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Abstract 

 

Biomarkers of aging are urgently needed to identify individuals at high risk of developing age-associated 

disease or disability. Growing evidence from population-based studies points to whole-body magnetic 

resonance imaging’s (MRI) enormous potential for quantifying subclinical disease burden and for assessing 

changes that occur with aging in all organ systems. The Aging Imageomics Study aims to identify biomarkers 

of human aging by analyzing imaging, biopsychosocial, cardiovascular, metabolomic, lipidomic, and 

microbiomic variables. This study recruited 1030 participants aged ≥ 50 years (mean 67, range 50-96 years)  

that underwent structural and functional MRI to evaluate the brain, large blood vessels, heart, abdominal 

organs, fat, spine, musculoskeletal system and ultrasonography to assess carotid intima-media thickness and 

plaques. Patients were notified of incidental findings detected by a certified radiologist when necessary. 

Extensive data were also collected on anthropometrics, demographics, health history, neuropsychology, 

employment, income, family status, exposure to air pollution and cardiovascular status. In addition, several 

types of samples were gathered to allow for microbiome, metabolomic and lipidomic profiling. Using big data 

techniques to analyze all the data points from biological phenotyping together with health records and lifestyle 

measures, we aim to cultivate a deeper understanding about various biological factors (and combinations 

thereof) that underlie healthy and unhealthy aging. 
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Abstract 

 

Biomarkers of aging are urgently needed to identify individuals at high risk of developing age-associated 

disease or disability. Growing evidence from population-based studies points to whole-body magnetic 

resonance imaging’s (MRI) enormous potential for quantifying subclinical disease burden and for assessing 

changes that occur with aging in all organ systems. The Aging Imageomics Study aims to identify biomarkers 

of human aging by analyzing imaging, biopsychosocial, cardiovascular, metabolomic, lipidomic, and 

microbiomic variables. This study recruited 1030 participants aged ≥ 50 years (mean 67, range 50-96 years)  

that underwent structural and functional MRI to evaluate the brain, large blood vessels, heart, abdominal 

organs, fat, spine, musculoskeletal system and ultrasonography to assess carotid intima-media thickness and 

plaques. Patients were notified of incidental findings detected by a certified radiologist when necessary. 

Extensive data were also collected on anthropometrics, demographics, health history, neuropsychology, 

employment, income, family status, exposure to air pollution and cardiovascular status. In addition, several 

types of samples were gathered to allow for microbiome, metabolomic and lipidomic profiling. Using big data 

techniques to analyze all the data points from biological phenotyping together with health records and lifestyle 

measures, we aim to cultivate a deeper understanding about various biological factors (and combinations 

thereof) that underlie healthy and unhealthy aging. 
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1. Introduction 

 

Aging is a complex process characterized by a time-dependent decline in functional capacity and stress   at 

different biological levels, associated with increased risk of morbidity and mortality [1]. The rate of aging in 

humans, varies widely due to genetic heterogeneity and environmental factors. The concept of biological age, 

unlike chronological age, takes these factors into account [2]. Quantifiable age-related changes in body 

structure or function that could serve as measures of biological age are termed biomarkers of aging [3]. By 

definition, these biomarkers predict the trajectory of biological aging, thus the onset of age-related diseases. 

As age is a major risk factor for many degenerative diseases, these biomarkers could help identify individuals 

at high risk of developing age-associated diseases or disabilities [3,4]. To date, most biomarkers used are not 

related to the aging process, so they cannot be considered true biomarkers of biological aging [5]. 

 

Radiomics aims at developing imaging biomarkers by extracting information about quantitative features from 

different medical imaging modalities in population-based studies [6-8]. The choice of imaging modality 

depends primarily on the research focus, although other aspects such as reproducibility, availability, costs, 

general legal considerations, or risks are also important. Computed tomography, used to develop the first 

radiomic biomarkers in oncological studies, is limited by its use of ionizing radiation [7]. Ultrasonography is 

inexpensive, convenient, and totally noninvasive, but has limited reproducibility. Nevertheless, 

ultrasonography measurement of carotid artery intima-media thickness is an established imaging biomarker 

for overall atherosclerotic burden [9]. Magnetic resonance imaging (MRI) is being used increasingly in 

population-based studies because it provides high tissue contrast without using ionizing radiation [10,11]. 

MRI has generated substantial scientific knowledge about the human brain in population studies, such as the 

UK Biobank prospective epidemiological study [12], the Rotterdam Study [13], the Three-City Dijon Study 

[14] or the 1000BRAINS study [15]. MRI is also a routine clinical standard for examining the spine, cardiac 

structures and function, large blood vessels, and abdominal organs [16]. Technological advances such as 

parallel acquisition technologies and continuous table feed have made it possible to examine the entire body 

in approximately 1 hour. As a result, it is now feasible to incorporate whole-body MRI examinations into the 

design of population-based studies to acquire multiple datasets that, taken together, provide a holistic view of 

the human body [16]. These studies can be used to characterize in an integrated manner the morphological 

and functional alterations of different organ systems, increasing our understanding of diseases in the 

community and providing knowledge about risk factors and outcomes.   

 

Population-based cohort studies generally monitor participants through follow-up examinations. Two broad 

approaches are used to explore imaging datasets. Cross-sectional approaches correlate baseline image-based 

phenotypic features with non-imaging parameters, while longitudinal approaches correlate phenotypic 

features at different time points with clinical outcomes to determine their prognostic relevance. The inclusion 

of a large number of participants helps ensure adequate power to identify and verify associations [17,18]. 

Radiomics can reveal subtle microstructural alterations in tissues by analyzing variables such as volume, 

intensity, texture, and shape of neighboring voxels [6]. Machine learning can be used to determine which 

extracted image-based features and combinations of features are associated with different outcomes [7]. 

Radiomics allows the development of image-based systems for risk stratification that promise to be useful for 

personalized medicine and prevention [6,8]. 

 

The multidisciplinary and multi-institutional Aging Imageomics Study set out to create a large repository of 

imaging datasets from advanced structural and functional whole-body MRI to enable the analysis of 

associations between imaging biomarkers and biopsychosocial parameters, cardiovascular indexes, 

metabolomics, lipidomics, microbiomics, frailty, and other age-related variables. Analyzing what is normal 
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and abnormal during aging will allow to establish new reference ranges for variables related to aging. The 

ultimate goal is to combine data from whole-body imaging with data from other fields to develop a panel of 

biomarkers of biological aging that can identify individuals at high risk of developing age-associated diseases 

or disabilities. Here we report on the rationale, study design and logistics, technical background, and baseline 

characteristics of participants in the Aging Imageomics Study. 

 

 

2. Methods 

 

2.1 Aging Imageomics consortium.  A consortium of 14 partners was formed to enable an interdisciplinary 

approach to establishing biomarkers of biological aging in humans. The different partners have expertise in 

clinical radiology, epidemiology, primary care, bioengineering, neuroscience, physiology, endocrinology, 

cardiology, neurology, psychology, physiotherapy, cell biology, and human genetics.   

 

2.2 Study design, population and sample recruitment. The Aging Imageomics Study is an observational study 

that includes participants from two ongoing cohort studies of individuals residing in the province of Girona 

(Northeast Catalonia, Spain): the Maturity and Satisfactory Ageing in Girona study (MESGI50 study) [19]  

and the Improving interMediAte RisK management study (MARK study) [20]. The MESGI50 study is a 

population-based cohort linked to the Survey of Health, Ageing and Retirement in Europe project (SHARE), 

which included a representative sample of the population of the province of Girona aged ≥50 years [21]. The 

MARK study included a random sample of patients aged 35 to 74 with intermediate cardiovascular risk 

recruited in public primary care centers in the province of Girona [20]. Members of both cohorts were 

contacted by telephone to be invited to participate in the Aging Imageomics Study. During this standardized 

telephone call, potential candidates were informed about the study and were encouraged to request more 

detailed information if they so desired. Subjects that agreed to participate were asked to choose a date and 

time to complete the enrollment procedures. To be eligible for the study, potential participants had to meet the 

following criteria: age ≥50 years, dwelling in the community (i.e., not institutionalized), no history of infection 

during the last 15 days, no contraindications for MRI (electronic cardiac implants, cochlear implants, 

incompatible prosthetic heart valves, incompatible vascular clips, metallic foreign bodies, or claustrophobia), 

and consent to be informed of potential incidental findings. 

 

2.3 Study procedures and ethical aspects. The Aging Imageomics Study protocol was approved by the ethics 

committee of Dr. Josep Trueta University Hospital. Data were collected between 14 November 2017 and 19 

June 2019. Candidates were scheduled for two appointments. The first visit consisted of three parts. First, 

candidates were informed in detail about the study aims and characteristics. Second, candidates who provided 

informed written consent were assigned a personal identification code and then underwent whole body-MRI 

and carotid ultrasound studies. Third, participants were scheduled for the next examination (15 days later), 

and a research assistant provided them with a kit and detailed step-by-step instructions for collecting and 

transporting morning urine and stool samples to be presented on the day of the following visit. The second 

visit consisted of three parts. First, morning urine and stool samples were collected from participants, and 

blood samples were drawn between 8:00 a.m. and 10:00 a.m. After basic processing, specimens were 

transported to the IDIBGI’s Biobank central laboratory by cold chain and were frozen at −80°C for future use. 

Second, participants underwent an anthropometric examination, a clinical interview, and a cardiovascular 

examination by a trained nursing team. Third, participants completed standardized tests and questionnaires 

administered by the nursing team and trained psychology students to measure cognitive-, mood-, and 

personality-related variables. Participants from the MARK study were also invited to further collaborate by 

using a device to measure ambient air pollution in the 2 weeks between visits. Table 1 lists the parameters 
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assessed in each domain and the instruments used to measure them. At the end of the study, participants 

received a detailed report with the main findings of the MRI, carotid ultrasound, electrocardiogram, and blood 

test.  

 

 2.4 Whole-body MRI acquisition protocol. MRI examinations were performed on a mobile 1.5T scanner 

(Vantage Elan, Toshiba Medical Systems at the beginning of the study, now from Canon Medical Systems) 

using a head coil and two body coils to cover the entire body, with a maximum gradient amplitude of 35mT/m-

1. Table 2 summarizes the MRI protocol. In brief, the acquisition protocol included (a) coronal T2-weighted 

short-tau inversion recovery (STIR) sequences from the head to middle third of the thighs; (b) sagittal T2-

weighted turbo spin-echo (TSE) of the entire spine; (c) short-axis 3D steady-state free precession (SSFP) 

sequences of the myocardium; (d) 2D phase-contrast magnetic resonance angiography (MRA) of the aortic 

arch; (e) time-of-flight MRA of the abdominal aorta; (f) coronal 4p Dixon acquisition from the liver to the 

symphysis pubis; and (g) diffusion tensor imaging (DTI) using spinecho echo-planar imaging (SE-EPI), 

resting-state functional MRI (rs-fMRI) using gradient echo EPI, R2* mapping using multiecho gradient echo 

sequence, high resolution 3D T1-weighted magnetization prepared rapid acquisition gradient echo 

(MPRAGE) and 2D T2-weighted fluid attenuated inversion recovery (FLAIR) sequences of the brain.The 

complete whole-body MRI protocol took about 50 minutes. Figure 1 is a graphic representation of each of the 

acquisitions; Figure 2 shows the imaging variables collected in each body region. 

 

2.5 Quality control of the MRI examinations. The four medical imaging technologists involved in MRI 

acquisition completed a one-month training program on the imaging platform provided by the vendor and 

further training. That additional training included theobservation and hands-on whole-body MRI acquisition 

in different MRI units at several university institutions before starting the project. These technologists checked 

the quality of the images obtained (up to about 25% of images during the initial pilot phase). A dedicated MRI 

physicist and a radiologist (13 years’ experience) reviewed subsets of the images to ensure acquisition 

standards were met. The MRI physicist supervised regular MR phantom measurements for quality control. 

 

2.6 Carotid ultrasound study. A radiologist (13 years’ experience) performed all carotid ultrasound 

examinations on a Siemens Acuson S2000 system (Mochida Siemens Medical System; Tokyo, Japan) system 

with a 7.5 mHz linear array transducer, measuring carotid stenosis percentage on B-mode (common carotid 

artery and  internal carotid artery). After capturing a transverse scan of the most stenotic segment, the original 

diameter and residual diameter were measured using electronic calipers. The residual diameter was defined as 

the shortest diameter of the residual lumen at the most stenotic carotid segment. On the other hand, the original 

diameter was defined as the measured diameter from the outer media to the outer media of the diseased artery 

on the same plane and at same direction with the residual diameter. This value was calculated using the 

following equation: Carotid stenosis percentage = (1-[residual diameter/original diameter]) x 100, as 

previously described [22-24]. The carotid intima-media thickness and plaques will be measured according to 

the Mannheim Consensus [25]. 

 

2.7 Data collection and storage. Two databases were used. The participant’s name and study identification 

code were inputted with individual passwords in an encrypted database. All data from questionnaires and 

medical devices were entered in another anonymous electronic database using the personal study identification 

code. A data manager checked the entries for completeness and plausibility and amended incomplete or 

implausible data when possible. Further data from biological samples and MRI postprocessing were linked 

through the personal study identification code. Encrypted backups of both databases were periodically stored 

on two external hard disks kept at different sites.  
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2.8 Ongoing data analysis. To extract biomarkers of aging and construct a healthy aging model, correlation 

analyses will be used to identify relationships between different measurements and machine learning methods 

will be used to estimate biological age from the imaging data and other measurements. Neural networks and 

decision/regression trees will be applied to find more local relationships within the data. Besides, 

dimensionality reduction techniques (e.g., principal component analysis) are needed to reduce the number of 

measurements required and variance in the predictions. Machine learning tools make it possible to combine 

diverse predictors to generate models with lower variance. Data visualization techniques and interactive 

methods such as visual clustering models might further help uncover unexpected relationships and reduce 

variance in the models by improving the characterization of subgroups. One end-product will be the creation 

of a structural and functional imaging atlas to model the aging of organs. 

 

2.9 Incidental findings. Potentially clinically relevant abnormalities discovered on examinations done for 

unrelated purposes are referred to as incidental findings. Two certified radiologists with 25 and 13 years’ 

experience reviewed all whole-body MRI and carotid ultrasound images for incidental findings. Following 

the approach used in the German National Cohort [27], incidental findings were classified as “notification 

urgently required”, “notification required”, and “notification not required”, based on the likelihood of false-

positive findings, clinical consequences of the finding, and potential negative consequences for the participant 

if unaware of the finding. 

 

2.10 Statistical analysis. For participants’ demographic and health characteristics, qualitative variables are 

expressed as absolute and relative frequencies and quantitative variables as measures of central tendency and 

dispersion. For bivariate comparisons of these variables between cohorts, chi-square tests, Mann-Whitney U 

tests, or Kruskall-Wallis tests are used. To assess the effect size for differences between proportions, Cramer’s 

V was applied, the value of which depends on the degrees of freedom (df=1; small [0.10], medium [0.30], 

large [0.50]; df=2; small [≤0.07], medium [0.21], large [≥0.35]; df3=small [≤0.06], medium [0.17], large 

[≥0.29]). The effect size for differences between two means was assessed by Cohen’s d (small=0.2; 

medium=0.5; large=0.8) [28]. Ninety-five percent confidence intervals (95% CIs) for incidental finding 

prevalence rates were calculated assuming a Poisson distribution. For all analyses, we used STATA 12 SE 

(STATA Corp. College Station, TX, USA) and a two-tailed alpha level for statistical significance of 0.05. 

 

3. Results 

 

The Aging Imageomics Study finished the recruitment of participants by June 2019. All participants in the 

MARK and MESGI studies (n=2181) were considered potential candidates; 1741 met the inclusion criteria. 

Figure 2 is a flowchart showing the process of inclusion in the study. The final study population consisted of 

1030 participants [mean age, 67.1±7.3 years; range, 50-98 years; 54.1% male]; 567 (55.0%) were recruited 

from the MARK study cohort (57.1% of all candidates in that study) and 463 (45.0%) from the MESGI study 

cohort (61.8% of all candidates from that study). Education level was classified as low in 57.3%, intermediate 

in 30.7%, and high in 12.0%; 71.3% were retired, 23.1% employed, and 5.6% unemployed or on sick leave. 

These variables differed slightly between women and men: educational level was slightly higher in men, and 

a slightly higher proportion of women were unemployed or sick (Table 3).  

 

Table 4 summarizes participants’ anthropometric characteristics, vascular system health status, medical 

history, basic biochemistry results, and carotid ultrasound examination results, stratified by gender. As 

expected, anthropometric characteristics (weight, height, waist circumference, heart rate, and blood pressure) 

differed between women and men. A greater percentage of women had a personal history of depressive 

episodes (42.3% vs. 18% in men). Differences with moderate effect size were observed in some biochemistry 
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results (HDL cholesterol, creatinine, sodium, potassium, and serum ferritin). Severe carotid stenosis was more 

common in men (13.1% vs. 6.3% in women).  

 

Table 5 reports lifestyle indicators (e.g., Mediterranean diet adherence, physical activity pattern), personality 

traits, affective status, and neuropsychological examination results, stratified by gender. A greater proportion 

of women had the personality trait “neuroticism” and depressive symptoms. Women outperformed men in 

memory-related neuropsychological tasks. 

 

Supplemental tables S1 to S3 report the demographic, social, and clinical characteristics of the participants, 

stratified by the cohort of origin (MARK vs. MESGI). As expected, participants from the two cohorts differed 

in some clinical and demographic characteristics. Although MARK study participants were recruited from 

primary care centers on a random basis, only those with intermediate cardiovascular risk were candidates; 

consequently, characteristics related to cardiovascular health status differed between the two cohorts. 

Compared to participants recruited from the MESGI cohort, those recruited from the MARK study had higher 

weight (77.8 kg vs. 73.1 kg), lower HDL cholesterol (49.3 mg/dL vs. 57.6 mg/dL), and higher serum glucose 

(116.4 mg/dL vs. 104.8 mg/dL) and blood glycated hemoglobin (6.1% vs. 5.7%). Lifestyle and personality 

characteristics in participants from the two cohorts were similar, but participants coming from the MESGI 

study outperformed those coming from the MARK study in all the neuropsychological tasks.  

 

The prevalence of incidental findings on whole-body MRI requiring notification was 4.44% (96% CI = 3.28-

5.91); the most frequent incidental findings requiring notification were located in the brain (1.35%), followed 

by the abdomen (1.16%), spine (0.77%), thorax (0.58%), and genitourinary regions (0.58%). A more detailed 

classification of incidental findings is provided in Table S4. 

 

 

4. Discussion 

 

The Aging Imageomics Study used multiple imaging modalities to acquire data about the brain, spine, 

abdomen, heart, musculoskeletal system, and large blood vessels with sufficient statistical power for reliable 

assessment of associations between imaging phenotype measures and a wide range of parameters related to 

aging. By analyzing these associations, we aim to develop a panel of combined biomarkers of aging that will 

be useful for characterizing biological age and identifying individuals at high risk of developing age-

associated diseases or disabilities. Participants were drawn from two population-based cohorts, one 

representative of the general population and another comprising individuals with intermediate cardiovascular 

risk. Comparing these two cohorts will help in identifying and validating potential biomarkers of aging.  

 

4.1 ‘Biomarkers of aging’ and ‘biological age score’.  The rate of aging, measured as the decline of functional 

capacity and stress resistance, differs significantly among individuals, thus giving rise to differences between 

biological and chronological age in some of them [2]. Classically, the rate of aging of a given population has 

been quantified by calculating the slope of the mortality curve. However, in this approach, it is only possible 

to determine individuals’ biological age at a given point in their lifetime retrospectively (i.e., after they have 

died),thus precluding reliable assessment of aging, risk prediction of the onset of morbidity, and residual 

lifetime for a given living individual. One strategy to overcome this problem is to identify age-related changes 

in the body (biomarkers of aging) that could serve as surrogate measures of biological age and predict the 

onset of age-related diseases and/or residual lifetime more accurately than chronological age [3,5].  
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The American Federation for Aging Research has proposed that biomarkers of aging should fulfill the 

following criteria [29]: (1) They must predict the rate of aging, signaling an individuals’ exact point in their 

total lifespan better than chronological age; (2) Rather than focusing on the effects of disease, they must focus 

on basic processes underlying the process of aging; (3) They must be noninvasive (e.g., imaging or blood 

tests) to allow repeated testing; (4) They must work in laboratory animals as well as in humans so that they 

can be tested in animals before being validated in humans.  

 

In recent years, various biomarkers of aging have been proposed, but all have shown considerable variability 

in cross-sectional studies [2-5,29,30]. No single measurement has proven capable of accurately determining 

biological age. However, the process of aging is complex, involving multiple causes and multiple systems, so 

a panel of biomarkers reflecting this complexity is likely to measure biological age better than any single 

marker alone. Thus, the Aging Imageomics Study aims to devise a “biological aging score” by using 

multivariate analysis and modern Machine Learning techniques to optimize the weighting of predictors from 

imaging (radiomics) and other tests (other -omics).  

 

4.2 Precision medicine, radiomics, and aging phenotyping. Artificial intelligence techniques are enabling 

progress toward precision medicine that takes differences among individuals into account to improve the 

prevention and treatment of disease [31]. Precision medicine depends on the availability of knowledge that 

allows differentiation among individuals. Determining a given individual’s state of health requires combining 

data about many factors beyond chronological age, such as genetic, microbiomic, clinical, psychosocial, and 

lifestyle-related characteristics [32]. In aging, precision medicine should aim to classify individuals into 

subpopulations with different burdens of subclinical disease or susceptibilities to a disease according to 

observable phenotypes that reflect both genomic variation and accumulated lifestyle and environmental 

exposures that impact biological function [33]. Genomics has been a useful approach for finding useful 

biomarkers for precision medicine, but non-genetic factors account for 70% to 90% of the phenotypic variation 

in chronic and age-related diseases [34]. Thus, effective and  efficient approaches incorporating data from 

noninvasive medical tests are necessary to better define phenotypes of health and aging. National and 

international efforts such as the Aging Imageomics Study seek to collect a wide array of individual data, 

including genomic, proteomic, microbiomic, and/or imaging data. 

 

Computer analysis of medical images is a promising source of information for precision medicine initiatives. 

Medical images contain dense, objective data that can be useful for phenotyping [35]. Radiomics uses high-

throughput computational techniques to analyze data from medical images, considering both “traditional” 

image analysis with human-defined image features and “deep learning”, where computer algorithms 

automatically discover features that are useful for specific purposes through a process of optimization 

incorporating data from different levels [36]. Deep Learning methods can potentially discover aging 

biomarkers without any human input, conceivably generating truly unexpected discoveries. Including more 

variables and more data is likely to better reflect underlying aging process and improve phenotyping [37-39]. 

Although radiomics-based phenotyping has unmatched potential, its inherent complexity and lack of firmly 

established standards can lead to methodological variability and consequent risk of irreproducible results. It 

can be difficult to incorporate multiparametric data. Moreover, the large number of features extracted 

increases the risk of overfitting the data, so one of the first steps in analyzing radiomics data is to reduce the 

number of dimensions of the parameters to allow more robust and reliable analyses of a given dataset. One 

strategy is to select features based on technical qualities such as reproducibility across different settings or 

readers. Although the research community agrees that radiomics techniques need to be validated to ensure the 

repeatability, reproducibility, robustness, and accuracy of the biomarkers derived from them as recommended 
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by the Quantitative Imaging Biomarkers Alliance, there is no consensus about the best approach to data 

dimensionality reduction [40-42].  

 

4.3 MRI and radiomics. Extracting radiomics features from multimodal MRI sequences promises to advance 

aging phenotyping. MRI enables examiner-independent visualization of morphologic and functional processes 

without the need for contrast agents or ionizing radiation, providing simultaneous coverage of major organ 

systems in a single, whole-body examination requiring less than 1 hour [43,44]. These examinations enable 

comprehensive quantitative assessment of adipose tissue distribution, brain and heart morphology and 

function, thoracic and abdominal organs, major blood vessels, and the musculoskeletal system with high 

sensitivity and specificity [16]. The capability of detecting subclinical disease and normal variants of the 

different organ systems have enormous potential for phenotyping in population-based studies assessing 

asymptomatic individuals. Although gadolinium-based contrast agents could provide additional useful 

information in MRI studies, their use requires the assessment of kidney function and the placement of an 

intravenous line and also involves a very small risk of allergic reactions [45,46]. For these reasons, we decided 

not to use them in this population-based study.  

 

4.4 Whole-body in MRI population-based studies. In recent years, several population-based studies have 

identified novel imaging biomarkers of preclinical disease [47-51]. Examples include computed tomography 

assessment of coronary calcification [52,53], MRI assessment of left ventricular function/fibrosis or hepatic 

steatosis [54,55], and ultrasound assessment of carotid intima-media thickness [56]. However, imaging in 

population-based studies requires a robust and convenient modality that can be applied in many consecutive 

participants without major deviations, interruptions, or cancellations; it also needs to be extremely safe, 

because the large sample size means that even very rare adverse events may occur. Moreover, the selected 

imaging modality should not alter the natural development of disease or potentially increase the risk for study 

endpoints (e.g., exposure to radiation from computed tomography and development of cancer). Finally, it 

should cover a large area of the body and provide high spatial resolution to assess subtle pathologic changes 

indicative of subclinical disease in different organ systems. Whole-body MRI meets these criteria, although 

contraindications may limit the target population and introduce a selection bias.   

 

In addition to Aging Imageomics Study, various population-based studies are currently using whole-body 

MRI. In Germany, the German National Cohort aims to recruit 30,000 participants [11], the Study of Health 

in Pomerania (SHIP) has 3400 participants [56], and the Cooperative Health Research in the Augsburg Region 

[Kooperative Gesundheitsforschung in der Region Augsburg] (KORA) has 18,000 participants [57]. In the 

United Kingdom, an extension of the UK Biobank [12,58] study was funded in 2016 to collect imaging data 

(MRI of the brain, heart and body, low-dose X-ray bone and joint scans, and ultrasound of the carotid arteries) 

from 100,000 subjects from the existing cohort by 2022. In the Aging Imageomics Study, integrating data 

from imaging with data from various sources is expected to provide unique insights into the biological 

mechanisms of aging. For example, structural and functional brain connectivity and cognitive performance 

may be linked to factors related to the microbiome, heart structure and function, carotid plaques, or body fat. 

The Aging Imageomics Study’s multimodality imaging and multidisciplinary approach might identify 

intertwining risk factors.  

 

 

4.5 Incidental findings. Whole-body MRI is bound to detect incidental findings in any large cohort of 

asymptomatic, supposedly healthy volunteers. The significance of these findings can be difficult to discern 

and might be considerably different from that of similar abnormalities in symptomatic individuals. How to 

deal with incidental findings is an ethical and practical quandary, because although these findings may identify 
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potentially treatable disease, they may also represent false-positive findings or conditions that might never 

cause problems in the individual’s life, in which case any further workup or follow-up would cause 

unnecessary psychological and/or physical suffering [59,60]. 

 

4.6 Usefulness of biomarkers of biological aging. Since the ultimate goal of population-based studies is to 

learn about the overall health of the population and how to improve it, the data collected in the Aging 

Imageomics Study will be available to the national and international scientific community. Furthermore, the 

study has been designed to enable pooling of MRI data with other European and non-European cohorts to 

make it possible to identify small observable variations between subgroups of participants. Increased life 

expectancy of human beings worldwide will probably be accompanied by an increase in the prevalence of 

age-related diseases, thus increasing the need for effective strategies to prevent these conditions and diagnose 

them early.  If biomarkers of aging identified individuals with high risk of developing age-associated disease 

or disability, detecting a faster-than-normal rate of aging, additional diagnostic and prophylactic measures 

(e.g., changes in lifestyle) might be indicated and early-stage treatment of age-related disease could be offered 

when available.  Biomarkers would also be useful for assessing the efficacy of interventions to decrease the 

risk of age-associated disease in the entire population.  Therefore, the results of these projects can be useful 

for public health officials, researchers, healthcare providers, and health-related industry, as well as for the 

general public. Health managers need solid tools to assess overall community health so they can apply health 

plans and direct financial resources. Imaging biomarkers based on whole-body MRI and related data can be 

useful for monitoring the effects of future primary prevention strategies and for stratifying the population for 

specific health promotion and primary prevention programs.  

 

Conclusions. In summary, the population-based Aging Imageomics Study represents an opportunity to better 

understand the physiological processes associated with aging in the human body. This data might be useful to 

quantify biological aging using as biomarkers tissue changes, as measured by MRI and US, and metabolic 

changes and relating them to clinical outcomes. This project will allow us to determine a range of normal 

values for each of the many variables derived from the advanced whole-body MRI protocol and to create a 

structural and functional imaging atlas to model the aging of organs. All this information will be useful in 

developing advanced imaging biomarkers to identify biopsychosocial risks associated with aging and in 

generating new hypotheses for further study. Identifying risk factors for health problems through advanced 

imaging biomarkers based on whole-body MRI could help stratify subjects in the population who could benefit 

most from primary prevention. 
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Figure 1. Magnetic resonance imaging acquisition protocol. 

 

 

 



18 

 

 

Figure 2. Major phenotypic features analyzed in the Aging Imageomics Study 
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Figure 3. The Aging Imagenoma Study participation flow-chart 
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Table 1. Domain, parameters and techniques to data gathering 

 

Domain Parameter Instrument / technique 

Anthropometry Body height and weight 

Waist circumference 

Scale and tape measure 

Medical history Self-reported diseases 

Medication use 

Ad hoc questionnaire 

Cardiovascular 

system 

Blood pressure 

Ankle-brachial index 

Heart rate, PQ, QRS, QT, ST, Q 

Pulse wave velocity 

Carotid arteries characteristics 

Retina vascular characteristics* 

 

Electrocardiogram 

Ultrasound 

Retinography 

Cognitive function Memory 

Processing speed 

Automatic response inhibition 

Attention 

Working memory 

Executive control and verbal ability 

Memory Binding Test [61,62] 

Symbol Digit Modality Test [63] 

Color Word Stroop Test [64] 

Forward Digit Span Test [65] 

Backward Digit Span Test [65] 

Fluency Tasks [66] 

Personality  Extraversion 

Agreeableness 

Contentiousness 

Neuroticism 

Openness 

Big Five Inventory-10 [67] 

Emotion Depressive symptoms 

Maniac symptoms  

Suicidal ideation 

Patient Health Questionnaire-9 [68] 

Mini International Neuropsychiatric 

Interview (Hypo)Manic Episode and 

Suicidality Modules [69] 

Lifestyle Diet 

 

Physical activity 

PREDIMED Adherence to 

Mediterranean diet [70] 

International physical activity 

questionnaire-SF [71] 

Ambient air 

pollution* 

  

Basic biochemistry Serum glucose, blood glycated 

hemoglobin, serum total, LDL and HDL 

cholesterol, fasting triglycerides, serum 

creatinine, sodium, potassium, calcium, 

phosphate, serum ferritin, serum thyroid 

stimulating hormone  

Blood sample 

Metabolomics, 

lipidomics, 

transcriptomics, 

and proteomics 

Circulating metabolites, proteins, and 

mRNA from peripheral blood 

mononuclear cells 

Blood and urine samples 

Gut microbiota  Composition and metagenomics Stool sample 
 

* Only assessed in MARK sample participants 
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Table 2. Magnetic resonance imaging protocol 

 

Anatomic coverage Sequence Imaging parameters* 

(TR; TE; FA; VS, FOV) 

Whole body** T2-STIR 3000; 80; 90; 1.5×1.5×5; 250 

Brain 2D FLAIR 8000; 120; 90; 0.8×0.8×5; 125 

 Resting-state EPI BOLD 3000; 50; 90; 3.5×3.5×4; 125 

 Diffusion tensor imaging (SE-EPI) 4500; 75; 90; 2×2×2.5; 125 

 R2* (multiecho gradient echo) 1300; 4.6 ∆4.6; 1.5×1.5×5; 125 

 3D T1-weighted (MPRAGE) 8.3; 3.8; 8; 1×1×1; 125 

Heart Cine SSFP short axis 4.6; 2.3; 55; 1.5×1.8×8; 80 

Thoracic aorta 2D Phase-contrast 7.4; 3; 20; 1.8×1.8×8; 8 

Abdominal aorta Time of flight 24; 2.7; 20;1.2;250 

Abdomen T1-weighted 4D Dixon 10; 1.3 ∆2.3; 1.5×1.5×5; 250 

Total spine T2-weighted 2D fast spin echo 3000; 120; 90; 1×1×4; 60 

 

*TR, Repetition time (ms); TE, echo time (ms); FA, flip angle (degree); VS, voxel size (mm3); FOV, field of 

view (mm). 

** From the top of the skull to the knees. 
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Table 3. Demographic and social characteristics 

 Female  

(n=473) 
Male 

(n=557) 
p value  

(effect size) 

Age, mean (SD) 66.5 (7.7) 67.5 (7.0) 0.035 (<0.1a) 

Age groups   0.152 (0.06b) 

 50-64 209 (44.2) 210 (37.7)  

 65-74 201 (42.5) 260 (46.7)  

 75+ 63 (13.3) 87 (15.6)  

Education level completed   <0.001 (0.14b) 

 None 24 (5.2) 8 (1.5)  

 Primary (ISCED 1) 248 (53.4) 295 (54.5)  

 Secondary (ISCED 2) 55 (11.9) 93 (17.2)  

 Professional (ISCED 3-4) 87 (18.8) 74 (13.7)  

 University (ISCED 5-8) 50 (10.8) 71 (13.1)  

Working status   0.021 (0.08b) 

 Retired 314 (67.8) 403 (74.2)  

 Employed 114 (24.6) 118 (21.7)  

 Other (unemployed/sick) 35 (7.6) 22 (4.1)  

 

ISCED: International Standard Classification of Education, 1997 levels;  
a Cohen’s d; b Cramer’s V 
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Table 4. Physical anthropometrics and health characteristics 

 Female  

(n=473) 
Male 

(n=557) 
p value  

(effect size) 

Weight (kg), mean (SD) 69.5 (14.0) 81.2 (11.8) <0.001 (0.90a) 

Height (cm), mean (SD) 158 (6,6) 170 (6.8) <0.001 (1.7a) 

Waist circumference (cm), mean (SD) 95.6 (13.0) 101.8(10.2) <0.001 (0.51a) 

Number of medications, mean (SD) 2.6 (2.3) 2.2 (1.9) 0,066 (0.18a) 

Heart rate (bpm), mean (SD) 67.2 (11.8) 63.6 (12.7) <0.001 (0.29a) 

Systolic arterial pressure (mmHg), mean (SD) 138.2 (19.5) 140.4 (19.3) 0.070 (0.11a) 

Diastolic arterial pressure (mmHg), mean (SD) 82.9 (11.1) 84.7 (10.4) <0.001 (0.16a) 

Ankle-brachial index test, n (%)    

 Left, normal 1.0 to 1.4 422 (92.5) 510 (94.8) 0.114 (0.04b) 

 Right, normal 1.0 to 1.4 423 (92.8) 504 (94.2) 0.227 (0.06b) 

Personal medical history, n (%)    

 Hypertension 193 (41.6) 278 (51.2) 0.002 (0.09b) 

 Diabetes mellitus 94 (20.3) 119 (21.9) 0.533 (0.02b) 

 Dyslipidemia 127 (27.4) 166 (30.6) 0.265 (0.03b) 

 Congestive heart failure 4 (0.9) 10 (1.8) 0.192 (0.04b) 

 Atrial fibrillation 9 (2.0) 11 (2.0) 0.934 (<0.01b) 

 Chronic kidney disease 20 (4.3) 26 (4.9) 0.682 (0.01b) 

 Chronic obstructive pulmonary disease 5 (1.1) 10 (1.9) 0.314 (0.03b) 

 Depressive episode 192 (42.3) 94 (18.0) <0.001 (0.26b) 

HDL cholesterol (mg/dL), mean (SD) 58.2 (16.5) 48.6 (13.2) <0.001 (0.64a) 

LDL cholesterol (mg/dL), mean (SD) 122.0 (30.5) 115.9 (31.4) 0.003 (0.19a) 

Fasting triglycerides (mg/dL), mean (SD) 118.6 (63.0) 125.1 (81.2) 0.275 (<0.01a) 

Serum glucose (mg/dL), mean (SD) 108.5 (32.1) 113.7 (25.8) <0.001 (0.17a) 

Fasting plasma insulin, (mg/dL), mean (SD) 9.7 (6.7) 11.2 (8.4) <0.001 (0.19a) 

Blood glycated hemoglobin (%), mean (SD) 5.9 (0.9) 5.9 (0.8) 0.697 (<0.01a) 

Serum creatinine (mg/dL), mean (SD) 0.73 (0.16) 0.96 (0.20) <0.001 (1.26a) 

Sodium (mEqu/L), mean (SD) 142.1 (2.1) 141.5 (2.0) <0.001 (0.29a) 

Potassium (mEqu/L), mean (SD) 4.5 (0.4) 4.7 (0.4) <0.001 (0.50a) 

Calcium (mg/dL), mean (SD) 9.5 (0.4) 9.4 (0.4) <0.001 (<0.01a) 

Phosphate (mg/dL), mean (SD) 3.6 (0.4) 3.2 (0.4) <0.001 (1.0 a) 

Serum ferritin (ng/dL), mean (SD) 102.5 (80.7) 205.1 (171.2) <0.001 ( 0.76 a) 

Thyroid stimulating hormone (mUI/L), mean (SD) 3.0 (5.7) 2.4 (2.4) <0.001 (0.13 a) 

Carotid ultrasound examination, n (%)   <0.001 (0.18 b) 

 Normal 204 (45.6) 154 (29.7)  

 Non-severe stenosis (<70%) 215 (48.1) 297 (57.2)  

 Severe stenosis (≥70%) 28 (6.3) 68 (13.1)  
a Cohen’s d; b Cramer’s V 
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Table 5. Lifestyle, personality characteristics, emotional status, and cognitive function 

 

 Female  

(n=473) 
Male 

(n=557) 
p value  

(effect size) 

Adherence to Mediterranean diet, n (%)   0.663 (0.02b) 

 Low 33 (7.6%) 46 (8.8)  

 Moderate 256 (59.0) 314 (60.0)  

 High 145 (33.4) 163 (31.2)  

Physical activity, n (%)   <0.001 (0.13b) 

 Low (<600 MET-minutes/week) 43 (9.9) 36 (6.9)  

 Moderate (600-2,999 MET-minutes/week) 213 (49.0) 200 (38.3)  

 High (≥3,000 MET-minutes/week) 179 (41.1) 286 (54.8)  

Personality traits    

 Extraversion, mean (SD) 6.8 (1.7) 6.7 (1.8) 0.305 (0.05a) 

 Agreeableness, mean (SD) 7.0 (1.6) 6.9 (1.6) 0.476 (0.06a) 

 Conscientiousness, mean (SD) 7.6 (1.7) 7.6 (1.8) 0.870 (<0.01a) 

 Neuroticism, mean (SD) 5.9 (1.8) 5.4 (1.7) <0.001 (0.28a) 

 Openness, mean (SD) 6.7 (1.8) 6.6 (1.8) 0.661 (0.05a) 

Patient health questionnaire-9, mean (SD) 5.2 (4.6) 3.0 (3.3) <0.001 (0.54a) 

Cognitive function, mean (SD)    

 MBT – total paired recall 21.7 (5.1) 20.4 (5.0) <0.001 (0.25a) 

 MBT – total free recall 12.5 (4.9) 10.7 (4.8) <0.001 (0.37a) 

 MBT – total delayed paired recall 21.2 (5.3) 19.3 (5.2) <0.001 (0.36a) 

 MBT – total delayed free recall 12.4 (5.1) 10.8 (4.8) <0.001 (0.32a) 

 Forward digit span test 7.5 (2.9) 7.9 (2.1) 0.003 (0.15a) 

 Backward digit span test 4.1 (1.8) 4.7 (1.9) 0.017 (0.32a) 

 Symbol digit modality test 46.7 (19.7) 47.1 (17.2) 0.493 (0.02a) 

 Letter fluency task 12.1 (4.8) 12.2 (4.8) 0.984 (<0.01a) 

 Category fluency task 16.5 (5.2) 16.7 (5.0) 0.190 (0.03a)  

 Stroop test – words 81.7 (19.9) 82.2 (18.6) 0.802 (0.02a) 

 Stroop test – colors 58.9 (13.9) 56.2 (14.1) 0.002 (0.19a) 

 Stroop test – words/colors 32.6 (11.2) 33.1 (12.3) 0.750 (0.26a) 

 Stroop test - interference -1.4 (9.3) -.03 (10.6) 0.040 (0.13a) 

a Cohen’s d; b Cramer’s V 
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Table S1. Demographic and social characteristics 

 MARK study  

(n=566) 
MESGI study 

(n=464) 
p value  

(effect size) 

Gender (female), n (%)  226 (39.9) 247 (53.2) <0.001 (0.13b) 

Age, mean (SD) 67.2 (6.4) 66.7 (8.3) 0.256 (0.06a) 

Age groups   <0.001 (0.13b) 

 50-64 209 (36.9) 209 (45.0)  

 65-74 286 (50.5) 175 (37.7)  

 75+ 71 (12.5) 80 (17.2)  

Education level*   <0.001 (0.18b) 

 Without studies 22 (4.0) 10 (2.2)  

 Primary (ISCED 1) 322 (58.7) 221 (48.5)  

 Secondary (ISCED 2) 78 (14.2) 70 (15.4)  

 Professional (ISCED 3-4) 89 (16.2) 89 (15.8)  

 University (ISCED 5-8) 38 (6.9) 83 (18.2)  

Working status**   0.008 (0.097b) 

 Retired 405 (73.6) 312 (68.4)  

 Employed 108 (19.6) 124 (27.2)  

 Other (unemployed/sick) 37 (6.7) 20 (4.4)  

 

ISCED: International Standard Classification of Education, 1997 levels 
a Cohen’s d; b Cramer’s V 
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Table S2. Physical anthropometrics and health characteristics 

 

 MARK study  

(n=566) 
MESGI study 

(n=464) 
p value  

(effect size) 

Weight (kg), mean (SD) 77.8 (13.6) 73.1 (13.7) <0.001 (0.34a) 

Height (cm), mean (SD) 164 (9.0) 164 (9.1) 0.627 (<0.01a) 

Waist circumference (cm), mean (SD) 100.1 (11.3) 97.6 (12.5) 0.003 (0.20a) 

Number of medications, mean (SD) 2.7 (2.1) 2.1 (2.0) <0.001 (0.29a) 

Heart rate (bpm), mean (SD) 66.6 (12.0) 63.5 (12.7) <0.001 (0.25a) 

Systolic arterial pressure (mmHg), mean (SD) 140.8 (18.3) 137.6 (20.6) 0.003 (0.16a) 

Diastolic arterial pressure (mmHg), mean (SD) 84.6 (10.8) 82.9 (10.6) 0.019 (0.15a) 

Ankle-brachial index test, n (%)    

 Left, normal 1.0 to 1.4 487 (90.0) 445 (98.2) <0.001 (0.17b) 

 Right, normal 1.0 to 1.4 483 (89.4) 444 (98.4) <0.001 (0.18b) 

Personal medical history, n (%)    

 Hypertension 290 (52.8) 181 (39.5) <0.001 (0.13b) 

 Diabetes mellitus 159 (28.9) 54 (11.9) <0.001 (0.20b) 

 Dyslipidemia 179 (32.5) 114 (24.9) 0.008 (0.08b) 

 Congestive heart failure 10 (1.8) 4 (0.9) 0.192 (0.04b) 

 Atrial fibrillation 9 (1.7) 11 (2.4) 0.405 (0.02b) 

 Chronic kidney disease 31 (5.8) 15 (3.3) 0.068 (0.05b) 

 Chronic obstructive pulmonary disease 8 (1.5) 7 (1.5) 0.957 (<0.01b) 

 Depressive episode 156 (29.5) 130 (29.0) 0.857 (<0.01b) 

HDL cholesterol (mg/dL), mean (SD) 49.3 (14.1) 57.6 (16.1) <0.001 (0.54a) 

LDL cholesterol (mg/dL), mean (SD) 119.3 (31.5) 118.0 (30.7) 0.427 (0.04a) 

Fasting triglycerides (mg/dL), mean (SD) 132.1 (72.9) 109.5 (72.1) <0.001 (0.31a) 

Serum glucose (mg/dL), mean (SD) 116.4 (32.4) 104.8 (22.3) <0.001 (0.41a) 

Fasting plasma insulin, (mg/dL), mean (SD) 11.6 (7.9) 9.2 (7.2) <0.001 (0.31a) 

Blood glycated hemoglobin (%), mean (SD) 6.1 (1.0) 5.7 (0.7) <0.001 (0.46a) 

Serum creatinine (mg/dL), mean (SD) 0.86 (0.21) 0.86 (0.22) 0.259 (<0.01a) 

Sodium (mEqu/L), mean (SD) 141.6 (2.1) 142.0 (1.9) 0.010 (0.19a) 

Potassium (mEqu/L), mean (SD) 4.6 (0.4) 4.6 (0.4) 0.905 (<0.01a) 

Calcium (mg/dL), mean (SD) 9.4 (0.4) 9.6 (0.4) <0.001 (0.5a) 

Phosphate (mg/dL), mean (SD) 3.4 (0.4) 3.4 (0.4) 0.167 (<0.01a) 

Serum ferritin (ng/dL), mean (SD) 155.9 (142.8) 160.5 (151.0) 0.739 (0.03a) 

Thyroid stimulating hormone (mUI/L), mean (SD) 2.9 (5.8) 2.5 (2.5) 0.128 (0.08a) 

Carotid ultrasound examination, n (%)   <0.001 (0.18b) 

 Normal 153 (29.8) 205 (45.4)  

 Non-severe stenosis (<70%) 294 (57.2) 218 (48.2)  

 Severe stenosis (≥70%) 67 (13.0) 29 (6.4)  
a Cohen’s d; b Cramer’s V 
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Table S3. Lifestyle, personality characteristics, emotional status, and cognitive function 

 

 MARK study  

(n=566) 
MESGI study 

(n=464) 
p value  

(effect size) 

Mediterranean diet adherence, n (%)   0.054 (0.07b) 

 Low 53 (10.1) 26 (6.0)  

 Moderate 311 (59.4) 259 (59.8)  

 High 160 (30.5) 148 (34.2)  

Physical activity, n (%)   <0.001 (0.14b) 

 Low (<600 MET-minutes/week) 33 (6.3) 46 (10.6)  

 Moderate (600-2,999 MET-minutes/week) 203 (38.8) 210 (48.4)  

 High (≥3,000 MET-minutes/week) 287 (54.9) 178 (41.0)  

Personality traits    

 Extraversion, mean (SD) 6.7 (1.7) 6.7 (1.7) 0.813 (<0.01a) 

 Agreeableness, mean (SD) 6.9 (1.6) 7.0 (1.6) 0.268 (0.12a) 

 Conscientiousness, mean (SD)   7.6 (1.7) 7.6 (1.8) 0.926 (<0.01a) 

 Neuroticism, mean (SD) 5.6 (1.8) 5.6 (1.8) 0.770 (0.0a) 

 Openness, mean (SD) 6.5 (1.9) 6.8 (1.7) 0.037 (0.16a) 

Patient health questionnaire-9, mean (SD) 4.1 (4.4) 3.8 (3.7) 0.781 (0.07a) 

Cognitive function, mean (SD)    

 MBT – total paired recall 20.5 (5.0) 21.5 (5.1) 0.002 (0.19a) 

 MBT – total free recall 10.7 (4.4) 12.5 (5.3) <0.001 (0.37a) 

 MBT – total delayed paired recall 19.6 (5.2) 20.9 (5.3) <0.001 (0.24a) 

 MBT – total delayed free recall 10.7 (4.4) 12.5 (5.5) <0.001 (0.36a) 

 Forward digit span test 7.5 (1.9) 8.1 (2.2) <0.001 (0.29a) 

 Backward digit span test 4.3 (1.7) 4.8 (2.0) <0.001 (0.27a) 

 Symbol digit modality test 44.1 (17.4) 50.3 (18.8) <0.001 (0.34a) 

 Letter fluency task 11.5 (4.5) 12.8 (5.1) <0.001 (0.29a) 

 Category fluency task 16.0 (4.7) 17.3 (5.4) <0.001 (0.26a) 

 Stroop test – words 80.2 (18.4) 84.1 (19.8) <0.001 (0.20a) 

 Stroop test – colors 55.6 (12.6) 59.5 (15.4) <0.001 (0.27a) 

 Stroop test – words/colors 32.0 (10.2) 33.8 (13.4) 0.081 (0.15a) 

 Stroop test - interference -0.6 (8.0) -0.7 (12.0) 0.612 (<0.01a) 

a Cohen’s d; b Cramer’s V 
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Table S4. Incidental findings classified as ‘notification required’ 

 

Region Finding n  % (95% CI) 

Brain Non-invasive meningioma 6  0.58 (0.21-1.26) 

 Invasive meningioma 2 0.19 (0.02-0.70) 

 Low-grade glioma   2 0.19 (0.02-0.70) 

 Arachnoid cyst 1 0.09 (<0.01-0.54) 

 Cavernoma 1 0.09 (<0.01-0.54) 

 Cortical dysplasia 1 0.09 (<0.01-0.54) 

 Pituitary macroadenoma 1 0.09 (<0.01-0.54) 

 Total brain findings 14 1.35 (0.74-2.27) 

Spine Syringomyelia 3 0.29 (0.06-0.85) 

 Symptomatic disc herniation 2 0.19 (0.02-0.70) 

 Schwanoma 1 0.09 (<0.01-0.54) 

 Intramedullary cyst  1 0.09 (<0.01-0.54) 

 Arachnoid web 1 0.09 (<0.01-0.54) 

 Total spine findings 8 0.77 (0.33-1.52) 

Thorax Lung nodule < 10 mm 4 0.39 (0.10-0.99) 

 Lung nodule ≥10 mm 1 0.09 (<0.01-0.54) 

 Thymus squamous carcinoma 1 0.09 (<0.01-0.54) 

 Total thorax findings 6  0.58 (0.21-1.26) 

Abdomen Indeterminate liver lesion * 4 0.39 (0.10-0.99) 

 Adrenal myelolipoma > 20 mm 1 0.09 (<0.01-0.54) 

 Indeterminate adrenal lesion ** 1 0.09 (<0.01-0.54) 

 Renal oncocytoma 1 0.09 (<0.01-0.54) 

 Adrenal pheochromocytoma 1 0.09 (<0.01-0.54) 

 Abdominal aortic aneurysm ≤ 5cm 2 0.19 (0.02-0.70) 

 Abdominal aortic aneurysm > 5cm 2 0.19 (0.02-0.70) 

 Total abdomen findings 12 1.16 (0.60-203) 

Genitourinary Bladder cancer 3 0.29 (0.06-0.85) 

 Paravesical leiomyoma 1 0.09 (<0.01-0.54) 

 Ovarian fibroma 1 0.09 (<0.01-0.54) 

 Uterine fibroid > 6 cm 1 0.09 (<0.01-0.54) 

 Total genitourinary findings 6 0.58 (0.21-1.26) 

Incidental findings  46 4.44 (3.28-5.91) 

* All indeterminate liver lesions were hemangiomas. 

** This indeterminate lesion was an adenoma. 

  

 

 


