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c eXiT research group, University of Girona

ORCiD ID: Guillem Hernández Guillamet https://orcid.org/0000-0002-1053-3084,
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https://orcid.org/0000-0003-0977-0215

Abstract. This article presents an algorithm that uses a combination of cross-
correlation analysis and lagged multiple linear regression models to predict the
time-series of future demand for clinical visits associated with a certain diagno-
sis, specifically hypertension, in the Catalan health-care system. The algorithm
aims to provide a robust and explainable feature selection set of predictors. The
study demonstrates that it is possible to predict demand associated with a diagnosis
through the demand for previous clinical visits, and identifies important predictors
for example case hypertension-related visits. The data used is from the primary care
services of the Catalan Institute of Health, and the methodology can be applied to
optimize resource allocation in the healthcare system.
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1. Introduction

Many studies and algorithms have explored the possibility of predicting future demand
to anticipate resource consumption and optimize their distribution. The case study is par-
ticularly important in the healthcare sector, which is heavily strained by the shortage of
professionals and the aging population in many developed countries. In the case of the
Catalan healthcare system, this problem is exacerbated due to systemic underfunding,
overload and talent drain of professionals, entrenched waiting lists, the commercializa-
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tion of healthcare, and a gradual aging of the population that is living longer (with all
its clinical consequences). It is also important to point out the effect that the COVID-19
pandemic has had on the healthcare system. Most of these issues have been aggravated,
and the normal functioning of the system has been distorted. With the lockdown, the
treatment of multiple conditions and patients has been postponed, and it is necessary to
recover the lost activity [1][2]. In this context, the ability to predict the future demand
of the healthcare system is essential for the efficient planning of resources and modeling
the post-pandemic demand. It is particularly interesting not only to predict the demand
but also the reason for consultation, in this case, the diagnoses associated with the medi-
cal visit, to distribute healthcare professionals according to their expertise and develop a
more flexible system.

In this article, we present an algorithm that uses a combination of cross-correlation
analysis and a lagged multiple linear regression (lagged MLR) framework to predict the
time series of future demand for clinical visits associated with a certain diagnosis, in this
case, hypertension. The algorithm seeks to achieve the best prediction while penalizing
the progressive entry of new predictors, trying to achieve the best forecasting with the
minimum number of variables. Therefore, the algorithm not only achieves good predic-
tive results but also indicates which diagnoses may be important for predicting future
demand for visits associated with hypertension.

This paper is organized as follows. In Section 2 we provide a description of related
proposals. Section 3 is devoted to outlining the methodology and the algorithm. In Sec-
tion 4 the main results of its application are presented and discussed. Finally, section 5
presents the main conclusions of the study.

2. Related work

The hypothesis we aim to demonstrate is that the demand associated with a visit related
to a specific diagnosis can be predicted through the demand for previous clinical visits.
There are very few studies that focus on developing demand prediction models in the
medical field. Most research revolves around predicting epidemiological diagnoses and
identifying relevant predictor variables. Some studies attempt to predict epidemiological
visits, such as flu outbreaks [3]. Other studies explore the possibility of predicting the
spread of COVID-19 using climate variables [4][5][6][7][8]. Additionally, there are stud-
ies specifically dedicated to predicting visit demands using Deep Learning [9] or predict-
ing unplanned visits for diabetic patients [10]. Our approach differs from the previous
ones since it aims to predict demand, not only cases. Moreover, the use of regression
models provides a familiar framework for health professionals and allows for a feature
selection procedure that can be later used for prediction with AI methods.

On the other hand, one interesting research related work is the prediction of emer-
gency attendances, since they require from an accurate resource planning as we are try-
ing to pursue. In [11] a combination of MLR and Artifical Neural Networks (ANN) is
used to capture the complexity of emergency attendances in a touristic area, with a huge
variability between different periods of the year (seasonality). It is evident that season-
ality plays a key role, as well as other variables in prediction, but we have not included
them due to this ”evidence.” Our work aims to understand which clinical variables act as
a proxy for the target, independently of the season.
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Figure 1. Flow chart of the methodology.

There are some other works that link emmergency departments to some secfic re-
sources, as for example [12]. Linear regression analysis is also used in [12], as we do
in our work, showing how simple tools can provide a big improvement in healthcare
systems for resource management.

3. Methodology

The framework used can be divided into three major steps (Figure 1). The starting point
is time series of diagnoses. Diagnoses play both the role of predictors and target. Our aim
is to predict the number of visits associated with a certain diagnosis based on the infor-
mation of other diagnoses. This prediction is an estimation of the demand for services.
Firstly, a cross-correlation analysis is developed between the different time series of de-
mand for diagnoses, and the number of predictors is reduced to a non-correlated subset.
Subsequently, a MLR model is trained to predict the target diagnosis. MLR models offer
a high degree of interpretability and are easily understandable for healthcare profession-
als who use them regularly. These models allow for the identification and quantification
of the relationship between predictor variables and the target variable, providing a clear
understanding of the factors that influence the outcomes. Additionally, their simplicity
and familiarity in the healthcare field facilitate their utilization and acceptance among
professionals. For these reasons, we have selected these models over other more complex
or less interpretable options. This method is applied iteratively; so the MLR model starts
with a single predictor and analyzes the progressive entry of new ones. Moreover, the
regression model is parameterized by a lag value to build predictive models according to
a given time horizon.

With this proposal, we aim to develop a robust model with greater explainability
than alternative models such as deep learning (DL). Moreover, we find the minimum
number of predictors for each forecasting horizon.
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3.1. Dataset

The data used in this study comes from the Primary Care Services of the Catalan Institute
of Health (ICS), the main public health provider in Catalonia, Spain. The database is
retrospective and contains all primary care visits from the period 2010-2019.

Each visit is associated with a diagnosis di that belongs to a set of diagnoses D =
d1, . . . ,dN . In total, the database contains information on 6,301,095 patients, and the
diagnoses are coded according to the medical ontology CIM-10 [13]. Only the first three
letters of the diagnostic codes have been used, with the codes aggregated in the ontology
until the disease group level. This reduces the amount of variables in the dataset from
over 9000 to 1846. Visit information is gathered in a time period of L days, T = t1, . . . , tL.

The initial database is transformed into a matrix M = DxT , where each cell Mi j
corresponds to the number of occurrences of diagnosis di on day t j. The final dimension
of matrix M is 6,743,438 (N = 1846, L = 3653). Observe that the matrix is sparse since
not all possible diagnoses are used in a given day. Each row of the matrix represents a
time series for a given diagnosis in the period of time L.

Each time series is transformed with a rolling mean of window size = 14 to elim-
inate the spikes generated by the weekend effect, where there are no visits to primary
care. In addition, the data is scaled to have minimum and maximum values of 0 and 1,
respectively to obtain easy-to-interpret outcome metrics.

3.2. Cross-correlation analysis and collinearity effects

Given an objective diagnosis to predict dg, the first part of the model aims to elimi-
nate any possible collinearities present in the predictor set D− dg. Initially, the model
computes the Pearson correlation coefficients ri j between all pairs of predictors di and
d j. Subsequently, correlation t-tests are performed to evaluate the probability that both
predictors have a significant linear relationship [14]. The t-statistic T Si j associated with
each combination of predictors is calculated as follows:

T Si j =
ri j
√

L−2√
1− r2

i j

(1)

where L is the size of the sample, that is, the constant length diagnoses time-series.
The statistic follows a t-distribution with L-2 degrees of freedom. Assuming a p-value
of 0.1, pairs of variables with a T Si j greater than 0.9 have a significant correlation and
could therefore cause multicollinearity. To evaluate the degree of collinearity among
significantly correlated variables, the algorithm uses the variance inflation factor (VIF),
defined as:

V IFj =
1

1− c2
j

(2)

Parameter c j indicates the coefficient of determination of variable di regressed on the
remaining predictors. The algorithm iteratively eliminates variables with the highest de-
gree of collinearity until it is left with a subset of predictors with maximum collinearity of
max(V IF) = 20.0 (after experimentation), considering collinearity to be non-significant
[15]. Therefore, we get a set of Δ ⊆ D−dg remaining predictors that the model can use;
they do not have a significant correlation or have passed the VIF test.
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3.3. Lagged MLR

Our target variable is dg, which we aim to forecast at time t according to the minimal set
of predictors P ⊆ Δ ⊆ D−{dg}. To that end, the following MLR model is defined:

model(dg,P, t,τ) = α0 +∑
i∈P

∑
j∈[t−τ,t−1]

αi j ∗Mi j (3)

where t ∈ T , α0 is the constant coefficient of the model, α j is the regression coefficient
of predictor di ∈ P at time j, and τ < L is the lag value applied. Note that lag value can
take value 0 and therefore predict the target variable using as predictors variables in the
same day.

3.4. Predictors selection

The methodology that the algorithm follows to select the predictors that form the MLR
model is the forward stepwise estimation method (see Algorithm 1). Initially, the vari-
able in P with the highest correlation coefficient with the diagnosis dg is chosen. This
predictor and the target variable dg are fitted to a linear regression according to Equation
3. The adjusted coefficient of determination R2 is used to evaluate the goodness of fit. It
indicates the percentage of the variation explained by the added prediction with respect
to the baseline model. Next, the following predictor with the highest correlation with
respect to diagnoses dg is added to the model and R2 recomputed. To decide whether the
addition of the new predictor to the model produces a significant improvement, we use
the F-test statistic, defined as:

F1 =
(SSR2 −SSR1)/(p2 − p1)

SSE2
L−p2−p1

(4)

where subindexes 1 and 2 correspond to the models with the new predictor removed or
added, respectively. The variables SSR and SSE refer to the sum of squares error due to
regression (variability explained by the regression) and the sum of squares error due to
error (variability not explained by the regression) of the model.

The significance value marked by the F-test statistic is (p-value ≥ 0.1), indicating
that the model significantly improves with the addition of the new predictor.

Sometimes, due to the forward stepwise estimation strategy, it may be found that
the addition of one predictor does not show significance, but adding the next one does.
For this reason, the algorithm allows for up to 3 iterations to exceed the p-value of 0.1
(assuming this 10% of possible error of significance).

Finally, among all of the models computed, the model with the best MAPE (Mean
Absolute Percentage Error) is chosen. In case of a tie, the model with the fewer number
of predictors is preferred (simpler model). Predictors of the best model are the ones
selected.

3.5. Final model assessment

To assess the correctness of the final model multiple tests are performed to ensure it
meets all required assumptions. First, the joint F-test is performed to compare the best
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Algorithm 1 Predictors selection
Require: dg,Δ = {d1, . . . ,d|Δ|},τ, t
Ensure: P ⊂ Δ

1: list o f models ← null
2: counter ← 0
3: sort(Δ,dg,correlation)
4: P ← f irst(Δ)
5: SSR1 ← SSR(model(dg,P, t,τ),M) � See Equation 4
6: for δi ∈ Δ− f irst(Δ) do � Iterated according to the sort outcome
7: if counter = 3 then

8: break
9: end if

10: modeli = model(dg,P∪{δi}, t,τ) � See Equation 3
11: SSR2 ← SSR(modeli,M)
12: SSE2 ← SSE(modeli,M)
13: F1 ← ftest(SSR1,SSR2,SSE2, |P|, |P∪{δi}|) � See Equation 4
14: append(P, {δi})
15: append(list of models, modeli)
16: if p-value(F1) > 0.1 then

17: counter = counter+1
18: end if

19: SSR1 ← SSR2
20: end for

21: best ← minimumMAPE(list o f models)
22: P ← predictors(best)

model against the simpler linear model of the target variable (see Equation 6). This is
what we call the baseline model. If the p-value was higher than a 0.05 significance level,
we concluded that there is enough statistical evidence that the final model fits the obser-
vations better than the intercept-only. p represents the number of predictors used in the
final model. The join F-test is computed as follows:

F2 =
SSR
SSE

(L− p−1)
p

(5)

baseline(dg, t,τ) = β0 + ∑
j∈[t−τ,t−1]

Mi j,di = dg (6)

Next, Kolmogorov-Smirnov (K-S) test was conducted at a 95% confidence interval
to test for normal distribution in residuals [16], and the White test for heteroscedasticity
at a 95% confidence interval was applied to assess the non-constant variance of regres-
sion errors and test the assumptions of the regression model [17].

4. Results

We applied the method to compute the demand for clinical visits associated with
the diagnosis of hypertension, labeled ”H10” according to the CIM-10 ontology; thus
dg = ”H10”. Our method is applied to make a future prediction of the target variable
changing progressively the lag parameter until reaching a one-month prediction horizon,
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τ ∈ [0,30]. The system trains a model for each lagging time that can vary in predictors.
This means that the model best forecasting H10 at horizon 0 (τ = 0) may have different
predictors than the one forecasting the future visits associated with H10 τ ∈ [1,30].

After applying the lagging in the matrix M (this is, shifting the target variable to the
future with respect to all predictors in P accordingly to τ), the train-test splitting strategy
is performed to the time series with a partition of 80% for training and 20% for testing to
evaluate the forecasting. Cross-validation isn’t used to preserve the structure of the time
series. In this case, if the study period of the database is 10 years, the first 8 years are
used for training, and the remaining 2 years are used for testing. It is worth noting that
as the lag τ ∈ [1,30] increases in the experimentation, the training set remains the same,
but the test set shortens accordingly. Since the testing period is still relatively long (730
days), the results remain robust.

The models are evaluated through the analysis of the number of predictors, the F-
statistic (4) and joint F-statistic (5); and the RMSE (Root Mean Square Error) and MAPE
(Mean Absolute Percentage Error) of the training and test predictions. Both RMSE and
MAPE are representations of the prediction error. RMSE presents the error as units of the
variable being predicted. Therefore, since we have scaled the database within the range
[0-1], RMSE addresses the error on this scale. For better interpretation, MAPE represents
the error as a percentage on the scale [0-100]. Additionally, MAPE allows for comparing
results between experiments, even if the test set does not have the same length.

Table 1 summarizes the best models for each lag. The algorithm achieves accurate
predictions in both the on-time model (τ(lag) = 0) and the future prediction models
(τ(lag)> 0). The number of variables that form the models ranges from 4 when predict-
ing 9 to 12 days ahead to 25 when predicting 6 or 7 days ahead (one week). All mod-
els present a constant subset of predictor diagnoses mainly related with chronicity and
elderly populations:

• M15: Primary generalized (osteo)arthrosis
• E78: Pure hypercholesterolaemia
• E03: Congenital hypothyroidism with diffuse goitre
• H90: Conductive hearing loss, bilateral
• F17: Mental and behavioural disorders due to use of tobacco

Details of the results are provided in Figure 2 to 4. Figure 2 shows the on-time model
(lag value τ = 0) and Figure 3 plots the model outcome when making a prediction one
month ahead (lag value τ = 30). In the case of Figure 2, the prediction is significantly
better (see MAPE and RMSE results of both models in table 1), although the model also
captures the general trend in the one-month prediction. The x-axis in Figures 2 and 3
represents the day, while the y-axis represents a scaled range of [0,1] for the number of
visits associated with the diagnosis.

Figure 4 demonstrates the behavior of the algorithm when increasing the lagging
time. The x-axis represents the prediction lag τ , while the y-axis represents the percent-
age of prediction error achieved by each model compared to the actual time series. The
error of prediction increases from 1.2% to 2.8% when the lag is increased τ ∈ [0,30].
The stepped effect that we see in the Figure is due to the behavior of the algorithm with
the application of the forward stepwise estimation method. The algorithm does not find
it worthwhile to add or remove new predictors if there is no significant increase in the
lag. For small and progressive increases, the algorithm tends to maintain the best model

G. Hernández Guillamet et al. / Hipertension Demand Forecasting 199



number 
variables F1  p-value 

(F1) F2 p-value 
(F2) 

MAPE 
train 

MAPE 
test 

RMSE 
train 

RMSE 
test predictors (diagnoses) LAG 

9 1.67 0.20 0.87 3,51E+05 1.39 1.35 0.02 0.02 M15,E78,E03,H90,F17,H40,I25,F90,Z83 0 

9 0.26 0.61 -0.06 1,00E+06 1.37 1.34 0.02 0.02 M15,E78,E03,H90,F17,H40,I25,F90,Z83 1 

9 1.19 0.27 0.31 5,80E+05 1.48 1.43 0.02 0.02 M15,E78,E03,H90,F17,H40,I25,F90,Z83 2 
14 0.70 0.40 -14.32 1,00E+06 1.35 1.20 0.02 0.01 M15,E78,E03,H90,F17,H40,I25,F90,Z83,M81,M23,F3... 3 
14 2.06 0.15 -22.75 1,00E+06 1.40 1.26 0.02 0.02 M15,E78,E03,H90,F17,H40,I25,F90,Z83,M81,M23,F3... 4 

20 1.31 0.25 -9.88 1,00E+06 1.42 1.20 0.02 0.01 M15,E78,E03,H90,F17,H40,I25,F90,Z83,M81,M23,F3... 5 
26 0.55 0.45 -15.87 1,00E+06 1.37 1.14 0.02 0.01 M15,E78,E03,H90,F17,H40,I25,F90,Z83,M81,M23,F3... 6 
26 0.25 0.62 -10.77 1,00E+06 1.35 1.15 0.02 0.01 M15,E78,E03,H90,F17,H40,I25,F90,Z83,M81,M23,F3... 7 
12 0.81 0.37 39.09 4,65E-04 1.67 1.53 0.02 0.02 M15,E78,E03,H90,F17,H40,I25,F90,Z83,M81,M23,F32 8 
5 2.27 0.13 -0.24 1,00E+06 2.01 1.67 0.03 0.02 M15,E78,E03,H90,F17 9 

5 0.06 0.81 -0.29 1,00E+06 2.08 1.72 0.03 0.02 M15,E78,E03,H90,F17 10 
5 0.64 0.43 1.76 1,85E+05 2.13 1.76 0.03 0.02 M15,E78,E03,H90,F17 11 
5 2.70 0.10 4.73 2,98E+04 2.18 1.78 0.03 0.02 M15,E78,E03,H90,F17 12 

12 1.77 0.18 -45.02 1,00E+06 1.96 1.70 0.03 0.02 M15,E78,E03,H90,F17,H40,I25,F90,Z83,M81,M23,F32 13 
12 2.09 0.15 -48.26 1,00E+06 1.96 1.70 0.03 0.02 M15,E78,E03,H90,F17,H40,I25,F90,Z83,M81,M23,F32 14 
16 0.86 0.35 -19.88 1,00E+06 1.88 1.48 0.02 0.02 M15,E78,E03,H90,F17,H40,I25,F90,Z83,M81,M23,F3... 15 
16 1.98 0.16 -28.14 1,00E+06 1.97 1.50 0.03 0.02 M15,E78,E03,H90,F17,H40,I25,F90,Z83,M81,M23,F3... 16 
16 2.17 0.14 -28.76 1,00E+06 2.00 1.51 0.03 0.02 M15,E78,E03,H90,F17,H40,I25,F90,Z83,M81,M23,F3... 17 

8 2.54 0.11 20.38 6,62E+00 2.35 1.92 0.03 0.02 M15,E78,E03,H90,F17,H40,I25,F90 18 

8 1.26 0.26 13.72 2,16E+02 2.37 1.94 0.03 0.03 M15,E78,E03,H90,F17,H40,I25,F90 19 
8 0.58 0.45 9.12 2,55E+03 2.34 1.91 0.03 0.03 M15,E78,E03,H90,F17,H40,I25,F90 20 

8 0.16 0.69 4.67 3,09E+04 2.33 1.90 0.03 0.03 M15,E78,E03,H90,F17,H40,I25,F90 21 

8 0.10 0.75 3.60 5,78E+04 2.42 1.95 0.03 0.03 M15,E78,E03,H90,F17,H40,I25,F90 22 
8 0.08 0.77 3.13 7,71E+04 2.51 1.99 0.03 0.03 M15,E78,E03,H90,F17,H40,I25,F90 23 
8 0.08 0.78 3.03 8,20E+04 2.56 2.01 0.03 0.03 M15,E78,E03,H90,F17,H40,I25,F90 24 

8 0.02 0.88 1.59 2,08E+05 2.60 2.02 0.03 0.03 M15,E78,E03,H90,F17,H40,I25,F90 25 
8 0.01 0.92 -1.02 1,00E+06 2.62 2.04 0.03 0.03 M15,E78,E03,H90,F17,H40,I25,F90 26 
8 0.05 0.82 -2.35 1,00E+06 2.58 2.03 0.03 0.03 M15,E78,E03,H90,F17,H40,I25,F90 27 

8 0.06 0.80 -2.57 1,00E+06 2.57 2.03 0.03 0.03 M15,E78,E03,H90,F17,H40,I25,F90 28 

8 0.00 0.97 -0.41 1,00E+06 2.65 2.08 0.03 0.03 M15,E78,E03,H90,F17,H40,I25,F90 29 

8 0.04 0.84 2.10 1,47E+05 2.74 2.14 0.04 0.03 M15,E78,E03,H90,F17,H40,I25,F90 30 

 

Table 1. Best models found for each lag value. Columns: number of predictors in best model for each lag;
F1 value for best model; significance F1 best model; F2 value for best model; significance F2 for best model;
MAPE train error (%); MAPE test error (%); RMSE train error; RMSE test error; predictors for best model;
LAG is the time horizon in days (τ)

of the previous lag, assuming a small increase in prediction error. It is not until the in-
crease in error is significantly high that the model changes the predictors to better adapt
to the variable to be predicted (the moment when the error decreases or remains stable,
as observed in the figure). This behavior can be observed in Table 1, which shows the
predictors selected for the best model at each lag.

5. Discussion

Results should be further validated in clinical practice. Most of these diagnoses are highly
related to an aging population, as well as hypertension, which explains the possible un-
derlying relation detected by the model. We can assert that the five variable identified
as best predictors (M15, E78, E03, H90, F17) are highly correlated with the demand for
hypertension diagnoses, and monitoring these variables could help predict trends in med-
ical visits related to hypertension six to seven days in advance with a small forecasting
error.

Having models with the ability to predict future demand would be key to improving
various aspects of the healthcare system. On a macro level, the system could operate
much more flexibly, anticipating the need for professionals in specific areas and times,
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Figure 2. On-time hypertension test prediction model (τ = 0). Y-axis: Normalized amount of hypertension
diagnoses in 14 days.

Figure 3. 30 days lagged hipertension test prediction model (τ = 30). Y-axis: Normalized amount of hyper-
tension diagnoses in 14 days.

maintaining health control over the population and also manage resources in a much
more efficient way. These models would also be useful in defining disease indicators.
On a micro level, healthcare professionals could have better control over their schedules
by knowing what profiles they may encounter in the coming days. In a context of high
demand like the one we are currently experiencing and that is expected in the future,
tools like these can be key to achieving greater efficiency and flexibility in the system.

The model has strengths such as simplicity and interpretability. MLR models are
widely used in the medical field and offer a high level of interpretation and acceptance by
professionals. The methodology we propose can be used to select those variables most
related to a target diagnosis through the feature selection method. The selection of such
predictors could be a first step towards considering adding other variables related to visit
diagnoses, such as medical prescriptions or pharmacological use, to improve prediction.
To that end, other models like recurrent neural networks (RNN) or convolutional neural
networks (CNN) could be explored.
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Figure 4. MAPE error lagging model.

In our work, we focus in in predicting hypertension that is one of the most common
diagnostics. Despite predicting hipertension involves a quick and inexpensive test, our
aim is to obtain the predictors and to understand how they behave in relation to the target
variable, what their relationship is, and the time correlation that occurs between them.
Moreover, other complex diagnoses as metabolic sindrome could be targered in a future.

6. Conclusions

We present in this paper a method to perform feature selection and forecast the demands
of a given diagnosis (hypertension in this case) based on other diagnoses. The method
is capable of indicating which predictors (other diagnostics) should be considered to
predict future demand for the target, thereby increasing interpretability. In this manner,
we obtain relevant information and greater explainability compared to other models, such
as deep learning techniques.

The method has been tested with data of primary care services of Catalonia (ICS)
in a cohort of 6,301,095 patients during years 2010-2019. The developed algorithm is
capable of predicting the trend in demand for hypertension-related visits with an accuracy
ranging from 98.6% to 97.86% when predicting one month in advance. Furthermore,
the proposed algorithm is capable of indicating which variables are significant predictors
for demand. Some of these variables have already been demostrated to have a causal
relationship with hipertension in other related works [18].

Future work involves to use other variables, such as medical prescriptions, together
with the predictors found; in that case, other machine learning forecasting tools, that
could find some non-linearity on data, and eventually improve the forecasting results
achieved by the MLR methods sould be explored.
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