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ABSTRACT
In the so-called Interacting Quantum Atoms (IQA) approach, the molecular energy is numerically decomposed as a sum of atomic and
diatomic contributions. While proper formulations have been put forward for both Hartree–Fock and post-Hartree–Fock wavefunctions,
this is not the case for the Kohn–Sham density functional theory (KS-DFT). In this work, we critically analyze the performance of two fully
additive approaches for the IQA decomposition of the KS-DFT energy, namely, the one from Francisco et al., which uses atomic scaling
factors, and that from Salvador and Mayer based upon the bond order density (SM-IQA). Atomic and diatomic exchange–correlation (xc)
energy components are obtained for a molecular test set comprising different bond types and multiplicities and along the reaction coordinate
of a Diels–Alder reaction. Both methodologies behave similarly for all systems considered. In general, the SM-IQA diatomic xc components
are less negative than the Hartree–Fock ones, which is in good agreement with the known effect of electron correlation upon (most) covalent
bonds. In addition, a new general scheme to minimize the numerical error of the sum of two-electron energy contributions (i.e., Coulomb
and exact exchange) in the framework of overlapping atoms is described in detail.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0142778

I. INTRODUCTION

The accurate evaluation of the total energy of a molecular sys-
tem is one of the most important challenges in quantum chemistry.
However, the value of the energy itself provides little immediate
chemical information. To extract chemical bonding information
from the energy, one can make use of computational tools, which
operate on the energetics of the bond/interaction formation, in
particular the schemes that decompose the molecular or the forma-
tion energy into chemically meaningful terms. The so-called energy
decomposition analysis (EDA) schemes are mainly developed to
study a particular A–B interaction from the pair of fragments A
and B. For that purpose, monomers or molecular fragments A and
B must be defined and computed at the electronic state, which
would better describe the bonding situation. The EDA terms that are
obtained for the interaction energy are thus necessarily dependent
on the nature of the reference’s isolated fragments.

Alternatively to that, in the case of the so-called interact-
ing quantum atoms (IQA) approaches, the total energy is exactly
decomposed (up to the numerical integration error) into one- and
two-center contributions1–3 solely using the wavefunction from the
optimized AB system. The centers can be the individual atoms com-
posing the system or groups of atoms, permitting the identification
of energetic interactions between functional groups in the case of
a molecular system or individual monomers in a complex. In IQA
methods, no additional reference calculations are required, and the
intra- and intermolecular interactions present in the complex are
treated on equal footing.

Over the past two decades, this methodology has been widely
employed to elucidate numerous chemical phenomena with a par-
ticular emphasis on the nature of chemical bonding. The descriptors
derived from IQA analysis have been used to rationalize trends in
the binding energies of first-row diatomics4 to investigate into the
nature of different bonds, such as hydrogen bonds5,6 and their coop-
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erative effects,7 halogen bonds,8 and beryllium bonds,9 or, more
recently, to propose a novel bonding type (i.e., collective interac-
tions).10 In addition, efforts have been made to recover classical
concepts from the IQA analysis, such as the steric repulsion in
rotational barriers11,12 and SN2 reactions13 or the gauche effect,14

to name a few. For a recent review of the IQA methodology,
see Ref. 15.

IQA energy decomposition relies on real-space analysis and,
hence, on the identification of the atom within the molecule (AIM),
which is often chosen to be that from the quantum theory of atoms
in molecules (QTAIM).16 It is important to stress that the real-space
decomposition of properties such as the energy is not restricted to
that particular atomic model. An atom A within the molecule may
be more generally identified by continuous atomic weight functions
wA(r) ≤ 0 centered in the nucleus of the atom. Such atomic weight
functions can be derived from a variety of approaches, including a
number of Hirshfeld-type variants17–19 or schemes that borrow ele-
ments of the QTAIM model, such as the topological fuzzy Voronoi
cell (TFVC) approach.20

In real-space analysis, any one-electron density function,
namely, f (r), naturally decomposes into one-center contributions
either upon integration on their respective domains or introducing
the respective atomic weight function, wA(r), as follows:

F1 = ∫ f (r)dr =∑
A
∫

ΩA

f (r)dr

=∑

A
∫ wA(r) f (r)dr =∑

A
FA

1 . (1)

Note that one may consider wA(r) f (r) as the atomic effective
density function of the property F1, which upon integration over
the whole space yields the corresponding average atomic contri-
bution. Similarly, two-electron density functions, namely, f (r1, r2),
naturally yield both one- and two-center terms,

F2 =∬ f (r1, r2)dr1 dr2 =∑
A,B

FAB
2 , (2)

where

FAA
2 =∬ wA(r1)wA(r2) f (r1, r2)dr1 dr2,

FAB
2 =∬ wA(r1)wB(r2) f (r1, r2)dr1 dr2.

(3)

Since the total energy can be expressed in terms of one- and
two-electron density functions, it quite naturally decomposes into
one- (atomic) and two-center (diatomic) contributions by apply-
ing the equations above (see in the following). However, contrary to
electron distribution analyses (e.g., atomic populations, bond orders,
or local spins), the formulation of the molecular energy decomposi-
tion scheme depends upon how the total energy is obtained for each
particular electronic structure method. Popelier and Kosov first con-
sidered two-electron integrations over different QTAIM domains.21

Salvador et al. introduced the IQA scheme for the Hartree–Fock
energy both for QTAIM and fuzzy-atom AIMs.1,2 Later, Blanco
et al. extended it to correlated wavefunctions3 [e.g., Configuration
Interaction Singles and Doubles (CISD) or Complete Active Space
Self-Consistent Field (CASSCF)] and introduced an efficient numer-
ical quadrature algorithm for the two-center integrations.22,23 More

recently, proper formulations for Møller–Plesset second-order per-
turbation theory (MP2)24,25 and Coupled-Cluster Singles and Dou-
bles (CCSD)26–28 energies have also been successfully introduced.
Curiously enough, the extension of the method to the Kohn–Sham
density functional theory (KS-DFT) has proven to be the most chal-
lenging, the origin of the problem being the local contribution of the
exchange–correlation functional.

Let us consider for simplicity the restricted Hartree–Fock
energy expression (generalization to the unrestricted case is trivial),

ERHF
=∑

A
∑

B>A

ZAZB

RAB
−

1
2 ∫

∇
2
(r1)ρ(r1; r′1)∣r′1=r1 dr1

−∑

A
∫

ZA

∣r1 − RB∣
ρ(r1)dr1

+
1
2∬

ρ2(r1, r2)r−1
12 dr1 dr2, (4)

where ρ(r1; r2) is the first-order reduced density matrix, ρ(r1)

≡ ρ(r1; r1), and ρ2(r1, r2) ≡ ρ(r1)ρ(r2) −
1
2 ρ(r1; r2)(r2; r1).

Using Eq. (1), the kinetic energy contribution naturally leads to
one-center terms of the form

TA
= −

1
2 ∫

wA(r1)∇
2ρ1(r′1; r1)∣r′1=r1 dr1. (5)

The electron-nuclear attraction, being a one-electron quantity,
provides both one-center,

UA
= −∫

ZA

∣r1 − RA∣
wA(r1)ρ(r1)dr1, (6)

and two-center terms (i.e., when the nuclear potential of atom A
interacts with the density at atom B and vice versa),

UAB
= −∫

ZA

∣r1 − RA∣
wB(r1)ρ(r1)dr1

− ∫

ZB

∣r1 − RB∣
wA(r1)ρ(r1)dr1. (7)

The two-electron part of the energy expression is decomposed
using Eq. (2), leading to both one-center and two-center Coulombic
repulsion terms,

EAA
Coul =

1
2∬

wA(r1)ρ(r1)wA(r2)ρ(r2)r−1
12 dr1 dr2;

EAB
Coul =∬ wA(r1)ρ(r1)wB(r2)ρ(r2)r−1

12 dr1 dr2.
(8)

Finally, in the Hartree–Fock model, the exchange energy (hence-
forth, exact exchange) is expressed in this case as

EHF
x = −

1
4∬

ρ(r1; r2)ρ(r2; r1)r−1
12 dr1 dr2

= −

Nocc

∑

i, j
∫ ϕ∗i (r1)ϕ∗j (r2)ϕi(r2)ϕ j(r1)r−1

12 dr1 dr2

=∬ ρx(r1; r2)r−1
12 dr1 dr2, (9)

where we have introduced the spinless non-local HF-exchange
density, ρx(r1; r2).
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Upon introduction of the atomic weight functions, the exact
exchange can be trivially decomposed into one-center,

EAA,HF
x =∬ wA(r1)ρx(r1; r2)wA(r2)r−1

12 dr1 dr2, (10)

and two-center contributions,

EAB,HF
x = 2∬ wA(r1)ρx(r1; r2)wB(r2)r−1

12 dr1 dr2. (11)

The constant nuclear repulsion term is made up of two-center
terms,

UAB
NN =

ZAZB

∣RA − RB∣
, (12)

so that the IQA decomposition of the Hartree–Fock energy reads as

EAA;HF
= TA

+UA
+ EAA

Coul + EAA,HF
x ,

EAB;HF
= UAB

+ EAB
Coul + EAB,HF

x +UAB
NN ,

(13)

which is fully additive (up to the numerical accuracy of the
numerical integrations),

EHF
=∑

A
EAA;HF

+ ∑

A,B>A
EAB;HF. (14)

On the other hand, in KS-DFT, the exchange–correlation
energy is expressed through the exchange–correlation functional,
which, in turn, is typically expressed as an additive contri-
bution of the exchange and the correlation functionals. The
exchange–correlation energy can be written in the most general
form as

EDFT
xc = a0Enl,HF

x + Elocal
x + acEnl

c + Elocal
c . (15)

The first term is the non-local exchange, which has the form
of Eq. (9) but using the Kohn–Sham molecular orbitals (KS-
MOs). It is modulated by the parameter a0, ranging from zero
(pure local exchange) to one (HF-like). The correlation part also
can be expressed through non-local and local contributions. In
double-hybrid functionals, the former borrows the form of the
Møller–Plesset second-order energy correction formula again using
the KS-MOs. In the case of range-separated functionals, the non-
local and local parts of the exchange functional are modified accord-
ing to the range-separation parameter, but the essence of the two
contributions is kept.

Going back to Eq. (15), the second and fourth term corre-
spond to the local exchange and correlation energy, respectively.
Their particular form depends on the one-electron density and its
derivatives. Usually, both terms are grouped, Elocal

xc , and evaluated
upon integration of the corresponding exchange–correlation energy
functional εxc,

Elocal
xc = ∫ εxc

[ρ(r1),∇ρ(r1), . . .]dr1 =∑
A

EA,local
xc . (16)

According to Eq. (1), Elocal
xc naturally decomposes into one-

center (atomic) contributions. This fact has been recently used by
some of us to develop an origin-independent decomposition of

the electronic polarizability into atomic/fragment contributions.29

However, for chemical bonding analysis, this situation is clearly
unsatisfactory. First of all, since the HF-like non-local part of EDFT

xc
does decompose into both one- and two-center terms, an IQA-type
analysis would render a completely different picture of the atomic
and diatomic interactions within the molecule when using a pure
KS-DFT functional as compared to Hartree–Fock (with KS-DFT
hybrids somewhat in between). Moreover, it has been repeatedly
shown that the HF-like inter-atomic exchange contribution between
bonded atoms is attractive and essentially responsible for the bond-
ing. Ignoring this term would make most IQA inter-atomic energies
of bonded atoms positive.

A first and plausible solution to the problem was introduced
by Tognetti et al., where the authors applied the exact-exchange
expression for the atomic and inter-atomic terms but with the KS-
MOs obtained by the given functional.30,31 Thus, introducing the
approximated Kohn–Sham exchange density,

ρKS
x (r1; r2) = −

Nocc

∑

i, j
ϕKS,∗

i (r1)ϕKS,∗
j (r2)ϕKS

i (r2)ϕKS
j (r1), (17)

and performing the decomposition analogously to the Hartree–Fock
energy,

EDFT
xc ≅ EHF−like

x =∑

A
EAA,HF−like

x + ∑

A,B>A
EAB,HF−like

x

= −
1
2∑A

∬ wA(r1)wA(r2)ρKS
x (r1, r2)r−1

12 dr1 dr2

− ∑

A,B>A
∬ wA(r1)wB(r2)ρKS

x (r1, r2)r−1
12 dr1 dr2. (18)

An obvious drawback of this strategy is that the total KS-DFT
exchange–correlation energy is not recovered by the sum of all
atomic and inter-atomic terms, i.e., the decomposition is not fully
additive.

To date, only the strategies devised by Salvador and Mayer32

and by Francisco et al.33 ensure the proper additivity [Eq. (19)]
of EDFT

xc upon decomposition into one- and two-center terms,
namely,

EDFT
xc =∑

A
EAA,DFT

xc + ∑

A,B>A
EAB,DFT

xc . (19)

In 2007, Salvador and Mayer (henceforth, SM-IQA) intro-
duced a bond order density (BOD), i.e., a local function associated
with each atomic pair A and B, which upon integration yields the
corresponding real-space bond order.32 For the simplest case of
a closed-shell single-determinant wavefunction, the BOD βAB(r1)

reads as

βAB(r1) = 2
Nocc

∑

i, j
[wA(r1)SB

i j + wB(r1)SA
i j]ϕ

∗,KS
i (r1)ϕKS

j (r1), (20)

where SA
i j corresponds to the atomic overlap matrix elements in the

MO basis,

SA
i j = ∫ wA(r1)ϕ∗,KS

i (r1)ϕKS
j (r1)dr1. (21)
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The BOD represents the part of the one-electron density used
to build the A–B interaction through the exchange. As such, it also
affords an exact decomposition of the single-determinant molecu-
lar first-order density into bonding and non-bonding counterparts.
Salvador and Mayer showed that the topology of βAB(r1) is very
similar to that of the Hartree–Fock inter-atomic exchange energy
density. In particular, the BOD exhibits peaks at the atomic positions
and also extends into the inter-atomic region (for bonded atoms)
resembling a bonding MO. Then, in a rather heuristic manner, the
authors obtained an estimate of the inter-atomic local exchange
energy, EAB,local

xc , using βAB(r1) (and its derivatives) instead of ρ(r1)

in the local exchange–correlation expression,

EAB,local
xc = ∫ εxc

[βAB(r1),∇βAB(r1), . . .]dr1. (22)

The atomic (A = B) exchange contributions were defined such
that the sum rule in Eq. (19) is conserved. The authors used the
readily available (exact) one-center terms obtained from the decom-
position of the exchange–correlation energy of Eq. (16), EA,local

xc , and
subtracted half of the inter-atomic exchange energy terms, where the
center A is involved, namely,

EAA,local
xc = EA,local

xc −
1
2∑B≠A

EAB,local
xc . (23)

This strategy performed extremely well from a numerical point
of view. Both the atomic and diatomic exchange energy components
obtained with a local exchange functional (e.g., from a BLYP calcu-
lation) exhibited almost perfect correlation with the values obtained
with the exact exchange formula (using the same KS-MOs and
geometries).32

In 2016, Francisco et al. introduced an alternative
strategy (henceforth, F-IQA) to decompose the KS-DFT
exchange–correlation energy fulfilling Eq. (19).33 The idea was
again to use the exact exchange formula using the KS-MOs but
incorporating properly defined atomic scaling factors to ensure
additivity.

For a hybrid functional, the total KS-DFT
exchange–correlation energy can be written as

EDFT
xc =∑

A
EA,DFT

xc =∑

A
[EA,local

xc + a0EA,HF−like
x ], (24)

where

EA,HF−like
x = −

1
4∬

wA(r1)ρKS
x (r1, r2)r−1

12 dr1 dr2. (25)

By introducing the following atomic scaling factors,

λA =
EA,DFT

xc

EA,HF−like
x

, (26)

properly scaled atomic and inter-atomic contributions that add
up to the total KS-DFT exchange–correlation energy are simply
expressed as

EAB,DFT
xc =

1
2
[λA + λB]EAB,HF−like

x ∀ A, B. (27)

Hence, in the F-IQA method, the exact HF-exchange expres-
sion is always used to determine the atomic and inter-atomic
exchange–correlation energies even in the case of purely local
KS-DFT functionals.

The main purpose of this work is to assess the performance of
the aforementioned KS-DFT IQA schemes. The atomic and inter-
atomic exchange–correlation terms obtained for a molecular set
using a local (GGA) functional, a hybrid (GGA) functional, and
Hartree–Fock are compared. In addition, we also describe in detail a
numerical procedure to improve the accuracy of the decomposition
of the two-electron energy terms, which are the bottleneck of the
IQA approaches. We show that in the context of overlapping atomic
definitions, it is possible that the sum of all atomic and diatomic
contributions to the two-electron energy (i.e., Coulomb and exact
exchange if needed) exactly reproduces the analytical molecular
value. We refer to this strategy as the (two-electron) zero-error
scheme (ZES).

II. RESULTS AND DISCUSSION
A. A two-electron zero-error scheme

The two-electron contributions to the molecular energy,
namely, Coulomb and Hartree–Fock exchange and correlation, in
the case of wavefunction methods are both the bottleneck and the
major source of the numerical error in the IQA energy decompo-
sition schemes. They formally scale N6, N being the number of grid
points, albeit efficient algorithms achieving N4 scaling have also been
introduced in the QTAIM framework.3 In general, the numerical
integration of one- or two-electron density functions over disjoint
(e.g., QTAIM) atomic domains is more challenging than for fuzzy-
atom (e.g., TFVC) domains. In the latter case, the atomic weight
functions [Eq. (1)] tailor the molecular density functions. Then, the
integrals are formally carried out over the entire space for which
conventional and well-tested numerical integration schemes can be
safely applied. Among them, the multicenter integration scheme
introduced by Becke, which merges atom-centered spherical grids,
is by far the most widely used.34

In the first realization of the Hartree–Fock IQA decomposition
in the general framework of fuzzy atoms, the numerical two-electron
integrations required to decompose the Coulomb and exchange
energy terms were carried out by using two sets of atom-centered
grid points associated with the electron coordinates of electron 1
(r1) and 2 (r2).2 It was shown that because of the r−1

12 operator in
the denominator, if exactly the same grid was used for both electron
coordinates, all points where r1 = r2 (in fact, N grid points) had to be
discarded to avoid the singularity. Thus, the overall accuracy of the
integration is compromised, i.e., the sum of the one- and two-center
terms compared to the corresponding molecular (analytical) value.
In order to avoid this situation, the authors used two identical grids
for both electrons but one of them rotated along the ϕ angle of the
spherical coordinates to obtain the one-center terms. In this man-
ner, sufficiently good accuracy was achieved using atom-centered
grids consisting of 40 radial and 146 angular points. For the angu-
lar mesh, the grid associated with electron 2 was rotated 0.229 rad
along ϕ.

This idea is somewhat reminiscent of the staggered mesh meth-
ods applied in solid-state calculations.35–37 One could indeed use
staggered atomic grids in the framework of Becke’s multicenter
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FIG. 1. Two-electron integration error (kcal/mol) vs angular rotation of the electron
2 grid for N2 at the B3LYP/cc-pVTZ level of theory.

integration. This might increase the accuracy of the one-electron
integrations, in particular. However, our present purpose is numer-
ical two-electron integrations and, as we will see, the ZES scheme
already affords the decomposition of the two-electron energy terms
with full numerical accuracy.

We have observed that appropriate rotation angles depend
mostly on the size of the angular grid. In addition, in a preliminary
analysis, we explored the possibility of introducing a second rotation
(with respect to the θ angle) to the grid for electron 2. No significant
improvement was observed for a small set of molecular systems as
compared to that obtained with a single rotation. Another obser-
vation was that the two-center two-electron terms are contributing
to the numerical error several orders of magnitude less than the
one-center ones while being rather unaffected by the rotation of the
second grid.38

However, the most relevant observation is depicted in Fig. 1.
Here, the integration error in the two-electron B3LYP/cc-pVTZ
energy of N2 is shown with respect to the rotation angle of the sec-
ond grid. The error is just defined as the difference between the
sum of all one- and two-center contributions of the molecular two-
electron energy and the exact (analytical) value, Vee. One can see
that if the atomic grid provided is sufficiently large, there is always
a rotation angle for which the overall two-electron integration error
vanishes. Thus, a 30 × 74 (radial and angular points, respectively)
atomic grid is clearly insufficient, and with the optimum rota-
tion angle, the error is still of ∼15 kcal/mol. However, using a
40 × 146 atomic grid, the integration error first crosses the zero-
error at around 0.18 rad and then again at 0.217 rad, close to the
default rotation angle used in Ref. 2. By using larger atomic grids,
the zero-error line is crossed at smaller rotation angles. In addition,
several poles are observed in the curves due to near singularities
in r−1

12 . Noteworthy, using sufficiently large atomic grids, such as
70 × 434 or 150 × 590, the shape of the curves is strikingly similar
irrespective of the molecule. That is, the rotation angle that produces
a zero-error in the two-electron energy lies within an extremely nar-
row range. This is illustrated in Fig. 2, where a 150 × 590 atomic grid
for a set of ten small molecules was used. With this, we observed that
the optimum rotation angle is within the 0.169–0.170 (in rad) range
in all cases.

FIG. 2. Two-electron integration error (kcal/mol) vs angular rotation of the electron
2 grid for a set of small molecules at the B3LYP/cc-pVTZ level of theory.

With these findings in mind, we propose a rather simple
strategy to minimize the two-electron integration error in IQA
schemes with overlapping atomic domains, solely requiring Vee,
i.e., the exact two-electron energy of the molecular system. In the
Hartree–Fock case, it comprises the Coulomb and exact-exchange
terms. In correlated wavefunction methods, an additional correla-
tion contribution coming from the cumulant of the second-order
reduced density matrix (RDM2) is also included. In KS-DFT, it con-
tains the Coulomb and the amount of exact-exchange that is actually
used in the exchange functional definition. The strategy proceeds as
follows: In a first step, the total two-electron energy is decomposed
into one and two-center terms, as usual in the IQA framework, with
an associated (numerical) integration error of

δV(1)ee =∑
A

E(1),A + ∑
A,B>A

EAB
− Vee, (28)

where an appropriate rotation of the grid for r2 has been applied
to compute the one-center terms. For instance, using a 150 × 590
atomic grid, a rotation of 0.169 rad performs very well (vide infra).
Then, the process is repeated using a second rotation angle, but now
only the one-center terms are recomputed. This leads to another
estimation of the two-electron energy using the two-center terms
evaluated in the previous step,

δV(2)ee =∑
A

E(2),A + ∑
A,B>A

EAB
− Vee. (29)

We proceed by introducing a damping between both estimates
to impose the error on the two-electron energy to be zero

(1 − γ)δV(1)ee + γδV(2)ee = 0. (30)

Substituting Eqs. (28) and (29) into (30) and rearranging, we
obtain the following expression for the damping parameter γ:

γ =
δV(1)ee

∑A (E
(1),A
− E(2),A)

, (31)
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TABLE I. Two-electron energy integration error for the first and second rotation
(in kcal/mol) and optimal γ values at the B3LYP/cc-pVTZ level of theory. Boldface
denotes extrapolation between the two estimates of Vee.

System δV(1)ee δV(2)ee γ

C2H2 0.0 3.7 0.996
C2H4 −0.6 3.2 0.835
C6H6 −0.4 11.8 0.965
C2H6 −0.9 3.3 0.777
HCONH2 −1.8 7.8 0.812
HCNO −2.0 6.2 0.757
B2H6 −0.5 2.3 0.824
CO −2.4 2.7 0.524
CO2 −3.6 5.5 0.604
SO2 −6.5 17.1 0.725
SO3 −6.0 22.5 0.790
H2 0.1 0.2 1.619
N2 −1.1 3.8 0.769
NO+ −2.6 2.8 0.515
CN− −2.0 2.3 0.533
LiF −1.7 3.8 0.697
F2 −1.0 9.9 0.909
LiH −0.2 0.3 0.677
BeH2 −0.2 0.6 0.779
BH3 −0.2 1.2 0.838
CH4 −0.2 2.0 0.903
NH3 −1.0 2.2 0.686
H2O −1.1 3.2 0.745
HF −1.5 3.8 0.724
NaH −2.0 5.7 0.735
MgH2 −2.6 6.5 0.713
AlH3 −2.8 7.9 0.736
SiH4 −2.7 9.7 0.780
PH3 −3.8 10.2 0.727
H2S −3.8 12.8 0.771
HCl −4.0 15.1 0.791

and the corrected one-center terms

EA
≡ E(1),A + γ(E(2),A − E(1),A). (32)

It can be readily seen that the one- and two-center terms thus
defined exactly reproduce the total two-electron energy.

Ideally, the applied rotation angles in steps 1 and 2 should be
previously optimized to provide small deviations with respect to the
exact two-electron energy and, most importantly, of opposite sign.
In that case, the γ value lies within the [0, 1] range and an actual
damping (interpolation) is performed between the two estimates of
Vee. As such, a linear behavior of Vee with the rotation angle of the
second grid is implicitly assumed. As mentioned before, we have
found that a combination of 150 × 590 atomic grids and a rota-
tion of 0.169 rad typically overestimates Vee by 1–5 kcal/mol, while
using a rotation of 0.170 rad in the second step leads to a somewhat
larger underestimation of Vee. In Table I, we gathered the integration
errors in Vee for a set of 31 molecules obtained at the B3LYP/cc-
pVTZ level of theory (for further details, see Sec. IV). It can be seen

FIG. 3. Two-electron integration error (kcal/mol) vs angular rotation of the second
grid for N2 at different levels of theory.

that the two-electron integration errors in step 1 are already rather
small and negative with the only exception of H2 for which the error
is merely 0.1 kcal/mol. For most applications, these errors might be
acceptable. The errors associated with the second step are somewhat
larger but positive in all cases so that the γ values that afford the exact
decomposition are within zero and one.

It is important to stress that with such (two-electron) zero-error
scheme the two-center terms are evaluated only once in the first step.
We have observed that their value is rather unaffected by a rotation
of the second grid and exhibits integration errors 2–3 orders of mag-
nitude smaller than those of the one-center terms.38 This is because
there are no near singularities caused by small r−1

12 values and also
because their contribution to the total two-electron energy is much
smaller than that of the one-center terms, specially if heavy atoms
are involved. Thus, it is only the much larger one-center terms that
are slightly modulated to yield an overall exact decomposition of the
two-electron energy.

Of course, the zero-error scheme could also be applied inde-
pendently to each of the contributions to Vee, namely, Coulomb and
exact-exchange (and correlation in case of correlated wavefunction
methods), provided their exact value is known beforehand. How-
ever, we find that the behavior of Vee in the vicinity of the optimum
rotation angles is very similar for HF, B3LYP, and BP86, as illus-
trated by Fig. 3. Since the overall errors are very small anyway, it is
more efficient to apply the zero-error scheme only once to reproduce
the exact Vee.

In this vein, Table S1 of the supplementary material gathers the
γ values for the molecular test set at the HF, B3LYP, and BP86 lev-
els of theory. The integration errors have been omitted for clarity,
all of them being lower than 0.5 kcal/mol (in absolute value), as pro-
ceeding from the one-electron integrations. For the later, the same
150 × 590 atomic grid was used, the main source of the numerical
error being the atomic kinetic energy contributions due to the oscil-
latory character of the kinetic energy density near the nuclei. The
C6H6 molecule is the worst case with errors of up to 0.4 kcal/mol.
Of course, the one-electron grid can still be further improved to
decrease the residual integration error if necessary. More impor-
tantly, using the aforementioned 0.169 and 0.170 rad rotation angles
for the two steps of the two-electron zero-error scheme resulted in
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the desired interpolation in almost all cases, disregarding whether
Vee contains any exact-exchange contribution.

Summarizing this section, the two-electron zero-error scheme
smoothly worked for the molecular systems tested, obtaining most
of the γ values within the [0, 1] range using a system-independent
fixed setup. In very few cases, the corrected two-electron energy
terms were obtained by extrapolation but with γ values still close
to one. Alternatively, in the case the γ value would be far off the
[0, 1] range, one could consider performing second grid rotations
iteratively until the desired numerical conditions are fulfilled. It is
worth to mention that the robustness of the zero-error scheme had
already been put into stringent test. Some of us recently showed
that the elements of the α tensor can be expressed through the sec-
ond derivative of a zero-th order field-dependent energy so that
an energy decomposition of the latter readily affords the decom-
position of α.29 Using very large atomic grids for the one-electron
energy terms and the zero-error scheme for the two-electron part
was absolutely critical to obtain numerically converged atomic con-
tributions to α. Overall, the zero-error scheme appears to be a
promising strategy for obtaining accurate IQA energy decomposi-
tion terms for large molecular systems while keeping an affordable
computational cost.

B. IQA decompositions of the exchange–correlation
energy

The atomic and inter-atomic exchange–correlation energy
terms obtained using the aforementioned F-IQA and SM-IQA
schemes for the molecular set (see Sec. IV) are compiled in
Tables II–IV. We have considered the systems described at the HF,
B3LYP, and BP86 levels of theory at their own geometry optimized
structures. We focus exclusively on the exchange–correlation (xc)
terms as the remaining ones are exactly the same with both KS-DFT
IQA approaches. Regarding the one-center xc terms, we discuss sep-
arately the results for the hydrogen atoms as in our previous study we
observed significant differences between HF and pure KS-DFT due
to the absence of core electrons.32 In addition, the atomic xc ener-
gies for H are of the same order or magnitude as the inter-atomic xc
terms of bonded atoms, while the corresponding values for heavier
atoms are one or two orders of magnitude larger.

Let us start with the analysis of the inter-atomic xc compo-
nents with up to 43 values compiled in Table II. The first observation
is that all xc (exchange-only in case of HF) inter-atomic contribu-
tions of chemically bonded atoms are negative as it is well known for
IQA decompositions. Their magnitude (in absolute value) is deeply
connected with the covalent bond order so that bonds with higher
multiplicity tend to exhibit larger (more negative) inter-atomic xc
contributions. Thus, the larger values are obtained for N2, NO+, and
the C–C triple bond in C2H2.

The inter-atomic xc terms obtained with B3LYP and BP86
functionals correlate extremely well with the HF values using either
the F-IQA and SM-IQA formulations, as shown in Fig. S1 of the
supplementary material (worst case exhibits R2

= 0.98). It is more
interesting to focus on how the contributions differ from each
other in each case. With the F-IQA formulation, the inter-atomic
xc components for B3LYP are systematically more negative than
the HF ones with only two exceptions (F2 and H2S). In both cases,
this discrepancy can be attributed to significant differences in the

wavefunction itself (F2 is poorly described at the HF level, and
the shape of the atomic boundaries in H2S was already found to
change significantly from one method to another20). This observa-
tion is a direct consequence of the scaling factors used in Eq. (27).
The total xc energy in B3LYP contains both exchange and correla-
tion contributions, whereas in HF it only contains exchange. Since
the total xc value is more negative, the scaling factors are greater
than one, and hence, all terms (both atomic and inter-atomic)
become more negative. Going to BP86, the picture is very similar.
In fact, the mean unsigned deviation (MUD) between the BP86 and
B3LYP xc components is merely 2.2 kcal/mol, whereas the respec-
tive MUD values with respect to HF are 14.5 and 14.2 kcal/mol,
respectively.

With the SM-IQA formulation, the trends are different. Most
of the B3LYP inter-atomic xc contributions (32 out of 43) are less
negative than the HF ones. The differences are significant in the
C–C and C–H bonds of the alkane series. However, the opposite
trend is observed mainly for the systems with large (in absolute
value) inter-atomic xc contributions, namely, triple bonds, such as
in acetylene, CO, N2, or NO+ (see Fig. S1). Similarly to F-IQA,
the MUD between BP86 and B3LYP SM-IQA values is very small
(3.5 kcal/mol).

It is worth to note that the general effect of electron corre-
lation in wavefunction theory is precisely the weakening of the
covalent bonds. This is readily observed in equilibrium geometries,
where bond lengths tend to increase upon inclusion of electron
correlation. It is also well-known that electronic bonding indica-
tors, such as bond orders, also decrease. For instance, the bond
order in N2 goes from 3.04 at the HF level to 2.83 for a CISD
WF using the Ángyán–Mayer formulation, which only involves the
first-order density matrix (i.e., the exchange density). Including the
contribution from the cumulant of the second-order reduced den-
sity matrix (the so-called delocalization index39) further decreases
the value to 2.20.40 In the seminal work of Blanco et al. about the
IQA approach for correlated wavefunctions, the authors showed that
the IQA decomposition of the cumulant of the RDM2 (electron cor-
relation contribution) results in positive inter-atomic contributions
for systems such as H2, N2, or the O–H bond in H2O. Popelier
et al. performed a more systematic study of the role of electron
correlation in the IQA-MP2 decomposition.41 The authors found
that the inter-atomic correlation energy contributions are usually
positive for covalent bonds. In addition, the stronger the bond the
larger the inter-atomic correlation contribution. Exception to the
rule were hydrides and weak interactions, exhibiting much smaller
and negative contributions. Of course, the total electron correlation
energy contribution is negative; therefore, the atomic correlation
terms are large and negative to compensate.42 In the F-IQA formu-
lation, this effect should be captured by the scaling factors. As shown
on Table III, the atomic xc energies from both B3LYP and BP86 are
systematically more negative than the HF ones, which means that the
net effect of correlation is as anticipated. Table IV gathers the atomic
xc energies for hydrogen atoms, which are much smaller than for
second and third period atoms (in fact, they are of the same order
of magnitude as the inter-atomic terms for bonded atoms). The dif-
ferences between the HF and F-IQA values are very small. Except
in the aforementioned case of H2S, where the shape of the atomic
domains changes significantly going from HF to a DFT density, the
MUD between the HF and F-IQA atomic contributions for H atoms
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TABLE II. Total inter-atomic exchange–correlation energies (a.u.) from the test set calculated with HF and the BP86 and B3LYP KS-DFT functionals. (a) F-IQA and (b) SM-IQA.

Bond Mol. EHF Ea
BP86 Ea

B3LYP Eb
BP86 Eb

B3LYP

C–C C2H2 −0.813 −0.819 −0.829 −0.814 −0.822
C–H C2H2 −0.305 −0.316 −0.320 −0.276 −0.282
C–C C2H4 −0.544 −0.557 −0.561 −0.511 −0.519
C–H C2H4 −0.306 −0.313 −0.317 −0.270 −0.277
C–C C6H6 −0.437 −0.446 −0.450 −0.370 −0.384
C–H C6H6 −0.307 −0.313 −0.317 −0.268 −0.277
C–C C2H6 −0.300 −0.315 −0.314 −0.259 −0.262
C–H C2H6 −0.296 −0.306 −0.309 −0.262 −0.269
C–H HCONH2 −0.273 −0.279 −0.283 −0.234 −0.242
C–O HCONH2 −0.392 −0.444 −0.439 −0.380 −0.386
C–N HCONH2 −0.288 −0.345 −0.339 −0.272 −0.276
N–H HCONH2 −0.252 −0.276 −0.277 −0.243 −0.245
N–H HCONH2 −0.259 −0.282 −0.283 −0.248 −0.251
H–C HCNO −0.288 −0.307 −0.309 −0.264 −0.269
C–N HCNO −0.654 −0.644 −0.655 −0.586 −0.607
N–O HCNO −0.647 −0.674 −0.673 −0.611 −0.619
B–B B2H6 −0.009 −0.016 −0.015 −0.010 −0.009
B-Hb B2H6 −0.080 −0.102 −0.099 −0.061 −0.065
B–H B2H6 −0.139 −0.166 −0.164 −0.121 −0.123
C–O CO −0.549 −0.608 −0.603 −0.597 −0.590
C–O CO2 −0.449 −0.496 −0.493 −0.422 −0.430
S–O SO2 −0.426 −0.458 −0.454 −0.394 −0.392
S–O SO3 −0.372 −0.398 −0.395 −0.315 −0.320
H–H H2 −0.268 −0.282 −0.284 −0.266 −0.271
N–N N2 −1.007 −1.009 −1.020 −1.073 −1.069
N–O NO+ −0.817 −0.885 −0.880 −0.941 −0.916
C–N CN− −0.658 −0.709 −0.709 −0.701 −0.701
Li–F LiF −0.083 −0.097 −0.098 −0.078 −0.080
F–F F2 −0.450 −0.417 −0.426 −0.490 −0.474
Li–H LiH −0.075 −0.087 −0.088 −0.073 −0.075
Be–H BeH2 −0.118 −0.132 −0.132 −0.107 −0.108
B–H BH3 −0.154 −0.185 −0.182 −0.140 −0.143
C–H CH4 −0.296 −0.307 −0.310 −0.264 −0.271
N–H NH3 −0.279 −0.299 −0.300 −0.269 −0.272
O–H H2O −0.194 −0.236 −0.230 −0.216 −0.209
H–F HF −0.137 −0.172 −0.165 −0.158 −0.149
Na–H NaH −0.087 −0.108 −0.108 −0.100 −0.100
Mg–H MgH2 −0.110 −0.126 −0.125 −0.105 −0.105
Al–H AlH3 −0.123 −0.140 −0.138 −0.108 −0.108
Si–H SiH4 −0.140 −0.160 −0.158 −0.118 −0.117
P–H PH3 −0.210 −0.234 −0.231 −0.185 −0.183
S–H H2S −0.346 −0.325 −0.330 −0.294 −0.294
H–Cl HCl −0.291 −0.307 −0.309 −0.286 −0.282

is merely 7–8 kcal/mol. More importantly, the atomic xc values with
BP86 are less negative than the HF values in several cases. In con-
trast, with the SM-IQA formulation, the atomic xc contributions are
systematically more negative than the HF ones; in the case of the H
atoms by ∼20 kcal/mol on average. This means that the observed
trends of the atomic correlation contributions in IQA-MP242 are
better captured by the SM-IQA formulation at least for the set of
studied systems.

It is fair to note that the numbers discussed so far have been
obtained at the corresponding stationary points on the potential
energy surface of the given level of theory. Thus, several factors
influence the observed differences between HF and BP86 or B3LYP
one- and two-center xc contributions, namely, the way the total
exchange (correlation) energy is expressed, the shape of the MOs,
and the geometry. To explore the latter effect, we have studied in
more detail F2 for which a deviation from the general trend was
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TABLE III. Atomic exchange–correlation energies (in a.u.) calculated with HF and the BP86 and B3LYP KS-DFT functionals (hydrogen atoms excluded). (a) F-IQA and (b)
SM-IQA.

Atom Mol. EHF Ea
BP86 Ea

B3LYP Eb
BP86 Eb

B3LYP

C C2H2 −4.627 −4.837 −4.835 −4.857 −4.856
C C2H4 −4.547 −4.782 −4.772 −4.847 −4.832
C C6H6 −4.558 −4.782 −4.776 −4.883 −4.865
C C2H6 −4.463 −4.728 −4.710 −4.821 −4.795
C HCONH2 −3.985 −4.233 −4.216 −4.320 −4.292
O HCONH2 −8.476 −8.740 −8.764 −8.771 −8.793
N HCONH2 −6.766 −6.900 −6.932 −6.969 −6.996
C HCNO −4.259 −4.495 −4.481 −4.517 −4.505
N HCNO −6.323 −6.540 −6.550 −6.601 −6.601
O HCNO −7.985 −8.322 −8.328 −8.326 −8.337
B B2H6 −3.023 −3.151 −3.153 −3.234 −3.225
C CO −4.361 −4.547 −4.549 −4.551 −4.555
O CO −8.450 −8.720 −8.742 −8.727 −8.750
C CO2 −3.825 −4.030 −4.018 −4.102 −4.079
O CO2 −8.462 −8.724 −8.746 −8.746 −8.768
S SO2 −23.653 −24.301 −24.261 −24.360 −24.317
O SO2 −8.508 −8.777 −8.805 −8.796 −8.829
S SO3 −23.149 −23.806 −23.752 −23.922 −23.857
O SO3 −8.503 −8.764 −8.792 −8.794 −8.826
N N2 −6.074 −6.342 −6.342 −6.310 −6.318
N NO+ −5.436 −5.761 −5.733 −5.732 −5.715
O NO+ −8.178 −8.350 −8.386 −8.322 −8.368
C CN− −4.428 −4.654 −4.654 −4.657 −4.657
N CN− −6.849 −7.077 −7.097 −7.082 −7.102
Li LiF −1.650 −1.681 −1.697 −1.691 −1.706
F LiF −10.270 −10.623 −10.640 −10.633 −10.650
F F2 −9.784 −10.168 −10.170 −10.132 −10.146
Li LiH −1.665 −1.700 −1.715 −1.705 −1.720
Be BeH2 −2.340 −2.393 −2.410 −2.415 −2.431
B BH3 −3.044 −3.168 −3.173 −3.229 −3.228
C CH4 −4.458 −4.735 −4.711 −4.814 −4.782
N NH3 −6.570 −6.784 −6.797 −6.823 −6.834
O H2O −8.515 −8.749 −8.782 −8.765 −8.799
F HF −10.295 −10.627 −10.650 −10.631 −10.656
Na NaH −13.913 −14.283 −14.303 −14.284 −14.304
Mg MgH2 −15.730 −16.121 −16.140 −16.137 −16.156
Al AlH3 −17.553 −17.992 −18.002 −18.033 −18.042
Si SiH4 −19.403 −19.892 −19.888 −19.968 −19.960
P PH3 −21.690 −22.311 −22.281 −22.373 −22.343
S H2S −24.233 −25.291 −25.241 −25.312 −25.268
Cl HCl −27.491 −28.177 −28.156 −28.182 −28.165

observed (i.e., the F-IQA inter-atomic xc values are less negative, and
the SM-IQA values are more negative than the HF ones). In Fig. 4,
we show the evolution of the inter-atomic xc values with the inter-
atomic distance for HF, BP86, and B3LYP wavefunctions. Notice
that the HF optimized geometry (1.328 Å) is significantly shorter
than the experimental value (1.412 Å), while BP86 slightly overesti-
mates the distance. The inter-atomic xc energies for KS-DFT using
either F-IQA or SM-IQA formulations are more negative than the
HF ones for all inter-atomic distances. An important observation is

that the differences between all schemes are roughly constant along
the (rather short) inter-atomic distance profile, while the shorter
the inter-atomic distance, the more negative the inter-atomic xc
value. Consequently, the IQA-DFT xc values at their equilibrium
distances may lie above the HF values at the compressed HF equi-
librium distance even if the IQA-DFT xc values are systematically
more negative than the HF along the profile. What makes the bond
in F2 different from the other cases is that the SM-IQA values lie well
below the F-IQA ones. A plausible explanation might be the unex-
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TABLE IV. Atomic exchange–correlation energies (in a.u.) calculated with HF and the BP86 and B3LYP KS-DFT functionals (hydrogen atoms only). (a) F-IQA and (b) SM-IQA.

Atom Mol. EHF Ea
BP86 Ea

B3LYP Eb
BP86 Eb

B3LYP

H C2H2 −0.160 −0.169 −0.173 −0.191 −0.194
H C2H4 −0.212 −0.210 −0.216 −0.235 −0.240
H C6H6 −0.214 −0.211 −0.219 −0.238 −0.245
H C2H6 −0.233 −0.223 −0.231 −0.252 −0.258
Hb B2H6 −0.443 −0.435 −0.445 −0.514 −0.510
H B2H6 −0.431 −0.420 −0.432 −0.463 −0.469
HC HCONH2 −0.214 −0.211 −0.216 −0.238 −0.242
HN HCONH2 −0.071 −0.090 −0.088 −0.108 −0.106
HN HCONH2 −0.075 −0.093 −0.091 −0.111 −0.109
H HCNO −0.131 −0.149 −0.150 −0.172 −0.172
H LiH −0.405 −0.432 −0.435 −0.440 −0.443
H BeH2 −0.435 −0.450 −0.457 −0.464 −0.470
H BH3 −0.444 −0.433 −0.444 −0.467 −0.474
H CH4 −0.225 −0.217 −0.225 −0.245 −0.251
H NH3 −0.093 −0.110 −0.109 −0.127 −0.126
H H2O −0.036 −0.054 −0.051 −0.066 −0.063
H HF −0.017 −0.027 −0.024 −0.035 −0.034
H NaH −0.363 −0.377 −0.378 −0.383 −0.385
H MgH2 −0.391 −0.407 −0.413 −0.419 −0.424
H AlH3 −0.420 −0.428 −0.437 −0.448 −0.455
H SiH4 −0.428 −0.428 −0.439 −0.461 −0.469
H PH3 −0.418 −0.401 −0.415 −0.444 −0.454
H H2S −0.379 −0.230 −0.245 −0.253 −0.270
H HCl −0.116 −0.131 −0.132 −0.147 −0.151
H H2 −0.197 −0.209 −0.210 −0.217 −0.217

FIG. 4. Inter-atomic xc values along the F–F inter-atomic distance in F2 for HF and
IQA-DFT methods.

pectedly large value of the bond order around 1.4 for the considered
distances.

As a final illustrative example, we applied the IQA decomposi-
tion along the energy profile [i.e., intrinsic reaction coordinate (IRC)
obtained at each level of theory] of the Diels–Alder reaction between
1,3-butadiene and ethylene. As shown in Fig. S2, Hartree–Fock
largely overestimates the barrier height (∼45 kcal/mol), whereas the

pure GGA BP86 functional underestimates it (∼15 kcal/mol). Hybrid
functionals, such as B3LYP, do a particularly good job in this case,
predicting a barrier height (∼25 kcal/mol) close to the experimen-
tal estimate of 27.5 kcal/mol.43 In any case, this reaction profile
poses a good example where the three methods considered in this
work exhibit quantitative different behaviors. The IQA decomposi-
tion along the IRC in each case can provide insight onto the origin
of such differences. On the one hand, one could analyze each atomic
and diatomic contribution separately. Because of the large num-
ber of energy contributions (IQA descriptors) obtained, this usually
requires the assistance of some sort of statistical analysis, such as
the Popelier’s REG scheme.44 An alternative method involves exam-
ining the change in total energy compared to the energy of the
isolated reactants (diene and dienophile) and organizing the IQA
terms according to the corresponding fragments. This results in
fragment deformation energies (the IQA energy of the fragment rel-
ative to the energy of the free isolated fragment) and inter-fragment
contributions. This also permits to establish proper analogy with
the so-called activation strain model (ASM),45,46 where the energy
along a reaction profile is decomposed into strain energy (computed
as the difference between the energies of the isolated reacting frag-
ments at the constrained geometry of each point of the profile and
that of the isolated fragments) and interaction energy. The former
is destabilizing by definition, while the latter ultimately accounts
for the formation of the products. Casals-Sainz and co-workers47

recently showed how the endo/exo preferences of Diels–Alder
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FIG. 5. Fragment deformation energies (a) and (b) and inter-fragment energy values (c) in a.u. along the reaction coordinate of the Diels–Alder reaction obtained at the HF
(blue), B3LYP (gray), and BP86 (orange) levels of theory.

reactions can be explained in terms of IQA descriptors without
recurring to additional reference states, such as in the ASM model.

In the present work, we focus on the origin of the above-
mentioned differences in the activation barriers obtained with the
three electronic structure methods. Figure 5 illustrates to what extent
these differences are translated into the intra-fragment (namely, the
dienophile (F1) and the diene (F2) and inter-fragment F1–F2 inter-
action terms from the respective IQA analyses. In line with the
picture obtained with the ASM model, the fragment deformation
energies dominate the energy profile starting from the reactant com-
plex. Both F1 and F2 deformation energies monotonically increase
as the reaction proceeds until well passed the transition state (TS).
The deformation of the diene is slightly larger than that of the
dienophile before reaching the TS. Surprisingly, according to the
F-IQA results, the fragment deformation is initially smaller for the
HF profile during the early stages of the reaction but then abruptly
increases and surpasses the KS-DFT values before reaching the TS.
As the reaction progress, the differences between the three meth-
ods become minor yet follow the same trend as the total energy
along the profile (i.e., HF > B3LYP > BP86). The inter-fragment
interaction is always negative and steadily increases (in absolute
values) until the formation of products (where the fragments are
covalently bound). Although the differences in this term for the

three methods are minimal, they increase after the TS. The analysis
suggests that the reason behind the overestimation of the reac-
tion barrier by HF is the increased fragment deformation, which
is not counterbalanced by a significantly higher inter-fragment
stabilization.

When comparing the behavior of the two IQA-DFT formula-
tions, it appears that the SM-IQA results exhibit more noticeable
discrepancies among the three levels of theory (perhaps somewhat
exaggerated taking into account the relatively small overall energy
differences between the methods in Fig. S2). Specifically, the frag-
ment deformation of both the diene and dienophile is considerably
greater for HF throughout the entire reaction profile. Additionally,
the inter-fragment stabilization is also significantly larger for HF
than for the DFT methods. Figure 5 illustrates that the trend of
HF > B3LYP > BP86 is maintained for all terms throughout the
entire reaction profile.

III. CONCLUSIONS
A new scheme to eliminate the numerical error of the sum

of two-electron energy contributions (i.e., Coulomb and exact
exchange) has been introduced. It is readily applicable in the frame-
work of overlapping atoms such as TFVC or Hirshfeld approaches.
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Such a two-electron zero-error scheme provided robust numerical
integrations for both equilibrium structures and along the potential
energy surface.

A critical comparison of the performance of two fully additive
approaches for the IQA decomposition of the KS-DFT energy (F-
IQA and SM-IQA) has also been performed for a wide molecular
test set and along the reaction coordinate of a Diels–Alder reaction.
The atomic and diatomic exchange–correlation energy components
obtained with both approaches are in very good agreement and also
exhibit excellent correlation with the Hartree–Fock results. As a gen-
eral trend, the SM-IQA diatomic xc components tend to be less
negative than the Hartree–Fock ones in accordance with the known
effect of electron correlation on covalent bonds.

IV. COMPUTATIONAL DETAILS
All ab initio calculations have been performed using the Gaus-

sian09 package48 at the Hartree–Fock (HF) and at the BP8649,50

and B3LYP51,52 Kohn–Sham DFT levels of theory coupled with the
cc-pVTZ full electron basis set.53 Molecular (equilibrium) struc-
tures have been obtained for each level of theory and confirmed by
vibrational frequency analysis (no negative frequencies).

Real-space energy decompositions have been performed with
the APOST-3D program54 using the topological fuzzy Voronoi cell
atomic definition20 for both the F-33 and SM-IQA32 approxima-
tions of the inter-atomic exchange–correlation energy term. For the
production results, both one- and two-electron numerical integrals
were evaluated using 150 radial and 590 angular points distributed
according to Lebedev–Laikov.55 The zero-error scheme was applied
in all cases for the two-electron energy contributions.

The test set of 31 molecules consists of carbon and sulfur
oxides, particularly SO2, SO3, CO, and CO2; the hydrocarbon series
of C2H6, C6H6, C2H4, and C2H2, a set of second and third row
hydrides with general formula XHn, where X goes from Li to Cl
and other neutral and charged inter-atomic molecules exhibiting
different bond multiplicities, e.g., CN−, N2, or F2.

Geometries and wavefunctions of the prototypical Diels–Alder
reaction between 1,3-butadiene and ethylene were obtained at the
HF, BP86, and B3LYP levels by means of IRC calculations start-
ing from the optimized transition states. IRC step numbers were
increased to ensure convergence to both reactants and products at
each level of theory. The Hessian matrix was recomputed at each
step of the IRC to ensure smooth potential energy curves.

SUPPLEMENTARY MATERIAL

Damping factors [see Eq. (31)] for the dataset (Tables S1 and
S2), correlations between the HF and KS-DFT atomic and diatomic
xc components (Fig. S1), and energies along the intrinsic reaction
coordinate for the Diels–Alder reaction for HF, B3LYP, and BP86
methods (Fig. S2).

ACKNOWLEDGMENTS
Financial support has been furnished by the Ministerio de

Ciencia, Innovación y Universidades (MCIU), Grant No. PGC2018-

098212-B-C22. M.G. acknowledges the Generalitat de Catalunya
and Fons Social Europeu for the predoctoral fellowship (Grant No.
2018 FI_B 01120).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Martí Gimferrer: Data curation (equal); Formal analysis (equal);
Software (equal); Writing – original draft (equal). Pedro Salvador:
Conceptualization (equal); Funding acquisition (equal); Software
(equal); Supervision (equal); Writing – review & editing (equal).

DATA AVAILABILITY
The data that support the findings of this study are available

within the article and its supplementary material. Extra data are
available from the corresponding author upon reasonable request.

REFERENCES
1P. Salvador, M. Duran, and I. Mayer, “One- and two-center energy components
in the atoms in molecules theory,” J. Chem. Phys. 115, 1153–1157 (2001).
2P. Salvador and I. Mayer, “Energy partitioning for ‘fuzzy’ atoms,” J. Chem. Phys.
120, 5046–5052 (2004).
3M. A. Blanco, A. Martín Pendás, and E. Francisco, “Interacting quantum atoms:
A correlated energy decomposition scheme based on the quantum theory of atoms
in molecules,” J. Chem. Theory Comput. 1, 1096–1109 (2005).
4A. Martín Pendás, E. Francisco, and M. A. Blanco, “Binding energies of first
row diatomics in the light of the interacting quantum atoms approach,” J. Phys.
Chem. A 110, 12864–12869 (2006).
5J. C. R. Thacker and P. L. A. Popelier, “Fluorine gauche effect explained by
electrostatic polarization instead of hyperconjugation: An interacting quantum
atoms (IQA) and relative energy gradient (REG) study,” J. Phys. Chem. A 122,
1439–1450 (2018).
6E. Romero-Montalvo, J. M. Guevara-Vela, A. Costales, Á. M. Pendás, and
T. Rocha-Rinza, “Cooperative and anticooperative effects in resonance assisted
hydrogen bonds in merged structures of malondialdehyde,” Phys. Chem. Chem.
Phys. 19, 97–107 (2017).
7J. M. Guevara-Vela, E. Romero-Montalvo, V. A. Mora Gómez, R. Chávez-
Calvillo, M. García-Revilla, E. Francisco, Á. M. Pendás, and T. Rocha-Rinza,
“Hydrogen bond cooperativity and anticooperativity within the water hexamer,”
Phys. Chem. Chem. Phys. 18, 19557–19566 (2016).
8J. M. Guevara-Vela, D. Ochoa-Resendiz, A. Costales, R. Hernández-Lamoneda,
and Á. Martín-Pendás, “Halogen bonds in clathrate cages: A real space
perspective,” ChemPhysChem 19, 2512–2517 (2018).
9J. L. Casals-Sainz, F. Jiménez-Grávalos, A. Costales, E. Francisco, and Á. M.
Pendás, “Beryllium bonding in the light of modern quantum chemical topology
tools,” J. Phys. Chem. A 122, 849–858 (2018).
10S. Sowlati-Hashjin, V. Šadek, S. Sadjadi, M. Karttunen, A. Martín-Pendás, and
C. Foroutan-Nejad, “Collective interactions among organometallics are exotic
bonds hidden on lab shelves,” Nat. Commun. 13, 2069 (2022).
11D. Asturiol, P. Salvador, and I. Mayer, “Dissecting the hindered rotation of
ethane,” ChemPhysChem 10, 1987–1992 (2009).
12A. M. Pendás, M. A. Blanco, and E. Francisco, “Steric repulsions, rotation bar-
riers, and stereoelectronic effects: A real space perspective,” J. Comput. Chem. 30,
98–109 (2009).

J. Chem. Phys. 158, 234105 (2023); doi: 10.1063/5.0142778 158, 234105-12

© Author(s) 2023

 20 M
arch 2024 08:22:04

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/1.1381407
https://doi.org/10.1063/1.1646354
https://doi.org/10.1021/ct0501093
https://doi.org/10.1021/jp063607w
https://doi.org/10.1021/jp063607w
https://doi.org/10.1021/acs.jpca.7b11881
https://doi.org/10.1039/c6cp04877c
https://doi.org/10.1039/c6cp04877c
https://doi.org/10.1039/c6cp00763e
https://doi.org/10.1002/cphc.201800474
https://doi.org/10.1021/acs.jpca.7b10714
https://doi.org/10.1038/s41467-022-29504-0
https://doi.org/10.1002/cphc.200900089
https://doi.org/10.1002/jcc.21034


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

13M. Gallegos, A. Costales, and Á. Martín Pendás, “A real space picture of the role
of steric effects in SN2 reactions,” J. Comput. Chem. 43, 785–795 (2022).
14L. Zhao, M. Hermann, W. H. E. Schwarz, and G. Frenking, “The Lewis electron-
pair bonding model: Modern energy decomposition analysis,” Nat. Rev. Chem. 3,
48–63 (2019).
15J. M. Guevara-Vela, E. Francisco, T. Rocha-Rinza, and A. Martín Pendás,
“Interacting quantum atoms—A review,” Molecules 25, 4028 (2020).
16R. F. W. Bader, “A quantum theory of molecular structure and its applications,”
Chem. Rev. 91, 893–928 (1991).
17F. L. Hirshfeld, “Bonded-atom fragments for describing molecular charge
densities,” Theor. Chim. Acta 44, 129–138 (1977).
18P. Bultinck, C. Van Alsenoy, P. W. Ayers, and R. Carbó-Dorca, “Critical analysis
and extension of the Hirshfeld atoms in molecules,” J. Chem. Phys. 126, 144111
(2007).
19F. Heidar-Zadeh, P. W. Ayers, T. Verstraelen, I. Vinogradov, E. Vöhringer-
Martinez, and P. Bultinck, “Information-theoretic approaches to atoms-in-
molecules: Hirshfeld family of partitioning schemes,” J. Phys. Chem. A 122,
4219–4245 (2018).
20P. Salvador and E. Ramos-Cordoba, “Communication: An approximation to
Bader’s topological atom,” J. Chem. Phys. 139, 071103 (2013).
21P. L. A. Popelier and D. S. Kosov, “Atom–atom partitioning of intramolecular
and intermolecular Coulomb energy,” J. Chem. Phys. 114, 6539–6547 (2001).
22A. M. Pendás, M. A. Blanco, and E. Francisco, “Two-electron integrations in the
quantum theory of atoms in molecules,” J. Chem. Phys. 120, 4581–4592 (2004).
23A. M. Pendás, E. Francisco, and M. A. Blanco, “Two-electron integrations
in the quantum theory of atoms in molecules with correlated wave functions,”
J. Comput. Chem. 26, 344–351 (2005).
24V. Tognetti, A. F. Silva, M. A. Vincent, L. Joubert, and P. L. A. Pope-
lier, “Decomposition of Møller–Plesset energies within the quantum theory of
atoms-in-molecules,” J. Phys. Chem. A 122, 7748–7756 (2018).
25J. L. Casals-Sainz, J. M. Guevara-Vela, E. Francisco, T. Rocha-Rinza, and Á.
Martín Pendás, “Efficient implementation of the interacting quantum atoms
energy partition of the second-order Møller–Plesset energy,” J. Comput. Chem.
41, 1234–1241 (2020).
26R. Chávez-Calvillo, M. García-Revilla, E. Francisco, Á. Martín Pendás, and
T. Rocha-Rinza, “Dynamical correlation within the interacting quantum atoms
method through coupled cluster theory,” Comput. Theor. Chem. 1053, 90–95
(2015).
27F. J. Holguín-Gallego, R. Chávez-Calvillo, M. García-Revilla, E. Francisco, Á.
M. Pendás, and T. Rocha-Rinza, “Electron correlation in the interacting quantum
atoms partition via coupled-cluster Lagrangian densities,” J. Comput. Chem. 37,
1753–1765 (2016).
28A. Fernández-Alarcón, J. L. Casals-Sainz, J. M. Guevara-Vela, A. Costales, E.
Francisco, Á. Martín Pendás, and T. Rocha-Rinza, “Partition of electronic exci-
tation energies: The IQA/EOM-CCSD method,” Phys. Chem. Chem. Phys. 21,
13428–13439 (2019).
29M. Montilla, J. M. Luis, and P. Salvador, “Origin-independent decomposition of
the static polarizability,” J. Chem. Theory Comput. 17, 1098–1105 (2021).
30V. Tognetti and L. Joubert, “On the physical role of exchange in the formation of
an intramolecular bond path between two electronegative atoms,” J. Chem. Phys.
138, 024102 (2013).
31V. Tognetti and L. Joubert, “Density functional theory and Bader’s atoms-
in-molecules theory: Towards a vivid dialogue,” Phys. Chem. Chem. Phys. 16,
14539–14550 (2014).
32P. Salvador and I. Mayer, “One- and two-center physical space partitioning of
the energy in the density functional theory,” J. Chem. Phys. 126, 234113 (2007).
33E. Francisco, J. L. Casals-Sainz, T. Rocha-Rinza, and A. Martín Pendás,
“Partitioning the DFT exchange–correlation energy in line with the interacting
quantum atoms approach,” Theor. Chem. Acc. 135, 170 (2016).
34A. D. Becke, “A multicenter numerical integration scheme for polyatomic
molecules,” J. Chem. Phys. 88, 2547–2553 (1988).
35H. Wang, P. Zhang, and C. Schütte, “On the numerical accuracy of Ewald,
smooth particle mesh Ewald, and staggered mesh Ewald methods for correlated
molecular systems,” J. Chem. Theory Comput. 8, 3243–3256 (2012).

36H. Wang, X. Gao, and J. Fang, “Multiple staggered mesh Ewald: Boosting the
accuracy of the smooth particle mesh Ewald method,” J. Chem. Theory Comput.
12, 5596–5608 (2016).
37X. Xing, X. Li, and L. Lin, “Staggered mesh method for correlation energy cal-
culations of solids: Second-order Møller–Plesset perturbation theory,” J. Chem.
Theory Comput. 17, 4733–4745 (2021).
38M. Gimferrer Andrés, “Towards an accurate Kohn–Sham density functional
theory molecular energy decomposition scheme,” Bachellor’s thesis, Universitat
de Girona, Departament de Química, 2016.
39X. Fradera, M. A. Austen, and R. F. W. Bader, “The Lewis model and beyond,”
J. Phys. Chem. A 103, 304–314 (1999).
40E. Matito, M. Solà, P. Salvador, and M. Duran, “Electron sharing indexes at the
correlated level. Application to aromaticity calculations,” Faraday Discuss. 135,
325–345 (2007).
41J. L. McDonagh, A. F. Silva, M. A. Vincent, and P. L. A. Popelier, “Quantifying
electron correlation of the chemical bond,” J. Phys. Chem. Lett. 8, 1937–1942
(2017).
42A. F. Silva and P. L. A. Popelier, “MP2-IQA: Upscaling the analysis of
topologically partitioned electron correlation,” J. Mol. Modell. 24, 201–211
(2018).
43D. Rowley and H. Steiner, “Kinetics of diene reactions at high temperatures,”
Discuss. Faraday Soc. 10, 198–213 (1951).
44J. C. R. Thacker and P. L. A. Popelier, “The ANANKE relative energy gradi-
ent (REG) method to automate IQA analysis over configurational change,” Theor.
Chem. Acc. 136, 86 (2017).
45L. P. Wolters and F. M. Bickelhaupt, “The activation strain model and molecular
orbital theory,” WIREs Comput. Mol. Sci. 5, 324–343 (2015).
46X. Sun, T. M. Soini, J. Poater, T. A. Hamlin, and F. M. Bickelhaupt, “PyFrag
2019—Automating the exploration and analysis of reaction mechanisms,”
J. Comput. Chem. 40, 2227–2233 (2019).
47J. L. Casals-Sainz, E. Francisco, and A. Martin Pendas, “The activation strain
model in the light of real space energy partitions,” Z. Anorg. Allg. Chem. 646,
1062–1072 (2020).
48M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakat-
suji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J.
L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,
T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J.
E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.
Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,
S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox,
J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K.
Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dap-
prich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J.
Fox, GAUSSIAN 09, Revision E.01, Gaussian, Inc., Wallingford CT, 2009.
49A. D. Becke, “Density-functional exchange-energy approximation with correct
asymptotic behavior,” Phys. Rev. A 38, 3098–3100 (1988).
50J. P. Perdew, “Density-functional approximation for the correlation
energy of the inhomogeneous electron gas,” Phys. Rev. B 33, 8822–8824
(1986).
51A. D. Becke, “Density-functional thermochemistry. III. The role of exact
exchange,” J. Chem. Phys. 98, 5648–5652 (1993).
52C. Lee, W. Yang, and R. G. Parr, “Development of the Colle–Salvetti correlation-
energy formula into a functional of the electron density,” Phys. Rev. B 37, 785–789
(1988).
53T. H. Dunning, “Gaussian basis sets for use in correlated molecular calculations.
I. The atoms boron through neon and hydrogen,” J. Chem. Phys. 90, 1007–1023
(1989).
54P. Salvador, E. Ramos-Cordoba, and M. Gimferrer, APOST-3D, Institute
of Computational Chemistry and Catalysis, University of Girona, Girona,
2019.
55V. I. Lebedev and D. N. Laikov, “A quadrature formula for the sphere of the
131st algebraic order of accuracy,” Dokl. Math. 59, 477–481 (1999).

J. Chem. Phys. 158, 234105 (2023); doi: 10.1063/5.0142778 158, 234105-13

© Author(s) 2023

 20 M
arch 2024 08:22:04

https://pubs.aip.org/aip/jcp
https://doi.org/10.1002/jcc.26834
https://doi.org/10.1038/s41570-018-0060-4
https://doi.org/10.3390/molecules25174028
https://doi.org/10.1021/cr00005a013
https://doi.org/10.1007/bf00549096
https://doi.org/10.1063/1.2715563
https://doi.org/10.1021/acs.jpca.7b08966
https://doi.org/10.1063/1.4818751
https://doi.org/10.1063/1.1356013
https://doi.org/10.1063/1.1645788
https://doi.org/10.1002/jcc.20173
https://doi.org/10.1021/acs.jpca.8b05357
https://doi.org/10.1002/jcc.26169
https://doi.org/10.1016/j.comptc.2014.08.009
https://doi.org/10.1002/jcc.24372
https://doi.org/10.1039/c9cp00530g
https://doi.org/10.1021/acs.jctc.0c00926
https://doi.org/10.1063/1.4770495
https://doi.org/10.1039/c3cp55526g
https://doi.org/10.1063/1.2741258
https://doi.org/10.1007/s00214-016-1921-x
https://doi.org/10.1063/1.454033
https://doi.org/10.1021/ct300343y
https://doi.org/10.1021/acs.jctc.6b00701
https://doi.org/10.1021/acs.jctc.1c00207
https://doi.org/10.1021/acs.jctc.1c00207
https://doi.org/10.1021/jp983362q
https://doi.org/10.1039/b605086g
https://doi.org/10.1021/acs.jpclett.7b00535
https://doi.org/10.1007/s00894-018-3717-5
https://doi.org/10.1039/df9511000198
https://doi.org/10.1007/s00214-017-2113-z
https://doi.org/10.1007/s00214-017-2113-z
https://doi.org/10.1002/wcms.1221
https://doi.org/10.1002/jcc.25871
https://doi.org/10.1002/zaac.202000038
https://doi.org/10.1103/physreva.38.3098
https://doi.org/10.1103/physrevb.33.8822
https://doi.org/10.1063/1.464913
https://doi.org/10.1103/physrevb.37.785
https://doi.org/10.1063/1.456153

