)

𝛼
𝜕𝐶𝑝

𝜕𝜏
+

𝜕𝑚𝑝

𝜕𝜏
= 𝛽

(
𝐶 −𝐶𝑝

)
, (22b)

𝜕𝑚𝑝

𝜕𝜏
= 𝐶𝑎

𝑝

(
𝜇 −𝑚𝑝

)𝑏 − (𝜇 − 1)𝑏𝑚𝑏
𝑝
, (22c)

subject to

𝐶(0, 𝜏) − Pe−1 𝜕𝐶

𝜕𝜁

||||𝜁=0 = 1 , for all 𝜏 > 0 , (23a)

𝜕𝐶

𝜕𝜁

||||𝜁=𝑙

= 0 , for all 𝜏 > 0 , (23b)

𝐶(𝜁,0) = 𝐶𝑝(𝜁,0) = 𝑚𝑝(𝜁,0) = 0 , for all 𝜁 ∈ (0, 𝑙) , (23c)

where we have defined

Da ∶= 
𝑣 , Pe ∶= 𝑣

𝐷
, 𝜇 ∶=

𝑚̄max
𝑚̄𝑒

= 1 +
(𝑐𝑎

𝑖𝑛

)−1∕𝑏
,

𝛼 ∶=
𝜙𝑝Da

𝜑
, 𝛽 ∶= 𝑘𝑝

|𝜕𝜔||𝜔|  Da
𝜑

, with 𝜑 ∶= 𝜙

1 − 𝜙
.

(24)

The parameters Da and Pe are the Damköhler and Péclet numbers, respectively.

2.5. Parameter values

The specific surface, |𝜕𝜔|∕|𝜔|, is the ratio of grain surface area to volume and satisfies that |𝜕𝜔|∕|𝜔| ≥ 3∕𝑅, where we define 𝑅
to equal the shortest distance from the centre of a grain to the point on the surface that is furthest away from the centre (e.g., 𝑅 is 
the distance from the centre of a cube to one of the vertices). Note that this ratio is minimised for a sphere (see [18]).

The coefficient of the rate of change of concentration within each porous grain, 𝛼, can be thought of as the ratio of the flow 
timescale to the reaction timescale within each porous grain, that is, an ‘internal’ Damköhler number. Provided the porous grains of 
833

adsorbent have a non-negligible fluid-fraction (i.e., 𝜙𝑝  1) and that the column is neither too packed (1 − 𝜙  1) nor too empty 
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(𝜙  1), then 𝛼 =(Da). Alternatively, using the definition of  and Da, 𝛼 ≡ 𝜙𝑝(1 −𝜙)𝑐𝑖𝑛∕(𝜌𝑏𝑚̄𝑒) is the ratio of the maximum amount 
of contaminant that can occupy all porous particles to the amount that the porous particles can adsorb per unit length.

Adsorption columns work by forcing a contaminated fluid through a column packed with an adsorbent material. In this situation 
it is well-known that advection dominates over diffusion/dispersion resulting in a large value of the Péclet number, i.e., Pe−1 ≪ 1. 
The Damköhler number Da corresponds to the ratio of the flow time-scale to the adsorption time-scale. The fluid takes of the order of 
seconds to pass through a column, while the adsorption process often lasts for hours, consequently Da≪ 1. Finally, 𝛼 is proportional 
to Da so will also be small. Experimental data (e.g., [4–7,13,19–21]) suggests the following ranges for parameters: 𝜙𝑝, 𝜙 ∈ (0.2, 0.8)
which gives 𝜑 ∈ (1∕4, 4) = (1); Pe−1 ∈ (10−4, 10−1); and 𝛼 ∼ Da ∈ (10−6, 10−3). In practical situations, adsorption should dominate 
over desorption thus, in general we expect  = 𝑘+∕𝑘− ≫ 1. Since 𝜇 = 1 + 1∕(𝑐𝑎

𝑖𝑛
)1∕𝑏, this suggests 𝜇 =(1) (with 𝜇 > 1).

The parameter 𝛽 results from scaling the Newton Cooling condition (11d) with the removal inside porous grains. It can be thought 
of as the ratio of the macroscale reactive timescale  over the timescale

𝛽 ∶=
𝜌𝑏𝑚̄𝑒|𝜔|

𝑐𝑖𝑛𝑘𝑝(1 − 𝜙) |𝜕𝜔| , (25)

associated with the entry of the contaminant into a porous grain and its subsequent removal via adsorption. In what follows, we 
analyse the effects of varying 𝛽 on the effective performance of the filter.

𝛽 ≫ 1: in this regime contaminant almost instantly diffuses into the particle once it reaches the porous grain. In this case it is possible 
to use effective parameters to obtain a governing set of equations that are structurally identical to the classical models. This 
allows the whole dual porosity medium to be described by an equivalent single porosity medium with an effective porosity 
at leading order:

D̆a𝜕𝐶

𝜕𝜏
+ 𝜕𝐶

𝜕𝜁
− Pe−1 𝜕2𝐶

𝜕𝜁2
= −

𝜕𝑚𝑝

𝜕𝜏
, (26a)

𝜕𝑚𝑝

𝜕𝜏
= 𝐶𝑎

(
𝜇 −𝑚𝑝

)𝑏 − (𝜇 − 1)𝑏(𝑚𝑝)𝑏, (26b)

where D̆a ∶= 𝛼 + Da. Thus, in this limit we replace the ‘inter-particle’ porosity 𝜙 with an effective porosity 𝜙̆ given by 
𝜙̆ ∶= 𝜙(1 −𝜙𝑝) +𝜙𝑝. Note that, 𝜙̆ ≤ 1 because (1 −𝜙𝑝) +𝜙𝑝 = 1 and 𝜙 ≤ 1. This is often referred to as a model with reservoir 
effects [22]. To reproduce the classical model (with Φ = 𝜙) we take the limit of impermeable grains; thus, 𝜙𝑝 → 0 ⟹ 𝛼 → 0
so that D̆a → Da. This limiting process corresponds to converting the total adsorption internally within each grain to an 
effective removal on the surface of the porous grains.

𝛽 ∼ 1: In this regime the diffusion within the porous grain balances the rate at which contaminant advects to the surface of the 
porous grain in the interparticle domain. In this dual porosity limit the interplay between the inter- and intra-particle regions 
is crucial.

𝛽 ≪ 1: In this regime we have a very ineffective filter. At leading order we reproduce the single porosity limit [22] but with no 
removal

Da𝜕𝐶

𝜕𝜏
+ 𝜕𝐶

𝜕𝜁
− Pe−1 𝜕2𝐶

𝜕𝜁2
= 0 . (27)

This essentially corresponds to when the time taken to diffuse contaminant within the porous particles is much slower than 
the rate at which contaminant is advected to the porous grains. We also note that 𝛽 strongly depends on the porosity of the 
bulk material and on the specific surface of the grains. In particular, a large porosity (𝜑 large) and a small specific surface 
produce a small value of 𝛽.

Given that the limit 𝛽 ≪ 1 reduces to the classical model, and 𝛽 ≫ 1 corresponds to negligible removal, in what follows we focus 
on the limit 𝛽 ∼ 1.

3. Solution methods

3.1. Numerical solution of the full system of partial differential equations

In general, we solve the initial-boundary value problem (IBVP) (22), (23) numerically. We tackle this IBVP via a combination 
of the method of lines and Chebyshev spectral collocation (i.e., Chebyshev pseudospectral methods) [23–26]. That is, we discretise 
the spatial domain into the 𝑁 Chebyshev points and then approximate spatial derivatives using a dense Chebyshev differentiation 
matrix [27]; this approach allows for simple incorporation of the boundary conditions into the Chebyshev pseudospectral differ-
entiation matrix. We subsequently integrate the resulting system of differential algebraic equations (DAEs) in time with MATLAB®

using ode15s [26,28]. The Chebyshev pseudospectral method has proved to be more robust than classical finite volumes or finite 
differences; this is because a change at any collocation point affects every other collocation point, while a change in a simple finite 
differences discretisation will only affect its neighbours. More detail on this approach is given in Appendix A. As we will discuss in 
834

§3.4, due to the form of the full numerical solution, we make a travelling wave assumption to reduce the problem to a system of first 
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order ODEs with a boundary condition and an internal constraint for which we also solve via Chebyshev spectral collocation (see 
§3.4.2).

3.2. Steady-state solutions

At steady state, the system (22) becomes

𝜕𝐶

𝜕𝜁
− Pe−1 𝜕2𝐶

𝜕𝜁2
= 0, (28a)

𝐶 = 𝐶𝑝, (28b)(
𝐶𝑝

)𝑎 (𝜇 −𝑚𝑝)𝑏 − (𝜇 − 1)𝑏(𝑚𝑝)𝑏 = 0, (28c)

subject to the boundary conditions (23a,b). Hence the steady state solution is simply

𝐶(𝜁, 𝜏) = 𝐶𝑝(𝜁, 𝜏) = 𝑚𝑝(𝜁, 𝜏) ≡ 1. (29)

This trivial solution will be used in §3.4 as a boundary condition for a travelling wave approximation.

3.3. Early time solution

Here, we investigate the form of the solutions at early times. Early time solutions are often useful to determine a starting point for 
a numerical scheme, particularly when the exact initial condition is discontinuous. Our simulations do not suffer from this problem, 
instead we use the early time solution to verify the numerical solution close to the initial condition.

We take 𝑇 = 𝜏∕𝛿 and note that for small time we expect (1) changes in  and 𝑝 but only (𝛿) changes in 𝑚𝑝. That is, in a small 
time, we expect the filter to use up only a small fraction of its available adsorption sites which implies that 𝑚𝑝 scales like 𝛿. Thus, 
we take  = 𝑚𝑝∕𝛿 and the system (22) becomes

Da
𝛿

𝜕𝐶

𝜕𝑇
+ 𝜕𝐶

𝜕𝜁
− Pe−1 𝜕2𝐶

𝜕𝜁2
= −

(
𝜕
𝜕𝑇

+ 𝛼

𝛿

𝜕𝐶𝑝

𝜕𝑇

)
, (30a)

𝛼

𝛿

𝜕𝐶𝑝

𝜕𝑇
+ 𝜕

𝜕𝑇
= 𝛽

(
𝐶 −𝐶𝑝

)
, (30b)

𝜕
𝜕𝑇

=
(
𝐶𝑝

)𝑎 (𝜇 − 𝛿)𝑏 − (𝜇 − 1)𝑏 (𝛿)𝑏 , (30c)

subject to the boundary and initial conditions (23). Then, for any 𝛿 satisfying Da ≪ 𝛿 ≪ 1 and Pe ≪ 1 the leading order terms (𝐶 (0), 
(0) and 𝐶 (0)

𝑝 ) are found to satisfy

𝜕𝐶 (0)

𝜕𝜁
= − 𝜕(0)

𝜕𝑇
, (31a)

𝜕(0)

𝜕𝑇
= 𝛽

(
𝐶 (0) −𝐶 (0)

𝑝

)
, (31b)

𝜕(0)

𝜕𝑇
= 𝜇𝑏

(
𝐶 (0)

𝑝

)𝑎

, (31c)

subject to

(i) 𝐶 (0)(0, 𝑇 ) = 1 , and (ii)
𝜕𝐶 (0)

𝜕𝜁

||||𝜁=𝑙

= 0 . (32)

Rearranging the early-time system (31) gives

𝜕𝐶
(0)
𝑝

𝜕𝜁

(
1 + 𝜇𝑏

𝛽
𝑎(𝐶 (0)

𝑝
)𝑎−1

)
= −𝐶 (0)

𝑝
𝜇𝑏, (33a)

𝐶 (0) =
(
1 + 𝜇𝑏

𝛽

)
𝐶 (0)

𝑝
, (33b)

𝜕(0)

𝜕𝑇
= (𝐶 (0)

𝑝
)𝑎𝜇𝑏. (33c)

Equation (33a) can be solved explicitly, which determines 𝐶 (0)
𝑝 and 𝐶 (0) via Equation (33b).

For the case where 𝑎 = 1, the general solution to the problem (32), (33) is

𝑏 𝑏 𝛽 + 𝜇𝑏
𝑏 𝑏
835

𝐶 (0)
𝑝

(𝜁, 𝑇 ) = 𝜑(𝑇 )𝑒−𝛽𝜇 𝜁∕(𝛽+𝜇 ) , 𝐶 (0) =
𝛽

𝜑(𝑇 )𝑒−𝛽𝜇 𝜁∕(𝛽+𝜇 ) . (34)
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Note that there is only one free parameter, the time-dependent function 𝜑(𝑇 ), however, 𝐶(𝜁, 𝑇 ) is subject to the two boundary 
conditions (32). Thus, it is not possible to find a function 𝐶(𝜁, 𝑇 ) that satisfies both boundary conditions; it is natural to choose the 
inlet condition (32.i) since the process is driven by the input at 𝜁 = 0. Further, imposing the boundary condition (32.ii) would yield 
the trivial solution 𝐶 (0) = 𝐶

(0)
𝑝 =(0) ≡ 0. Therefore, the solution of Equation (31) subject to (32.i) gives

𝐶 (0)
𝑝

= 𝛽

𝛽 + 𝜇𝑏
𝑒−𝛽𝜇𝑏𝜁∕(𝛽+𝜇𝑏) , 𝐶 (0) = 𝑒−𝛽𝜇𝑏𝜁∕(𝛽+𝜇𝑏) , (0) = 𝛽𝑇

𝛽 + 𝜇𝑏
𝑒−𝛽𝜇𝑏𝜁∕(𝛽+𝜇𝑏) . (35)

We note that,

lim
𝜁→∞

𝐶 (0) = lim
𝜁→∞

𝜕𝐶 (0)

𝜕𝜁
= 0 . (36)

Therefore, in an infinite filter the boundary condition at the outlet would also be satisfied. Further, Equation (33a) shows that for 
any value of 𝑎 ≥ 1 smooth solutions satisfy conditions (36). In a filter of finite length the boundary condition at the outlet is satisfied 
by means of a trivial boundary layer (that is 𝐶 (0) =constant) of length 𝛿.

3.4. Travelling wave approximation

The numerical solution to the IBVP (22), (23) implies that for certain parameter regimes and sufficiently large time, 𝐶 , 𝐶𝑝 and 
𝑚𝑝 behave like travelling waves (see Figs. 3 and 4, and related discussion in §3.5). Thus, we introduce a travelling wave coordinate

𝜂 ∶= 𝜁 −𝑆(𝜏) . (37)

We fix the location of the wavefront via

𝑆(𝜏) = 𝑆̇(𝜏 − 𝜏1∕2) + 𝑙 , (38)

where the wave velocity 𝑆̇ ∶= d𝑆∕d𝜏 is a constant to be determined during the solution process and 𝜏1∕2 is the (dimensionless) time 
at which the concentration at the outlet is exactly half that at the inlet (termed the half-time), that is,

𝐶(𝑙, 𝜏1∕2) =
1
2

. (39)

We define

𝐶(𝜁, 𝜏) ∶= (𝜂), 𝐶𝑝(𝜁, 𝜏) ∶= 𝑝(𝜂), and 𝑚𝑝(𝜁, 𝜏) ∶=𝑝(𝜂), (40)

so that the system (22) becomes(
1 −Da 𝑆̇

) d
d𝜂

= Pe−1 d
2
d𝜂2

+ 𝛼𝑆̇
d𝑝

d𝜂
+ 𝑆̇

d𝑝

d𝜂
, (41a)

𝛽
( − 𝑝

)
= −𝑆̇

(
𝛼
d𝑝

d𝜂
+

d𝑝

d𝜂

)
, (41b)

−𝑆̇
d𝑝

d𝜂
= 𝑎

𝑝

(
𝜇 −𝑝

)𝑏 − (𝜇 − 1)𝑏𝑏
𝑝
, (41c)

and where the condition (39) fixes

(0) = 1∕2. (42)

For the travelling wave approximation we need to consider filters of an infinite length. We thus need to impose boundary conditions at 
plus and minus infinity. Due to the transformation (37), the limit 𝜂 → −∞ corresponds to 𝜏 → +∞ hence the steady state solution (29)
holds and we impose

lim
𝜂→−∞

 = lim
𝜂→−∞

𝑝 = lim
𝜂→−∞

𝑝 = 1 , lim
𝜂→−∞

d
d𝜂

= 0. (43a)

These conditions are a natural choice since they correspond to a steady flow of pollutant sufficiently far upstream and that the filter 
is fully saturated there. As 𝜂 →∞ one expects the fluid to be clean and the filter fresh, thus we impose

lim
𝜂→∞

 = lim
𝜂→∞

𝑝 = lim
𝜂→∞

𝑝 = lim
𝜂→∞

d
d𝜂

= 0. (43b)

By integrating Equation (41a) and imposing the conditions (43b) in the limit 𝜂 →∞, we find(
1 −Da 𝑆̇

) = Pe−1 d
d𝜂

+ 𝑆̇(𝛼𝑝 +𝑝). (44a)
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Imposition of the conditions (43a) determines the wave velocity 𝑆̇ :
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𝑆̇ = 1
1 + 𝛼 +Da

. (44b)

In general, we solve Equations (41b), (41c), (44a) numerically, assuming that 𝜂 ∈ [−𝐵, 𝐵], where 𝐵 is some large number, 
subject to 𝑝(𝐵) = 0. Details of the numerical scheme are given in §3.4.2 and the associated MATLAB codes have been uploaded 
to Github (https://github .com /aguareles /Intra -particle -diffusion .git). However, by taking advantage of the small parameters in the 
system, for certain combinations of 𝑎 and 𝑏, we are able to determine approximate analytical solutions. Recall that for the physically 
relevant parameter regimes of the present study 𝛼, Da, Pe−1 ≪ 1. Neglecting these terms, Equation (44b) simply becomes 𝑆̇ = 1, while 
Equation (44a) yields  =𝑝. Equation (41b) reduces to a first order ordinary differential equation for (𝜂) with 𝑝 determined 
implicitly via Equation (41c)

d
d𝜂

= −𝛽
( − 𝑝

)
, (45a)

𝛽
( − 𝑝

)
= 𝑎

𝑝
(𝜇 − )𝑏 − (𝜇 − 1)𝑏𝑏 . (45b)

The following proposition establishes the conditions under which the system (45) provides a unique solution satisfying (42) and (43), 
that is

(0) = 1∕2 , lim
𝜂→−∞

 = 1 , lim
𝜂→∞

 = 0 . (46)

Proposition 1. Given 𝜇, 𝛽, 𝑐0 ∈ℝ such that 𝜇 > 1, 𝛽 > 0, and 0 < 𝑐0 < 1, for any 𝑎, 𝑏 ∈ ℕ such that 𝑎 ≤ 𝑏, the initial value problem given 
by Equation (45a) and the initial condition

(0) = 𝑐0 ∈ (0,1) , (47)

where 𝑝() is implicitly determined by (45b) is well posed and it has a unique decreasing solution, (𝜂) satisfying the conditions at plus and 
minus infinity provided in (46).

The proof of this proposition is provided in Appendix B.
Proposition 1 states the existence of travelling waves as solutions of the reduced system (45) when 𝑎 ≤ 𝑏, but further analysis 

is needed to study cases where 𝑎 > 𝑏. However, 𝑎 ≤ 𝑏 is the physically relevant case in adsorption settings. The physical reaction 
associated with an (𝑎, 𝑏) integer pair is

𝑎+ 𝑏 𝑘+
←←←←←←←←←←←⇀↽←←←←←←←←←←←
𝑘−

Adsorbate , (48)

where  and  refer to the pollutant molecules and adsorbent sites, respectively. Although the case 𝑎 > 𝑏 may appear an advanta-
geous situation (each adsorbent site  is capable of capturing 𝑎∕𝑏 pollutant molecules ), the equilibrium of this reaction provides 
a very slow increase of the adsorbed fraction at equilibrium 𝑚̄𝑒 with respect to the inlet concentration. Thus, even high concentra-
tions result in a scarce adsorption capacity. The cases in which 𝑎 > 𝑏, provide convex isotherms that are regarded as unfavourable 
adsorption cases [29].

In what follows we restrict ourselves to 𝑎 ≤ 𝑏. Analytical solutions can be determined for certain values of 𝑎 and 𝑏. When such 
solutions can be found, they may be determined via separation of variables in Equation (45a), which yields

−𝛽𝜂 =



∫
1∕2

d𝑢
𝑢− 𝑝(𝑢)

=



∫
1∕2

𝑓 (𝑢)d𝑢 = 𝐹 () − 𝐹 (1∕2) , (49)

where 𝐹 is defined by

𝐹 () =


∫
0

𝑓 (𝑢)d𝑢 , (50)

and depends on the Sips exponents, 𝑎 and 𝑏. In what follows we consider some specific combinations of (𝑎, 𝑏) that are commonly 
found in the adsorption literature [13].

3.4.1. Explicit solutions for typical parameter values

When 𝑎 = 1, Equation (45b) can be rearranged as follows

𝑝 =
(𝜇 − 1)𝑏𝑏 + 𝛽

𝛽 + (𝜇 − )𝑏 , (51)

which we use to write Equation (45a) as

d (𝜇 − )𝑏 − (𝜇 − 1)𝑏𝑏
837

d𝜂
= −𝛽

𝛽 + (𝜇 − )𝑏 , (52)

https://github.com/aguareles/Intra-particle-diffusion.git
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Table 1

Summary of expressions for 𝐹 () defined in Equation (50), for different values of 𝑎, 𝑏.

𝑎 = 1 𝐹 ()
𝑏 = 1 (𝛽 + 𝜇) ln() + (1 − 𝛽 − 𝜇) ln(1 − )
𝑏 = 2

(
𝛽

𝜇2 + 1
)
ln() − 𝛽 + (𝜇 − 1)2

𝜇2 − 1
ln(1 − ) + 𝛽 + 𝜇2(𝜇 − 1)2

𝜇2(𝜇2 − 1)
ln(𝜇2 − )

𝑏 = 3, 𝜇 ∈ (1,4)
(

𝛽

𝜇3 + 1
)
ln() −𝐴1 ln(1 − ) +𝐴2 ln

[
( − 𝑞1)2 + 𝑞22

]
−

𝐴3

𝑞2
arctan

(  − 𝑞1

𝑞2

)
where, 𝑞1 and 𝑞2 are defined in Equation (56) and where

𝐴1 ∶=
𝛽 + (𝜇 − 1)3

(𝜇 − 1)2(2𝜇 + 1)
, 𝐴2 ∶=

𝜇3(𝜇 − 1)3 + 𝛽(2𝑞1 − 1)
2𝜇3(𝜇 − 1)2(2𝜇 + 1)

and 𝐴3 ∶=
𝛽[3 − 𝜇(4 − 𝜇)(𝜇 − 1)] + 3(𝜇 − 1)3𝜇3

2𝜇(𝜇 − 1)(2𝜇 + 1)

𝑏 = 3, 𝜇 = 4 𝛽 + 64
64

ln() − 𝛽 + 27
81

ln(1 − ) + 1728 − 17𝛽
5184

ln( + 8) + 𝛽 + 1728
72( + 8)

𝑏 = 3, 𝜇 > 4
(

𝛽

𝜇3 + 1
)
ln() −𝐴1 ln(1 − ) +

[
𝛽 + (𝜇 − 𝑛+)3

𝑛+(1 − 𝑛+)(𝑛+ − 𝑛−)

]
ln( − 𝑛+) +

[
𝛽 + (𝜇 − 𝑛−)3

𝑛−(1 − 𝑛−)(𝑛− − 𝑛+)

]
ln( − 𝑛−)

where 𝐴1 is defined above, in the case 𝑏 = 3, 𝜇 ∈ (1,4), and where 𝑛± are defined in Equation (58b).

with implicit solution

−𝛽𝜂 =



∫
1∕2

𝛽 + (𝜇 − 𝑢)𝑏

𝑢(𝜇 − 𝑢)𝑏 − (𝜇 − 1)𝑏𝑢𝑏
d𝑢 = 𝐹 () − 𝐹 (1∕2) . (53)

The evaluation of the integral when 𝑏 = 1 and 𝑏 = 2 is straightforward. When 𝑏 = 3, the form of the solution depends on the number 
of real roots of the polynomial in the denominator of Equation (53):

𝑝() ∶= (𝜇 − )3 − (𝜇 − 1)33 . (54)

When 𝜇 ∈ (1, 4), 𝑝() has only two real roots ( = 0, 1), so we decompose it as follows

𝑝() = (1 − )(( − 𝑞1)2 + 𝑞22) (55)

where

𝑞1 ∶=
𝜇2(3 − 𝜇)

2
, and 𝑞22 ∶= 𝜇3 − 𝜇4(3 − 𝜇)2

4
≡ 𝜇3(4 − 𝜇)(𝜇 − 1)2

4
. (56)

There exists a critical value of 𝜇, (𝜇 = 4), such that 𝑝() has three real roots, one of which has a double multiplicity; in this case 𝑝()
can be expressed as

𝑝() = (1 − )( + 8)2. (57)

When 𝜇 > 4, 𝑝() has four distinct real roots ( = 0, 1), so we decompose it as follows

𝑝() = (1 − )( − 𝑛+)( − 𝑛−) , (58a)

with

𝑛± ∶=
𝜇2(3 − 𝜇) ±

√
𝜇4(3 − 𝜇)2 − 4𝜇3

2
. (58b)

Table 1 summarises the expressions for 𝐹 () for the above combinations of 𝑎 and 𝑏.

3.4.2. Numerical solutions for travelling waves

Equations (41b), (41c), and (44a) define a system of three coupled first order ODEs subject to one constraint on  at 𝜂 = 0
(equation (42)). To solve this numerically we must approximate the infinite domain with a large but finite domain; as such we take 
𝜂 ∈ [−𝐵, 𝐵], where 𝐵 is a large constant. We choose 𝐵 to be sufficiently large so that

d
d𝜂

,
d𝑝

d𝜂
,
d𝑝

d𝜂
→ 0 as 𝜂 → ±𝐵, (59)

i.e., the solution profiles tend to constant values at 𝜂 → ±𝐵. In particular, in Figs. 3 and 4 we take 𝐵 = 80. In addition to the specified 
equations and conditions we must also impose a further condition at 𝜂 = 𝐵 to fix the wave position, in the code we choose to enforce 
𝑝(𝐵) = 0 (although we could equally well choose 𝐶(𝐵) = 0 or 𝐶𝑝(0)). To solve this numerically, we use a direct method based 
on Chebyshev spectral collocation; we discretise the spatial domain into an odd number of collocation points (to allow for easier 
enforcement of the condition at 𝜂 = 0) and use a dense Chebyshev differentiation matrix to discretise the derivatives and determine 
an objective function. We solve this nonlinear system via Newton iteration updating the solution via the analytically determined 
838

Jacobian (see Appendix A) and terminating once the objective function is sufficiently small.
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3.4.3. Breakthrough curves

When Da and 𝛼 are neglected, Equation (44b) reduces to 𝑆̇ = 1. Therefore, the solution for any 𝑎, 𝑏 combination is given implicitly 
for 𝐶(𝜁, 𝜏) by

−𝛽
[
𝜁 − 𝑙 −

(
𝜏 − 𝜏1∕2

)]
= 𝐹 (𝐶) − 𝐹

(1
2

)
, (60a)

for 𝑚𝑝(𝑍, 𝑡) by

−𝛽
[
𝜁 − 𝑙 −

(
𝜏 − 𝜏1∕2

)]
= 𝐹 (𝑚𝑝) − 𝐹

(1
2

)
(60b)

and implicitly for 𝐶𝑝(𝜁, 𝜏) via substitution of 𝐶(𝜁, 𝜏) in Equation (51). It is straightforward to find the breakthrough curves by 
evaluating Equation (60a) at 𝜁 = 𝑙. In particular, the breakthrough curves that correspond to the analytical solutions presented in 
Table 1, read:

• 𝑎 = 1, 𝑏 = 1:

−𝛽(𝜏 − 𝜏1∕2) = (𝛽 + 𝜇) ln(2) + (1 − 𝛽 − 𝜇) ln (2 (1 − )) , (61)

• 𝑎 = 1, 𝑏 = 2:

−𝛽(𝜏 − 𝜏1∕2) =
(

𝛽

𝜇2 + 1
)
ln(2) − 𝛽 + (𝜇 − 1)2

𝜇2 − 1
ln (2 (1 − )) + 𝛽 + 𝜇2(𝜇 − 1)2

𝜇2(𝜇2 − 1)
ln
(

𝜇2 − 
𝜇2 − 1∕2

)
(62)

• 𝑎 = 1, 𝑏 = 3:
If 𝜇 ∈ (1, 4):

−𝛽(𝜏 − 𝜏1∕2) = −
(

𝛽

𝜇3 + 1
)
ln(2) −𝐴1 ln (2 (1 − )) +𝐴2 ln

(
( − 𝑞1)2 + 𝑞22

(1∕2 − 𝑞1)2 + 𝑞22

)
−

𝐴3
𝑞2

(
arctan

( − 𝑞1
𝑞2

)
+ arctan

(
1∕2 − 𝑞1

𝑞2

))
,

(63)

where 𝐴1, 𝐴2, 𝐴3, 𝑞1, 𝑞2, as defined in Table 1, are constants that depend on 𝜇 and 𝛽.
If 𝜇 = 4:

−𝛽(𝜏 − 𝜏1∕2) =
(

𝛽

𝜇3 + 1
)
ln(2) −𝐴1 ln (2 (1 − )) +

(
𝛽 + (𝜇 − 𝑛+)3

𝑛+(1 − 𝑛+)(𝑛+ − 𝑛−)

)
ln
(  − 𝑛+
1∕2 − 𝑛+

)
. (64)

If 𝜇 > 4,

−𝛽(𝜏 − 𝜏1∕2) =
(

𝛽

𝜇3 + 1
)
ln(2) −𝐴1 ln (2 (1 − )) +

(
𝛽 + (𝜇 − 𝑛+)3

𝑛+(1 − 𝑛+)(𝑛+ − 𝑛−)

)
ln
(  − 𝑛+
1∕2 − 𝑛+

)
, (65)

where 𝐴1 is defined in Table 1 and 𝑛± are defined in Equation (58b).

3.5. Comparison with numerical simulations

In Figs. 3 and 4 we compare the numerical solution of the full IBVP (22), (23), the numerical solution of the travelling wave 
approximation (41), and the analytical solution derived in §3.4.1 after setting 𝛼, Da, Pe−1 = 0 in the system (41). The parameter 
values for Fig. 3 have been chosen to be representative of the experimental data in §4.1, while those for Fig. 4 are representative of 
the experimental data in §4.2.

The first row in both figures shows the evolution of the travelling wave along the adsorption column (blue to yellow as 𝜏
increases). We can see how the initial transient evolves until it matches the early-time solutions (shown as a dashed red line) 
discussed in §3.3. For larger times the system follows the travelling wave form. In Fig. 3, corresponding to Hg(II), the wave front 
becomes steeper with increasing 𝑏. In Fig. 4 the front is steepest for low 𝑏.

In the second row of both figures we show curves corresponding to constant 𝐶(𝜁∗(𝜏), 𝜏) = 0.1, 0.5, and 0.9. If a travelling wave 
occurs we should observe that

𝜁∗(𝜏) = 𝑆̇𝜏 + 𝜅 . (66)

Taking logarithms of both sides,

log(𝜁∗) = log(𝑆̇𝜏 + 𝜅) = log(𝜏) + log(𝑆̇) + log
(
1 + 𝜅

𝑆̇𝜏

)
. (67)

For sufficiently large values of 𝜏 the final term is negligible and therefore, if there is a travelling wave, the three curves must become 
839

co-linear. In all cases they coincide for 𝜏 = (1), which is precisely the time regime when the travelling wave is formed after the 
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Fig. 3. First row: evolution of the travelling wave with respect to time (blue to yellow) for different combinations of 𝑎, 𝑏. We take logarithmically spaced times for 
DaPe−1 ≤ 𝜏 ≤ 1 and linearly spaced values thereafter, 𝜏 ∈ {5.0 × 10−5, 1.5 × 10−4, 4.5 × 10−4, 1.4 × 10−3, 4.1 × 10−3, 0.012, 0.037, 0.11, 0.33, 1, 6.6, 12, 18, 24, 29, 34, 40}. 
The early time solution of §3.3 (red dashed lines) shows the quasi-steady state of the solution profile for 𝜏 = 𝑂(𝛿). Second row: the three curves correspond to 
𝐶(𝜁∗(𝜏), 𝜏) = 0.1, 0.5 and 0.9 in logarithmic scale. Third row: breakthrough curves obtained by numerically solving the system of partial differential equations (22), 
(23), the full travelling wave system (41) and the analytical solutions given in §3.4.1. The parameter values are: 𝑙 = 25 (first and third rows) 𝑙 = 500 (second row), 
𝜇 = 1.9125, Pe−1 = 5 × 10−3 , 𝛽 = 1, Da = 2𝛼 = 0.01.

initial transient. In each case the slope corresponds to 𝑆̇ . Note that although this method does not represent a rigorous proof for the 
existence of travelling waves, it is very useful in suggesting when they will exist. The plots in Figs. 3 and 4 are consistent with the 
conjecture presented in §3.4 on the existence of travelling waves.

The third row shows the breakthrough curves obtained by numerically solving the system of partial differential equations (22), 
840

(23), the full travelling wave system (41), and the analytical solutions given in §3.4.1. The figures show that there is a very good 



Applied Mathematical Modelling 130 (2024) 827–851L.C. Auton, M. Aguareles, A. Valverde et al.

Fig. 4. Same as in Fig. 3 but with the following changes to parameter values: 𝜇 = 1.1, Pe−1 = 0.1, 𝛽 = 5, Da = 2𝛼 = 1 × 10−5 , 𝑙 = 35 (first and third rows), 𝑙 = 500
(second row) and, in the top row 𝜏 ∈ {10−6, 4.6 × 10−6, 2.2 × 10−5, 10−4, 4.6 × 10−4, 2.2 × 10−3, 0.01, 0.046, 0.22, 1.0, 8.0, 15, 22, 29, 36, 43, 50}.

agreement between the three solutions for the two considered parameter sets. The analytical solutions can therefore be considered 
accurate and may be used to fit the experimental data in §4.

4. Discussion and results

In this section, we examine the behaviour of the analytical models developed in §3.4 and assess their accuracy in capturing the 
behaviour of two different data sets. In particular, we consider data from Sulaymon et al. [19] on the removal of the Mercury(II) 
ion, denoted Hg(II) (or, equivalently, Hg2+) by modified activated carbon from distilled water, and data from Goeppert et al. [20]
on carbon capture by fumed silica impregnated with polyethylenimine (PEI). In the former case, Sulaymon et al. [19] state that the 
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activated carbon adsorbent grains are approximately spherical. In the latter case, the fumed silica is essentially a powder, so the 
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Table 2

Experimental parameters for the adsorption of Hg(II) by activated carbon as extracted from the column 
experiments detailed in [19]. The half-time 𝑡1∕2 ∶= 𝜏1∕2 .

Extracted experimental parameters: column

Parameter Symbol SI Units Value

Inlet concentration 𝑐𝑖𝑛 mol/m3 0.249
Effective diffusivity 𝐷 m/s2 3.06×10−9
Interstitial velocity 𝑣 m/s 1.19×10−3
Column length 𝐿 m 0.05
Cross section area |𝑊 | m2 1.96×10−3
Bulk density 𝜌𝑏 kg/m3 784
Column porosity 𝜙 - 0.601
Particle porosity 𝜙𝑝 - 0.760
Particle radius (×10−4) 𝑅 m 1.03 1.90 3.08 3.89
Half-time 𝑡1∕2 h 1.57 1.23 0.947 0.680
Adsorbed amount at equilibriuma 𝑚̄𝑒 mol/kg 0.0252 0.0198 0.0152 0.0108
Maximum adsorption possibleb 𝑚̄𝑚𝑎𝑥 mol/kg 0.0482 0.0378 0.0291 0.0208

a Calculated via Equation (68).
b Calculated via 𝜇𝑚̄𝑒 , with 𝜇 calculated using the isotherm data and model (the asymptote).

Fig. 5. Fitting of Sips isotherm (19) to the batch data of [21] for Hg(II) with average particle radius 𝑅 = 1.875 × 10−4 m. We denote the concentration of Hg(II) at 
equilibrium as 𝑐𝑒 .

geometry of the particles is assumed to be spherical. Therefore, throughout this section we assume that the column filters have a 
circular cross-section and that the porous grains are spherical; this assumption means that the specific surface |𝜕𝜔|∕|𝜔| = 3∕𝑅, where 
𝑅 is now the radius of the grain.

4.1. Removal of Hg(II) on activated carbon

Sulaymon et al. [19] investigate the removal by adsorption of various metallic ions from a water based solution by activated 
carbon. Here, we focus on one ion in particular, Hg(II). The experimental parameters as determined in Sulaymon et al. [19] are 
summarised in Table 2.

The amount of Hg(II) adsorbed at equilibrium, 𝑚̄𝑒, has been calculated by integrating the area over the breakthrough curve via

𝑚̄𝑒 ≡ (𝑣𝜙∕(𝜌𝑏𝐿))

∞

∫
0

(𝑐𝑖𝑛 − 𝑐)d𝑡. (68)

Thus, the maximum adsorption is 𝑚̄𝑚𝑎𝑥 ≡ 𝜇𝑚̄𝑒. Using the data from the batch experiments in Yousif et al. [21], we take 𝜇 = 1.9125. 
Note that the authors of Yousif et al. [21] are the same as in Sulaymon et al. [19] and consider the same experimental conditions but 
for batch (static) experiments.

Fig. 5 shows the fitting of the Sips isotherm (19) for various values of 𝑎∕𝑏, to the experimental data extracted from Yousif 
et al. [21], obtained by using the MATLAB Curve Fitting Toolbox. Note that, in Equation (19) 𝑐𝑒 depends on 𝑎 and 𝑏 only through a 
term of the form 𝑎∕𝑏. Table 3 shows the calculated fitting parameters 𝑚̄𝑚𝑎𝑥 and  and also the parameters measuring the goodness 
of fit (the sum of squared errors (SSE) and the R-squared value). Note that, as expected, the predicted 𝑚̄𝑚𝑎𝑥 values are higher for the 
batch experiments than they are for the column experiments.

By considering 𝑎∕𝑏 as another fitting parameter, we determine that 𝑎∕𝑏 = 0.595 yields the best fit (the lowest SSE and the 
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R-squared closer to one). However, according to the reaction (48), this has no clear physical significance. The most physically 
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Table 3

Sum of Squared Errors (SSE) and R-squared parameters obtained from fitting the Sips isotherm 
with various 𝑎 and 𝑏 to the equilibrium data of Yousif et al. [21]. 𝑚̄max is taken from Yousif 
et al. [21], Fig. 1, for optimal pH.

Fitting parameters: isotherm

Parameter Units 𝑎∕𝑏 = 1 𝑎∕𝑏 = 1∕2 𝑎∕𝑏 = 2∕3 𝑎∕𝑏 = 0.595

𝑚̄𝑚𝑎𝑥 mol/kg 0.0543 0.0667 0.0902 0.0733
1∕𝑏 m3/mol 48.2 8.87 2.88 5.76
SSE (mol/kg)2 0.580×10−4 0.294×10−4 0.309×10−4 0.281×10−4
R-squared - 0.983 0.991 0.991 0.992

Fig. 6. Fitting of the approximate analytical breakthrough model (62) (corresponding to 𝑎 = 1 and 𝑏 = 2) to the experimental breakthrough data for Hg(II) adsorption 
onto activated carbon for four distinct particle sizes [19]. As 𝑅 increases the colour transitions from dark brown to light orange.

reasonable combinations of 𝑎 and 𝑏 are 𝑎∕𝑏 = 1, 1∕2, or 2∕3; out of these options 𝑎∕𝑏 = 1∕2 and 2∕3 yield an R-squared value which 
is closest to unity. Despite the fact that 𝑎∕𝑏 = 2∕3 yields a slightly lower SSE than 𝑎∕𝑏 = 1∕2, the difference between these two options 
is sufficiently marginal that we cannot draw a conclusion on which is the correct choice. To better distinguish between these two 
cases, we consider small values of 𝑐𝑒 (Fig. 5, right); from this we conclude that 𝑎∕𝑏 = 1∕2 offers the best fit and thus best describes 
the kinetics of the Hg(II) adsorption. Using 𝑎∕𝑏 = 1∕2, we find that 𝑚̄𝑚𝑎𝑥 = 0.0902 mol/kg. To determine 𝜇 ≡ 𝑚̄𝑚𝑎𝑥∕𝑚̄𝑒 we take the 
value 𝑚̄𝑒 = 0.0472 mol/kg as reported in Yousif et al. [21] so that 𝜇 = 1.9125. Further, we take 𝜇 = 1.9125 to hold in the column 
studies.

The reaction orders 𝑎 = 1, 𝑏 = 2, which correspond to the ratio 𝑎∕𝑏 = 1∕2, could be related to the oxidation state of Hg(II), which 
according to Fourier-transform infrared spectroscopy studies carried out by Sulaymon et al. [19], is complexed by H and O atoms of 
hydroxyl bonds in a cation exchange reaction.

On determining the kinetic orders 𝑎 = 1, 𝑏 = 2, we fit the analytical solution to the experimental breakthrough data [19]. The 
results are shown in Fig. 6. Since equations (61)–(65) are explicit in time, we used the MATLAB Curve Fitting Toolbox to fit the 
experimental times with those predicted by the model using the experimental breakthrough concentrations. The MATLAB routine uses 
the non-linear least squares method to obtain a feasible minimum. Each curve requires only two fitting parameters  = 𝑚̄1−𝑏

𝑒
∕(𝑘+𝑐𝑎

𝑖𝑛
)

and 𝛽 = 𝑘𝑝|𝜕𝜔| Da∕(|𝜔|𝜑). The results of the fitting are shown in Table 4. The SSE and R-squared values are also shown. In the 
literature it is common to present the error in terms of difference between 𝑐 values rather than time hence the SSE and R-squared 
reported in Table 4 are calculated with the errors between concentrations.

The results in Fig. 6 and Table 4 show an excellent agreement between the model and the data with 𝑎 = 1, 𝑏 = 2. The values 
of 𝑘+ and 𝑘− generally increase with increasing particle size, while 𝑘𝑝 decreases with increasing particle size. The equilibrium 
constant  ≡ 𝑘+∕𝑘− is constant at constant temperature, so the change in 𝑘− is driven by that in 𝑘+. Using these fitting parameters, 
we calculate the dimensionless values Pe−1, Da and 𝛼. As shown in Table 4, we find Pe−1 = (10−3) and Da, 𝛼 = (10−3). This is 
consistent with the assumptions used to derive the travelling wave equations in §3.4.

The value of 𝛽 is (1) for all the particle sizes; this indicates that the effect of the particle size in the breakthrough curve is 
significant, as discussed in §2.5. The value of 𝛽 also generally decreases as the particle radius (𝑅) increases (see Table 4). The 
translation of the curves to the right as the particle size decreases shown in Fig. 6 indicates that the intra-particle diffusion is not the 
cause of the change in 𝛽, rather it is a result of the increase of the external specific surface when the column is filled with a greater 
number of small particles. Thus, the decrease of 𝛽 in this model is indicative of the effect of particle size rather than the effect of 
843

intra-particle diffusion [4].
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Table 4

Parameters obtained by fitting the approximate analytical breakthrough model (62) (corre-
sponding to 𝑎 = 1 and 𝑏 = 2) to the experimental breakthrough data for Hg(II) adsorption onto 
activated carbon for four distinct particle sizes [19].

Dimensionless and fitting parameters: column

Parameter Units
Particle Radius (m)

1.03 × 10−4 1.9 × 10−4 3.075 × 10−4 3.89 × 10−4

 s 617 365 612 83.4
𝛽 - 1.67 0.984 4.62 0.417
𝑘+ m3kg mol−2s−1 0.258 0.556 0.431 4.434
𝑘− kg mol−1s−1 0.0536 0.115 0.0894 0.920
𝑘𝑝 m/s 1.84×10−5 2.66×10−5 9.29×10−5 5.54×10−5
 m 5.56×10−3 4.18×10−3 9.12×10−3 1.74×10−3
Pe−1 - 4.64×10−4 6.16×10−3 2.82×10−4 1.48×10−3
Da - 7.58×10−3 9.66×10−3 1.26×10−2 1.76×10−2
𝛼 - 3.83×10−3 4.87×10−3 6.33×10−3 8.88×10−3
SSE - 0.0077 0.0020 0.0043 0.0259
R-squared - 0.9966 0.9993 0.9987 0.9934

Table 5

Experimental data extracted from Goeppert et al. [20].

Extracted experimental parameters: column

Parameter Symbol SI Units Value

Inlet concentration 𝑐𝑖𝑛 mol/m3 0.0166
Interstitial velocity 𝑣 m/s 0.231
Column length 𝐿 m 0.100
Cross section area |𝑊 | m2 5.03×10−5
Bulk density 𝜌𝑏 kg/m3 541
Column porositya 𝜙 - 0.480
Particle porosity 𝜙𝑝 - 0.416
Effective diffusivityb (×10−4) 𝐷 m/s2 0.600 0.900 2.60 4.10
Particle radius (×10−4) 𝑅 m 1.25 1.88 5.50 8.50
Half-time 𝑡1∕2 h 10.7 11.9 12.1 14.0
Maximum adsorption possible 𝑚̄𝑚𝑎𝑥 mol/kg 1.66 1.73 1.75 1.92
Adsorbed amount at equilibrium 𝑚̄𝑒 mol/kg 1.61 1.68 1.70 1.86

a Porosity 𝜙 estimated with a column-to-particle diameter ratio ∈ (4.7, 32) [30,31].
b Effective diffusivity coefficients approximated from experimental chart in Levenspiel [32].

4.2. Removal of CO2 from air

Goeppert et al. [20] study the adsorption of carbon dioxide onto fumed silica impregnated with PEI. The addition of PEI to the 
silica improves the adsorption since CO2 reacts with the primary and secondary amino groups in PEI. If the reaction occurs in a dry 
environment, two molecules of CO2 react with the amine radicals to produce carbamate molecules on the surface of the adsorbent. 
However in the presence of water molecules, only one amine is needed to react with one molecule of CO2 [20]. The experimental 
parameters as determined in [20] are summarised in Table 5.

Goeppert et al. [20] work with a range of particle diameters: <0.25 mm; 0.25–0.5 mm; 0.5–1.7 mm; and >1.7 mm. To calculate 
the radius used in Table 5, we take the average diameters for the intermediate values and 0.25, 1.7 mm for the extreme values. The 
isotherms are not provided in the paper but the adsorbed amount of contaminant at equilibrium is reported for each particle size and, 
for particles of diameters in the range 0.25–0.50 mm, the equilibrium amount is reported as a function of temperature. Given that 
all measurements were made with the same inlet concentration, the maximum adsorbed fraction, as well as other thermodynamic 
magnitudes (such as the enthalpy of adsorption) can be obtained using the Van’t Hoff equation; this reads,

 = 𝐴 exp
(
− Δ𝐻

𝑅𝑔𝑇

)
, (69)

where we recall that  = 𝑘+∕𝑘− is the equilibrium constant of the Sips isotherm (m3𝑎mol−𝑎), 𝐴 is the pre-exponential factor in Van’t 
Hoff equation (m3𝑎mol−𝑎), Δ𝐻 is the enthalpy of adsorption (J mol−1), 𝑅𝑔 the ideal gas constant (8.314 J K−1mol−1) and 𝑇 is the 
temperature (K). Thus, we have

exp
(

Δ𝐻

𝑅𝑔𝑇

)
= 𝐴𝑐𝑎

𝑖𝑛
𝑚̄𝑏

𝑚𝑎𝑥

(
1
𝑚̄𝑒

− 1
𝑚̄𝑚𝑎𝑥

)𝑏

, (70a)
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which can be arranged into
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Fig. 7. Temperature versus adsorbed amount of CO2 at equilibrium fitted with Equation (70b) for particles with diameters in the range 0.25–0.5 mm.

Table 6

Optimal parameters obtained via fitting of Equation 
(70b) to the experimental data of Goeppert et al. [20].

Parameter Units Value

(𝑅𝑔∕Δ𝐻) ln
(
𝐴𝑐𝑎

𝑖𝑛
𝑚̄𝑏

𝑚𝑎𝑥

)
K−1 3.052×10−3

𝑏𝑅𝑔∕Δ𝐻 K−1 -7.15×10−5
𝑚̄𝑚𝑎𝑥 mol/kg 1.725

Fig. 8. Comparison of the breakthrough models (61) –(65) to the experimental data of Goeppert et al. [20]. Left: 𝑅 = 1.25 × 10−4 m. Right: 𝑅 = 8.5 × 10−4 m. Fitting 
parameters are presented in Table 7.

1
𝑇

=
𝑅𝑔

Δ𝐻
ln
(
𝐴𝑐𝑎

𝑖𝑛
𝑚̄𝑏

𝑚𝑎𝑥

)
+

𝑏𝑅𝑔

Δ𝐻
ln
(

1
𝑚̄𝑒

− 1
𝑚̄𝑚𝑎𝑥

)
. (70b)

The fitting of Equation (70b) to the experimental data provided in Goeppert et al. [20] is shown in Fig. 7. This has been carried out 
using the MATLAB Curve Fitting Toolbox (see the codes in https://github .com /aguareles /Intra -particle -diffusion .git).

Table 6 shows the optimized fitting parameters. The value of 𝑚̄𝑚𝑎𝑥 only applies to the particle size range 0.25–0.5 mm; for 
this particle size Goeppert et al. [20] determine 𝑚̄𝑚𝑎𝑥 = 1.725 mol/kg, hence 𝜇 = 𝑚̄𝑚𝑎𝑥∕𝑚̄𝑒 = 1.03. Since the maximum and the 
equilibrium adsorbed amount are considered to increase proportionally with increasing particle size we assume this value holds for 
all the particle sizes.

Note that the enthalpy of adsorption can only be obtained once the correct 𝑏 is determined. In order to assess the form of the 
reaction (i.e. the values of the Sips exponents), we fit the breakthrough models (61) –(65) with the experimental data for the particle 
size of 𝑅 = 1.25 × 10−4 m and 𝑅 = 8.5 × 10−4 m (Fig. 8).

In Table 7 we present the fitted parameters ( and 𝛽), SSE and R2 values for three 𝑎, 𝑏 combinations and the two radii shown 
in Fig. 8. It is clear that the exponents 𝑎 = 𝑏 = 1 fit the experimental data the worst. Considering the smallest 𝑅 = 1.25 × 10−4 m 
(Fig. 8, left), we note that both remaining combinations of exponents, that is, 𝑎 = 1, 𝑏 = 2 and 𝑎 = 1, 𝑏 = 3, offer a good fit. For 
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𝑅 = 1.25 × 10−4 m, the lowest SSE and highest R-squared is obtained with the combination 𝑎 = 1, 𝑏 = 3; in this case the SSE for 

https://github.com/aguareles/Intra-particle-diffusion.git
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Table 7

Sum of Squared Errors (SSE) and R-squared (R2) parameters obtained from 
fitting the breakthrough models (61) – (65) to the experimental data of 
Goeppert et al. [20] with 𝑅 = 1.25 × 10−4 m and 𝑅 = 8.5 × 10−4 m.

Fitting parameters: column

Radius (m) Parameter 𝑎 = 𝑏 = 1 𝑎 = 1, 𝑏 = 2 𝑎 = 1, 𝑏 = 3

1.25 × 10−4
 1.49×103 1.08×103 2.83×102

𝛽 3.28×105 3.58×105 0.355
SSE 0.542 0.295 0.0868
R-squared 0.978 0.988 0.996

8.5 × 10−4
 2.36×104 7.39×103 1.20×103

𝛽 8.20×105 5.44 0.101
SSE 0.9839 0.0951 0.402
R-squared 0.955 0.996 0.981

Fig. 9. Fitting of the breakthrough model (62) (corresponding to 𝑎 = 1 and 𝑏 = 2) to the experimental breakthrough data of Goeppert et al. [20] for a range of particle 
sizes, (a) 𝑅 = 1.25 × 10−4 , (b) 𝑅 = 1.875 × 10−4 , (c) 𝑅 = 5.5 × 10−4 , (d) 𝑅 = 8.5 × 10−4 .

𝑏 = 3 is ∼24% of the SSE for 𝑏 = 2. However, this situation is reversed for the largest 𝑅 = 8.5 × 10−4 m (Fig. 8, right), for which 
the combination 𝑎 = 1, 𝑏 = 2 provides a lower SSE, and a higher R-squared. For 𝑅 = 8.5 × 10−4 m, from the consideration of Fig. 8, 
right, it is evident 𝑎 = 1, 𝑏 = 2 provides a significantly better fit. Aguareles et al. [13] established a correlation between the exponents 
𝑎 = 1, 𝑏 = 2 and the kinetics of the reaction of CO2 with the amine groups in PEI in small particles. Thus, using the insight provided 
by Aguareles et al. [13], and the fact that the sum of the SSEs for 𝑏 = 2 is 0.39, while for 𝑏 = 3 it is 0.487, we take the exponent 
values to be 𝑎 = 1 and 𝑏 = 2. Below, we consider the remaining breakthrough data reported by Goeppert et al. [20].

The fitting of the experimental breakthrough data with the model (62) is shown in Fig. 9. As before the only fitting parameters 
are  and 𝛽; these are presented in Table 8. The results shown in Fig. 9 and Table 8 demonstrate excellent agreement between the 
model and experimental data. The values of 𝑘+, 𝑘− and 𝑘𝑝 clearly show an inverse relation with increasing particles size, with the 
exception of 𝑘𝑝 for the largest particle. We hypothesise that this apparent inconsistency might be related to experimental noise.

In contrast to the Hg(II) breakthrough curves in the present case, the half-time (𝑡1∕2 ∶= 𝜏1∕2 ) shows little variation but the 
average rate of change of the breakthrough curves decreases in magnitude with increasing particle size, i.e., the concentration at the 
outlet increases more slowly as the size of the adsorbent increases. This trend indicates that the increase in particle size is related to a 
more significant intra-particle diffusion. For the smallest radius, we see 𝛽 =(105), which indicates intra-particle diffusion effects are 
negligible (and the model reduces to that of Aguareles et al. [13]). However, as the particle size increases so that 𝛽 =(1), the intra-
particle model applies. The excellent data fit verifies the suitability of the model for large particles. Finally, we note Pe−1 =(10−1)
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and Da, 𝛼 =(10−6), hence all dimensionless values are sufficiently small to justify the approximations made in §3.4.
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Table 8

Parameters obtained from fitting the breakthrough model (62) to the experimental breakthrough 
data of [20], for four particle sizes.

Dimensionless and fitting parameters: column

Parameter Units
Particle Radius (m)

1.25 × 10−4 1.88 × 10−4 5.50 × 10−4 8.50 × 10−4

 s 1.08×103 1.66×103 2.45×103 7.39×103
𝛽 - 3.58×105 0.856 0.565 5.43
𝑘+ m3kg mol−2s−1 0.0348 0.0218 0.0145 0.00440
𝑘− kg mol−1s−1 5.13×10−7 3.21×10−7 2.14×10−7 6.48×10−8
𝑘𝑝 m/s 1.40×103 0.0340 0.00453 0.0244
 m 2.27×10−3 3.36×10−3 4.90×10−3 1.31×10−2
Pe−1 - 0.114 0.116 0.230 0.131
Da - 9.10×10−6 8.77×10−6 8.64×10−6 7.90×10−6
𝛼 - 4.10×10−6 3.95×10−6 3.90×10−6 3.56×10−6
SSE - 0.295 0.121 0.235 0.0951
R2 - 0.988 0.995 0.992 0.996

5. Conclusions/future work

This work provides a mathematical model that accounts for the effect of the micro-structure of the adsorbent in adsorption 
column processes combined with a Sips equation for the adsorption rate. The model has been carefully derived and analysed and 
subsequently tested against experimental data. The main contributions of this work can be summarized in the following points:

1. A rigorous derivation of the model has been presented, indicating the assumptions made at every step. The model correctly 
captures the multiscale nature of the processes accounting for the advection-driven transport in the inter-particle region, the 
diffusion-driven transport in the intra-particle region, and the adsorption phenomenon at the adsorbent surface.

2. Adsorption kinetics have been modeled with a Sips sink term. This accounts for different possible combinations of partial orders 
of reaction and is able to describe both physisorption and chemisorption. The relation between the partial orders 𝑎 and 𝑏 is also 
linked to the adsorbent performance through the isotherm profile.

3. The existence of a solution using a travelling wave approximation has been discussed in terms of the relation between partial 
orders and the value of 𝜇 (the ratio of maximum to final adsorbed mass). Analytical solutions using this approach have been 
provided for the most common combinations of partial-orders with “favourable adsorption” (𝑎 ≤ 𝑏), namely 𝑎 = 𝑏 = 1, 𝑎 = 1
𝑏 = 2 and 𝑎 = 1 𝑏 = 3.

4. The travelling wave solutions were compared with the numerical solution of the full mathematical model using different param-
eter values. The agreement between the two solution forms was excellent for all of the 𝑎, 𝑏 combinations studied.

5. Finally, the analytical solutions have been tested against experimental data for column breakthrough curves for two different 
applications: Hg(II) adsorption on activated carbon from wastewater, and direct air CO2 capture on PEI modified fumed silica. 
The agreement between the breakthrough data and the analytical solution was excellent in all cases using the model with 
𝑎 = 1, 𝑏 = 2 and only two fitting parameters. The values 𝑎 = 1, 𝑏 = 2 can be directly related to the reaction mechanism, namely 
with the ion-exchange reaction of Hg(II) that depends on the valence of the metal, and the reaction between CO2 and the amine 
groups in the PEI structure.
The pattern observed in the fitted values with changing particle radius provides physical insights, and proves the suitability of 
the model to capture the effect of the decreasing specific surface and/or the increasing influence of intra-particle diffusion with 
increasing particle size.

For all the reasons listed above, we can conclude that this work presents a significant contribution to the understanding of column 
adsorption processes and the underlying physical and chemical mechanisms.

This work represents a starting point for future studies where the solution under different 𝑎, 𝑏 configurations is assessed. This 
includes the study of adsorbate-adsorbent systems with unfavourable adsorption (𝑎 > 𝑏). In certain situations these cases may be of 
practical interest, for example in certain geographic locations where, due to expense or availability, only low quality filter materials 
are accessible [33,34]. Another possible future line of research related to this work is its extension to non-integer orders, since 
many processes actually consist of complex mechanisms or multiple reactions which may be approximated by global kinetics with 
fractional partial orders [35].
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Appendix A. Numerical scheme

Here, we discuss the numerical schemes in more detail.

A.1. Full PDE system

Spectral collocation methods involve discretising the solution domain into a set of 𝑁 points (collocation points), defining a global 
function that interpolates the solution at these collocation points (the interpolant), and then approximating the derivatives of the 
solution as the derivatives of the interpolant. In a Chebyshev spectral collocation method, the collocation points are the 𝑁 Chebyshev 
points 𝑥𝑘 ∈ [1, −1], which can be defined as [23]

𝑥𝑘 = cos
(
(𝑘− 1)𝜋
𝑁 − 1

)
, 𝑘 = 1,… ,𝑁. (A.1)

The basis functions from which the interpolant is composed are then a set of 𝑁 polynomials of degree 𝑁 − 1 satisfying the criterion 
that each is nonzero at exactly one distinct collocation point. Note that other definitions of the Chebyshev points are also commonly 
used (e.g., [24]). For the definition (A.1), Weideman and Reddy [36] provide a suite of MATLAB functions that generate the Chebyshev 
points and differentiation matrices, and that perform interpolation.

We next outline the implementation of the numerical scheme; we express the system of equations (22) in vector notation via

𝕸 𝜕𝒀

𝜕𝜏
= 𝑭 [𝒀 ], (A.2)

where 𝒀 ∶= (𝐶, 𝐶𝑝, 𝑚𝑝)⊺ is the concatenated vector of the dependent variables, 𝕸 is a constant 3 × 3 mass matrix and where 𝑭 is a 
continuous vector partial-differential operator in 𝜁 . Below, we denote spatially discretised quantities with tildes; vectors and matrices 
are additionally in bold. Following the method of lines, we discretise 𝜁 , 𝐶 , 𝐶𝑝 and 𝑚𝑝 in space to have 𝑁 elements each which we 
denote by 𝑪̃ , 𝑪̃𝑝 and 𝕸̃𝑝. Concatenating 𝑪̃ , 𝑪̃𝑝 and 𝒎̃𝑝 produces a vector 𝒀̃ of length 3𝑁 . Further we discretise 𝕸 into a 3𝑁 × 3𝑁
constant mass matrix. Using the first and second order Chebyshev differentiation matrices of size 𝑁 × 𝑁 , nested in matrices of size 
3𝑁 × 3𝑁 which are otherwise zero, we discretise the vector operator 𝑭̃ .

For 𝑪̃𝑝 and 𝒎̃𝑝 with 0 ≤ 𝜁 ≤ 𝑙 and for 𝑪̃ with 0 < 𝜁 < 𝑙 we have a system of coupled ODEs in time. At 𝜁 = 0 and 𝜁 = 𝑙, we enforce 
the spatially discretised boundary conditions on 𝑪̃ , (cf., conditions (23a,b)), which are algebraic in 𝜏 . Thus the 3𝑁 − 2 differential 
equations and two algebraic equations which enforce the boundary conditions on 𝑪̃ , constitute a system of DAEs.

We express this system of DAEs using a mass matrix 𝕸̃, which is the Chebyshev spatial discretisation of 𝕸. The mass matrix 
pre-multiplies the time derivative 𝜕𝒀̃ ∕𝜕𝜏 and enables us to enforce the boundary conditions on 𝑪̃ by setting the first and 𝑁 th rows 
of 𝕸̃ identically equal to zero. We integrate this system of DAEs in time in MATLAB® using ode15s.

We provide the solver with an analytical Jacobian

𝕵̃ ∶= d
d𝒀̃

(
𝑭̃ (𝒀 )

)
. (A.3)

The spatial discretisation has spectral accuracy, so the overall accuracy will be determined by the accuracy of the time-stepping 
performed by ode15s.

Fig. A.10 (left) shows the footprint or sparsity pattern of the Jacobian matrix 𝕵̃ for 𝑁 = 11 as defined in Equation (A.3).

A.2. Full system of travelling wave ODEs

Here, we show the analogous Jacobian but for full travelling wave system (Fig. A.10, right). The structural difference between 
Fig. A.10 left and right is that for the PDE we only have spatial derivatives for 𝐶 , thus we only have the dense differentiation 
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matrix in the top left corner, rather than for all three variables as in the ODE system. Note that the internal/boundary conditions are 
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Fig. A.10. The footprint, or sparcity pattern for the analytically determined Jacobians used in the numerical schemes, for 𝑁 = 11. Left: Full PDE system. Right: Full 
ODE system after travelling wave assumption.

enforced via putting the identity element in the intersection of the row and the column that correspond to that point— that is, for 
the internal condition the only entry in row (𝑁 + 1)∕2 is at column (𝑁 + 1)∕2, while for the boundary condition, the only entry in 
row 3𝑁 is at column 3𝑁 . All codes are available in https://github .com /aguareles /Intra -particle -diffusion .git.

Appendix B. Proof of Proposition 1

We first provide two lemmas that will be used to prove Proposition 1:

Lemma 1. Given 𝛽, 𝜇 ∈ℝ such that 𝜇 > 1 and 𝛽 > 0, for any 𝑎, 𝑏 ∈ℕ, and for all 𝑥 ∈ [0, 1] the equation

𝛽 (𝑥− 𝑦) = 𝑦𝑎 (𝜇 − 𝑥)𝑏 − (𝜇 − 1)𝑏𝑥𝑏 , (B.1)

(i) implicitly determines a unique function 𝑦(𝑥) ∈ [0, 1] such that 𝑦(𝑥) is continuously differentiable in the interval [0, 1].
(ii) if 𝑎 ≤ 𝑏, then 0 < 𝑦(𝑥) < 𝑥.

Proof. To prove the first statement for a fixed value 𝑥 ∈ (0, 1) we define

𝑝1(𝑦) = 𝛽(𝑥− 𝑦) , 𝑝2(𝑦) = 𝑦𝑎 (𝜇 − 𝑥)𝑏 − (𝜇 − 1)𝑏𝑥𝑏 ,

and note that 𝑝1(𝑦) is strictly decreasing while 𝑝2(𝑦) is strictly increasing if 𝑦 ∈ (0, 1). Further note that, 𝑝1(0) = 𝛽𝑥 > 0 and 𝑝2(0) =
−𝑥𝑏(𝜇 − 1)𝑏 < 0 if 𝑥 > 0, while 𝑝1(1) = 𝛽(𝑥 − 1) < 0 and

𝑝2(1) = (𝜇 − 𝑥)𝑏 − 𝑥𝑏(𝜇 − 1)𝑏 = (𝜇 − 𝑥)𝑏
(
1 − 𝑥𝑏

(
𝜇 − 1
𝜇 − 𝑥

)𝑏
)

> 0 ,

if 0 < 𝑥 < 1. Therefore, 𝑝1(𝑦), 𝑝2(𝑦) have a unique intersection point, 𝑦 ∈ (0, 1). Also, we note that if 𝑥 = 0, Equation (B.1) reads

−𝛽𝑦 = 𝑦𝑎𝜇𝑏 ,

and the only solution in the interval [0, 1] is 𝑦 = 0. When 𝑥 = 1, Equation (B.1) reads

𝛽 (1 − 𝑦) = 𝑦𝑎 (𝜇 − 1)𝑏 − (𝜇 − 1)𝑏 ,

whose only solution in [0, 1] is also 𝑦 = 0. Finally, the regularity of 𝑦(𝑥) follows from the Implicit Function Theorem.
As for the second statement, we again use the monotonicity of 𝑝1(𝑦) and 𝑝2(𝑦) and note that 𝑝1(0) > 0, 𝑝2(0) < 0, 𝑝1(𝑥) = 0 and

𝑎 𝑏 𝑏 𝑏 𝑎 𝑏

(
𝑏−𝑎

(
𝜇 − 1

)𝑏
)
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𝑝2(𝑥) = 𝑥 (𝜇 − 𝑥) − 𝑥 (𝜇 − 1) = 𝑥 (𝜇 − 𝑥) 1 − 𝑥
𝜇 − 𝑥

> 0 ,

https://github.com/aguareles/Intra-particle-diffusion.git
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provided 𝑏 − 𝑎 ≥ 0 and 𝑥 ∈ (0, 1). This shows that in this case there is an intersection point 𝑦 between zero and one and therefore, 
the solution 𝑦(𝑥) of 𝑝(𝑦) = 0 must be between 0 and 𝑥. □

Lemma 2. Given 𝜇 ∈ℝ such that 𝜇 > 1, for any 𝑎, 𝑏 ∈ℕ such that 𝑎 ≤ 𝑏, the only roots of the polynomial

𝑝(𝑥) = 𝑥𝑎(𝜇 − 𝑥)𝑏 − (𝜇 − 1)𝑏𝑥𝑏 , (B.2)

in the interval [0, 1] are given by 𝑥 = 0 and 𝑥 = 1.

Proof. We note that 𝑥 = 0 is a root of 𝑝(𝑥). We then rewrite the polynomial (B.2) as

𝑝(𝑥) = 𝑥𝑎(𝜇 − 1)𝑏
[(

𝜇 − 𝑥

𝜇 − 1

)𝑏

− 𝑥𝑏−𝑎

]
,

and define

1(𝑥) =
(

𝜇 − 𝑥

𝜇 − 1

)𝑏

, 2(𝑥) = 𝑥𝑏−𝑎 .

If 𝑎 < 𝑏, these polynomials satisfy,

1(1) = 2(1) = 1 1(0) =
(

𝜇

𝜇 − 1

)𝑏

> 1 2(0) = 0 ,

and therefore 𝑥 = 1 is another root of 𝑝(𝑥). The fact that 1(𝑥) is strictly decreasing and 2(𝑥) is strictly increasing between zero and 
one invalidates the possibility of finding any other root of 𝑝(𝑥) different than 𝑥 = 0 and 𝑥 = 1.

If 𝑎 = 𝑏, 2(𝑥) ≡ 1 and therefore, since 1(𝑥) is strictly decreasing in the interval [0, 1], the only intersection point between the 
two polynomials takes place at 𝑥 = 1. □

We now prove Proposition 1, which states:

Proposition 1. Given 𝜇, 𝛽, 𝑐0 ∈ℝ such that 𝜇 > 1, 𝛽 > 0, and 0 < 𝑐0 < 1, for any 𝑎, 𝑏 ∈ ℕ such that 𝑎 ≤ 𝑏, the initial value problem given 
by the equation

d
d𝜂

= −𝛽
( − 𝑝()) , (B.3a)

along with the initial condition

(0) = 𝑐0 , (B.3b)

where 𝑝() is implicitly determined by

𝛽
( − 𝑝

)
= 𝑎

𝑝
(𝜇 − )𝑏 − (𝜇 − 1)𝑏𝑏 , (B.3c)

is well posed and it has a unique decreasing solution, (𝜂) satisfying

lim
𝜂→−∞

 = 1 , lim
𝜂→∞

 = 0 . (B.4)

Proof. Lemma 1 provides the existence of 𝑝() as the unique continuously differentiable solution of Equation (B.3c),

𝛽
( − 𝑝

)
= 𝑎

𝑝
(𝜇 − )𝑏 − (𝜇 − 1)𝑏𝑏 ,

in the interval [0, 1]. Therefore the initial value problem (B.3),

d
d𝜂

= −𝛽
( − 𝑝()) ,

(0) = 𝑐0 ,

is well posed and it has a unique solution for any initial value 𝑐0 ∈ (0, 1). Note further that the equilibrium points of the polyno-
mial (B.3a) satisfy  = 𝑝 and they are provided by the roots of the polynomial (B.2), so in particular they are independent of 𝛽. 
This means that the only equilibrium points in the interval [0, 1] are  = 0 and  = 1. Lemma 1 also states that if  ∈ (0, 1), then 
0 < 𝑝 <  which forces the solution of the initial value problem (B.3) to be strictly decreasing. Therefore  connects  = 1 with 
 = 0 and so the boundary conditions

lim
𝜂→−∞

 = 1 , lim
𝜂→∞

 = 0 ,
850

are satisfied. □
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