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ABSTRACT 

Epipolar geometry is a key point in computer vision and 
the fundamental matrix estimation is the only way to com- 
pute it. This article surveys several methods of fundamen- 
tal matrix estimation which have been classified into linear 
methods, iterative methods and robust methods. All of these 
methods have been programmed and their accuracy anal- 
ysed using real images. A summary, accompanied with ex- 
perimental results, is given and the code is available in Inter- 
net(http://eia.udg.es/"armangue/research). 

1. INTRODUCTION 

The estimation of three-dimensional information in active 
systems is a crucial problem in computer vision because the 
camera parameters may change dynamically depending on 
the scene. In such situations, only epipolar geomew, which 
is contained in the fundamental matrix, can be computed. 
Basically, the intrinsic parameters of both cameras and the 
position and orientation of one in relation to the other can be 
extracted by using Kruppa equations [ 11. Moreover, the fun- 
damental matrix can be used to reduce the matching process 
among the viewpoints [2], therefore, it is very interesting to 
develop accurate techniques to compute it. 

This article surveys fifteen of the most frequently used 
techniques in computing the fundamental matrix and is or- 
ganized as follows. First, a brief introduction of epipolar 
geometry is presented. Then, all the techniques to estimate 
F are presented describing their advantages and drawbacks 
as opposed to previous ones. Section three deals with the 
experimental results obtained with real images and finally, 
the article ends with conclusions. 

2. EPIPOLAR GEOMETRY 

Consider a 3D object point M expressed with respect to a 
world coordinate system M = CWX, wY, wZ, l)T and 
its 2D projection rn on the image plane in pixels m = 
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Fig. 1. The geometric relation between two cameras. 

('X, ' Y )T .  Both points are related with a projective trans- 
formation matrix 'P W ,  that is s m = 'P w M ,  where s is 
a scale factor. The 'P matrix can be broken down into 
'P w = 'A c cK W ,  where 'A c is a 3 x 4 matrix which 
relates the metric camera coordinate system C located at the 
focal point OC with the image coordinate system I located 
at the north-west comer of the image plane in pixels, and 
cK w is a 4 x 4 matrix, see equation (l), which relates the 
camera coordinate system {C} with the world coordinate 
system W. 

Then, the epipolar geometry concerns the relationship be- 
tween both cameras of a stereoscopic system. Given the ob- 
ject point M and its 2D projections 7n and 7n' on both image 
planes, these 3 points define a plane which intersects both 
image planes at the epipolar lines I,! and l;, respectively, 
as shown in Figure 1.  Note that the same plane can be 
computed using both focal points Oc and Oct and a single 
2D projection (m or m'), which is the principle to reduce 
the correspondence problem to a single scanning along the 
epipolar line. Moreover, the intersection of all the epipolar 
lines define an epipole on both image planes, which can also 
be extracted by intersecting the line defined from both focal 
points OC and O C ~  with both image planes. All the epipolar 
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geometry is contained in the so called Fundamental matrix 
F, where mTFm’ = 0. 

The fundamental matrix contains the intrinsic parame- 
ters of both cameras and the rigid transformation between 
both cameras which depends on the camera that has been 
considered as the origin of the world coordinate system. In 
this article, the origin of the world coordinate system co- 
incides with the coordinate system of the second camera, 
located at Oct, as shown in equation (2). 

3. ESTIMATING THE FUNDAMENTAL MATRIX 

In the last few years, several methods to estimate the funda- 
mental matrix have been proposed and can be classified into 
lineal methods and iterative methods. These deal with bad 
point localization due to noise in image segmentation and 
robust techniques whitch eliminate the outliers due to false 
matchings. 

3.1. Linear methods 

The linear method of seven points is based on computing the 
fundamental matrix by using only seven point correspon- 
dences [3]. Due to the homogeneity of the equations, the so- 
IutionisasetofmatricesoftheformF = a F 1 +  (l-aIF2. 
Then, by forcing the rank of the matrix to 2 and using the 
expression det &F 1 + (1- a ) F  21 a cubic polynomial is 
obtained, which has to be solved to obtain a and therefore 
F . The main advantage of this method is that a fundamen- 
tal matrix can be estimated by using only seven points, but 
this fact becomes a dr,iwback when some points are badly 
located. Moreover, the 7-points method cannot be applied 
in the presence of redundancy. Hence, it can not be applied 
using n points if n > ‘1. 

Another interesting method is 8-points method in witch 
redundancy of points permits minimizes the error of esti- 
mating F . The minimizing equation is m mcz (mTFmi) . 
The classical method of solving such equation is the least- 
squares technique which forces one of the components of 
F to be the unity [4]. This simplification can be assumed 
because F is always defined using a scale factor. Then the 
system to solve is f’ = (U ’)-‘U ITcg in which U ’ is 
a matrix containing the first eight columns of U ,  cg is the 
last column of U and f’ is a vector containing the first eight 
elements o f f .  Note that the ninth element of f  is 1. A vari- 
ant of the 8-points method can be applied if the equation 
is solved by using eigen analysis, also called orthogonal 
least-squares technique [5]. In this case, F can be deter- 
mined from the eigen vector corresponding to the smallest 
eigen value of U TU . The difference between this method 

2 

F 

and the classical least-squares resides in the form of calcu- 
lating the error between correspondences and epipolar lines 
in which an orthogonal distance to the epipolar line is much 
more realistic. 

with rank-2 constraint [3] which imposes the rank-2 con- 
straint during the minimization. The matrix U ’ is defined 
as the composition of the first seven columns of U and ca 
and cg are defined as the eighth and ninth columns of U 
respectively so that F can be computed as 

The last linear method we surveyed is the analytic method 

f’ = -fa U ’TU ’I-lu ITCa - fg (v ’TU ’)-1u ITCg (3) 
in which f’ is the vector containing the first seven elements 
o f f ,  and fa and fg are the eighth and ninth elements o f f ,  
respectively. In order to obtain the values of fa and fg, an 
F is computed by using the seven points algorithm. Then, 
f is computed by selecting from the various pairs of F the 
one which minimizes l l f l l  = 1. This method provides a 
rank-2 matrix. However, the analytic method with rank-2 
constraint does not improve the results of the previously 
explained methods to any great extent. 

The linear methods are very fast but their accuracy is 
rather poor in the presence of noise. In order to obtain better 
results the iterative algorithms have to be considered. 

3.2. Iterative methods 

The iterative methods can be classified into two groups. The 
first group of techniques is based on minimizing the dis- 
tances between points and epipolar lines, that is 

m iIy (d2 (mi, Fm:) + d2 (VI:, Fmi)) (4) 

A first approach consists of directly applying an iterative 
method as Newton-Raphson [6]. Another possibility is the 
iterative linear method [3] which is based on computing the 
weight value wi equivalent to the epipolar distances by us- 
ing the previous F (in the first iteration wi = 1) and then 
minimize by using least-squares in each iteration. Neither 
approach imposes the rank-2 constraint. The nonlinear min- 
imization in parameter space [3]  can solve this situation. 
This method is based on parameterizing the fundamental 
matrix keeping in mind that it must have rank 2 by fixing 
just one of the multiple parameterizations. The iteration of 
this method permits computing a better rank-2 F . However, 
obtaining a good estimation alone is not enough because the 
variance of points are not analogous and the least-square 
technique assumes they are comparable. In order to over- 
come this drawback, the second group of methods have to 
be considered. 

The second group of methods are based on the gradient- 
technique [7]. In this case, the equation to solve is 

i 
F 

(5) 
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inwhichgi = (lI2 + 12' + 1:' + 1 h 2 ) l / ' .  

The gradient-based technique obtains better results com- 
pared to linear methods and the iterative methods of the first 
group. Although iterative methods are more accurate than 
linear ones, they are also time consuming and can not elim- 
inate the potential outliers. Hence, robust methods have to 
be used in the presence of outliers. 

3.3. Robust methods 

This paper surveys three robust methods: M-Estitnators, 
Least-Median-Squares (LMedS) and Random Sampling 
(RANSAC), which can be used in the presence of either out- 
liers or bad point localization. 

The M-estimators [7] try to reduce the effect of outliers 
by weighting the residual of each point. A lot of different 
weight functions have been proposed and each one gives 
a new variant of the M-estimator method. The results ob- 
tained are quite good in the presence of outliers but they are 
rather bad if the points are badly located. The LMedS [3] 
and RANSAC [SI techniques are very similar. First, both 
techniques are based on a random selection of a set of points 
which are then used to compute F by using a linear method. 
The difference between these techniques is the way they de- 
termining the best F . The LMedS calculates the median of 
distances between points and epipolar lines for each F. The 
chosen fundamental matrix has to minimize such a median. 
The RANSAC calculates the number of inliers for each F 
and the chosen F is the one which maximizes it. Once the 
outliers are eliminated, the F is recalculated with the aim 
of obtaining a better approach. Another difference is that 
LMedS is more restrictive than RANSAC so that it elimi- 
nates more points. However, the main constraint of both 
techniques is their lack of repetitivity due to the aleatory 
way of selecting the points. 

3.4. Considerations in F estimation 

Data normalization is a key point in hndamental matrix es- 
timation. It has been proved that the computation should not 
be applied directly to the raw data in pixels due to poten- 
tial uncertainties when using by huge numbers. Basically, 
there are two different methods of data normalization The 
first method [3] normalizes the data between kl, 11 The 
second, proposed by Hartley [SI, is based on two transfor- 
mations. In the first, the points are translated so that their 
centroid is placed at the origin. In the second, the points 
are scaled so that the mean of the distances of the points to 
the origin is &. It has been proved that the method pro- 
posed by Hartley gives more accurate results than the previ- 
ous one. 

Another interesting fact is that the estimated F should 
be a rank-2 matrix in order to model the epipolar geom- 
etry with all the epipolar lines intersecting In the epipole. 

Although the rank-2 constraint is not imposed in all the sur- 
veyed methods, there is a mathematical method which trans- 
forms a rank-n square matrix to the closest rank-(n - 1) ma- 
trix [7]. However, the obtained rank-2 F give worse results 
because it has not been optimized. In this case, we propose 
to using any method which imposes a rank-2 matrix in the 
computation of F instead of further transforming it. 

4. EXPERIMENTAL RESULTS 

The surveyed methods have been programmed and their ac- 
curacy analyzed with synthetic and real data, such as under- 
water images from the seabed obtained by our underwater 
robot GARBI. Image points have been normalized by using 
Hartley [SI explained in section two. Table 1 shows the ac- 
curacy of each method as the mean and standard deviation 
of the distances between points and epipolar lines. 

The accuracy of the seven points algorithm extremely 
depends on the seven points used. The least-squares tech- 
nique depends inversely on the amount of bad-located points, 
obtaining usually better results by increasing the amount of 
points. The eigen analysis is the linear method that ob- 
tains the best results because an orthogonal least-squares 
minimization is more realistic than the classic least-squares. 
However, all these methods obtain a rank-3 matrix, which 
means that the epipolar geometry is not properly modeled. 

The analytic method with rank-2 constraint obtains a 
rank-2 hndamental matrix. However, the distances between 
points and epipolar lines are worse than in the linear meth- 
ods. The iterative lineur method improves considerably the 
least-squares technique but can not cope with the outliers 
problem. The iterative Newton-Raphson algorithm obtains 
even better results than the previous method if there is no 
outliers present. Although the nonlinear minimization in 
purameter space obtains also a rank-2 matrix, but his com- 
putational cost is very high. The eighth and ninth methods 
are two versions of the gradient-based method using least- 
squares and orthogonal least-squares, respectively. Both 
methods obtain better results than their equivalent linear 
methods. Furthermore, the eigen analysis, once again, ob- 
tains better results than the other linear methods. Although 
some of these methods obtain a rank-2 matrix, they can not 
cope with outliers. 

The last surveyed methods are known as "robust", which 
means they might detect ana remove the outliers and com- 
pute the fundamental matrix using only the inliers. Three 
versions of the M-estimators have been programmed us- 
ing least-squares, eigen analysis and the method proposed 
by Torr [5], respectively. The three methods use a linear 
initial guess and they become really dependent on the lin- 
ear method used to estimate it. The following two meth- 
ods are two versions of LMedS using again least-squares 
and eigen analysis, respectively. Although the accuracy of 
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Table 1. Methods Implemented with mean and std. of error: 1.- seven points; 2.- least-squares (LS) 3.- orthogonal LS; 4.- rank- 
2 constraint; 5.- iterative heal  using LS; 6.- iterative Newton-Raphson using LS; 7.- minimization in parameter space using eigen; 8.- 
gradient using LS; 9.- gradient using eigen; 10.- M-Estimator using LS; 1 1 .- M-Estimator using eigen; 12.- M-Estimator proposed by Torr; 
13.- LMedS using LS; 14.- LMedS using eigen; 15.- RANSAC using eigen. 

LMedS seems worse than the one given by M-estimators, 
LMedS removes the outliers much more correctly since the 
epipolar geometry is better modeled. The RANSAC is the 
last surveyed method, which does not obtain better results 
than LMedS with eigen analysis because the method is too 
permissive selecting the outliers. 

5. CONCLUSIONS 

The objective of this article is a comparative survey of fif- 
teen of the most frequently used methods in fundamental 
matrix estimation. Thr: different methods have been pro- 
grammed and their accuracy analyzed with real images. Ex- 
perimental results show that: a) linear methods are quite 
good if the points are well located in the image and the cor- 
respondence problem previously solved; b) iterative meth- 
ods can cope with some gaussian noise in the localization of 
points, but they become quite inefficient in the presence of 
outliers; c) robust methods can cope with both discrepancy 
in the localization of points and false matchings. 

The experimental results point out that the orthogonal 
least-squares using eig en analysis gives better results than 
the classic least-squares technique of minimization. More- 
over, a rank-2 method is preferred because it models the 
epipolar geometry with. all the epipolar lines intersecting at 
the epipole. Finally, experimental results show that the cor- 
responding points have to be normalized and the best results 
using this sort of method have been obtained by using the 
method proposed by Hartley [7]. In conclusion, the best 
results were obtained with the LMedS method forcing the 
matrix to be rank-2 once the outliers have been removed. 
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