
GRAPHICAL SIMULATORS FOR AUV DEVELOPMENT’

P. Ridao, M. Carreras, D. Ribas andA. El-Fakdi

Institute of Informatics and Applications. University of Girona. Spain

{ pere,marcc,dribas,ael-akdi} @eia.udg.es

ABSTRACT

A long development time is needed from the design to the
implementation of an AUV. During the first steps,
simulation plays an important role, since it allows for the
development of preliminary versions of the control
system to be integrated. Once the robot is ready, the
control systems are implemented, tuned and tested. The
use of a real-time simulator can help closing the gap
between off-line simulation and real testing using the
already implemented robot. When properly interfaced
with the robot hardware, a real-time graphical simulation
with a “hardware in the loop” configuration, can allow for
the testing of the implemented control system running in
the actual robot hardware. Hence, the development time
is drastically reduced. This paper overviews the field of
graphical simulators used for AUV development
proposing a classification. It also presents NEPTUNE, a
multi-vehicle, real-time, graphical simulator based on
OpenGL that allows hardware in the loop simulations.

1. INTRODUCTION

The use of simulation as a tool for UUV development
plays an important role at different phases of the
development process. At the first steps of the design,
offline simulators are very helpful. MATLABISimulink
is a good tool for such kind of simulations. Nowadays
there are several toolboxes available to be used for marine
robots, including UUVs [8]. Although these toolboxes are
very useful for the simulation of robot models and control
systems, they don’t reproduce the external world and
hence, external sensors like sonar cannot be modeled.
Therefore, intelligent control architectures which relay on
the robot-environment interaction, cannot be simulated.
In [5] , a MATLABISimulink framework including world
modeling is used for the comparison of different

intelligent control architectures for AUVs. Although the
framework allows for the sonar simulation, other external
sensors like computer vision cannot be reproduced. In
[l l] , a MATLABISimulink framework is used for the
simulation of a system for fault diagnosis and recovery
applied to ROVs. The system uses OpenGL 3D graphics
for world representation. Although not used for computer
vision simulation, the system is able to reproduce
different views including those of the onboard cameras.
Other researchers [11 have developed a 3D simulator
using C++ which allows for the simulation of sonar and
vision. Using the texture mapping capability of OpenGL,
they project an image mosaic of the real environment
onto the bottom surface. This allows for a quite realistic
simulation of vision systems. In the offline simulation, 1
second of simulation doesn’t last for 1 second of the
reality. In some cases, the simulated time is much smaller
than the real time [l]. This is of particular interest, for
instance, when algorithms like GAS are used, since it
allows the system to find a fast solution. In other cases
[l 11 the simulation load is so heavy that 1 second of
simulation last for more that 1 second in the reality. In
both cases, the temporal properties of the implemented
algorithms are not taken into account. Hence, when the
code is transferred to the actual robot, the temporal
consistency must be checked for correctness.
The online simulators on the other hand, ensure time
consistency between the simulated and the real time.
Hence, the time properties of the simulated algorithm are
taken into account within the simulation. Online
simulation play an important role in UUV development
since normally only few prototypes are available for
development and testing. With online simulators it is
possible to achieve concurrent engineering. Hence,
different engineers are able to develop in parallel
different aspects of the control systems on a totally virtual
reproduction of the actual robot. Nevertheless, the
algorithm is not executed in the actual hardware of the
robot and therefore, the time behavior of the computer
used for the simulation can be different from the one that

’ This research was sponsored by the Spanish commission
MCYT (DPI2001-2311-C03-01).

0-7803-8379-6/04/$20.00 02004 IEEE.
553

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:03:52 UTC from IEEE Xplore. Restrictions apply.

will be used during the robot control. Hardware in the
loop (HIL) simulators are used for overcoming such an
inconvenience. In this case, the developed software is
executed on the actual robot hardware but the robot
actions are routed towards the simulator instead than to
the real actuators. In the same way, the sensor readings
are simulated from the outputs of the online simulator. In
all these sort of simulation systems, the fidelity of the
simulation depends on the accuracy of the robot model,
the world model and the sensor models being used.
Nevertheless, even complex models are ideal
reproductions of the observed reality. Although some
researchers have introduced error models which are
added to the output of the virtual sensor, there still is a
gap between the simulated and the real mission. A step
forward to the real execution performance is achieved
with the use of hybrid simulators (HS). A HS is a HIL
simulator where the real and virtual systems operate
together in an augmented reality environment. Then, it is
possible to simulate a mission where a robot navigates in
a water tank while using virtual sonar to avoid virtual
objects. HS are of particular interest to test the expected
performance that could be achieved when new sensors
have to be acquired. This approach has been used by
different authors like [101 and [7] among others. Once the
whole system is ready to work, 3D graphical simulations
can still be used to operate, supervise and monitor the
current operation of the vehicle [10,7], or even for
mission playback and post mission analysis.
This paper overviews the field of graphical simulators for
AUV development and presents a new simulator called
NEPTUNE. The paper is organized as follows. Section 2
presents the models used for robot and thrusters
simulation. Then, Sections 3, 4 and 5 present the models
used for world, environment and sensor simulation.
Section 6 presents NEPTUNE and Table 1 proposes a
classification. Finally the paper concludes in section 7.

2. UUV MODEL

The robot model estimates the robot movement as
response to a given input. Depending on the simulation
needs, different kind of models can be used. For guidance
simulations a kinematics model can be enough:

E7j = J (Eq) B~ ; E ~ = I'7jdt (1)
This formula and the formulas hereafter are represented
with the same standard notation used in [8]. Please, refer
to that reference for details about the formulas as well as
the meaning of the variables. For more realistic control
simulation a full hydrodynamics model is commonly
used:

In the second case, the model input is the force and torque
exerted by the thrusters. This force can be modeled using
a steady state model:

In many practical applications, the advance speed at the
propeller V, can be considered 0 and hence, the thruster
affine model is obtained:

In [131 the authors show how important thruster dynamics
is for hovering maneuvers. For this kind of simulations,
dynamics models are needed. The same paper evaluates
three dynamics models for electrically actuated motors.
Refer to it for details.

T=cq,4w14W+cq4,i IWlV" (3)

T=C,IWIW (4)

3. WORLD MODELS

When the robot moves through the underwater world its
sensors are used for sensing in order to decide how to act.
To be able to simulate this behavior, a world model is
needed. The topographical model of the world has two
goals: (1) to represent the virtual world in the computer
screen and (2) to act as the input to the virtual sensors.
There are two principal methods for world encoding: (1)
bathymetry and (2) 3D CAD-like models. A bathymetry
model is an elevation map consisting on a grid of
altitudes [12]. It is a way to encode a level curves map.
Any surface that can be represented with a two variables
function h(x,y), can be represented by this kind of map. In
fact, in [2] authors used mathematical functions to encode
the bathymetry model. Nevertheless, bathymetry models
cannot be used to represent some natural features like
caves or some artificial structures that could be located on
the ocean bottom. The other way to represent the virtual
world is the use of CAD files. Most of the current 3D
graphical packages are able to export the designs into
VRML format. Hence, if this format is adopted it is very
easy to edit new worlds [3]. Moreover, there are several
libraries freely available able to parse the VRML
language and represent the objects using OpenGL. Some
times, both models are used together. This is the case of
NEPTUNE (Section 6).

4. ENVIRONMENT MODELS

There are several physical variables that define the state
of the environment: waves, wind, currents, temperature,
and salinity. Temperature, for instance, has an important
impact in the acoustics since the sound speed depends on
it. Salinity, magnetic and termocline models have been
reported in [6] while wave models have been used in

554

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:03:52 UTC from IEEE Xplore. Restrictions apply.

L: c1
id Sit
Not

Fig. 1 From top to bottom:
URIS robot; Lab Setup for
URIS; Virtual World for URIS.

B: Bathymetry; 0: sei of 3D object models; I: Ice covert topography; H: hydrodynamics; S,: Steady
Siate; A: thruster affine model; S: Salinity field; M: Magnetic field; T: Temperature field; D:
Density; C: Currents; W: Waves; On: Online Simulation; Hil: Hardware in the loop Simulation;
Hs: Hybrid Simulation; P: Mission Playback; M: Online Monitoring; Gb: Single beam; G,: conic
beam; N: Not detailed; Table 1 Classification

[12]. Wind and waves forces affects only to the vehicles
in the surface. Hence, for underwater robots, currents
play the major role. For computer simulations is realistic
enough [8] to simulate currents as a random walk process.

5. SENSOR MODELS

UUV sensors can be classified into three categories: (1)
internal sensors, (2) external sensors and (3) mission
payload sensors. Internal sensors include the sensors used
for measuring the state variables of the UUV as well as
their integrals and derivatives. A common way to model
these sensors is to use the correspondent output of the
UUV model, sampled at the same frequency that the real
sensors works, limited to the range of the sensor and
using the same resolution. Some authors introduce noise
to the measurement in order to do it more realistic. In [121
the authors used a magnetic deviation lookup table for
simulating the compass measurement. They also
introduced a bias in the measurement and gaussian
distributed white noise. For the modeling of the LBL,
they
proposed to use a sound speed profile together with a
gaussian ray tracing method. In [4], the authors used a

I.

method for estimating the probability density function of
the sensor noise after removing the outliers. External
sensors are used for sensing the environment. Sonar and
vision are examples of this type of sensors. Sonar sensors
can be simulated at different levels: (1) using the sonar
equation together with an acoustic ray tracing algorithm
taking into account the sound speed profile and (2) using
a geometrical method. First method is based on the
physics of the sound propagation and it is able to
reproduce effects like the multipath. The problem is that
they are computationally intensive. For range detection in
the immediate robot surroundings, a geometric method is
very appropriate [3] since the sound speed remains
constant. Commonly, geometric methods trace a ray from
the sonar transducer to the environment and return the
corresponding range [3]. An alternative method,
considers each sonar beam as a cone with p degrees of
aperture. Points belonging to this cone are explored in
order to see if they impact with objects in the vehicle
surroundings. In this case, the corresponding range is
returned. This is the case of NEPTUNE which is
described in section 6. The use of realistic 3D graphical
simulations allows nowadays making a simulation of
computer vision systems. The virtual views generated by

555

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:03:52 UTC from IEEE Xplore. Restrictions apply.

the 3D graphical engine can be used to grab images.
Moreover, using texture mapping it is possible to use real
images to generate the virtual scene. See [l] for a nice
application to the simulation of a cable tracking mission.

6. NEPTUNE

NEPTUNE is a real-time graphical simulator with
capabilities for on-line, hardware in the loop and hybrid
simulation. Externally, the virtual world is based on two
components: (1) a VRML file containing the topography
of the scene and (2) a set of objects also defined in
VRML. Internally, the topography of the scene is
converted into a bathymetry grid and the objects are
considered as spheres of a particular radius of action. This
model, together with a conic beam sonar model allows for
a very simple and fast geometric method for obstacle
and/or collision detection. Of course, there is a basic
assumption which considers the bottom surface as
convex. NEPTUNE is a multi-vehicle simulator. Hence,
more than one robot can be simultaneously simulated.
Each robot is defined through three basic files. The first is
a VRML file containing the robot geometry (Fig.1). The
second is a file which contains the robot and thruster
hydrodynamics coefficients. For simulation, the
hydrodynamic model (eq.1) is used. Thrusters are
simulated using the affine model (eq.4). Finally, the third
file contains the file names of the previous two files plus
a definition of the sensors included in the robot (number
of sonar beams, position in the robot frame and attitude
...). A custom developed language has been used for the
definition of the last two files. Then, it is very easy to
adapt NEPTUNE to simulate new robots. At this moment,
simulated sensors include: (1) range detection sonar, (2)
vision and (3) internal sensors (position, attitude, speed,
depth,). Since this is an ongoing project, ocean currents
and waves are no yet supported, although we plan to
introduce them in next versions. In order to allow for a
real time performance, the application has been build as a
distributed application including several processes: (1)
the NEPTUNE main program (2) one robot dynamics
process for each simulated robot (3) a name server. All
the programs interact among them through a TCP/IP
network. In Table 1 the main properties of NEPTUNE as
well as the main properties of several studied graphical
simulators are reported.

7. CONCLUSSIONS

playback) depending on the application. They also differ
in the sort of UUV, world, environment and sensor
models they use. NEPTUNE is a real-time 3D graphical
simulator for running online, hardware in the loop and
hybrid simulations. It is very flexible in the sense that
new virtual worlds and new UUV models can be added in
a very easy way. UUVs are modeled through their
hydrodynamic equation and thrusters are modeled using
the affine model. The world is modeled using VRML as
well as a bathymetry model and sonar is modeled using a
geometric method.

8. REFERENCES

[I] Antich J. and Ortiz A., “Experimental Evaluation of the Control
Architecture for an Underwater Cable Tracker”, 61h IFAC MCMC,
Girona (Spain), pp.140-165, September 2003.
[2] Borges de Sousa J. and Gollu A. “A Simulation Environment For
The Coordinated Operation Of Multiple Autonomous Underwater
Vehicles”, Winter Simulation Conference, Atlanta (USA), pp. 1 169-
1 175, December 1997.
[3] Brutzman D.P., “A Virtual World for an Autonomous Underwater
Vehicle”, Phd. Thesis, Monterey (USA), Dec. 1994.
[4] Bruzzone Ca., et a/, “A Simulation Environment for Unmanned
Underwater Vehicles Development”, MTS/IEEE Oceans 2001, Honolulu
(USA), pp. 1066.1072, November 2001.
[5] Cameras M. et al.. “An overview on behaviour-based methods for
AUV control”, 5Ih IFAC MCMC, Alborg (Denmark), pp. 141-146,
August 2000.
[6] Chappell S.G. et al., “Cooperative AUV Development Concept
(CADCON) An Environment for High-Level Multiple AUV
Simulation”, 1 I‘h International Symposium on Unmanned Untethered
Submersible Technology, Durham (USA), pp. 112-120, August 1999.
[7] Choi S.K., et al., “Distributed Virtual Environment Collaborative
Simulator for Underwater Robots”, IEEEIRSJ Int. Conf. on Robots and
Systems, Takamatsu (Japan), pp 861 -866, November 2000.
[8] Fossen, T.1, “Marine Control Systems: Guidance, Navigation and
Control of Ships, Rigs and Underwater Vehicles”, Marine Cybernetics
AS, Trondheim, December 2002.
[9] Gracanin et al., “Virtual Environment Testbed for Autonomous
Underwater Vehicles”, Control Engineering Practice, vol. 6, no. 5, pp.

[IO] Y. Kuroda, e/ al., “AUV Test using RealNirtual Synthetic World”,
IEEE Symp. on Autonomous Underwater Vehicle Technology,
Monterey (USA), pp.365-372, June 1996.
[I I] Omerdic, E. et al., “Fault Detection and Accommodation for
ROVS”, 6“ IFAC MCMC, Girona (Spain), pp.155-160. Sept. 2003.
[I21 Song F. e/ al., “Modeling and simulation of autonomous
underwater vehicles: design and implementation”, IEEE Journal of
Oceanic Engineering, Vol. 28, Issue: 2, pp.283-296, April 2003.
[I31 Tuohy S. T., “A Simulation Model for AUV Navigation,” IEEE
Oceanic Engineering Society Conference Autonomous Underwater
Vehicles, Cambridge (USA), pp. 470-478, July 1994.
[I41 Whitcomb L.L.and Yoerger D. R., “Development, comparison, and
preliminary experimental validation of nonlinear dynamic thruster
models”, IEEE Journal of Oceanic Engineering, Vol. 24, Issue: 4,
pp.481-494, October 1999.

653-660, 1998.

Graphical simulators play a key role for UUV
development. They can perform in different ways
(offline, online, hardware in the loop andor hybrid
simulation as well as monitoring and/or mission

556

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:03:52 UTC from IEEE Xplore. Restrictions apply.

