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A B S T R A C T

Spurious damage modes in continuum damage mechanics models for fiber-reinforced polymer composite
materials based on the effective stress tensor can be generated when large strains occur. A methodology
to prevent this spurious phenomenon is developed in the present work. The longitudinal damage activation
functions are based on the effective stress tensor, however, nominal stresses are used on the transverse
damage activation functions. The proposed method can be straightforwardly implemented on previously-
developed constitutive models which use the effective stress tensor, an explicit implementation of the proposed
constitutive model is presented. The enhancement of the predicted failure mechanisms obtained from the
present constitutive model, with respect to the models which use the effective stress tensor, is demonstrated.
The proposed constitutive model presents a good agreement of the predicted failure pattern obtained from
open-hole compressive experimental tests, as well as on the predicted failure strength.
1. Introduction

Fibre-reinforced polymer (FRP) composite materials present differ-
ent failure mechanisms such as fibre failure, matrix cracking, delami-
nation and buckling, due to their complex manufacturing process and
mechanical behaviour [1]. Fibre failure under tensile loading occurs
on a plane perpendicular to the longitudinal axis, whereas compressive
fibre failure is due to the collapse of the fibres and promotes shear
kinking and matrix damage [2,3]. Matrix cracking occurs in the resin,
accounting for fibre-matrix debonding or voids. Delamination between
layers is promoted by interlaminar stresses that develop at the free
edges.

Continuum damage mechanics (CDM) theory is often employed in
conjunction with finite element (FE) models to predict crack initiation
and propagation in FRP composite materials [1,4,5]. CDM models
represent a crack by introducing damage variables (𝑑𝑀 ) in the corre-
sponding terms of the elasticity tensor (C𝑒(𝑑𝑀 )) to obtain the stress
tensor (𝝈) as a function of the elastic strain tensor (𝜺𝑒 ),

𝝈 = C𝑒(𝑑𝑀 )𝜺𝑒 . (1)

Therefore, the non-linear response due to cracking is obtained without
explicitly modelling it in the mesh.

∗ Corresponding author.
E-mail address: ivan.ruiz@udg.edu (I.R. Cózar).

The terms of C𝑒 are often modified according to the correspond-
ing 𝑑𝑀 obtained from a failure criterion. For example, Maimí et al.
[6] modelled a longitudinal crack resulting from tensile stresses by
reducing the longitudinal Young’s modulus as a function of a damage
variable obtained from the non-interactive maximum strain failure
criterion. The authors evaluated the failure criterion using the effective
stress tensor (�̃� ). This framework was introduced by Lemaitre [7] and
is based on the hypothesis of Strain Equivalence [7,8]. The hypothesis
considers that the strain associated to a damaged stress state (𝝈 ) is
equivalent to the strain associated with its effective stress state (un-
damaged stress state, �̃� ). The effective stress tensor can be calculated
as a function of the elastic material properties and 𝜺𝑒 as

�̃� = C𝑒(𝑑𝑀 = 0)𝜺𝑒 , (2)

and is widely used to evaluate the failure criteria in CDM models [5,6,
9–16]

One of the main advantages of using �̃� in CDM models is to develop
a constitutive model efficient in terms of computational time. The
elastic material properties (i.e., C𝑒(𝑑𝑀 = 0)) and 𝜺𝑒 are the known data
in CDM models with �̃� while evaluating the failure criteria. Therefore,
the damage only depends on the strain tensor and can be explicitly
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Fig. 1. Longitudinal virtual tensile test at the Gauss-point level using a CDM model
based on �̃� , where 𝑑𝓁 and 𝑑𝑡 are the damage variables associated to the longitudinal
and transverse direction, respectively, 𝑋𝑇 is the longitudinal tensile strength and 𝑌𝑇𝐵
s the biaxial transverse tensile strength. (Top) Longitudinal response, and (bottom)
ransverse response.

ound. However, an iterative implicit solution for the damage variables
hould be employed in CDM models which use 𝝈 to evaluate the failure
riteria [17–20], then the computational time increases.

The use of �̃� in evaluating failure criteria can induce the activation
f damage variables corresponding to failure mechanisms that should
ot occur [21]. A large elastic strain in a particular direction due to
amage produces a large effective stress in that direction, but also
arge effective stresses in other directions may be generated. This
henomenon is observed in the pure longitudinal and transverse direc-
ions of �̃� , due to the coupling of the strains by the Poisson’s ratios.
or example, a uniaxial loading in the longitudinal direction activates
amage variables associated to the longitudinal direction (𝑑𝓁 ). This
ongitudinal damage produces effective stresses in the pure transverse
irections,

̃22 = �̃�33 =
𝐸11𝐸22𝜈12

𝐸11 (1 − 𝜈23 ) − 2𝐸22𝜈122
𝑑𝓁 𝜀

𝑒
11, (3)

where 𝐸11 and 𝐸22 are the Young’s modulus in longitudinal and
transverse direction, respectively, and 𝜈12 and 𝜈23 are the longitudinal
and transverse Poisson’s ratios, respectively. Hence, damage variables
associated to the transverse directions can be activated despite the
nominal stresses being null (𝜎22 = 𝜎33 = 0), see Fig. 1. Consequently,
spurious damage can be generated in the transverse directions. This
event is a general limitation of constitutive models which use �̃� . This
phenomenon can be observed in the literature constitutive models [6,
11,13,15,16].

Matzenmiller et al. [10] proposed a damage model to describe
the mechanical behaviour of FRP composite materials based on the
CDM theory. The model described four failure mechanisms: (i) fibre
failure due to traction; (ii) fibre buckling and kinking due to com-
pression; (iii) matrix cracking under transverse tension and shearing;
and (iv) matrix cracking under transverse compression and shearing.
Each failure mechanism listed above was associated with a failure
criterion as a function of �̃� and its corresponding damage variable.
The authors avoided the coupling of the components of �̃� when the
damage is achieved by degrading the Poisson’s ratios as a function of
the corresponding damage variable. These relationships were assumed
from experimental evidence. This procedure allows the components of
�̃� to be decoupled when damage occurs. Hence, the Poisson’s ratios
are a function of the damage variables that are unknown while �̃� must
be calculated. Therefore, an iterative algorithm should be implemented
2

to solve the model [22], thus increasing the computational time. In
ddition, the solution presented by Matzenmiller et al. [10] cannot be
traightforwardly implemented in the previously developed constitu-
ive models which use �̃� (e.g. the evolution of the damage variables
ust be redefined).

The main objective of this work is to present an improved approach
o avoid spurious damage in CDM models which use �̃� due to large
trains caused by damage in other directions. The solution presented
ere can be explicitly implemented in existing CDM models that have
lready been developed using �̃� [6,11,13,15,16] and linked with an
xplicit FE solver. The constitutive model presented by Cózar et al.
23], which is a 3D elastoplastic damage model based on CDM theory
sing �̃� , is used as a baseline to demonstrate how the formulation of

existing CDM models can be modified to avoid spurious damage modes
developing.

The formulation of the constitutive model is presented in Section 2
and its implementation in a FE explicit solver in Section 3. A pure
longitudinal virtual test at the Gauss-point level presented in Section 4
demonstrates that no spurious damage is found in the present consti-
tutive model. In addition, open-hole compressive (OHC) tests with a
multidirectional laminate and with unidirectional laminates are used
to explain and demonstrate the improvement in the failure pattern
predicted by the present model. Finally, the main conclusions are
presented in Section 5.

2. Constitutive model

2.1. Complementary free energy and plastic evolution

The constitutive model used in this work is based on the elasto-
plastic damage model developed by Cózar et al. [23]. The additive
decomposition of the infinitesimal strain tensor is assumed as

𝜺 = 𝜺𝑒 + 𝜺𝑝 , (4)

where 𝜺𝑒 contains the cracking strains and 𝜺𝑝 is the plastic strain tensor.
For homogenised composite materials, an elastic behaviour until the
onset of plasticity in the directions governed by the matrix is assumed.
Then, the plastic strains can grow until a matrix crack is started.
After that, the damage develops without increasing the plastic strains
at the Gauss-point level. However, plasticity is not considered in the
longitudinal direction. The model describes a purely elastic response
before the onset of damage in the longitudinal direction,.

The complementary Gibbs free-energy density function reads

𝑊 ∶=
𝜎2𝓁

2(1 − 𝑑𝓁 )𝐸11
−

2𝜈12𝜎𝓁𝑝𝑡
𝐸11

+
𝑝2𝑡

2(1 − 𝑑𝑡 )𝐸𝑡
+

𝜏2𝑡
2(1 − 𝑑𝑠𝑡 )𝐺𝑡

+
𝜏2𝓁

2(1 − 𝑑𝑠𝓁 )𝐺12
+ 𝝈𝜺𝑝 ,

(5)

where 𝐺12 is the longitudinal shear Young’s modulus. 𝐸𝑡 and 𝐺𝑡 are the
bulk and shear elastic stiffness, respectively, in the transverse isotropic
plane which are defined as

𝐸𝑡 ∶=
𝐸22

2(1 − 𝜈23 )
(6)

and

𝐺𝑡 ∶=
𝐸22

2(1 + 𝜈23 )
. (7)

𝑊 depends on four of the five invariants of 𝝈 at a rotation with respect
to the longitudinal axis: 𝜎𝓁 related to the longitudinal stress component,

𝜎𝓁 = 𝜎11; (8)

𝑝𝑡 that describes the transverse hydrostatic pressure,

𝑝 =
𝜎22 + 𝜎33 ; (9)
𝑡 2
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𝜏𝓁 related to the longitudinal shear stresses,

𝓁 =
√

𝜎212 + 𝜎213; (10)

nd 𝜏𝑡 related to the transverse shear stresses,

𝑡 =

√

(𝜎22 − 𝜎33)2 + 4𝝈2
23

2
, (11)

here 𝝈𝑖𝑗 are the Cartesian components of 𝝈 .
Finally, the strain tensor is obtained applying the Clausius–Duhem

nequality [9,24] as

=
𝜕𝑊
𝜕𝝈

= H𝝈 + 𝜺𝑝 , (12)

here H is the compliance tensor. In addition, four damage variables
𝑀 (𝑀 = 𝓁, 𝑡, 𝑠𝓁, 𝑠𝑡) are defined in 𝑊 to describe the following failure
echanisms: 𝑑𝓁 associated to the longitudinal tensile failure (𝜎𝓁 > 0)

nd the longitudinal compressive failure (𝜎𝓁 < 0); 𝑑𝑡 describes the
ode-I matrix cracking; 𝑑𝑠𝑡 associated to the mode-II matrix cracking;

nd 𝑑𝑠𝓁 combines the longitudinal tensile and matrix failure mecha-
isms. Subscript 𝓁 refers to longitudinal, subscript 𝑡 to transverse and
ubscript 𝑠 to shear.

Regarding to the plasticity modelling, the model presented by Cózar
t al. [23] is employed. The yield function is defined as

𝑝 (𝝈 , �̄�𝑝) ∶=

√

√

√

√

(

𝑌𝐶𝑃 + 𝑌𝑇𝑃
𝑌𝐶𝑃 𝑌𝑇𝑃

)2 𝜏2𝑡 + 𝜇𝑡𝑝𝑝2𝑡
1 + 𝜇𝑡𝑝

+
(𝜇𝑠𝓁𝑝
𝑆𝐿𝑃

𝜏𝓁

)2

+
𝑌𝐶𝑃 − 𝑌𝑇𝑃
𝑌𝐶𝑃 𝑌𝑇𝑃

𝑝𝑡 +
(1 − 𝜇𝑠𝓁𝑝)

𝑆𝐿𝑃
𝜏𝓁 − 1 ≤ 0,

(13)

here 𝜇𝑠𝓁𝑝 and 𝜇𝑡𝑝 are the plastic envelope shape coefficients, 𝑌𝐶𝑃
nd 𝑌𝑇𝑃 are the transverse compressive and tensile yield stresses,
espectively, and 𝑆𝐿𝑃 is the longitudinal shear yield stress. The yield
tresses are defined as a function of a plastic internal variable called
he equivalent plastic strain (�̄�𝑝). In the present constitutive model, the
volution of the yield stresses is defined using a yield stress vs. �̄�𝑝 curve
or each of them. The evolution of the equivalent plastic strain rate is
efined as

̇̄𝜀𝑝 ∶=
√

1
2
‖

‖

‖

�̇�𝑝‖‖
‖

. (14)

In addition, the non-associative flow rule presented in [23] is applied,

�̇�𝑝 ∶= 𝜆
𝜕𝜑𝑝

𝜕𝝈
, (15)

here 𝜆 is the plastic multiplier parameter [25] and 𝜑𝑝 is the plastic
otential function,

𝑝(𝝈 ) ∶=

√

√

√

√

√

(

𝑌𝐶𝑃 + 𝑌𝑇𝑃
𝑌𝑇𝑃 𝑌𝐶𝑃

)2 𝜏2𝑡 + �̂�𝑡𝑝𝑝2𝑡
1 + �̂�𝑡𝑝

+

(

�̂�𝑠𝓁𝑝
�̂�𝐿𝑃

𝜏𝓁

)2

+
𝑌𝐶𝑃 − 𝑌𝑇𝑃
𝑌𝑇𝑃 𝑌𝐶𝑃

𝑝𝑡 +
(1 − �̂�𝑠𝓁𝑝)

�̂�𝐿𝑃
𝜏𝓁 − 1,

(16)

here 𝑌𝐶𝑃 and 𝑌𝑇𝑃 are the transverse compressive and tensile plastic
otential stresses, respectively, �̂�𝐿𝑃 is the longitudinal shear plastic
otential stress, and �̂�𝑡𝑝 and �̂�𝑠𝓁𝑝 are the plastic potential envelope
hape coefficients. The parameters of Eq. (16) are defined as constant
arameters.

.2. Damage evolution

Damage activation functions based on effective stresses (or strains)
an be expressed as

𝑁 ∶= 𝜙𝑁 − 𝑟𝑁 ≤ 0, (17)

here 𝜙𝑁 (�̃� ) is a loading function in which �̃� only depends on strains
3

nd material constants (Eq. (2)) and 𝑟𝑁 is an internal damage variable p
elated to a damage mechanism 𝑁 = 𝓁𝑇 ,𝓁𝐶, 𝑡. Expressed in this way,
this internal variable can be explicitly integrated as

𝑟𝑁 = max
(

1, max
𝑠∈[0,𝑡]

(

𝜙𝑠
𝑁

)

)

, (18)

since 𝜙𝑁 only depends on 𝜺.
Three loading functions were considered in Cózar et al. [23]: (i)

𝜙𝓁𝑇 for longitudinal tensile loading conditions; (ii) 𝜙𝓁𝐶 for longitudinal
compressive loading conditions; and (iii) 𝜙𝑡 for transverse loading
conditions. The loading functions in [23] were defined as

𝜙𝓁𝑇 ∶=
𝜀𝑒11𝐸11

𝑋𝑇
, (19)

where 𝑋𝑇 is the longitudinal tensile strength;

𝜙𝓁𝐶 ∶= 1
𝑋𝐶

(√

�̃� 2
𝓁 + 𝜂𝑞𝑡 �̃�

2
𝑡 + 𝜂𝑞𝑠𝓁 �̃�

2
𝓁 + 𝜂𝑡�̃�𝑡 + 𝜂𝑠𝓁 �̃�𝓁

)

, (20)

where 𝑋𝐶 is the longitudinal compressive strength, and 𝜂𝑡, 𝜂
𝑞
𝑡 , 𝜂𝑠𝓁 and

𝜂𝑞𝑠𝓁 are failure envelope shape coefficients to modify the failure en-
velope related to the longitudinal compressive loading states, see
Fig. 2.a,b; and

𝜙𝑡 ∶=

√

√

√

√

(

𝑌𝐶 + 𝑌𝑇
𝑌𝑇 𝑌𝐶

)2 �̃� 2𝑡 + 𝜇𝑡�̃�2𝑡
1 + 𝜇𝑡

+
(

𝜇𝑠𝓁
𝑆𝐿

�̃�𝓁

)2
+
𝑌𝐶 − 𝑌𝑇
𝑌𝑇 𝑌𝐶

�̃�𝑡+
(1 − 𝜇𝑠𝓁)

𝑆𝐿
�̃�𝓁 ,

(21)

where 𝑌𝐶 and 𝑌𝑇 are the transverse compressive and tensile strengths,
respectively, 𝑆𝐿 is the longitudinal shear strength, and 𝜇𝑡 and 𝜇𝑠𝓁
are failure envelope shape coefficients to modify the failure envelope
related to the transverse loading states, see Fig. 2.c,d.

The longitudinal damage variable in Eq. (5) is defined as

𝑑𝓁 ∶= 𝑑𝓁𝑇
⟨𝜎𝓁⟩
|𝜎𝓁|

+ 𝑑𝓁𝐶
⟨−𝜎𝓁⟩
|𝜎𝓁|

, (22)

where ⟨𝑥⟩ is the McCauley operator defined as ⟨𝑥⟩ ∶= (𝑥 + |𝑥|)∕2,
and 𝑑𝓁𝑇 and 𝑑𝓁𝐶 are the longitudinal tensile and compressive dam-
ge variables, respectively. They are defined as a function of the
orresponding 𝑟𝑁 and using a bilinear softening law [23]. Therefore,

different evolution of the longitudinal damage variable is considered
(one in tension and another in compression). The damage evolution in
mode-I matrix cracking is assumed equal to the one obtained in mode-
II matrix cracking when the matrix crack opens. However, the mode-I
degradation is not considered when the matrix crack closes [15,23],

𝑑𝑡 ∶= 𝑑𝑠𝑡
⟨𝑝𝑡⟩
|𝑝𝑡|

. (23)

In addition, it is assumed that the stiffness degradation in the longi-
tudinal shear direction is also influenced by the longitudinal tensile
stress [6,15,23] as

𝑑𝑠𝓁 ∶= 1 − (1 − 𝑑𝑠𝓁∗ )(1 − 𝑑𝓁𝑇 ), (24)

where 𝑑𝑠𝓁∗ is the damage related to the pure longitudinal shear stresses
[15,23].

The previous formulation can produce spurious damage, as ex-
plained before. That is clearly presented in Fig. 1 where a large 𝜀𝑒11
generates transverse effective stresses (due to the 𝑑𝓁 ) and spurious
transverse damage. This phenomenon is not account for the longitu-
dinal tensile damage because 𝜙𝓁𝑇 in Eq. (19) only depends on 𝜀𝑒11,
ince a non-interacting maximum allowable strain criteria is employed.
owever, while this event can arise at 𝜙𝓁𝐶 from Eq. (20) this is suitable

ince longitudinal compressive failure mechanisms are promoted by
atrix cracking in FRP composite materials. Longitudinal compressive

ailure is promoted by fibre collapse as a result of shear kinking (due
o small initial fibre misalignments) and matrix cracking [26,27]. In
ddition, the transverse failure directly affects the longitudinal com-
ressive stiffness since the matrix is not capable of containing the fibres
romoting fibre-microbuckling.
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Fig. 2. Schematic representation of the failure envelope for the stress space for 𝑑𝑀 = 0: (a) 𝜎11 − 𝜎22, (b) 𝜎11 − 𝜎12, (c) 𝜎22 − 𝜎33, and (d) 𝜎22 − 𝜎12. Note that, (b) and (d) are
symmetric with respect to their X-axis.
𝑌

𝑌

In FRP composite materials, the onset of a crack in any direction
governed by the matrix is reached with less stress compared to the
stress required to initiate a crack in the pure longitudinal direction.
Therefore, the longitudinal damage variables do not usually experience
the spurious damage phenomenon discussed in the present work. Based
on the previous observations, 𝜙𝑡 (see Eq. (21)) is modified as a function
of the nominal stress tensor instead of the effective stress tensor.
Therefore, 𝜙𝑡 is not affected by pure longitudinal loading conditions.
The transverse activation function is rewritten as

𝐹 𝑡 ∶= 𝜙𝑡 − 1 ≤ 0, (25)

and the transverse loading function as (𝝈 instead of �̃� in Eq. (21))

𝜙𝑡 ∶=

√

√

√

√

√

(

𝑌 𝑑
𝐶 + 𝑌 𝑑

𝑇

𝑌 𝑑
𝑇 𝑌

𝑑
𝐶

)2
𝜏2𝑡 + 𝜇𝑡𝑝2𝑡
1 + 𝜇𝑡

+

(

𝜇𝑠𝓁
𝑆𝑑
𝐿

𝜏𝓁

)2

+
𝑌 𝑑
𝐶 − 𝑌 𝑑

𝑇

𝑌 𝑑
𝑇 𝑌

𝑑
𝐶

𝑝𝑡+
(1 − 𝜇𝑠𝓁)

𝑆𝑑
𝐿

𝜏𝓁 ,

(26)

here the index (⋅)𝑑 in strengths refers to them being from the material
urrently damaged. Therefore, these strengths must be defined as a
unction of the corresponding damage variable (current strengths) since
he loading function is evaluated with the nominal stress tensor. Oth-
rwise, only the onset of damage and not the evolution of the damage
ould be captured. For example, in a pure transverse tensile test 𝜎22 =
𝑌𝑇 only in the onset of damage, after that 𝜎22 < 𝑌𝑇 . The current
trengths are obtained assuming linear softening laws for the transverse
amage variables as in [23] (see Fig. 3) and applying: pure transverse
4

Fig. 3. Stress vs. opening crack (𝜔𝑖𝑗 ) curves of the softening laws in the transverse
directions.

compressive state stress conditions for 𝑌 𝑑
𝐶 (𝑑𝑠𝑡 ); pure transverse tensile

state stress conditions for 𝑌 𝑑
𝑇 (𝑑𝑠𝑡 ); and pure longitudinal shear state

stress conditions for 𝑆𝑑
𝐿(𝑑𝑠𝓁∗ ). They read

𝑑
𝐶 =

4𝑌𝐶𝑌𝐶𝐸22 (1 − 𝑑𝑠𝑡 )

4𝑌𝐶𝐸22 (1 − 𝑑𝑠𝑡 ) + 𝑙∗𝑡 (𝜈23 − 1)(𝑌𝐶𝑑𝑠𝑡 )2 + 2𝑌 2
𝐶 𝑙

∗
𝑡 𝑑𝑠𝑡

, (27)

𝑑
𝑇 =

2𝑌𝑇 𝑌𝑇 𝐸22 (1 − 𝑑𝑠𝑡 )
2 ∗

, (28)

2𝑌𝑇 𝐸22 (1 − 𝑑𝑠𝑡 ) + 𝑌𝑇 𝑙𝑡 𝑑𝑠𝑡
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Fig. 4. Schematic representation of the numerical implementation of the damage of the present constitutive model at the Gauss-point level when a pure transverse tensile test is
applied: (a) undamaged stress state; (b) onset of a matrix crack; and (c) propagation of a matrix crack.
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and

𝑆𝑑
𝐿 =

2𝑆𝐿
𝑆𝐿𝐺12 (1 − 𝑑𝑠𝓁∗ )

2𝑆𝐿
𝐺12 (1 − 𝑑𝑠𝓁∗ ) + 𝑆2

𝐿𝑙
∗
𝑠𝓁
𝑑𝑠𝓁∗

, (29)

here 𝑃 (𝑃 = 𝑌𝐶 , 𝑌𝑇 , 𝑆𝐿) is the fracture toughness of the corre-
ponding direction, and 𝑙∗𝑡 and 𝑙∗𝑠𝓁 are the characteristic element length
t the transverse and longitudinal shear directions, respectively. The
alibration of the envelope shape coefficients of Eqs. (20) and (26) is
xplained in detail in [23].

. Constitutive model implementation

The implementation of the present constitutive model for an explicit
E solver at the Gauss-point level is explained below. The damage
ariable corresponding to the longitudinal direction (𝑑𝓁 ) is explicitly
btained as in the original model [15,23], since the same damage
ctivation functions (Eq. (17)) are used. However, the damage vari-
bles corresponding to the transverse direction (𝑑𝑠𝑡 and 𝑑𝑠𝓁∗ ) must be
btained from the transverse damage activation function in Eq. (25).

FE models with explicit solvers use very small increments of the
train tensor, especially for FRP composite materials. Therefore, the
ariation of the stress tensor and of the internal variables is very
mall between each increment of the strain tensor. The implementation
lgorithm presented here is based on the fact that the solution at time

(𝑛+1)
is close to solution at the converged solution at the previous time

interval (𝑡
(𝑛)
).

The schematic representation of the modelled damage for a pure
transverse tensile test at the Gauss-point level is presented in Fig. 4;
note that the displayed strain increment is high for the sake of the al-
gorithm explanation. Firstly, the elastic–plastic behaviour is considered
without damage (see Fig. 4.a). Then, the matrix crack onset is observed
and, therefore, no further development of plasticity will evolve [23].
From point 0 to 1 in Fig. 4.b, a predictor stress tensor (�̌� ) is calculated
using C𝑒 as a function of the damage variables of the previous time
interval (𝑑𝑀(𝑛)

) as

̌
(𝑛+1)

∶= C𝑒(𝑑𝑀(𝑛)
)𝜺𝑒

(𝑛+1)
. (30)

Therefore, the predicted and effective stress tensors are the same when
the material is undamaged (𝑑𝑀(𝑛)

= 0 → �̌� = �̃� ). However, if the
Gauss-point is damaged at the previous time interval, the predicted
and effective stress tensors are not the same (𝑑𝑀(𝑛)

> 0 → �̌� ≠ �̃� ), see
ig. 4.c from points 1 to 2. After that, 𝜙𝑡(𝑛+1)

is evaluated as a function of
�̌� (𝑑𝑀(𝑛)

) and the current transverse strengths from Eqs. (27)–(29) with

𝑑𝑀(𝑛)

(

𝑌 𝑑
𝐶 (𝑑𝑠𝑡(𝑛) ), 𝑌

𝑑
𝑇 (𝑑𝑠𝑡(𝑛) ) and 𝑆𝑑

𝐿(𝑑𝑠𝓁∗ (𝑛))
)

.
A new internal transverse damage variable (𝑟𝑡 ) is introduced to

account for the history of the transverse damage, then 𝑑 and 𝑑 are
5

𝑠𝑡 𝑠𝓁∗
btained as a function of 𝑟𝑡 . When the transverse damage evolves, the
imposed condition by Eq. (25) is achieved by linearising 𝐹 𝑡 as

𝐹 𝑡(𝑛+1)
+

𝜕𝐹 𝑡(𝑛+1)

𝜕𝑟𝑡(𝑛+1)

𝛥𝑟𝑡(𝑛+1)
= 0. (31)

Considering that Eq. (26) satisfies
𝜕𝐹 𝑡(𝑛+1)

𝜕𝑟𝑡(𝑛+1)

≈ − 1
𝑟𝑡(𝑛)

, (32)

and introducing Eq. (32) in Eq. (31), the internal transverse damage
variable at the current time yields

𝑟𝑡(𝑛+1)
= 𝜙𝑡(𝑛+1)

𝑟𝑡(𝑛) . (33)

Finally, to guarantee that 𝑟𝑡 monotonically increases, then

𝑟𝑡(𝑛+1)
= max

(

𝑟𝑡(𝑛) , 𝜙𝑡(𝑛+1)
𝑟𝑡(𝑛)

)

, (34)

here the initial 𝑟𝑡 must be defined equal to 1. The residue from the
irst iteration is negligible when FE explicit solver is employed.

In summary, the implementation is based on the approach applied
n the constitutive models with �̃� . The main difference is that 𝐹 𝑡

is evaluated with the damaged material properties and the applied
stress tensor. The graphical comparison of the proposed implementa-
tion method with the one used in constitutive models with �̃� under
a pure transverse tensile loading state is presented in Fig. 5. The
current predictor stress tensor (�̌�

(𝑛+1)
) is equal to the effective stress

tensor calculated by degrading the corresponding stiffness using 𝑑𝑀(𝑛)

(�̃�
(𝑛+1)

(C𝑒(𝑑𝑀(𝑛)
))). Similar behaviour is obtained when the transverse

internal damage variable 𝑟𝑡 is compared. Therefore, the evolution of
the transverse damage variables as a function of 𝑟𝑡 yields the one in
constitutive models with �̃� . The transverse damage is guaranteed to
increase since 𝑟𝑡(𝑛+1)

in Eq. (34) always increases and the transverse
damage variables as a function of 𝑟𝑡(𝑛+1)

are monotonically increasing
functions.

The longitudinal elastic domain thresholds (𝜙𝓁𝑇 , 𝜙𝓁𝐶 ) are explic-
itly obtained from Eq. (18). All damage variables (longitudinal and
transversal) are obtained from the expressions presented in [15,23]
using the strengths from the undamaged material. The return mapping
for the plastic modelling and its coupling with the damage modelling
presented in [23] is employed in the present work. Algorithm 1 in Ap-
pendix summarises the workflow to implement the constitutive model
at the Gauss-point level using an explicit solver in a nonlinear FE
framework.

4. Numerical predictions

The improvement of the present formulation is demonstrated by

comparing the results using the present constitutive model with those
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Fig. 5. Schematic representation of the numerical implementation of the damage of
the present constitutive model at the Gauss-point level when a pure transverse tensile
test is applied: (a) proposed implementation; (b) equivalent implementation using the
effective stress tensor and damaged material properties.

Fig. 6. Schematic representation of the boundary conditions applied in the open-hole
compressive simulations. 𝜃 is the fibre angle orientation.

obtained from the previous model developed by Cózar et al. [23],
which is a CDM model based on �̃� . A longitudinal virtual tensile test at
Gauss-point level is performed in Section 4.1. The stresses and damage
variables vs. strain curves of the longitudinal and transverse direction
are presented. Next, an OHC test using a quasi-isotropic laminate is
carried out in Section 4.2. The comparison of the numerical results from
both models with the experimental data is used to analyse the impact
of the new model on the predictions. After that, an OHC test using
a unidirectional stacking sequence at 0◦ is presented in Section 4.3
since the failure strength of OHC tests in quasi-isotopic laminates is
governed by the plies at 0◦. This comparison can help to explain the
possible discrepancies on the predicted failure strength obtained from
each model in the quasi-isotropic laminate. Finally, an OHC test using
a unidirectional stacking sequence at 90◦ is performed in Section 4.4.
This last comparison can help to explain the possible discrepancies on
the predicted failure pattern in the quasi-isotropic laminate.

The present constitutive model is implemented in a user material
subroutine VUMAT and is linked with the Abaqus/Explicit solver [28].
The mesh element size selected is less than four times the critical ele-
ment size (0.1 mm) to prevent snap-back of the constitutive softening
laws for each failure mode [29] around the regions where damage is
6

Fig. 7. Longitudinal virtual tensile test at the Gauss-point level using the present con-
stitutive model, where 𝑌𝑇𝐵 is the biaxial transverse tensile strength. (Top) Longitudinal
response, and (bottom) transverse response.

expected in the open-hole tests. In addition, three elements through-
the-thickness of each ply are used. For all the simulations presented,
3D eight-node C3D8R solid elements with reduced integration are used.
The C3D8R solid elements are widely used in FE simulations with
constitutive models based on the crack band model, such as open-
hole and filled-hole test [30], low velocity impact and compression
after impact test [31], single-bolt joints [32,33], composite pressure
vessels [34], etc. Reduced integration elements are used to alleviating
the overstiffness of the elements away from the hole due to their high
aspect ratio [35]. Reduced integration elements also allow to reduce the
computational time compare to the full integration elements. Further-
more, the use of three elements through-the-thickness per ply mitigate
the hourglass effect.

A carbon FRP composite material is employed in the simulations,
IM7/8552 unidirectional prepreg system with a nominal thickness of
0.131 mm [36]. The material properties required by the model are
listed in Table 1. The envelope shape coefficients are those reported
in [15]. They were obtained fitting the failure criteria previously de-
veloped by Camanho et al. [19], which were developed by combining
experimental data and micromechanical models for the selected ma-
terial in this work. In addition, the yielding stresses vs. �̄�𝑝 required to
model the plastic strains are obtained from [37]. The fracture toughness
in the transverse compressive direction (𝑌𝐶 ) is adjusted to fit the
experimental data of a single OHC test presented in [38]. In this case,
the hole diameter of the specimen selected to adjust the parameter
is equal to 3 mm. The numerical modelling strategy used to adjust
𝑌𝐶 follows the one presented in [23]. The relative error between the
numerical and mean experimental values of the failure strength is equal
to 0.18%.

The boundary conditions presented in Fig. 6 are applied in the open-
hole virtual tests. The displacement on the upper face of the specimens
is applied at low velocity to avoid dynamic effects, while the remaining
degrees of freedom of this face are constrained. Furthermore, all de-
grees of freedom on the bottom face of the specimens are constrained.
In addition, the out-of-plane displacement on the front and back faces
are fixed in the virtual test of Section 4.3 in accordance with Seon et al.
[39], who used a support to prevent buckling during experimental tests.

4.1. Longitudinal tensile test

A pure longitudinal virtual tensile test is carried out using the
present constitutive model at the Gauss-point level. The longitudinal

stress vs. strain curve follows the imposed softening law in the tensile
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Fig. 8. Numerical-experimental comparison of the remote stress vs. axial strain curves
of the open-hole compressive test performed by Wisnom et al. [40]. The green area
represents the experimental error of the failure strength assuming a level of confidence
equal to 95%.

direction (bilinear softening curve) and the evolution of 𝑑𝑠𝓁 is equal
to 𝑑𝓁𝑇 due to the definition of Eq. (24) since 𝑑𝑠𝓁∗ (𝜙𝑡 = 0) = 0, see
Fig. 7.a. However, the transverse damage variables are equal to zero
(𝑑𝑡 = 𝑑𝑠𝑡 = 𝑑𝑠𝓁∗ = 0) since the stresses in the transverse directions are
equal to zero and, therefore, 𝜙𝑡 = 0, see Fig. 7.b.

The comparison of Fig. 1 with Fig. 7 demonstrates that the CDM
which use �̃� can generate spurious damage in the transverse direction
when a pure tensile loading condition is applied. However, the pre-
sented model in this work avoids transverse damage variables being
activated when the Gauss-point is not loaded in the transverse direction
(𝑝𝑡 = 𝜏𝓁 = 𝜏𝑡 = 0).

4.2. Open-hole compressive test

The OHC test in a quasi-isotropic laminate [45/90/−45/0]4s and
a diameter of 6.35 mm carried out by Wisnom et al. [40] is used
in this section. The stress vs. strain curve obtained from the present
model matches the one obtained by the model [23] until the onset
of damage, see Fig. 8. After that, the evolution of the curves are
significantly different. It would be expected that the model [23] which
use �̃� suddenly drops when the failure strength is reached since the
longitudinal damage generates spurious transverse damage. However,
the stress vs. strain curve gradually decreases after the failure strength
from the model [23]. This behaviour is explained in Fig. 10.c, the
failure is developed in a larger area in comparison of the present
model because the spurious damage is extended in the whole specimen.
Therefore, the model with �̃� dissipated more energy due to damage
than the present model.
7

Table 1
Model input parameters for the IM7/8552 unidirectional prepreg system.

Symbol Value Unit Source

Elastic

𝐸11 171 420.00 MPa [36]
𝐸22 9 080.00 MPa [36]
𝐺12 5 290.00 MPa [36]
𝜈12 0.32 – [36]
𝜈23 0.45 – [23]

Plastic

𝑌𝐶𝑃 (�̄�𝑝) Curve [37]
𝑌𝑇𝑃 (�̄�𝑝) Curve [37]
𝑆𝐿𝑃 (�̄�𝑝) Curve [37]
𝜇𝑡𝑝 0.47 – [23]
𝜇𝑠𝓁𝑝 1.00 – [23]
𝜈𝑝23𝑇 1.00 – [37]
𝜈𝑝23𝐶 1.00 – [37]
𝜈𝑝122 0.00 – [37]

Damage

𝑋𝐶 1 017.50 MPa [41]
𝑓𝑋𝐶

𝑋𝐶 203.50 MPa [15]
𝑋𝐶

106.30 N/mm [36]
𝑓𝑋𝐶

𝑋𝐶
26.58 N/mm [15]

𝑋𝑇 2 323.50 MPa [41]
𝑓𝑋𝑇

𝑋𝑇 464.70 MPa [15]
𝑋𝑇

97.80 N/mm [42]
𝑓𝑋𝑇

𝑋𝑇
48.90 N/mm [15]

𝑌𝐶 253.70 MPa [15]
𝑌𝐶 2.8 N/mm Adjusted in Section 4
𝑌𝑇 62.30 MPa [36]
𝑌𝑇 0.28 N/mm [36]
𝑆𝐿 92.30 MPa [36]
𝑆𝐿

0.80 N/mm [36]
𝜇𝑡 0.90 – [15]
𝜇𝑠𝓁 1.00 – [15]
𝜂𝑠𝓁 9.50 – [15]
𝜂𝑞𝑠𝓁 0.00 – [15]
𝜂𝑡 12.00 – [15]
𝜂𝑞𝑡 350.00 – [15]

The stress obtained from the present model suddenly drops after the
failure strength since the damage is localised at the midplane of the
specimen (see Fig. 10.b). In addition, the comparison of predicted fail-
ure strength using the present model and the model [23] with the mean
value from the experimental tests are in very good agreement. The
relative error between the failure strength from the present model and
the mean experimental data is equal to 0.32%, and 1.15% from [23].
The green area in Fig. 8 represents the experimental error of the failure
strength assuming a level of confidence equal to 95%. Therefore, the
predicted failure strength from both models are within the expected
dispersion of the experimental data.

Fig. 9 compares the predicted external failure pattern with the
experimental data at 98% of the failure load. Only the comparison
of 𝑑𝑠𝓁 with the experimental data is presented since the external
failure patterns of 𝑑 is approximately equal to 𝑑 and no fully-
𝑠𝑡 𝑠𝓁
Fig. 9. Numerical-experimental comparison of the failure onset at 98% of the failure remote load from the quasi-isotropic laminate in the open-hole compressive test: (a)
experimental data from [40]; (b) present model; and (c) model from [23].
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Fig. 10. Numerical-experimental comparison of the external failure pattern after the failure remote load from the quasi-isotropic laminate in the open-hole compressive test: (a)
experimental data from Wisnom et al. [40]; (b) present model; and (c) model from [23].
damaged elements are found in 𝑑𝓁 and 𝑑𝑡 . The initiation of the failure
patterns from both constitutive models are in good agreement with
the experimental data. In all cases, failure starts in two separate zones
around the hole edge with similar in-plane angles.

The predicted failure external patterns after the peak load are
compared to the experimental data in Fig. 10. Only the transverse
damage variable 𝑑 is presented since the failure pattern of 𝑑 is
8

𝑠𝑡 𝑠𝓁
approximately equal to 𝑑𝑠𝑡 and negligible failure is found in 𝑑𝑡 . The
brittle failure mechanism observed in the experimental data is properly
captured by the proposed constitutive model. The predicted failure pat-
tern is in good agreement with the fracture straight across the laminate
and the out-of-plane fracture plane observed in the experimental data,
see Fig. 10.a and b. However, the failure pattern predicted by the
constitutive model [23] is not in agreement with the experimental data,
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Fig. 11. Predicted failure mechanism evolution of the quasi-isotropic laminate in an open-hole compressive test using the present model: (a) predicted stress vs. strain curve; (b)
longitudinal failure pattern of 0◦ outer ply at 75% of the failure strength; and (c) failure pattern of 0◦/−45◦ interface in the midplane of the specimen after the failure strength.
Fig. 12. Predicted remote stress vs. axial strain curves from the open-hole compressive
test with [0]8.

see Fig. 10.a and c. Similar behaviour is observed at the peak remote
load, the damage is localised around the hole in a fracture straight
across the laminate in the present model. However, the failure pattern
suddenly grows from the hole to either direction in results from [23].

The localisation of the damage in OHC specimens with multidi-
rectional laminates always initiates at the edges of the hole in the
outer 0◦ plies at about 75÷85% of the failure strength [43–48]. This
phenomenon is predicted by the present model, most of the dissipated
energy from the longitudinal failure mechanism at 75% of the failure
9

strength is observed at the outer 0◦ plies, see Fig. 11.b. A negligible
failure is found in the rest of the layers at 75% of the failure remote
load.

The main failure mechanism in OHC specimens is the fibre mi-
crobuckling in the 0◦ plies, which promotes delamination between the
off-axis and 0◦ plies at the edges of the hole [43–48]. Despite not having
specific elements to model delamination as cohesive elements on the
ply interfaces, the elements located on the 0◦ midplane layer in contact
with those from the −45◦ layer show the typical delaminated failure
pattern. There are three elements through-the-thickness of each ply and
𝑑𝑡 refers to the mode-I matrix cracking. After that, the delamination
grows in that interface, see Fig. 11.c

The discrepancies on the failure pattern predicted by [23] with the
pattern experimentally obtained does not have significant influence on
the failure strength in OHC quasi-isotropic laminates. However, these
discrepancies can take an important influence in damage-tolerance
design. In the aeronautical and aerospace industry, a composite struc-
ture is designed to able to sustain loads even with damage [49]. For
example, in compression after impact (CAI) test, firstly the specimen is
impacted and, therefore, different damage mechanisms are produced:
matrix cracking, fibres fractures and delamination [29]. After that, the
specimen is loaded in compression until failure. In the CAI test, the
residual strength depends on the local buckling and the propagation
of the impacted-induced failure mechanisms previously described [50].
Hence, a good prediction of the failure pattern in the impact test
is required to properly predict the CAI strength. The CAI strength
decrease when the delaminated area increases [29,51,52]. Therefore, if
the delaminated area is not properly predicted, the constitutive model
cannot capture the CAI strength.
Fig. 13. Numerical-experimental comparison of the failure pattern at the failure remote load from the [0]8 laminate in the open-hole compressive test: (a) experimental data
from Seon et al. [39]; (b) present model; and (c) model from [23].
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Fig. 14. Predicted external failure patterns after the failure remote load of the [0]8 laminate in an open-hole compressive test using: (a) present model; and (b) model from [23].
Fig. 15. Predicted remote stress vs. axial strain curves from the open-hole compressive
test with [90]8.

4.3. Open-hole compressive test at 0◦

As previously mentioned, the failure strength in OHC tests of mul-
tidirectional laminates is governed by the 0◦ layers [43–48]. For this
reason, an OHC virtual test with all plies aligned with respect to the
load direction is used to explain the agreement of the predicted failure
strength from the present model and [23] in Fig. 8. In addition, the
OHC test carried out by Seon et al. [39] is employed to compare the
predicted onset failure pattern. The hole diameter of the specimen used
in the virtual tests is equal to 6.35 mm and the in-plane dimensions
are 12.8 mm × 25.6 mm as defined in [39], and eight plies at 0◦ with
respect to the loading direction are used (as in Section 4.2).
10
The comparison of the stress vs. strain curve obtained from the
present model and [23] is performed in Fig. 12. Good agreement
between both predicted curves is found until the failure strength. After
that, the curves differently drop and, finally, the stress stabilises around
100 MPa in both cases. This observation could explain the agreement in
the predicted failure strength from OHC specimens with quasi-isotropic
laminates. The failure strength in quasi-isotropic laminates is governed
by 0◦ layers and no significant discrepancies in the failure strength from
the 0◦ unidirectional laminates are obtained.

Fig. 13 compares the external predicted failure pattern at the failure
strength with the experimental data reported by Seon et al. [39]. A
matrix crack is observed in all cases (the experimental data and the
numerical predictions). Good agreement is found on the failure mech-
anism between the predictions and the experimental data. In contrast,
the predicted failure patterns obtained after the failure load from both
models are significantly different, see Fig. 14. The cracks predicted after
the failure load by the present model grow with an inclination from the
hole edge to the lateral edges (Fig. 14a), whereas the cracks predicted
by the model [23] grow horizontally, see Fig. 14.b. That can explain
the discrepancies obtained in the failure pattern of the quasi-isotropic
laminate in Fig. 10.

4.4. Open-hole compressive test at 90◦

OHC virtual tests at 90◦ are carried out to better understand the
discrepancies obtained in the predicted failure pattern from the quasi-
isotropic laminate in Section 4.2. The dimensions of the specimen are
31.75 mm × 31.75 mm, the hole diameter is defined equal to 6.35 mm
and eight plies at 90◦ with respect to the load direction.

The stress vs. strain curve predicted from the present model match
the one obtained from the model [23] until the failure strength of the
latter model is reached, see Fig. 15. After that, the results from [23]
are unstable and very large values of the remote load are obtained.



Composite Structures 330 (2024) 117696I.R. Cózar et al.
Fig. 16. Predicted failure mechanism at the failure strength of the [90]8 laminate in an open-hole compressive test using: (a) present model; and (b) model from [23].
However, the stress vs. strain curve predicted by the present model
increases until the failure strength and, after that, suddenly decreases
until 0 MPa. The percent difference between the predicted failure
strength obtained by each model is 10.65%. This difference does not
have a significant impact on the predicted stress vs. strain curve until
the failure strength of an OHC virtual test with a multidirectional
laminate, since they are dominated by the 0◦ layers.

The external failure patterns predicted by model [23] at the fail-
ure strength is significantly different from those obtained with the
present model, see Fig. 16. In the present model, two matrix cracks
are localised at the midplane of the specimen at the hole edge and
they are horizontally propagated to the specimen edge, see Fig. 16.a.
However, the model [23] not only predicts two matrix cracks at the
hole edge growing in the horizontal direction, but also in the vertical
direction, see Fig. 16.b. In addition, the fibre failure predicted by the
present model is negligible, but fully-damaged elements are found in
the predictions of [23].

The constitutive models which use �̃� can generated spurious dam-
age due to damage in the other directions. After the onset of damage in
one direction, the effective stresses in other directions increase. There-
fore, the activation of the damage functions in the rest of the directions
can be achieved. Longitudinal failure promotes artificial transverse
cracking, which in turn, also promotes artificial longitudinal failure.
That becomes in an unstable damage evolution accentuated after the
failure strength. This could explain the fibre damage field in Fig. 16.b.
The present constitutive model does not experience that phenomenon
because the evolution the transverse variables is not affected by 𝑑𝓁 .
Therefore, no spurious transverse damage can affect to 𝑑𝓁 .

Fig. 17 displays the failure pattern and the deformed shape of the
numerical results when 2.25% of the axial strain is applied. The failure
pattern and the deformed shape of the specimen from the present model
are in agreement with the expected results. Matrix cracks are localised
at the hole edge and propagated to the specimen edge, as well as, the
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out-of-plane displacement of the layers at the midplane. Hence, the
matrix cannot contain the fibres and, therefore, the longitudinal com-
pressive damage is activated at the midplane of the specimen. However,
all elements are fully-damaged in the transverse direction from [23],
therefore, the elements present a large distortion, see Fig. 17.b. The
large distorted elements in Fig. 17.b are removed, otherwise, the results
cannot be analysed.

5. Conclusions

A methodology to prevent spurious damage generated on the con-
stitutive models which use the effective stress tensor is presented. The
proposed approach can be straightforwardly implemented in previously
developed constitutive models. In addition, an explicit implementa-
tion of the constitutive model linked with a finite element explicit
solver is presented. The numerical results obtained from the present
constitutive model and those obtained from a model which use the
effective stress tensor are compared with experimental data obtained
from an open-hole compressive test using a quasi-isotropic laminate.
The comparison demonstrates the improvements that the present model
brings to predicted failure mechanisms. Good agreement on the failure
patterns between the proposed model and the experimental data, as
well as on the failure strength, are found. However, the model which
use the effective stress tensor does not capture the failure pattern after
the failure strength. In addition, two unidirectional virtual test are
carried out to explain the improvements seen on the quasi-isotropic
laminate. Discrepancies on the failure strength on 90◦ laminate is
found between the models. The present constitutive model predicts
the expected deformed shape and failure propagation. However, the
model which use the effective stress tensor becomes unstable in terms
of failure propagation after the failure remote load, and its deformed
shape is inconsistent with the expected shape.
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Fig. 17. Predicted failure pattern when 2.25% of the axial strain is applied from the [90]8 laminate in the open-hole compressive test: (a) present model; and (b) model from [23].
The large distorted elements in (b) are removed.
The work presented in this paper solves the long-standing problem
of the onset and propagation of spurious damage mechanics related
to the use of effective stress tensors in the formulation of continuum
damage models. This phenomenon, absent in the model presented here,
can have detrimental effects in the simulation of the ultimate failure of
composite laminates.
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Appendix. Algorithm for explicit finite element solver

This appendix presents the algorithm of the present constitutive
model used within an explicit solver at Gauss-point level in 1.
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Algorithm 1: Algorithm of the present constitutive model at
time 𝑡

(𝑛+1)

Input:
Total strain tensor at 𝑡

(𝑛+1)
: 𝜺

(𝑛+1)

Internal variables at 𝑡
(𝑛+1)

: 𝜺𝑝
(𝑛)
, �̄�𝑝(𝑛), 𝑟𝓁𝑇 (𝑛)

, 𝑟𝓁𝐶 (𝑛)
, 𝑟𝑡(𝑛)

Initialisation:
Local Newton–Raphson iteration: 𝑘 = 0
Effective stress tensor: �̃� = C𝑒(𝑑𝑀 = 0)(𝜺

(𝑛+1)
− 𝜺𝑝

(𝑛)
)

Effective stress invariants using �̃� in Eqs. (8)–(11)
Stress tensor of the damage predictor:
�̌� = C𝑒(𝑑𝑀(𝑛)

)(𝜺
(𝑛+1)

− 𝜺𝑝
(𝑛)
)

Stress invariants of the damage predictor using �̌� in
Eqs. (8)–(11)

Update the transverse strengths as a function of 𝑑𝑀(𝑛)
in

Eqs. (27)–(29)
Loading functions Eqs. (19), (20) and (26):
𝜙𝓁𝑇 (�̃� ), 𝜙𝓁𝐶 (�̃� ), 𝜙𝑡 (�̌� )

Internal damage variables Eqs. (18) and (34)
Damage variables from [23]: 𝑑𝑀(𝑛+1)
Elastic predictor: 𝝈𝑡𝑟

(𝑛+1)
= C𝑒(𝑑𝑀(𝑛+1)

)(𝜺
(𝑛+1)

− 𝜺𝑝
(𝑛)
)

1 if 𝑑𝑡 = 0 and 𝑑𝑠𝓁 = 0 and 𝑑𝑠𝑡 = 0 then
Yield stresses: 𝑌𝐶𝑃 (�̄�

𝑝
(𝑛)), 𝑌𝑇𝑃 (�̄�

𝑝
(𝑛)) and 𝑆𝐿𝑃 (�̄�

𝑝
(𝑛)) Yield

function Eq. (13): 𝜙𝑝
(𝑛+1)

General convex cutting-plane algorithm
(return-mapping):

2 𝝈 (𝑘)

(𝑛+1)
= 𝝈𝑡𝑟

(𝑛+1)

3 𝜙𝑝(𝑘 + 1)

(𝑛+1)
= 𝜙𝑝

(𝑛+1)

4 while 𝜙𝑝(𝑘 + 1)

(𝑛+1)
> tol do

Derivative of the plastic potential function with respect
to the stress tensor: 𝜕𝝈(𝑘)

(𝑛+1)
(𝜑𝑝)

Increment of the consistency parameter:
𝛥𝛾

(𝑛+1)
= −

𝜙𝑝
(𝑛+1)

𝑑𝜙𝑝(𝑛+1)
𝑑𝛾

(𝑛+1)

Update the plastic strain tensor:
𝜺𝑝(𝑘 + 1)

(𝑛+1)
= 𝜺𝑝(𝑘)

(𝑛+1)
+ 𝛥𝛾 (𝑘)

(𝑛+1)
𝜕𝝈(𝑘)

(𝑛+1)
(𝜑𝑝)

Update the stress tensor:
𝝈 (𝑘 + 1)

(𝑛+1)
= 𝝈 (𝑘)

(𝑛+1)
− 𝛥𝛾 (𝑘)

(𝑛+1)
C𝑒𝜕𝝈(𝑘)

(𝑛+1)
(𝜑𝑝)

Update the equivalent plastic strain:
�̄�𝑝

(𝑘+1)

(𝑛+1) = �̄�𝑝
(𝑘)

(𝑛+1) + 𝛥𝛾 (𝑘)

(𝑛+1)

√

1
2

‖

‖

‖

‖

𝜕𝝈(𝑘)
(𝑛+1)

(𝜑𝑝)
‖

‖

‖

‖

Update yield stresses: 𝑌𝐶𝑃 (�̄�
𝑝(𝑘+1)
(𝑛+1) ), 𝑌𝑇𝑃 (�̄�

𝑝(𝑘+1)
(𝑛+1) ) and

𝑆𝐿𝑃 (�̄�
𝑝(𝑘+1)
(𝑛+1) )

Yield function Eq. (13): 𝜙𝑝(𝑘 + 1)

(𝑛+1)

5 𝑘 = 𝑘 + 1
6 end
7 end
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