
Predicting Solvation Free Energies Using Electronegativity-
Equalization Atomic Charges and a Dense Neural Network: A
Generalized-Born Approach
Sergei F. Vyboishchikov*

Cite This: J. Chem. Theory Comput. 2023, 19, 8340−8350 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: I propose a dense Neural Network, ESE-GB-DNN, for evaluation of solvation free
energies ΔG°solv for molecules and ions in water and nonaqueous solvents. As input features, it employs
generalized-Born monatomic and diatomic terms, as well as atomic surface areas and the molecular
volume. The electrostatics calculation is based on a specially modified version of electronegativity-
equalization atomic charges. ESE-GB-DNN evaluates ΔG°solv in a simple and highly efficient way, yet it
offers a high accuracy, often challenging that of standard DFT-based methods. For neutral solutes, ESE-
GB-DNN yields an RMSE between 0.7 and 1.3 kcal/mol, depending on the solvent class. ESE-GB-
DNN performs particularly well for nonaqueous solutions of ions, with an RMSE of about 0.7 kcal/mol.
For ions in water, the RMSE is larger (2.9 kcal/mol).

■ INTRODUCTION
Evaluation of solvation free energy ΔG°solv is an important quest
in computational chemistry, since it makes a sizable contribution
to the total Gibbs energy for chemical reactions in solutions,
especially when ions are involved. Most practical calculations of
ΔG°solv for processes in solutions utilize Continuum Solvation
models, which can be subdivided into the Polarizable
Continuum Model (PCM)1−14 and the Generalized Born
(GB)15−21 methods. In both approaches, ΔG°solv is typically
partitioned into the electrostatic energy Eelst and the non-
electrostatic correction term ΔG°corr:

° = + °G E Gsolv elst corr (1)

In the PCM-type methods, the solvent polarization is
represented by a charge distribution on the surface of the cavity
surrounding the solute molecule. On the other hand, the GB-
type methods do not require an explicit construction of the
molecular cavity, which makes them more computationally
efficient. Eelst is then expressed directly through solute atomic
charges {QI} and effective Born radii {RI} as follows
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where N is the number of atoms; ε is the dielectric constant of
the solvent; and f IJ is a function of atomic radii and interatomic

distance rIJ. The monatomic terms (self-terms) EI
self = (1−1/ε)

QI
2/RI in eq 2 are identical to the expression of Born’s solvation

theory22 for spherical ions. The choice of an analytical form of
the f IJ function in the pair term EIJ

pair = (1−1/ε)QIQJ/f IJ and of
effective Born radiiRI is crucial to achieve an acceptable accuracy
of the GB method.23 An often accepted form of f IJ is
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where c can be set to 4 (as in the original work by Still et al.15) or
to another value.21 Expressions alternative to eq 3 for f IJ were
also proposed.17,24 TheGB approach was implemented in a wide
number of solvation energy schemes,16−19 often in conjunction
with a nonelectrostatic term (ΔG°corr in eq 1). The simplest
form of ΔG°corr = ∑IκISI term15 effectively describes the
cavitation and dispersion energies through atomic surface areas
{SI}; the element-dependent coefficients {κI} are occasionally
referred to as atomic surface tension.2,12 However, {κI} are in
fact treated as adjustable (semiempirical) parameters. More
elaborated computational schemes involve charge- or atomic-
position dependent {κI} formulations.25
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Taking a partly empirical (adjustable) character of parameters
RI and κI into account, one can conceive the GB approach as a
linear or nonlinear regression problem in the space of terms
{EI

self}, {EIJ
pair}, and {SI}. If a sufficiently large database is

available, it is attractive to formulate a flexible ΔG°solv({EI
self},

{EIJ
pair},{SI}) dependence without fixing a particular analytical

form. This can be achieved by means of an artificial neural
network (ANN).26 In this paper, I introduce a dense ANN that
utilizes {EI

self}, {EIJ
pair}, {SI}, plus the molecular volume V and

some extra parameters (vide inf ra) as input features to calculate
ΔG°solv. The atomic charges {QI} will be obtained by an
appropriately modified Electronegativity-Equalization (EE)
charge scheme, which is highly efficient computationally.

In recent years, several neural-network based solvation-energy
schemes for ΔG°solv evaluation have been developed. A
generalized-Born approach for a graph ANN with atomistic
embedding was employed by Chen et al.27 Vermeire and
Green28 used textual molecular identifiers (SMILES and InChI)
as input features for a directed message passing ANN. Lim and
Jung29 proposed a graph convolutional ANN and a recurrent
ANN based on atomic vectors. Alibakhshi and Hartke30 built a
quite accurate ANNutilizing a self-consistent C-PCM calculated
input. Other works in this field include Bernazzani et al.,31

Borhani et al.,32 Hutchinson and Kobayashi,33 Wang et al.,34 and
Jaquis et al.35

In our previous works,36−41 we developed an efficient and
accurate noniterative method for calculating ΔG°solv, named
uESE (universal Easy Solvation Energy). It employs the
COSMO42,43 electrostatics plus a number of additive correction
terms that depend on {SI}, V, and atomic surface charges.
Atomic charges needed as input for the COSMO calculation can
be evaluated by various techniques36,44−47 including semi-
empirical39 methods.47 Importantly, EE charges are also
suitable, resulting in the ESE-EE method.40 Nevertheless, a
higher computational efficiency of the semiempirical versions of
ESE comes at the cost of accuracy, with the DFT-based uESE
performing noticeably better that ESE-EE, especially for ionic
solutes.

The present work differs from the previous ones of the ESE
family first in that an ANN rather than a linear function is
employed, and second that the COSMO electrostatic energy
term is replaced by GB-type terms {EI

self} and {EIJ
pair} (not by

the total EGB
elst of eq 2). The expected advantage of this

approach is that no explicit cavity surface has to be constructed,
nor surface charges to be calculated. On the other hand, an
appropriately trained ANN should provide sufficient flexibility
to obtain accurate ΔG°solv. Therefore, we strive for a rapid yet
accurate ANN-based solvation energy scheme. The idea of using
the EE charges is encouraged by the simplicity and an
extraordinary efficiency of the EE charge scheme and by a
reasonable performance of the ESE-EE method for neutral
solutes.40 An EE charge calculation does not require any
quantum-mechanical input, just the molecular geometry. Thus,
such a DNN will use physically sound GB-based input features.
Therefore, ΔG°solv will be geometry-dependent, such that the
method can treat different molecular configurations. The details
of our version of the EEmethod and of the GB term calculations,
as well as the ANN construction and training, will be provided in
the Methods section below.

■ METHODS
Electronegativity Equalization. As explained in the

Introduction, the atomic charges {QI} for the GB-type
calculation are evaluated by a specially modified version of the
EE method. It is similar but not identical to that used within the
ESE-EE method40 and to those by Svobodova ́ Varěkova ́ et al.,48
Ouyang et al.,49 and Menegon et al.52 The computation of EE
charges can be conveniently expressed in matrix form as
follows50
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where AI and BI are element-dependent parameters character-
izing the intrinsic electronegativity and hardness of the I-th
atom, correspondingly;Qtot is the total charge of themolecule;N
is the number of atoms; {QI} are the resulting atomic charges
obtained as the solution to the system by equations 4; and χ is
the resulting equalized electronegativity. Various forms of the
geometry-dependent off-diagonal matrix elements YIJ were
proposed.48,51−54 In the present version, {AI} and {BI} are

Table 1. Element- and Coordination-Number Dependent EE Parameters Optimized by Nonlinear Least-Squares Fittinga

Element Coordination number Ai Bi Element Coordination number Ai Bi

H 1 2.364 0.961 P 1−3 2.448 0.705
2 2.304 1.458 4 2.444 0.436

C 1 2.452 0.658 5 2.624 0.465
2 2.452 0.658 S 1 2.501 0.562
3 2.435 0.658 2 2.461 0.961
4 2.422 0.672 3 2.382 0.556

N 1 2.628 0.872 4 2.304 0.789
2 2.534 0.679 5 2.226 0.675
3 2.502 0.634 6 2.941 0.601
4 2.824 1.551 Cl 2.446 0.644

O 1 2.545 0.720 Br 2.420 0.412
2, 3 2.502 0.675 I 2.426 0.746

F 2.577 1.478
Si 3 2.3 0.600

4 2.3 0.605
aκ = 0.991 Å; κ2 = 1.371 Å.
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adjustable parameters depending not only on the element but
also on the coordination number of the atom. The off-diagonal
terms YIJ contain two more parameters κ and κ2:

=
+ +

Y
r B B/( )IJ

IJ I J2 (5)

The least-squares fitting of the EE parameters {AI}, {BI}, κ,
and κ2 was done using the downhill simplex algorithm55

available in the Python SciPy package,56 which does not require
analytical derivatives. As the target values, CM546 atomic
charges of all atoms for 528 molecules from the Minnesota
Solvation Database (MNSol)57 were used. The procedure
remotely resembles that ofMenegon et al.52 A root-mean-square
error (RMSE) of about 0.03 electrons was reached. The
resulting values of the EE parameters are provided in Table 1.

Neural Network: Input Features and Hidden Layers.
The ANN presented in this work − ESE-GB-DNN (Easy
Solvation Energy − Generalized Born − Dense Neural Network) −
is a dense ANN with two hidden layers. After a number of tests,
the first hidden layer with 16 neurons and the second one with 8
neurons were chosen for aqueous solutions. For nonaqueous
solutions, 14 × 7 neurons were used. In each case, biases and
rectified linear unit (ReLU) activation functions were employed
for the hidden layers. The output layer (also with a bias) has a
linear activation function.

Initially, the following input features were included:
(1) the number of atoms in the solute molecule;
(2) the total charge of the solute Qtot;
(3) the molecular volume Vtot of the solute, which is the sum

of atomic volumes, Vtot = ∑IVI (vide inf ra);
(4) the total surface area Stot of the solute (the sum of atomic

surfaces, Stot = ∑ISI, vide inf ra);
(5−13) Atomic surface areas SL = ∑I∈LSI for nine elements L

= H, C, N, O, F, S, Cl, Br, I;
(14−22) the ε-dependent Born-type self-terms:

= =E L E Q R( ) (1 1/ ) /
I L

I
I L

I I1
Born self 2

(6)

for the same nine elements L calculated from EE charges;
(23−58) the ε-dependent Born-type pair terms:

= =E L L E Q Q f( , ) (1 1/ ) /
I L J L

IJ
I L J L

I J IJ2
Born

1 2
pair

1 2 1 2

(7)

Of 9·(9+1)/2 = 45 possible E2
Born terms, only 36 were used in

fact. This is because some of the L1−L2 element combinations
are scarcely represented in the training data set. The full list is
given in the Supporting Information. I employed the form of f IJ
according to eq 3, with c = 4 and unmodified Bondi58 radii RI.

For nonaqueous solutions, I added three more features in
order to describe the properties of the solvent:

(59) the dielectric constant ε of the solvent;
(60) the boiling point (BP) of the solvent;
(61) the number of non-hydrogen atoms in the solvent, which

characterizes the solvent molecular size.
The features 59−61 indirectly represent solvent properties,

albeit incompletely. They will allow ESE-GB-DNN to learn the
difference between conventional solvent classes such as polar
protic, polar aprotic, and nonpolar. This three-parameter solvent
description is a much simpler one than that of Borhani et al.,32

who made use of as many as 12 solvent features.
Surface and Volume Calculations. The input features 3−

13 (vide supra) are geometric characteristics of the solute that

must be evaluated from its molecular geometry and van der
Waals radii. I adopted the following formulas for the atomic
surface area SI of the I-th atom
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The summation in eqs 8 and 11 runs over all the atoms J
adjacent to the given atom I. Eqs 8 and 11 do not give the exact
van der Waals surface area for complicated cases, when there is
multiple atomic-sphere overlap. Nevertheless, they provide a
good estimate suitable for the use as a DNN input. The
derivation of eqs 8 and 11 based on elementary geometry is
briefly illustrated in Figure 1. ΔSIJ and ΔVIJ is the area and the

volume of the spherical cap of atom I buried inside the atom J,
respectively, which is shown by a dashed line in Figure 1.
Although Mongan et al.59 developed a more sophisticated
version of themolecular volume calculation, in the context of the
ANN, it is appealing to take advantage of the simplicity of eqs
8−11.

Dimensionality Reduction. Calculation of the correlation
matrix of the 58 input features revealed a substantial (in some
cases, a very strong) correlation between some of them. In the
MNSol database, 9 features turned out to have a correlation
coefficient greater than 0.91. To decrease the number of the
ANN parameters to be fitted and achieve a more stable behavior

Figure 1. Estimation of the atomic surface area and volume (eqs 8−11).
The dashed line indicates the surface of the spherical cap of atom I
(ΔSIJ, eq 9), buried inside atom J. Parameter a (eq 10), which can be
positive or negative, shows the position of the crossing plane between
the spheres of atoms I and J.
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of ESE-GB-DNN, I used the principal component analysis to
truncate the nine most correlated features. This was done by
means of singular value decomposition as implemented in the
sklearn.decomposition.PCA class. This procedure resulted in a
58 × 49 (or 61 × 52 for nonaqueous solutions) transformation
matrix that produced a vector of the 49 (or 52) actual input
features for the DNN.

ANN Training. Two dense ANNs were independently
trained: one (with 49 transformed input features) for aqueous
solutions and the other (with 52 transformed input features) for
nonaqueous ones. The resulting ESE-GB-DNN have, therefore,
a total of (49+1)·16 + (16+1)·8 + (8+1) = 945 and (52+1)·14 +
(14+1)·7 + (7+1) = 855 parameters to be trained for aqueous
and nonaqueous solutions, correspondingly. The transformed
input data are scaled and fed into the dense ANN described
above. The fitting of ESE-GB-DNN was done using the
Nesterov-accelerated60 Adaptive Moment Estimation algo-
rithm61 as implemented in the tensorflow.keras.optimizers.Na-
dam class,62 with a suitably weighted mean squared error as the
loss function. To avoid overparametrization, 2 regularization
with a strength λ = 0.01 was applied.

The EE charge calculation, data preprocessing, and the dense
ANN training were implemented in a Python 3.7 code.
Subsequently, the optimized ANN parameters (neuron weights
and biases as well as the feature transformation matrix) were
incorporated into a user-friendly Fortran code that reads a
molecular geometry, evaluates the EE charges, calculates the
E1

Born(L) and E2
Born(L1,L2) components, molecular volume, and

atomic surfaces, and finally evaluates ΔG°solv through ESE-GB-
DNN.

Our training sets are partly based on the CombiSolv-QM,28 −
a solvation free energy database calculated for neutral solutes by
means of the COSMO-RS theory.43 For our study, the data at
298 Kwere chosen. In addition, the training set was expanded by
a random half of the experimental ΔG°solv values fromMNSol,57

since MNSol includes both neutral and ionic solutes. Thus, in
total there were 4242 data for aqueous solutions. No data for
ions are available in the CombiSolv-QM database, whereas the
collection of ionic data in MNSol is also limited. Therefore, in
order to increase the stability of the resulting ANN for ionic
solutes, the training database was extended by 10000
extrapolated ionic data that encompass a wide range of dielectric
constants (10 < ε < 200) and boiling points (40 °C < BP < 210
°C). Specifically, from the existing data for ionic solutes in
dimethyl sulfoxide, acetonitrile, and methanol, extrapolated
ΔrefG°solv(εnew) target values corresponding to a dielectric
constant εnew (10 < εnew < 200) were created according to the
following formula

° = ° +G G E E( ) ( ) ( ( ) ( ))ref
solv new

ref
solv real elst new elst real

(13)

where εreal is the actual dielectric constant of the solvent. Eq 13 is
based on the assumption that the nonelectrostatic component of
the solvation energy (ΔG°corr in eq 1) is independent of ε, like in
our earlier ESE models.36−41 Additionally, the data were
replicated to encompass a wide range of boiling points. In
total, the training data set for the nonaqueous solutions
contained 14640 entries that originate from MNSol, extrapo-
lated MNSol, and CombiSolv-QM. For the sake of comparison,
I also did a second training for nonaqueous solutions, in which
CombiSolv-QM data were excluded (11716 data in total). For
all the trainings, a validation split of 0.2 was applied, thus

assigning 20% of the training data for validation. The learning
rate was typically set to 0.001 or 0.0001.

■ RESULTS AND DISCUSSION
Since the CombiSolv-QM database provides SMILES codes
rather than molecular geometries for the solutes, the geometries

were created from the SMILES by the OpenBabel free online
converter.63 For the MNSol database, PM7-optimized47 geo-
metries were employed from my previous paper.39 From the
databases used for testing (vide inf ra), the Cartesian coordinates
were used as they are. With these geometries, atomic surfaces
and volumes, EE atomic charges, and subsequently the
E1

Born(L1) (eq 6) and E2
Born (L1,L2) (eq 7) terms were calculated

to generate the input necessary to train ESE-GB-DNN (see
Methods section above, features 14−58). The general results of
the training described in the Methods section above are
summarized in Table 2. Subsequently, ESE-GB-DNN was
tested on a number of data sets that include both neutral and
ionic solutes. We checked it against other implicit-solvation
methods, paying particular attention to SMD,13 which, cited
more than 13 thousand times, can be regarded as a standard for
routine ΔG°solv evaluations in practical computational chem-
istry. The data sets used for the independent tests are as follows:
the 141-solute reduced data set by Mobley et al.;64 Guthrie’s
“blind challenge” data set with 63 pharmacologically relevant
molecules;65 Guthrie’s 53-molecule reduced data set
(SAMPL1);65 reduced Guthrie’s SAMPL4 data set66

(SAMPL4); and ionic C10 data set (6 cations and 4 anions).67

Aqueous Solutions. Table 3 gives the RMSE for ESE-GB-
DNN (split into the training and testing subsets) as well as for a
number of other solvation methods. Compared to other
semiempirical methods (our ESE-PM739 and ESE-EE,40 as
well as PM7/COSMO2,67 and the semiempirical versions68 of
SMD), our ANN-based ESE-GB-DNNmodel is clearly superior
for all examined databases, with the exception of the ionic C10

Table 2. Mean Signed Error (MSE), Mean Absolute Error
(MAE), Root-Mean-Square Error (RMSE), Slope, Intercept,
and Coefficient of Determination R2 for the Data Sets Used
for Training and Validation of ESE-GB-DNN for Aqueous
and Nonaqueous Solutions (in kcal/mol)

Training
(number of
solutes) MSE MAE RMSE Slope Intercept R2

Aqueous training
(3394)

−0.01 0.91 1.41 0.981 −0.13 0.983

Validation
(848)

0.04 0.98 1.56 0.965 −0.18 0.977

All (4242) 0.00 0.93 1.44 0.978 −0.14 0.982
Nonaqueous
training I
(11711)a

0.21 0.63 0.89 0.992 −0.17 0.999

Validation
(2928)

0.25 0.67 0.97 0.992 −0.16 0.999

All (14639) 0.21 0.64 0.91 0.992 −0.17 0.999
Nonaqueous
training II
(9373)b

0.09 0.51 0.69 1.001 0.13 0.999

Validation
(2343)

0.09 0.54 0.80 1.002 0.18 0.999

All (11716) 0.09 0.51 0.72 1.001 0.14 0.999
aTraining including the CombiSolv-QM data. bTraining excluding the
CombiSolv-QM data.
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set, as for the latter, ESE-PM7 and PM7/COSMO2 are a little
better.

The present ESE-GB-DNN also definitely outperforms the
DFT-based SMD13 and uESE38 methods for virtually all testing
sets, even when considering only the testing-set data for MNSol.
It is only for the SAMPL4 set that SMD yields a somewhat lower
RMSE. Nevertheless, even for SAMPL4, the RMSE of 1.5 kcal/
mol and an MAE about 1.1 kcal/mol produced by ESE-GB-
DNN is an acceptable accuracy in many practical situations.

The results obtained by ESE-GB-DNN as well as by the DFT-
based uESE and SMD methods for various chemical classes of

Table 3. RMSE of theHydration Free Energy in kcal/mol for Various Data Sets by the ESE-GB-DNNMethod inComparison with
Other DFT-Based and Semiempirical Methodsa

ESE-GB-DNN

Solute database (number of
solutes in total/training/testing

data sets) total training testing

uESE/
B3LYP/

Def2TZVP

SMD/
B3LYP/

Def2TZVP
ESE-
EE

ESE-
PM7

ESE-
PM7(SN)b

PM7/
COSMO2

SMD/
PM3c

SMD/
PM6c

SMD/
DFTBc

MNSol (528/207/321)d 1.84 1.72 1.92 2.24 4.19 3.34 2.79 2.62 5.0 7.5 4.1
Neutrals (389/141/248) 1.30 1.27 1.32 1.48 1.70 2.04 2.21 1.96 2.4 4.0 3.1
Cations (60/25/35) 2.59 1.68 3.09 3.43 5.08 5.09 3.91 4.20 9.2 10.3 4.9
Anions (82) 3.04 2.80 3.29 3.66 8.96 5.41 4.03 3.72 7.9 14.2 6.7

MNSol* (464/187/277)d,e 1.67 1.75 1.61 2.16 4.23 3.31 2.64 2.53 2.62g

Neutrals (330/122/208) 1.09 1.24 0.98 1.25 1.38 2.29 1.90 1.72 2.24g

Cations (59/25/34) 2.59 1.68 3.09 3.43 5.11 5.09 3.91 4.20 2.87g

Anions (75/40/35) 2.60 2.80 2.35 3.56 9.05 5.38 3.91 3.56 3.69g

Mobley 141 (141)f 1.30 3.38 3.02 2.22 1.72 1.65 2.54h

Blind (63)f 2.15 2.95 3.54 3.42 3.49 2.94
SAMPL 1(53)f 1.70 1.85 2.59 2.96 3.50 2.91 3.73g

SAMPL 4(42)f 1.50 1.67 1.23 2.42 1.60 1.59 1.92g

C10 (10)f 2.59 3.49 5.45 6.87 2.22 2.31 2.28g

aThe complete lists of solutes and the calculated hydration free energies and the reference values, as well as MSE and MAE, are given in the
Supporting Information. bESE-PM7 with improved parameters for sulfur and nitrogen; see ref 39 for details. cData from ref 68 (Table 3).
dTraining/testing set; for an explanation see text. eMNSol* is Krǐź ̌ and Řezać’̌s data set of 464 solutes.67 fTesting set, hence no splitting into
training/testing is shown. gData from ref 67. hData from ref 67. Mobley266 data set.

Table 4. RMSE of the Hydration Free Energy Calculated by
the ESE-GB-DNN Method in Comparison with DFT-Based
SMD and uESE Methods for Various Classes of the MNSol
Database (in kcal/mol)a

ESE-GB-DNN

Solute class (number of
solutes in total/training/

testing data sets) total training testing uESEb SMDc

Small molecules
(24/6/18)d

1.23 1.31 1.20 0.68 0.63

Alcohols (18/8/10) 0.42 0.50 0.35 0.73 0.87
Aldehydes and ketones
(22/8/14)

0.73 0.95 0.56 0.73 0.77

Ethers (10/8/2) 0.56 0.57 0.51 1.15 1.07
Esters (20/5/15) 0.72 0.91 0.64 0.64 0.87
Acids (10/5/5) 1.43 0.95 1.78 0.75 2.01
Amines (42/13/29) 1.12 1.50 0.90 1.48 0.95
Nitriles (4/1/3) 0.29 0.24 0.31 0.37 0.37
Nitro compounds and
nitrates (17/5/12)

0.68 0.53 0.73 1.39 1.99

Fluorine compounds
(33/12/21)

0.93 1.17 0.76 1.46 1.49

Chlorine compounds
(74/25/49)

1.14 0.94 1.23 1.64 2.23

Bromine compounds
(25/6/19)

1.94 3.37 1.18 1.30 1.60

Iodine (10/5/5) 0.53 0.49 0.58 1.40 1.35
Linear correlatione (for all 389/141/248 neutral solutes):

Slope 0.892 0.899 0.888 0.928 0.924
Intercept −0.37 −0.37 −0.38 −0.46 0.23
R2 0.914 0.921 0.911 0.890 0.873

aThe complete lists of molecules in all the subsets, as well as the mean
signed errors (MSEs) and mean absolute errors (MAEs), are given in
the Supporting Information. bData from ref 38. The total set. cData
from ref 37. The total set. dMolecules containing less than six atoms.
eLinear correlation between ΔG°solv obtained within a given method
and the reference ΔG°solv value.

Figure 2. Hydration free energies (in kcal/mol) for ions from the
MNSol and C10 data sets calculated by ESE-GB-DNN (a), SMD (b),
and uESE (c) methods versus reference values. Red points denote
outliers with a deviation greater than 4 kcal/mol. The sloping straight
line is the identity line.
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neutral solutes are compiled in Table 4. For 7 of 13 of these
classes, ESE-GB-DNN surpasses both the uESE and SMD
methods: for alcohols, ethers, nitriles, nitro compounds/
nitrates, and halogen-containing solutes (except for bromine-
containing ones). For esters and amines, ESE-GB-DNN also
yields good results. Only for small molecules the performance of
ESE-GB-DNN is somewhat lower.

The performance of ESE-GB-DNN for ionic solutes is
demonstrated in Figure 2, in which hydration energies for all
the ions from MNSol plus C10 data sets are given. Problematic
cases (|ΔcalcG°solv − ΔrefG°solv| > 4 kcal/mol) are indicated in red.
For ESE-GB-DNN (Figure 2a), there are 18 such outliers out of
152 ions. The two worst cases (with a deviation > 9 kcal/mol)
are “c089” (OH−·H2O) and “i091” (O2

−). The former failure
can be explained by unphysical EE charge redistribution
between the OH− and H2O fragments, rendering the water
moiety not fully neutral. For the uESEmethod (Figure 2c), there
are 42 deviations beyond 4 kcal/mol. The SMDmethod (Figure
2b) fails much more often (92 failures, i.e. the majority), with a
substantially lower coefficient of determination R2 and a clear
trend of underestimating |ΔG°solv|.

Nonaqueous Solutions. Two distinct trainings were done
for nonaqueous solutions: one combining half of the MNSol
database with the CombiSolv-QM database (nonaqueous
training I in Table 2) and the other with the MNSol database
only (nonaqueous training II). The details of the data sets used
are given in the Methods section. Both nonaqueous trainings
yield comparable quality (see Table 2). However, testing on the
entire MNSol database produced more convincing results for

the mixed database (nonaqueous training I). All the data and
discussion in this section refer to nonaqueous training I. The
results of alternative training II are given in Supporting
Information.

In the discussion below, the solvents are subdivided into three
standard classes: polar protic solvents (Table 5); polar aprotic
solvents (Table 6); and nonpolar solvents. The latter class
includes all those with ε < 9 regardless of their chemical nature,
Table 7.

For polar protic solvents, ESE-GB-DNN has a very good
overall accuracy (see Table 5), with a total RMSE noticeably
lower than that of all the other methods tested, both DFT-based
(uESE and SMD) and the semiempirically based ones. This
good average performance is partly due to ions, for which other
methods are troublesome, in particular ESE-EE and SMD.
Considering neutral solutes only, ESE-GB-DNN is second-best
after uESE but still clearly better than the other methods. ESE-
GB-DNN yields an RMSE below 1 kcal/mol for fewer solvents

Table 5. RMSE of the Solvation Free Energy in kcal/mol for
14 Polar Protic Solvents Computed Using the ESE-GB-DNN
Model in Comparison with DFT-Based uESE and SMD as
well as with Semiempirical ESE-PM7 and ESE-EEc

Solventa
ESE-GB-
DNN uESE SMD

ESE-
PM7

ESE-
EE

Octanol (247) 1.10 1.13 1.72 1.40 1.61
Heptanol (12) 0.95 0.52 1.03 0.95 0.88
m-Cresol (7) 1.19 0.87 1.75 1.33 1.37
Benzyl alcohol (10) 0.65 0.38 0.87 1.00 0.79
Hexanol (14) 0.94 0.47 1.04 0.93 0.78
Pentanol (22) 1.07 0.82 0.90 1.17 1.11
sec-Butanol (9) 0.71 0.46 0.72 0.55 0.58
Isobutanol (17) 1.25 0.83 0.68 1.00 0.72
Methoxyethanol (6) 0.57 0.49 0.94 1.21 0.75
Butanol (21) 1.12 0.87 0.89 1.33 1.40
Iospropanol (7) 0.79 0.73 1.22 1.53 1.17
Propanol (7) 0.76 0.67 1.02 1.50 1.15
Ethanol (8) 1.08 1.03 1.77 1.65 1.60
Methanol cations (29) 1.13 3.03 2.94 2.86 6.49

Anions (51) 0.85 2.33 4.49 2.27 4.38
All ions (80) 0.96 2.61 4.00 2.50 5.25

All neutral solutes
(387)

1.06 1.01 1.51 1.33 1.44

All polar protic solvents
(467)

1.05 1.42 2.15 1.59 2.54

Slope 1.002 1.001 0.966 0.995 0.984
Intercept 0.17 0.03 0.18 −0.12 −0.34
R2 0.998 0.996 0.994 0.995 0.988

# bad solventsb 6 2 7 8 7
aThe number of entries in the data set is given in parentheses. bThe
number of solvents for which RMSE > 1 kcal/mol for neutral solutes.
cA total of 467 entries.

Table 6. RMSE of the Solvation Free Energy in kcal/mol for
20Polar Aprotic Solvents ComputedUsing the ESE-GB-DNN
Model in Comparison with uESE and SMD (B3LYP/
Def2TZVP) as well as with Semiempirical ESE-PM7 and
ESE-EEc

Solventa
ESE-GB-
DNN uESE SMD

ESE-
PM7

ESE-
EE

Bromoethane (7) 0.56 0.75 0.94 1.05 1.43
2-Methylpyridine (6) 0.64 0.75 0.86 0.71 1.12
o-Dichlorobenzene (11) 0.88 0.44 0.92 1.05 1.24
Dichloroethane (39) 0.58 0.77 0.64 0.77 1.32
4-Methyl-2-pentanone
(13)

0.90 1.13 0.93 1.21 1.30

Pyridine (7) 0.64 0.70 0.86 0.91 1.02
Cyclohexanone (10) 1.18 1.43 1.08 1.28 1.05
Acetophenone (9) 0.63 0.91 0.78 0.87 0.94
Butanone (13) 0.65 1.11 1.57 1.16 1.01
Benzonitrile (7) 0.58 0.68 0.98 1.13 0.88
o-Nitrotoluene (6) 0.91 0.24 0.56 0.60 0.69
Nitroethane (7) 0.40 0.37 0.70 0.84 0.80
Nitrobenzene (15) 0.75 0.32 0.74 0.73 0.85
Acetonitrile neutral
solutes (7)

0.44 1.00 0.93 1.21 1.35

Cations (39) 0.46 2.41 10.45 4.01 6.17
Anions (30) 0.81 2.50 3.47 1.96 3.87
All ions (69) 0.63 2.45 8.18 3.28 5.30

Nitromethane (7) 0.35 0.74 1.24 0.94 0.87
Dimethylformamide (7) 0.78 0.75 0.86 0.90 0.84
Dimethylacetamide (7) 0.80 0.82 0.94 0.89 0.87
Sulfolane (7) 0.65 0.65 1.64 1.04 1.03
Dimethyl sulfoxide
neutral solutes (7)

0.95 0.94 1.04 2.59 1.90

Cations (4) 0.53 2.58 8.61 2.53 5.78
Anions (66) 0.47 2.71 4.41 3.95 6.37

Methyl formamide (7) 1.03 1.02 0.94 1.15 1.73
All neutral solutes (199) 0.73 0.83 0.96 1.07 1.17
All polar aprotic (338) 0.67 1.77 4.35 2.45 3.86
Slope 1.004 1.001 0.946 1.004 0.984
Intercept 0.07 0.05 −1.20 0.02 −0.34
R2 1.000 0.996 0.977 0.993 0.988
# bad solventsb 2 4 5 10 12
aThe number of entries in the data set is given in parentheses. bThe
number of solvents for which RMSE > 1 kcal/mol for neutral solutes.
cA total of 338 entries.
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(six) than the other methods, with the exception of uESE (see
the bottom of Table 5).

Complete ESE-GB-DNN results for the polar protic solvents
are depicted in Figure 3a. Only for 4 entries out of 467 the
deviation is beyond 3 kcal/mol. One of these cases is H2 with a
positive experimental ΔG°solv. The other three solutes are large
organic NO2-containing neutral species. The uESE method
produces 34 failures (ΔΔG°solv > 3 kcal/mol, Figure 3c), of
which 26 are ions and 8 are neutral solutes. The other DFT-
based solvation scheme, SMD, fails for a larger number of ions
and neutral molecules (as many as 34 ions and 22 neutral
molecules, Figure 3b). Therefore, ESE-GB-DNN is much less
prone to produce large errors in ΔG°solv than SMD or uESE.

The data collected in Table 6 for the polar aprotic solvents
show a clear superiority of ESE-GB-DNN both for neutral and
ionic solutes over the other methods, including uESE. Apart
from ions, for which the advantage of ESE-GB-DNN is
overwhelming, ESE-GB-DNN works better than uESE and
SMD also for neutral solutes for 12 and 16 of 20 solvents,
respectively. Compared to ESE-PM7 and ESE-EE, ESE-GB-
DNN performs better for nearly all the polar aprotic solvents.

The results concerning nonpolar solvents are summarized in
Table 7. The performance of ESE-GB-DNN is convincing, with
an RMSE below 0.7 kcal/mol, close to that of uESE. There are
five solvents for which RMSE exceeds 1 kcal/mol (tetralin,
tributyl phosphate, perfluorobenzene, chloroform, and aniline),
as compared to three “bad” solvents in the case of uESE, and at
least ten such failures for SMD, ESE-PM7, and ESE-EE. Still,
ESE-GB-DNNoutperforms uESE and SMD for 18 and 42 out of
57 solvents, correspondingly.

Figure 4a illustrates the good quality of ESE-GB-DNN results
for the polar aprotic solvents. There is a single outlier only
(H2O2 in cyclohexanone, ΔΔG°solv = 3.4 kcal/mol). In contrast,
the uESE and SMD methods display 33 and 85 failures
(ΔΔG°solv > 3 kcal/mol), correspondingly, which are mostly
ions.

Specific results for nonpolar solvent are shown in Figure 5.
The present ESE-GB-DNNmethod exhibits just three problem-
atic cases (ΔΔG°solv > 3 kcal/mol), which compares favorably to
4, 16, 10, and 19 failures for uESE, SMD, ESE-PM7, and ESE-EE
methods, respectively. The three mentioned ESE-GB-DNN
outliers are H2O in tetralin with a positive experimental ΔG°solv,
as well as “0403thi” (1-methylthymine) and “186n” (N-

Table 7. RMSE of the Solvation Free Energy in kcal/mol for 57 Nonpolar Solvents Computed Using the ESE-GB-DNN Model
in Comparison with uESE and SMD (B3LYP/Def2TZVP) as well as with Semiempirical ESE-PM7 and ESE-EEc

Solventa
ESE-GB-
DNN uESE SMD

ESE-
PM7

ESE-
EE

Pentane (26) 0.40 0.39 0.42 0.50 0.43
Hexane (59) 0.45 0.52 0.74 0.65 0.86
Heptane (69) 0.48 0.55 0.86 0.60 0.75
Isooctane (32) 0.34 0.48 0.56 0.55 0.61
Octane (38) 0.30 0.41 0.52 0.50 0.50
Nonane (26) 0.22 0.30 0.43 0.22 0.39
Decane (39) 0.30 0.48 0.52 0.47 0.57
Undecane (13) 0.48 0.41 0.65 0.46 0.56
Dodecane (8) 0.32 0.41 0.45 0.21 0.41
Cyclohexane (92) 0.63 0.66 0.79 0.68 1.03
Perfluorobenzene
(15)

1.17 0.41 0.93 0.46 0.40

Pentadecane (9) 0.46 0.37 0.72 0.16 0.55
Hexadecane (198) 0.68 0.65 1.00 0.71 0.95
Decalin (27) 0.41 0.43 0.88 0.51 0.52
Carbon tetrachloride
(79)

0.53 0.49 0.73 0.60 0.78

Isopropyltoluene (6) 0.37 0.32 0.57 0.17 0.16
Mesitylene (7) 0.65 0.37 0.66 0.50 0.30
Tetrachloroethene
(10)

0.35 0.35 0.94 0.21 0.26

Benzene (75) 0.81 0.87 1.13 1.05 1.13
sec-Butylbenzene (5) 0.34 0.21 0.40 0.21 0.17
tert-Butylbenzene (14) 0.40 0.34 0.47 0.44 0.26
Butylbenzene (10) 0.48 0.32 0.62 0.45 0.27
Trimethylbenzene
(11)

0.45 0.26 0.56 0.28 0.32

Isopropylbenzene
(19)

0.58 0.34 0.49 0.46 0.59

Toluene (51) 0.56 0.40 0.73 0.52 0.58
Triethylamine (7) 0.63 0.68 1.12 0.82 0.70
Xylene (48) 0.60 0.46 0.75 0.53 0.51
Ethylbenzene (29) 0.54 0.40 0.60 0.46 0.49
Carbon disulfide (15) 0.64 0.59 0.88 1.16 0.85
Tetralin (9) 1.40 1.03 1.43 1.17 1.19
Dibutyl ether (15) 0.54 0.75 0.86 0.86 0.50
Diisopropyl ether (22) 0.93 1.07 1.05 1.23 0.85

Solventa
ESE-GB-
DNN uESE SMD

ESE-
PM7

ESE-
EE

Hexadecyl iodide (9) 0.34 0.26 0.48 0.22 0.60
Phenyl ether (6) 0.45 0.40 1.23 0.76 0.66
Fluoroctane (6) 0.41 0.07 0.58 0.18 0.12
Ethoxybenzene (7) 0.43 0.44 0.53 0.74 0.59
Anisole (8) 0.44 0.35 0.63 0.75 0.67
Diethyl ether (72) 0.92 1.00 1.14 1.13 1.30
Bromoform (12) 0.42 0.29 0.78 0.44 0.28
Iodobenzene (20) 0.41 0.54 0.49 0.75 0.47
Chloroform (109) 1.05 0.92 1.09 1.15 1.31
Dibromoethane (10) 0.36 0.45 0.79 0.47 0.21
Butyl acetate (22) 0.97 0.73 1.40 0.92 0.79
Bromooctane (5) 0.66 0.21 0.90 0.32 0.10
Bromobenzene (27) 0.39 0.49 0.64 0.70 0.38
Fluorobenzene (7) 0.40 0.58 0.95 0.96 0.67
Chlorobenzene (38) 0.55 0.50 0.79 0.66 0.51
Chlorohexane (11) 0.64 0.23 1.20 0.40 0.27
Ethyl acetate (24) 1.00 1.13 1.36 1.34 1.59
Acetic acid (7) 0.77 0.58 2.58 0.98 1.46
Aniline (10) 1.03 0.92 0.94 1.23 1.54
Dimethylpyridine (6) 0.67 0.71 0.88 0.62 1.06
Tetrahydrofuran (7) 0.72 0.68 0.86 0.97 0.81
Decanol (11) 0.94 0.68 1.48 1.00 0.71
Tributyl phosphate
(16)

1.17 0.69 0.62 0.52 0.89

Nonanol (10) 0.78 0.88 0.99 1.44 1.22
Methylene chloride
(11)

0.87 0.79 0.82 1.14 0.77

All nonpolar (1554) 0.68 0.64 0.90 0.77 0.87
Slope 0.87 0.908 0.792 0.917 0.855
Intercept −0.53 −0.47 −0.83 −0.41 −0.73
R2 0.892 0.899 0.815 0.859 0.818

# bad solventsb 5 3 12 10 10
aThe number of entries in the data set is given in parentheses. bThe
number of solvents for which RMSE > 1 kcal/mol. cA total of 1554
entries.
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methylpyrrolidone) in chloroform. The case of H2O, like that
previously mentioned of H2, highlights a general problem that
the current parametrization of ESE-GB-DNN exhibits with
solutes with low ΔG°solv: all the neurons remain deactivated, and
the calculated ΔG°solv originates solely from the bias of the

output layer, which is slightly negative (−1.3 kcal/mol).
Therefore, this value is the upper bound of a ΔG°solv that
ESE-GB-DNN can yield. Upon careful examination, one can
observe this fact in the upper-right section of Figure 5a. It should
be noted that this problem only pertains to few poorly soluble
solutes and thus poses minimal limitations on the practical use of
ESE-GB-DNN.

■ CONCLUSIONS
ESE-GB-DNN proposed in the present work is an uncompli-
cated, computationally efficient yet accurate technique for
solvation free energy evaluation of molecules and ions both in
aqueous and nonaqueous solutions, based on a dense neural
network (DNN). The only input required for ESE-GB-DNN is
the molecular geometry and the total charge of the solute. First,
the atomic surfaces {SI} andmolecular volume Vtot are estimated
using simple geometric formulas, with no need of explicitly
constructing the molecular surface. Subsequently, atomic
charges {QI} are computed by a modified version of the
electronegativity-equalization (EE) method. Then, {QI}, van
der Waals radii, and interatomic distances are utilized to
calculate monatomic and diatomic generalized-Born terms. The
latter, together with {SI} and V, as well as three solvent features
undergo a dimension-reducing linear transformation and are
subsequently fed into a DNN that produces ΔG°solv.
Independent DNN trainings were done for aqueous and
nonaqueous solutions, respectively.

ESE-GB-DNN exhibits a good accuracy, typically similar or
even superior to that of the DFT-based SMD and uESE
methods. For neutral solutes in water, polar protic, polar aprotic,
and nonpolar solvents, ESE-GB-DNN exhibits an RMSE of 1.30,
1.06, 0.73, and 0.68 kcal/mol, respectively (based on theMNSol
database). ESE-GB-DNN is particularly valuable for non-

Figure 3. Solvation free energies (in kcal/mol) in nonaqueous polar
protic solvents for 467 molecules and ions calculated by the ESE-GB-
DNN (a), SMD (b), and uESE (c) methods versus reference values.
Red points denote outliers with a deviation greater than 3 kcal/mol.

Figure 4. Solvation free energies (in kcal/mol) in nonaqueous polar
aprotic solvents for 338 molecules and ions calculated by the ESE-GB-
DNN (a), SMD (b), and uESE (c) methods versus reference values.
Red points denote outliers with a deviation greater than 3 kcal/mol.

Figure 5. Solvation free energies (in kcal/mol) in nonpolar solvents for
1554 molecules calculated by ESE-GB-DNN (a), SMD (b), and uESE
(c) methods versus reference values. Red points denote outliers with a
deviation greater than 3 kcal/mol. SMD and uESE results are given for
comparison.
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aqueous solutions of ionic solutes, with an RMSE of 0.74 kcal/
mol. For ions in water, the RMSE is larger (2.86 kcal/mol), but it
is still lower that that produced by alternative methods.

The ESE-GB-DNN scheme is physically justified, since the
ANN input features are generalized-Born terms describing the
electrostatics, along with surface and volume terms for
nonelectrostatic effects. The computational efficiency of ESE-
GB-DNN comes first from the use of easily computable
electronegativity-equalization atomic charges and second from
an inexpensive calculation of the generalized-Born and surface
terms.

The ESE-GB-DNN program is devised as a reliable
standalone ΔG°solv calculator. However, it should be noted
that ESE-GB-DNN was not tested for unusual molecular
configurations, such as untypical coordination numbers or
strongly distorted bonds. Another limitation of the current
version is that the elements parametrized are H, C−F, Si−Cl, Br,
and I only. Nevertheless, it is extendable to other elements
provided that a reliable training database is available.
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