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ABSTRACT: Arenes are interesting feedstocks for organic synthesis
because of their natural abundance. However, the stability conferred
by aromaticity severely limits their reactivity, mostly to reactions
where aromaticity is retained. Methods for oxidative dearomatization
of unactivated arenes are exceedingly rare but particularly valuable
because the introduction of Csp3−O bonds transforms the flat
aromatic ring in 3D skeletons and confers the oxygenated molecules
with a very rich chemistry suitable for diversification. Mimicking the
activity of naphthalene dioxygenase (NDO), a non-heme iron-
dependent bacterial enzyme, herein we describe the catalytic syn-
dihydroxylation of naphthalenes with hydrogen peroxide, employing
a sterically encumbered and exceedingly reactive yet chemoselective
iron catalyst. The high electrophilicity of hypervalent iron oxo species is devised as a key to enabling overcoming the aromatically
promoted kinetic stability. Interestingly, the first dihydroxylation of the arene renders a reactive olefinic site ready for further
dihydroxylation. Sequential bis-dihydroxylation of a broad range of naphthalenes provides valuable tetrahydroxylated products in
preparative yields, amenable for rapid diversification.

■ INTRODUCTION
The abundance of arenes makes them valuable feedstocks for
organic synthesis. Functionalization of arenes usually relies on
methodologies in which aromaticity is maintained. Alter-
natively, dearomatization reactions are particularly valuable
because they install multiple sp3 carbon centers, transforming
the flat aromatic structure in three-dimensional polyfunction-
alized platforms, structurally rich and chemically versatile.1−6

Oxidative dearomatization transformations constitute some
of the most appealing reactions since they provide oxygenated
scaffolds that serve as starting point for the elaboration of
numerous products of biological relevance.6−8 However, this
class of reactions constitutes a paradigmatic example of the
difficulties posed by dearomative functionalization of unac-
tivated arenes (Figure 1).3 Traditional alkene epoxidizing and
dihydroxylation agents are poorly reactive against unactivated
arenes.9−13 On the other hand, catalytic oxidations with first-
row transition metal catalysts can generate powerful oxidants
that overcome the kinetic stability of arenes, but their reactions
result in the formation of phenols and quinones (Figure
1b).14−23

A recent breakthrough to solve this problem disclosed a
photochemically promoted [4 + 2] addition of N−N
arenophiles to unactivated arenes, removing aromaticity. This
way, the diene motif becomes reactive against conventional
dihydroxylating or epoxidizing agents, resulting in diaminodi-
hydroxylated derivatives. Removal of the arenophile provides

the diols and oxepins that can be further transformed into a
diversity of natural products (Figure 1a).24−26

On the other hand, contrasting with the scarcity of
traditional synthetic methods, several classes of enzymes
oxidatively dearomatize arenes. Such reactivity has converted
them into the single alternative to address the high interest in
these reactions.7,8,27 This approach presents several limitations
because it requires the use of whole cells, which may be
methodologically challenging, and in addition, access to the
bacterial strains may be limited.
One of the best studied enzymes is naphthalene 1,2-

dioxygenase (NDO), a bacterial non heme iron dependent
enzyme from the family of Rieske dioxygenases, which
performs the syn-dihydroxylation of naphthalene as the first
step in the biological degradation of this molecule.27−29 Taking
inspiration from nature, small molecule iron complexes that
serve as functional models of NDO have been developed in the
past years. Some of those complexes may provide excellent
yields for the syn-dihydroxylation of alkenes in preparative
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yields, making them an attractive alternative to well-established
osmium-based reactions.30−48

However, the use of arenes as substrates remains a more
challenging and standing problem. A single example has been
reported by Que and co-workers using the iron complex
[Fe(OTf)2(tpa)], [(Fe(tpa)], where tpa stands for the
tetradentate tris-2-pyridylmethylamine ligand. Employing a
large excess of the substrate and hydrogen peroxide as oxidant
and limiting reagent, cis-1,2-dihydro-1,2-naphthalenediol was
obtained in a modest 3%, along with modest chemoselectivity;
1-naphthol, 2-naphthol and 1,4-naphthoquinone were also
obtained in comparable amounts (Figure 1b).49

More recently, we have described a modified tpa-based
catalyst, [Fe(OTf)2(5‑tips3tpa)], [(Fe(5‑tips3tpa)] (Figure 1),
which incorporates sterically demanding triisopropyl-silyl
groups, (tips) in the structure of the ligands and catalyzes
the syn-dihydroxylation of a broad range of olefins with
excellent yields (up to 97% of isolated yield) and chemo-
selectivity.50−52 The steric isolation of the iron center in this
catalyst was key to slowing down the formation of catalytically
inactive oxo-bridged diiron complexes. In addition, steric
isolation promotes the release of diol product from the metal
center. This is important because it is the rate-determining step
of the catalytic reaction. The use of Mg(ClO4)2·6H2O
synergistically assists catalytic turnover since this Lewis acid
captures the diol produced, so it does not bind back to the
metal center preventing catalyst arrest. Interestingly, sub-
sequent mechanistic studies in gas-phase suggested that arenes
are also suitable substrates for this catalyst, despite only
naphthols and not dihydrodiols were observed in the gas
phase.53

Building on these precedents, herein we develop a synthetic
methodology for the syn-dihydroxylation of naphthalene

derivatives using [Fe(5‑tips3tpa)] under substrate-limiting
conditions using hydrogen peroxide as an oxidant (Figure
1c). Substrate scope and reaction mechanism are investigated,
pointing toward the implication of a highly reactive yet
chemoselective FeV(O)(OH) intermediate. Interestingly, dihy-
droxylation of naphthalene unleashes reactivity of the adjacent
olefinic site, which is further hydroxylated. The reaction
displays a broad substrate scope and delivers tetrahydroxylated
products at the nonfunctionalized ring of substituted
naphthalenes, while retaining arene functionalities suitable for
further elaboration.

■ RESULTS AND DISCUSSION
Reaction Design and Optimization. Our initial hypoth-

esis was that the excellent activity of [Fe(5‑tips3tpa)] in the syn-
dihydroxylation of alkenes makes it a potential candidate for
performing the dihydroxylation of the comparatively less
reactive arene substrates. To evaluate this hypothesis, our
study was initiated by performing the oxidation of naphthalene
under oxidant-limiting conditions. In a typical experiment, a
solution of hydrogen peroxide (0.2 equiv with respect to the
substrate in acetonitrile solution) was delivered via a syringe
pump during 30 min at room temperature to a solution
containing naphthalene (1 equiv), catalyst ([Fe(5‑tips3tpa)],
13.5 μM, 3 mol % with respect to the substrate), and
Mg(ClO4)2·6H2O (4.4 equiv) in acetonitrile in a vial open to
air. Following peroxide addition, the mixture was subjected to
an acetylation workup and analyzed by gas chromatography.
The reaction produced the acetylated diol in 35% yield, which
could be improved up to 39% yield by using 6 mol % of the
catalyst.

Figure 1. (a) Site-selective dearomative diaminodihydroxylation of napthalenes with arenophiles (MTAD; N-methyl-1,2,4-triazoline-3,5-dione).
(b) Precedents for iron catalyzed oxidation of naphthalene and reported syn-dihydroxylation of naphthalene catalyzed by the [Fe(tpa)] complex.
(c) This work, detailing chemoselective syn-dihydroxylation of naphthalenes.
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Performing the reaction under stoichiometric (substrate:ox-
idant ratio) conditions was then explored. Results are listed in
Table 1. By employing 3 mol % catalyst and 1 equiv of H2O2
(conditions A) the reaction delivered a 1:1 mixture of syn-diol
(11% yield) and overoxidized tetraol (11% yield, syn/anti =
6.2) (entry 1, Table 1). As previously seen in the syn-
dihydroxylation of simple alkenes, the addition of Mg(ClO4)2·
6H2O as additive had a strong positive impact in yields,
chemoselectivities, and mass balance of the reactions,
presumably because the binding and sequestering of the diol
products by the Mg2+ cations protect them against over-
oxidative degradation while leaving the iron center available for
initiating the following catalytic cycle. Using 4.4 equiv of
Mg(ClO4)2·6H2O, the yield and chemoselectivity of the
reaction improved, obtaining the syn-diol 2a in 29% yield,
along with minor amounts of tetraol 3a (5% combined yield,
syn/anti = 3, entry 2, Table 1). Naphthol and naphthoquinone,
products commonly obtained in the oxidation of naphthalene
with metal catalysts,14−20,23,49 were only detected in trace
amounts (<2%). The recovered starting material (1a) was 50%
and a blank experiment where the same reaction was
conducted in the absence of catalyst showed losses of 5%
during workup. This leads to an estimated mass balance of
82%. Therefore, we conclude that under 1:1 oxidant:substrate
ratio conditions, [Fe(5‑tips3tpa)] catalyzes the syn-dihydrox-
ylation of naphthalene in a chemoselective manner.
Recognizing the interest of polyhydroxylated compounds

containing adjacent hydroxyl groups and the general difficulty
of their preparation,54 we sought conditions that could

maximize the formation of the tetraol products. Pleasantly,
we found that a second addition of oxidant and catalyst
(conditions B) yields the tetraol in 47% yield (GC yield, entry
5, Table S3). Various organic additives were explored as
potentially trapping diol products different from Mg(ClO4)2·
6H2O (acetone, hexafluoroacetone, boronic acids, 1,1′-carbon-
yl-diimidazole) (Table S10). However, they did not exert the
positive effect of Mg(ClO4)2·6H2O. A solvent screening was
also conducted (Table S12) showing that acetonitrile and
butyronitrile are optimal solvents, ethyl acetate and propylene
carbonate are tolerated, but THF and DMF completely
suppress reactivity. The reaction also proved to be incompat-
ible with the strong hydrogen donor solvent HFIP.
Catalyst Dependent Activity. The catalytic competence

of [Fe(5‑tips3tpa)] in syn-dihydroxylation is best placed in
context when compared with other iron tetradentate
complexes under analogous reaction conditions (Table 1,
Figure 2). Use of iron C−H hydroxylation and epoxidation
catalysts based on linear tetradentate ligands (Fe(pdp) (pdp;
N,N′-bis(2-pyridylmethyl)-2,2′-bipyrrolidine) and Fe(mcp)
(mcp; N,N′-dimethyl-N,N′-bis(pyridine-2-ylmethyl)-cyclohex-
ane-1,2-diamine) provided complex mixtures, where dearom-
atized products could not be identified.55,56 Naphthols and
naphthoquinones were detected in minor amounts among
multiple nonidentified products. Instead, the unsubstituted
[Fe(tpa)] catalysts (entry 3, Table 1) provided lower yields
(9% diol), further showing the crucial role of the ligand
structure in the outcome of the reaction. This led us to explore
different modifications of the [Fe(5‑tips3tpa)] catalyst (Figure

Table 1. Comparison of Diol Formation Using Different Iron Catalystsa

entry catalyst yield of 2a (%) yield of 3a (%) (syn/anti) yield of 4a (%)

1b [Fe(5‑tips3tpa)] 11 11 (6.2) 1
2 [Fe(5‑tips3tpa)] 29 5 (3.2) 2
3 [Fe(tpa)] 9 1 (1.3) 3
4 [Fe(5‑tips2tpa)] 17 1 (1.8) 3
5 [Fe(5‑tips2,6‑Metpa)] 14 4 (3.5) 2
6 [Fe(5‑tips3,4‑NMe2tpa)] 13 1 (1.8) <1
7 [Fe(COOEtpytacn)] 7 3 (3.8) 4
8 [Fe(6‑Mepytacn)] 1 <1 (2.5) 4

a3 mol % catalyst, 1 equiv of H2O2, 4.4 equiv of Mg(ClO4)2·6H2O, CH3CN, 30′, 0 °C. Yields determined by GC with the response factor of the
products. Replicates are included in Table S19. Differences between duplicates are <3%. bReaction without Mg(ClO4)2·6H2O.

Figure 2. Catalysts tested in this work.
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2). The removal of a single tips group in one of the pyridine
arms resulted in a substantial decrease in yields (17%, entry 4,
Table 1) highlighting the important role of steric demand.
Replacement of pyridine by 6-Me picoline groups generally
increase the selectivity toward syn-dihydroxylation versus
epoxidation of olefins in previously described iron oxidation
catalysts.40,41,57−59 However, the replacement of one of the tips
substituted pyridines by a 6-methyl picoline resulted in a
catalyst [Fe(5‑tips3,6‑Metpa)] that gives a modest 14% yield of
diol and a decreased chemoselectivity (entry 5, Table 1) when
compared with [Fe(5‑tips3tpa)]. Introduction of an electron-
donating group in the pyridine to decrease the electrophilicity
of the metal center was also explored, aiming at minimizing
overoxidation processes, but the resulting catalyst [Fe-
(5‑tips3,4‑NMe2tpa)] showed modest activity (13% yield, entry
6, Table 1) suggesting that the arene dihydroxylating reactivity
is limited when the electrophilicity of the catalysts is reduced.
Finally, two triazacyclononane-based complexes were tested
([Fe(COOEtpytacn)] and [Fe(6‑Mepytacn)],entries 7 and 8,
respectively, Table 1) since these have shown good activity in
the syn-dihydroxylation of olefins.59,60 The two catalysts
displayed catalytic activity in the syn-dihydroxylation of
naphthalene; however low yields (7% and 1% of diol,
respectively) and poor chemoselectivity were observed since
in both cases naphthoquinone was formed in a comparable
amount with respect to the diol. We concluded that
[Fe(5‑tips3tpa)] is the best catalyst of the series and was used
in the exploration of the substrate scope.
Substrate Scope under Conditions To Favor the

Mono-syn-dihydroxylation. Under the best conditions
found for the mono syn-dihydroxylation reaction (conditions
A), different naphthalene derivatives were tested (Figure 3).
Under these conditions, naphthalene delivered the best
isolated yield of diol (28%, 2a, Figure 3a). Monosubstituted
naphthalenes constitute a particularly difficult type of substrate
because multiple syn-diol regioisomers are possible (Figure
3b). Indeed, their oxidation delivered a mixture of three diols,
indicating a modest control on the site selectivity of the first
dihydroxylation reaction (Figure 3b, see Supporting Informa-
tion, Table S26 for details). In addition, we find that the
oxidation of 2-substituted (1b−1e) naphthalenes generally
provide better yields than 1-substituted naphthalenes (see
Supporting Information, Table S26).
Instead, when symmetrically disubstituted naphthalenes

were tested, a single syn-diol isomer was observed, where
dihydroxylation has taken place at nonsubstituted sites.
Disubstituted substrates with the two substituents in the
same ring (2b and 2d, Figure 3c) and with the substituents
symmetrically placed on different rings (2c and 2e, Figure 3c)
were also tested, in all cases providing low to moderate yields
(21−14%). Use of excess substrate (5 equiv) conditions
provided comparable product yields.
Summarizing, yields for dihydroxylation are modest, but it

should be considered that the reaction constitutes a single step
and easily scalable procedure to access these valuable
molecules from readily available naphthalenes. Besides, some
of the products are so far only accessible by whole cell
enzymatic methods.
Substrate Scope under Conditions To Favor Tetraol

Formation. The performance of the reaction was then
explored under the reaction conditions to favor the formation
of the corresponding tetraols (conditions B). In this case, the
substrate scope was not limited to naphthalenes with

symmetric substitution patterns since, irrespective of the
isomer first formed, the two sequential dihydroxylation events
on a ring converged in a single structural isomer (Figure 4),
obtaining the products in satisfactory yields.
The oxidation of each of the substrates gave a mixture of two

diastereomers resulting from syn or anti bis-dihydroxylation
(3syn and 3anti), syn being the major product in all cases.
Oxidation of 1d was explored using different Lewis acids,
aiming at controlling the diastereoselectivity of the reaction
(see Supporting Information, Table S18). Effectively, the syn/
anti ratio appears to be dependent on the nature of the Lewis
acid. The largest syn/anti ratio was obtained in the absence of
Lewis acid (see Supporting Information, entry 1, Table S18),
while Zn(OTf)2 delivered the smaller (1.5) syn/anti ratio (see
Supporting Information, entry 2, Table S18). Mg(ClO4)2·
6H2O provided the best yield while providing an intermediate
ratio (2.4, see Supporting Information, entry 3, Table S18) and
was chosen for substrate scope exploration.
Unsubstituted naphthalene was oxidized in 30% isolated

yield (47% by GC analysis of the crude) of the tetraol with a
syn:/anti ratio of 4 (3a, Figure 4a). A series of naphthalenes

Figure 3. Substrate scope for the dihydroxylation reaction. (a)
Naphthalene. (b) Isomeric diols resulting from the dihydroxylation of
monosubstituted naphtalenes. (c) Different disubstituted naphthalene
derivatives where a single diol isomer is obtained in their oxidation.
aIsolated yields. Reaction conditions: 1 equiv of substrate, 3 mol %
catalyst, 1 equiv of H2O2, 4.4 equiv of Mg(ClO4)2·6H2O, CH3CN,
30′, 0 °C. bNMR yields. Reaction performed with 5 equiv of substrate
under the same conditions. cReaction performed at rt. dDouble
addition of catalyst (3 mol % each addition) and H2O2 (1.5 equiv of
each addition) at 30′ of reaction, total reaction time 1 h, reaction
mixture AcOEt:CH3CN (1:1).

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.3c08565
J. Am. Chem. Soc. 2024, 146, 240−249

243

https://pubs.acs.org/doi/suppl/10.1021/jacs.3c08565/suppl_file/ja3c08565_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c08565/suppl_file/ja3c08565_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c08565/suppl_file/ja3c08565_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c08565/suppl_file/ja3c08565_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c08565/suppl_file/ja3c08565_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c08565/suppl_file/ja3c08565_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c08565/suppl_file/ja3c08565_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.3c08565?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c08565?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c08565?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c08565?fig=fig3&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.3c08565?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 4. Substrate scope of different naphthalene derivatives for tetraol formation. (a) Nonsubstituted naphthalene. (b) Naphthalenes with the
substituent in position 2. (c) Naphthalenes with the substituent in position 1. aIsolated yields. Reaction conditions: 1 equiv of substrate, 3 mol %
catalyst (with a second addition of 3 mol % in 30′), 1.5 equiv of H2O2 (with a second addition and 1.5 equiv of H2O2 in 30′), 4.4 equiv of
Mg(ClO4)2·6H2O, CH3CN, 30′, 0 °C. b[3syn/3anti] ratio (in parentheses) was determined by 1H NMR. cReaction performed at rt. dAdditional 3
mol % catalyst and 1.5 equiv of H2O2 at 1 h, final reaction time 1.5 h. eReaction mixture 1:1 (CH3CN:AcOEt).

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.3c08565
J. Am. Chem. Soc. 2024, 146, 240−249

244

https://pubs.acs.org/doi/10.1021/jacs.3c08565?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c08565?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c08565?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c08565?fig=fig4&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.3c08565?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


bearing substituents in position 2 were oxidized in modest to
good (32−75%) yields (Figure 4b). Of note is that isolated
tetrahydroxylated products contain the substituted ring intact.
Naphthalene bearing alkyl groups (3b, 3c, and 3g) presented
moderate yields (35−39%), and in these cases, the ratio of syn/
anti was substantially higher than in the case of naphthalene
(7.3, 7.7, and 5.8, respectively, Figure 4). The 2-phenyl-
substituted naphthalene substrate 1h was oxidized in a slightly
improved 40% yield and a lower syn/anti diastereoselectivity
(4.2, 3h, Figure 4). No products resulting from oxidation of
the phenyl substituent were detected, attesting to the expected
higher reactivity of naphthalene over benzene rings.
Furthermore, a competitive oxidation of a 1:1 mixture of
benzene and naphthalene yielded only diols resulting from the
oxidation of naphthalene (2a and 3a) and trace amounts of
benzoquinone (Table S20). Oxidation of the naphthalene over
the benzene ring in 3h reflects the higher energy of the
HOMO in the former, more susceptible to electrophilic
attack.25 Naphthalenes bearing electron-withdrawing groups in
position 2 are oxidized in remarkably high yields and
selectivities. Mono- and diacetate naphthalenes deliver the
corresponding tetraols in 54% and 75% yields, respectively, and
moderate (2.8−3.0) diatereoselectivities (3f and 3d). Nitro
(1i) and cyano (1j) substituted naphthalenes are oxidized to
the corresponding tetraols in 75% and 69% yields with a
diastereomeric ratio of 2.4 and 2.0, respectively (3i and 3j).
Finally, the oxidation of 2-acetonaphthone 1k yielded the
corresponding tetraol in a modest 35% yield (dr 2.3, 3k). The
oxidation of halogenated substrates also provided satisfactory
yields. Oxidation of 2-bromonaphthalene (1l) and 2-
chloronaphthalene (1m) delivered the corresponding tetraol
products in 55% and 32% yield, respectively, with a syn/anti
ratio of around 2.5 (3l and 3m). When two halogen groups
were placed on different rings, the tetraol is not formed, and
only the syn-diol (2e, Figure 3) could be isolated, suggesting
that the halide substituted olefin site is unreactive. The
comparatively high yields obtained for electron-poor substrates
suggest that oxidative degradation may be the reason for the
modest yields in the case of substrates with electron-rich rings.
Unfortunately, no dominant overoxidation products could be
isolated and identified. Nevertheless, the reaction is notable
because it provides a single step access to products that contain
the tetrahydroxylated ring adjacent to a derivatized arene
containing Carene−C, Carene−N, Carene−O and Carene−halide
functionality. The chemical versatility of this functionality
facilitates further elaboration by conventional methods. For
example, the halide groups are versatile handles for further
elaboration via organometallic cross-coupling transformations.
Naphthalenes substituted at position 1 were also suitable

substrates (Figure 4c), although yields are reduced when
compared with 2-substituted substrates. 1-Ethyl substituted
naphthalene provides the tetraol 3n in a modest 16% isolated
yield. Synthetically more valuable yields (37% and 25%) were
obtained in the oxidation of chemically versatile halide
substituted naphthalenes 1o and 1p, respectively. And as
observed in the case of 2-substituted substrates, 1-substituted
naphthalenes with the strong electron-withdrawing cyanide
group led to the best yields (44% for 3q and 34% for 3r). An
aspect that deserves consideration is that significant amounts
(1−13%) of isomeric diol products where oxidation took place
at the substituted ring could be detected in the 1H NMR
spectra of the crude reaction mixtures. However, they
decompose during the purification process, and only a small

amount of product was recovered (see Supporting Informa-
tion).
In summary, the reaction proceeds with synthetically

valuable modest to good yields for substrates substituted
with a wide variety of functional groups that can be further
manipulated by traditional organic chemistry methodologies or
organometallic cross-coupling transformations. Of interest, the
preferential functionalization at the nonsubstituted arene ring
expands substantially chemical space, providing products that
could be orthogonally manipulated in each of the two rings.
While yields may be considered still far from satisfactory, the
reaction represents a single step path toward these valuable
complex molecules from simple naphthalenes.
Mechanistic Studies. Insight into the reaction mechanism

was obtained using isotopic labeling experiments. It is known
that iron catalysts can syn-dihydroxylate olefins through two
different mechanisms (Figure 5a).31,32,61,62 Class A catalysts
contain strong field N-rich tetradentate ligands (LN4) and form
[LN4FeV(O)(OH)]2+ species IIIa

oxo (where subindex a refers
to class A catalyst) that syn-dihydroxylate olefins via a 3 + 2
mechanism (formal cycloaddition between the FeV(O)(OH)
and the olefin). IIIa

oxo is formed via heterolytic cleavage of the
O−O bond of the [LN4FeIII(OOH)(H2O)]2+ precursor
(IIa

peroxo). This is called the water assisted mechanism.31 As
a result of this O−O cleavage mechanism, species IIIa

oxo

contains an oxygen atom originating from the peroxide and a
second oxygen atom from the water molecule, which are
transferred to the olefin. On the other hand, class B catalysts
form diols with both oxygens inserted coming from a single
hydrogen peroxide molecule (Figure 5a), presumably via a
side-on bound hydroperoxide [LN4FeIII(η2-OOH)]2+, IIb

peroxo

(where subindex b refers to class B catalyst).40,62 With this
consideration in mind, we performed the oxidation of
naphthalene using H216O2 (2 equiv) in the presence of
H218O (162 equiv). GC−MS analysis shows that in the case of
diol 2a (Figure 5b), the major isotopomer (75%) contains a
16O18O composition (the exact position of the 18O and 16O
atoms could not be determined), which indicates that the
reaction proceeds via IIIa

oxo species, in a class A mechanism.
The isotopic pattern derived from this analysis is the same as in
the case of the dihydroxylation of olefins with the [Fe-
(5‑tips3tpa)] catalyst.50 Therefore, we conclude that the cis-
dihydroxylation of alkenes and arenes is performed by the
same IIIa

oxo species. These have been previously characterized
in the gas phase,53 but characterization in solution has not
been possible so far because conditions that enable their
accumulation have not been identified. An experiment was
performed under nitrogen and in an anhydrous solvent to
investigate if the nonlabeled oxygen introduced in the molecule
could originate from the oxygen present in the air, but no
significant changes in product yields and product ratios were
observed (see Supporting Information, Table S13), strongly
suggesting that external O2 does not participate in the reaction.
Taking into consideration the isotopic pattern determined for
the diol (Figure 5b), we calculated the expected labeling
pattern that should be obtained for the tetraol formation
assuming that the second dihydroxylation is performed by the
same IIIa

oxo species (see Supporting Information, entry 2,
Table S25). Notably, the calculated isotopic pattern reasonably
matches the experimental data (see Supporting Information,
entries 3 and 4, Table S25). Moreover, the two isomers of the
tetraol have the same isotopic patterns, which strongly suggest
that both of them are formed via the same mechanism.
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Consequently, we infer that the catalysts behave as
previously proposed for the syn-dihydroxylation of olefins50

and the high electrophilicity of IIIa
oxo accounts for the

chemoselective arene dihydroxylating ability.53 In addition, as

it has been previously argued, the bulkiness of this complex
may help the release of the diol from the metal center through
steric effects, and the diol is rapidly trapped by the magnesium
cation so that the catalytic center is regenerated and its
catalytic lifetime is extended since the diol does not remain
chelated in the iron center. Subsequent dihydroxylation of the
olefinic site in the first formed diol is facilitated by the lack of
aromaticity but it may be also slowed down because of polar
deactivation caused by the binding of the diol moiety to the
Mg2+ Lewis acid. An intriguing aspect is the origin of the
preferential syn-diastereoselectivity of the second dihydrox-
ylation reaction. Direct binding of diol to the iron center is
unlikely since IIIa

oxo is coordinatively saturated. Besides, the
ratio is dependent in a moderate manner on the nature of the
substituents in the substrate, the catalyst, and the trapping
Lewis acid. We note that analogous modest changes in
diastereoselectivity are observed when the oxidation of 2-
cyclohexenol is performed in the presence and absence of
Mg(ClO4)2·6H2O (Table S21). Clarification of this aspect will
require further studies, presumably by characterizing the nature
of the Lewis acid−diol complexes.

■ CONCLUSIONS
Herein we describe the syn-dihydroxylation of a broad range of
naphthalene derivatives with an iron catalyst that mimics the
reaction of NDO’s. The high reactivity of this catalyst is
presumably rooted in the high electrophilicity of a cis-
FeVO(OH) intermediate, which permits us to overcome the
reactivity inertia posed by aromaticity and may account for the
unusual syn-dihydroxylation chemoselectivity among known
naphthalene oxidizing reagents. Once this first oxidation takes
place, a second olefinic site is rendered reactive for a second
dihydroxylation step that proceeds smoothly to deliver
tetrahydroxylated products in moderate to good yields. The
substrate scope of the reaction is relatively broad, providing
access to a variety of densely functionalized products. On
notice, in the case of functionalized naphthalenes, oxidation
takes place at the nonfunctionalized arene moiety, and thus,
the resulting products contain reactive handles that can be
chemically manipulated in an orthogonal manner. While
product yields and diastereoselectivities of the reactions have
obvious room for improvement, the reaction is valuable
because it is a single step conversion of readily available arene
substrates into valuable sp3-rich products that represent an
expansion of chemical space or are currently only accessible via
multistep sequences or whole cell enzymatic methods. The
mild reaction conditions, the use of an iron catalyst, and
hydrogen peroxide as an oxidant make the reaction also
interesting from a sustainability perspective. But arguably the
most interesting aspect is the finding that well-defined iron
coordination complexes can perform chemoselective oxidative
dearomatization reactions akin to those obtained in enzymatic
systems and that are not possible for other transition metal
catalysts or oxidizing agents. We envision that catalyst design
may enable improvement of the current limitations in terms of
selectivity and yields, introduce stereoselectivity, and expand
the reaction toward benzenes, where aromaticity represents an
even greater challenge.
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The Supporting Information is available free of charge at
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Figure 5. (a) Classification based on the mechanism for iron syn-
dihydroxylation catalysts. (b) Isotopic labeling results for diol 3a and
tetraol 3b formation. (c) Proposed mechanism for iron-catalyzed syn-
dihydroxylation of naphthalene. Note that the specific position of the
18O is not determined.
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