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Jordi Saperas-Riera *, Glòria Mateu-Figueras, Josep Antoni Martín-Fernández 
Universitat de Girona, C/de la Universitat de Girona, 6, Girona 17003, Spain   

A R T I C L E  I N F O   

Keywords: 
Aitchison's geometry 
Compositional data 
Norm L1 

Balance selection 

A B S T R A C T   

Lasso regression methods include a penalty function expressed in terms of a norm defined in the space of model 
coefficients. The norm plays a key role as regards the way coefficients can become irrelevant in the model. For 
models with a compositional covariate, the norm should be coherent with the Aitchison geometry. The proposed 
method is based on a newly-defined compositional norm called L1 pairwise logratio. The novel approach allows 
one to construct an appropriate basis through a sequential binary partition for discriminating between balances 
that influence the response variable and those that have no effect. This generalised Lasso regression scheme is 
illustrated with the analysis of a geochemical data set.   

1. Introduction 

One of the goals of linear regression analysis is to identify a subset of 
explanatory variables that are associated with the response variable. For 
example, in geochemistry it may be of interest to identify which 
chemical elements have an important effect on the soil pH in a particular 
region. To address this, Lasso regression methods, introduced by Tib-
shirani (1996), are a popular option for variable selection. Lasso 
regression applies an L1-norm penalisation to the model coefficients 
(slopes), where the L1-norm is the sum of the absolute value of the co-
efficients. The standard regression models assume the independence of 
the covariates, having each one its own slope. Importantly, these as-
sumptions do not apply to a compositional explanatory variable, that is, 
in the case of compositional data (CoDa). 

CoDa analysis (Aitchison, 1986) has become increasingly important 
in various fields such as environmental science, geochemistry, micro-
biology, and economics. However, CoDa poses unique challenges, 
especially when compositions are used as covariates in regression 
models. Indeed, following the principle of working on coordinates (Mateu- 
Figueras et al., 2011), the D-part composition in the explanatory part of 
the model should be expressed in terms of at least D − 1 logarithms of 
ratios of raw variables (logratios). Recently, a number of papers provided 
tools and methods for regression model simplification with CoDa. First 
works on penalised regression with compositional covariates are Lin 
et al. (2014); Shi et al. (2016); Lu et al. (2019), later extended to robust 
regression in Monti and Filzmoser (2021, 2022). Some of them are 

focused on considering all possible pairwise logratios in a penalised 
regression model (Bates and Tibshirani, 2019; Susin et al., 2020; Calle 
and Susin, 2022a, 2022b; Calle et al., 2023) with the usual L1-norm 
(Lasso) or L2-norm (Ridge) or a linear combination of both (Elastic net) 
applied to the model coefficients. Other works use supervised learning 
methods to select pairwise logratios in a generalised linear model 
(Coenders and Greenacre, 2022). A pairwise logratio approach in CoDa 
analysis is based on comparing the logarithm of the ratios between two 
parts of a composition. This approach allows one to analyse the relative 
information between different parts while avoiding issues of scale 
dependence and spurious correlation (Aitchison, 1986). Importantly, an 
approach based on balances can be considered as a generalisation 
because a balance is a logarithm of the ratios between the average of two 
groups of parts (Egozcue and Pawlowsky-Glahn, 2005). Balances in 
CoDa analysis are useful for identifying geochemical relationships and 
gaining insights into geological processes. By examining the ratios of 
different elements within samples, researchers can determine patterns 
and potential causes of variation. This approach can be applied to a 
range of materials, from rocks and minerals to soils and sediments, and 
can inform our understanding of issues (Buccianti and Grunsky, 2014). 
In the context of linear regression models for CoDa, Rivera-Pinto et al. 
(2018) propose a stepwise algorithm for selecting balances but the 
global optimum is not guaranteed. A more efficient algorithm identi-
fying a sequence of balances is introduced by Gordon-Rodriguez et al. 
(2022). In addition, Nesrstová et al. (2023) introduce a Partial Least 
Squares procedure to construct principal balances (Martín-Fernández 
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et al., 2018) that maximise the explained variability of the response 
variable. 

To our knowledge, none of these recent works deals with identifying 
a particular structure of the parts in a composition for selecting a subset 
of parts (subcomposition) in a linear regression model. On the other hand, 
Boogaart et al. (2021) deal with compositional part selection by intro-
ducing the concepts of internal and external subcompositional indepen-
dence. In a linear regression model, a subcomposition is internal 
independent when changes in values within the parts of the sub-
composition have no effect on the explained variable. Whereas external 
independence further assumes that the balance between the parts of the 
subcomposition and the rest of the parts in the composition also does not 
influence the response variable. Once one detects a subcomposition both 
internally and externally independent then the subset of parts can be 
removed from the model. The key element of the method proposed in 
this article is the new norm called L1 pairwise logratio (L1-plr) taking 
part in the penalty term of the Lasso regression model. Using this norm, 
the Lasso method is able to automatically identify internal independent 
subcompositions, that is, it detects which pairwise logratios are influ-
ential in the response variable and which are not. Once the independent 
subcompositions have been identified, the model can be simplified by 
considering an adequate set of balances involving the corresponding 
parts. Furthermore, a Bootstrap scheme is proposed for checking the 
external independence and, in such a case, indicating the parts that can 
be removed from the model. 

This article is organised as follows. In Section 2 the basic concepts of 
CoDa and standard penalty regression are described. In Section 3 the 
new norm L1-plr is introduced, and its compositional properties are 
provided. In Section 4 the Lasso regression model using the norm L1-plr 
is formulated and its properties are explored. A geochemical case study 
is provided in Section 5 for illustration purposes. Finally, the last section 
concludes with some remarks. 

The analyses discussed in this article were carried out in R (R-Core- 
Team, 2022) using the packages ADMM (You and Zhu, 2021) and coda. 
base (Comas-Cufí, 2022). 

2. Some basic concepts 

2.1. Compositional data 

CoDa conveys relative information because the variables describe 
relative contributions to a given total (Aitchison, 1986). These variables 
are called parts of a whole and are, usually, expressed in proportions, 
percentages or ppm. Historically (Aitchison, 1986), the sample space of 
CoDa is designed as the D-part unit simplex S

D
=

{
x ∈ ℝD : xj > 0;

∑
xj = 1;j = 1,…,D

}
. The formal geometric frame-

work for the analysis of CoDa first appeared in Pawlowsky-Glahn and 
Egozcue (2001) and Billheimer et al. (2001). This geometry was coined 
the Aitchison geometry, later formally established in Barceló-Vidal and 
Martn-Fernández (2016). The property of scale invariance of results in 
the analysis offers a broader understanding of compositions. According 
to this property, two vectors one multiple of the other are considered 
compositionally equivalent. Consequently, the set of vectors propor-
tional to x ∈ S

D ({k⋅x; k > 0}) is called a composition and for 
simplicity denoted again by x. While the compositional space is the set of 
all compositions and it is denoted for simplicity by S D. 

The Aitchison geometry is based on two specific operations that 
induce a vector space structure on S D called perturbation and powering, 
and defined as x ⊕ y = (x1y1, x2y2,…, xDyD) and α ⊙ x =

(
xα

1, xα
2,…, xα

D
)

for x,y ∈ S
D, α ∈ ℝ. In order to interpret the results of these operations, 

one can closure the result, that is, to normalise the resulting vector to a 
unit sum by dividing each component by its total sum. Note that the 
closure operation provides a vector compositionally equivalent. 

Once we have a vector space structure, a metric structure is easily 
defined using the clr-scores of a composition x (Aitchison, 1986): 

clr(x) =
(
clr(x)1 ,…, clr(x)D

)
=

(

ln
x1

g(x)
,…, ln

xD

g(x)

)

,

where g(⋅) is the geometric mean of the composition. Indeed, the basic 
metric elements of the Aitchison geometry: inner product (< ⋅, ⋅>A ), 
L2-norm (‖⋅‖A ), and distance (dA (⋅, ⋅)) are 

< x, y>A =< clr(x), clr(y)>E , ‖ x‖2
A =< x, x>A , dA (x, y) =

‖ x ⊖ y‖A , (1)  

where “A ” means the Aitchison geometry, “E” means the typical 
Euclidean geometry, and “⊖ ” is the perturbation difference x⊖ y =

x ⊕ (( − 1) ⊙ y ). 
An important scale invariant function is the logcontrast because it 

plays the typical role of the linear combination of variables. Given a 
composition x = (x1,…, xD), a logcontrast is defined as any linear 
combination of the logarithms of the compositional parts: 

∑D

j=1
ajlnxj, with

∑D

j=1
aj = 0, aj ∈ ℝ. (2) 

Note that each clr-score clr(x)j; j = 1,…,D, is a logcontrast, and, on 
the other side, any logcontrast can be expressed as a logratio 

∑D

j=1
ajlnxj = ln

∏
aj>0xaj

j

∏
aj<0x|

aj|
j

.

In fact, parts with aj > 0 in (2) appear in the numerator, and parts 
with aj < 0 appear in the denominator. If a part has no contribution, 
then aj = 0. 

The metric elements defined in Eq. (1) can be used to construct an 
orthonormal logratio (olr) basis and to calculate the corresponding 
olr-coordinates of a composition (olr(x), formerly known as ilr- 
coordinates) (Egozcue et al., 2003; Martín-Fernández, 2019). The 
expression of these olr-coordinates depends on the basis selected. 
Following Egozcue and Pawlowsky-Glahn (2005), one can define 
particular olr-coordinates, called balances. A balance involves two 
groups of parts of a composition and is expressed as the logratio of the 
geometric mean of each group of parts multiplied by a constant to 
guarantee the unit length of the vectors of the basis. 

A sequential binary partition (SBP) of a composition x = (x1,…, xD)

provides balances associated with a specific olr-basis. In the first step of 
an SBP, the full composition x = (x1,…, xD) is split into two groups of 
parts: one for the numerator (coded with +1) and the other for the de-
nominator (with code − 1). According to this partition, the first olr-co-
ordinate is obtained as the logarithm of the geometric mean of the parts 
in the numerator divided by the geometric mean of the parts in the 
denominator, multiplied by a scaling factor that depends on the number 
of parts (Eq. (3)). In the following steps, each group of parts is in turn 
split into two groups and the following olr-coordinates are obtained. In 
step k when the olr(x)k-coordinate is created, the rk parts 

(
xn1k ,…, xnrk

)

in the first group are placed in the numerator (code +1); the sk parts 
(
xd1k ,…, xdsk

)
in the second group will appear in the denominator (code 

− 1); and the rest of D − (rk + sk) parts are not involved in the logratio 
(code 0). As a result, the olr(x)k is: 

olr(x)k =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
rk⋅sk

rk + sk

√

ln
(
xn1k ⋯xnrk

)1/rk

(
xd1⋯xdsk

)1/sk
, k = 1,…,D − 1, (3)  

where 
̅̅̅̅̅̅̅̅̅
rk ⋅sk
rk+sk

√
is the factor for normalising vectors of the basis. Note that 

the olr(x)k coordinate, being a logcontrast that involves two groups of 
parts, informs us of, on average, the relative importance of one group of 
parts with regard to the other. 

Relating the clr-scores with any olr-coordinates by means of a matrix 
relationship is straightforward. Indeed, olrΨ(x) = Ψclr(x) and clr(x) =
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ΨTolrΨ(x), with Ψ ∈ ℝ(D− 1)×D a matrix where the D − 1 rows are the 
clr-scores of compositions forming the olr-basis. Consequently, all 
compositional operations and compositional metric elements (Eq. (1)) 
are translated into ordinary operations between the corresponding 
olr-coordinates. 

2.2. Linear model with compositional covariates 

Given a dependent variable y and an explanatory D-part composition 
x, the definition of a linear regression model in terms of a logcontrast 
(Aitchison and Bacon-Shone, 1984; Hron et al., 2012) is: 

y = α0 +
∑D

j=1
αjlnxj, with

∑D

j=1
αj = 0, aj ∈ ℝ, (4)  

whereas, in terms of metric elements, the model formulation is (Boo-
gaart and Tolosana, 2013): 

y = β0 +〈β, x〉A = β0 +〈clr(β) , clr(x) 〉E = β0 +〈olrΨ(β) , olrΨ(x) 〉E,

(5)  

where b is the compositional gradient vector. Note that Ψ ∈ ℝ(D− 1)×D is 
the matrix associated to any olr-basis in the clr-space, for example, a 
basis created using an SBP. Considering the expression in terms of 
clr-scores, the coefficients could be estimated using a statistical toolbox 
but the use of the generalised inversion for the covariance matrix of the 
clr-scores is required (Boogaart et al., 2021), which it is not necessary 
when working with the model based on olr-coordinates. 

2.3. Penalty regression 

The Lasso regression model is formulated as the combination of the 
L2-norm cost function and the L1-norm regularisation term. For a real 
data set X with n observations and D predictors and a real response 
vector Y of length n, the Lasso regression model can be formulated as 
(Tibshirani, 1996) 

min
{

1
2
‖ Y − β0 − X⋅β‖2

2 + λ ‖ β‖1

}

, (6)  

where a is the intercept, b is the gradient, and λ is the penalty parameter 
that controls the amount of regularisation. For λ = 0, the Lasso regres-
sion model (Eq. (6)) provides the classical least squares regression 
model. The larger the value of λ, the greater the number of coefficients in 
b forced to be zero. The optimal value of λ can be chosen based on cross- 
validation techniques or other methods (James et al., 2021). 

It is possible to generalise the Lasso problem by taking the L1-norm of 
a linear transformation of gradient b as a penalty function. The gener-
alised Lasso regression model is 

min
{

1
2
‖ Y − β0 − X⋅β‖2

2 + λ ‖ F⋅β‖1

}

, (7)  

where F is the matrix associated to an arbitrary linear transformation. 
Note that F = Id corresponds to the simple Lasso problem. 

The metric elements (Eq. (1)) used to define the regression model 
(Eq. (5)) facilitate the formulation of the cost function in a Lasso model 
Eqs. (6) and (7) for compositional covariates. However, the definition of 
an appropriate L1-norm for CoDa requires the supplementary concepts 
described in the following section. 

3. Norm L1 pairwise logratio 

The Aitchison norm ‖ x‖A (Eq. (1)) is defined as the Euclidean 
L2-norm of the clr-scores (L2 − clr): 

‖ x‖2
A =‖ x‖2

2− clr =‖ clr(x)‖2
2 =

∑D

j=1

(

ln
(

xj

g(x)

))2

, (8)  

that is, ‖ x‖A can be interpreted as the restriction of a L2 Euclidean norm 
on the clr-space. Following this idea, the norm L1 − clr (‖ x‖1− clr) for a 
Lasso regression model can be defined as (Bates and Tibshirani, 2019; 
Susin et al., 2020) 

‖ x‖1− clr =‖ clr(x)‖1 =
∑D

j=1

⃒
⃒
⃒
⃒ln
(

xj

g(x)

) ⃒
⃒
⃒
⃒. (9) 

Note that a regularisation term ‖ β‖1− clr forces some components 
clr(β)j, j = 1,…,D, to take small values, suggesting the corresponding 
parts xj could be removed from the model. However, the presence of the 
removed parts in the geometrical mean of the non-removed parts (g(β)
and g(x)) is a difficulty for the regression model simplification. 

Importantly, the Aitchison distance (Eq. (1)) can also be defined in 
terms of pairwise logratios (Aitchison et al., 2000). Consequently, the 

Aitchison norm can be expressed as ‖ x‖2
A = 1

D
∑

i<j

(
ln
(

xi
xj

))2
. Based on 

this expression, a new L1-norm on the simplex S D is defined as: 

Definition 1. The L1-plr norm of a composition x ∈ S
D is 

‖ x‖1− plr =
1

D − 1
∑

i<j

⃒
⃒
⃒
⃒ln
(

xi

xj

) ⃒
⃒
⃒
⃒. (10)   

Proposition 2. ‖ x‖1− plr =
1

D− 1
∑

i<j∣ln
(

xi
xj

)
∣ verifies the properties of a 

norm. That is:  

• Positive definiteness: ∀x ∈ S
D
, ‖ x‖1− plr ≥ 0. Moreover, ‖ x‖1− plr = 0 

if and only if x = (1,…,1).  
• Absolute homogeneity: ∀x ∈ S

D and ∀λ ∈ ℝ, ‖ λ ⊙ x‖1− plr =

∣λ∣ ‖ x‖1− plr.  
• Subadditivity: ∀x, y ∈ S

D
, ‖ x ⊕ y‖1− plr ≤‖ x‖1− plr + ‖ y‖1− plr. 

See Appendix for the proof. 
Importantly, the coefficient accompanying the sum of squared pair-

wise logratios in the Aitchison norm is 1/D, whereas in the norm L1-plr is 
1/(D − 1) (Eq. (10)). Using this factor, the norm L1-plr is endowed with 
the property of subcompositional dominance among other composi-
tional properties: 

Proposition 3. The L1-plr norm on S
D, ‖ x‖1− plr =

1
D− 1
∑

i<j∣ln
(

xi
xj

)
∣ 

verifies the properties  

• Scale invariance: ‖ x‖1− plr =‖ λx‖1− plr, λ > 0.  
• Permutation invariance: ‖

(
x1,…, xi,…, xj,…, xD

)
‖1− plr =

‖
(
x1,…, xj,…, xi,…, xD

)
‖1− plr.  

• Subcompositional dominance: ‖ x‖1− plr ≥‖ sub(x)‖1− plr where sub(x)
denotes any subcomposition of x. 

See Appendix for the proof. 
The norm L1-plr can be expressed in terms of the clr-scores as 

‖ x‖1− plr =
1

D − 1
∑

i<j

⃒
⃒
⃒
⃒ln
(

xi/g(x)
xj
/

g(x)

) ⃒
⃒
⃒
⃒ =

1
D − 1

∑

i<j

⃒
⃒
⃒clr(x)i − clr(x)j

⃒
⃒
⃒, (11)  

suggesting that, in general, ‖ x‖1− plr ∕=‖ x‖1− clr. 
Fig. 1 shows the shape of the unit balls (i.e., set of points that have 

distance 1 from the origin) measured by the norms L1-clr (Eq. (9), 
green), L1-plr (Eq. (10), orange), and Aitchison (Eq. (1), blue) in the 3- 
part compositional space. To represent it, the olr-coordinates olr1(x) =
̅̅
2

√

2 lnx1
x2

, and olr2(x) =
̅̅
2
3

√

ln
̅̅̅̅̅̅̅
x1x2

√

x3 
are used. Because the norms are calcu-

lated using clr-scores and pairwise logratios, the value of the norms is 
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invariant under a change of olr-basis. When one takes a different 
olr-basis then the shape of the unit balls is only affected by a rotation. As 
expected, the unit ball of the L2 Aitchison norm (blue) shows the typical 
shape of a circle, which includes the L1 unit balls as it is well known for 
norms Lp in Euclidean spaces. Interestingly, both norms L1-clr (green) 
and L1-plr (orange) create a hexagon, latter being the biggest. That is, 
the unit ball with norm L1-plr includes the unit ball of norm L1-clr 
because it holds ‖ x‖1− plr ≤‖ x‖1− clr, for x ∈ S

D (see Appendix for the 
proof). The points of contact between the unit balls correspond to x ∈

S
3 that clr(x) ∈

{(
± 1

2,∓
1
2,0
)
;
(
± 1

2,0,∓
1
2
)
;(0,±1

2,∓
1
2
)}

, where ‖ x‖1− plr =

‖ x‖1− clr = 1. 

4. Generalised Lasso regression with the norm L1 pairwise 
logratio 

To our knowledge, the compositional Lasso regression methods 
introduced in the literature (Bates and Tibshirani, 2019; Susin et al., 
2020; Calle and Susin, 2022a, 2022b; Calle et al., 2023) aim to separate 
the parts into two groups: parts that influence the response variable, and 
parts that do not. However, the methods do not analyse the external 
independence of parts that do not affect the response variable (Boogaart 
et al., 2021). That is, they do not explore the balance between the non- 
influential subcomposition and the rest of the parts. 

We will show that the Lasso regression using our new norm L1-plr 
aims to identify and separate the balances (i.e., pairwise logratios) into 
two groups: the balances that influence the response variable, and those 
that do not. Therefore this method permits the analyst to deal with both 
types of subcompositional independence: internal and external (Boogaart 
et al., 2021). 

Definition 4. Given yi, i = 1,…, n the sample of the response variable, 
X the n × D matrix whose rows, Xi = (xi1,…, xiD) for i = 1,…,n, contains 
the compositional sample, and clr(X)i the i-th row of matrix clr(X). The 
L1-plr Lasso estimator is defined as 

β ∈ argmin
β

{
1
2
∑n

i=1

(
yi − β0 − 〈clr(β) , clr(X)i

〉
E
)2

+ λ ‖ β‖1− plr

}

. (12)  

Following Eq. (11), it holds that ‖ β‖1− plr = ‖ F⋅clr(β)‖1, where F is 
the matrix D(D− 1)

2 × D associated to the linear transformation F(z1,… 
, zD) = 1

D− 1 (z1 − z2, z1 − z3,…, z1 − zD,z2 − z3,…, z2 − zD,…, zD− 1 − zD). 
Consequently, Definition 4 can be generalised to: 

β ∈ argmin
β

{
1
2
∑n

i=1

(
yi − β0 − 〈clr(β) , clr(X)i

〉
E
)2

+ λ ‖ F⋅clr(β)‖1

}

.

(13) 

The matrix clr(X) is not a full rank matrix, thus causing troubles 
when solving the convex optimisation problem (Saperas-Riera et al. 
(2023)) in Eq. (13). To avoid these troubles the problem can be solved in 
terms of olrΨ-coordinates, olrΨ(x) = Ψ⋅clr(x), that is, the L1-plr Lasso 
estimator (Eq. (12)) in olrΨ-coordinates is 

β ∈ argmin
β

{
1
2
∑n

i=1

(
yi − β0 − 〈olrΨ(β) , olrΨ(X)i

〉
E
)2

+ λ

‖ F⋅ΨT ⋅olrΨ(β)‖1

}

. (14) 

The relationship between Eq. (12) and Eq. (14) can be used for 
analyzing the relations between coefficients clr(β)j; j = 1,…,D and the 
coefficients of the balances in the generalised Lasso model (Eq. (14)). 
Importantly, the penalty term in Eq. (13) forces the sum of the absolute 
value of the differences of the clr-scores of the gradient vector to be less 
than a fixed number, which forces some pairwise differences of clr-scores 
to be zero (clr(β)i − clr(β)j = 0), that is, forces some pairs of clr-scores to 
be equal. This means that the corresponding pairwise logratios (lnxi

xj
) do 

not influence the response variable. For example, without loss of gen-
erality, suppose that the pairwise logratio lnx1

x2 
does not influence the 

response variable y. That is, the coefficient of the balance in the model is 
equal to zero. In this case, taking an adequate matrix Ψ one can obtain a 
model in clr-scores with clr(β)1 = clr(β)2 (i.e., β1 = β2). And vice-versa, if 
β fulfils β1 = β2, an olr-basis including the unit vector 

̅̅
2

√

2 (1, − 1,0,…,0)
provides a model where the coefficient of the pairwise logratio lnx1

x2 
is 

equal to zero, that is, the pairwise logratio lnx1
x2 

does not influence the 
response variable y. The above reasoning can be extended to a linear 
model with gradient β fulfilling β1 = β2 = … = βk, 2 < k < D. In this 
case, with an adequate matrix Ψ, one detects that the any pairwise 
logratio ln

(
xi/xj

)
, 1 ≤ i < j ≤ k do not influence the response variable 

y. In addition, any balance involving some of the parts in the sub-
composition (x1,…,xk) does not influence the response variable y. That 
is, the subcomposition is internal independent (Boogaart et al., 2021). 

Following the idea described above, a general algorithm for a L1-plr 
Lasso method can be formulated as: 

Algorithm 1. L1-plr Lasso. 
1. Fit the L1-plr Lasso model with tuning parameter λ (Eq. (14)). 
2. Express the L1-plr Lasso model in terms of clr-scores (Eq. (5)). 

3. For each string detected being 
{

clr(β)j1 = … = clr(β)jk

}
, built an 

orthonormal basis for the subcomposition 
(
xj1 ,…, xjk

)
in S D (Eq. (3)). 

4. Put together the bases created above for the subcompositions. 
Complete until an olr-basis basis for the full composition x ∈ S

D is 
reached. Write the L1-plr Lasso model in terms of the olr-coordinates (Eq. 
(5)). 

When fitting the model in olr − coordinates (step 1), any matrix Ψ can 
be used. Once fitted, the relationship between clr-scores and olr-co-
ordinates (clr(x) = ΨTolrΨ(x)) is used for detecting the subcompositions 
of the gradient vector β fulfiling βj1 = … = βjk , 2 ≤ k < D (step 2). The 

Fig. 1. Unit balls in the olr-coordinates space of 3-part compositions using the 
norms: L2-clr (blue), L1-clr (green), and L1-plr (orange). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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balances forming the olr-bases of these subcompositions do not influence 
the variable response y (step 3). That is, in this step, internal indepen-
dent subcompositions are detected. The rest of the parts of the compo-
sition x ∈ S

D form an influential subcomposition. When completing the 
olr-basis for the full composition x, any olr-basis can be created for the 
influential subcomposition (step 4). Importantly, the corresponding 
balances linking the different subcompositions detected must be 
included in the olr-basis. Moreover, the significance of the coefficient of 
a linking balance between a non-influential subcomposition and the rest 
of the parts provides information about the external independence. 
Consequently, any subcomposition 

{
xj1 ,…, xjk

}
, 2 ≤ k < D both inter-

nal and external independent can be removed from the linear regression 
model. A routine written in R code (R-Core-Team, 2022) has been 
developed by us to perform the steps involved in carrying out the al-
gorithm. The routine is freely available from the leading author. 

5. Case study 

Following Boogaart et al. (2021), a total of n = 2095 samples of the 
data set of project GEMAS (“Geochemical Mapping of Agricultural and 
grazing land Soil”) were analyzed. For further information about the 
data set, you can consult Reimann et al. (2014a, 2014b). The analyzed 
data set contains information on the soil pH, as a real response variable y. 
The compositional covariate is the 11-part composition x of the major 
oxides and LOI (loss on ignition): (SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, 
CaO, Na2O, K2O, P2O5, LOI). 

To select the optimal λ parameter for our model in Eq. (14), a 10-fold 
cross-validation was performed. Each iteration involves dividing the 
data into 10 equal parts, training the model on nine of them, and then 
evaluating it on the remaining part to produce the lowest Mean Squared 
Error (MSE). Fig. 2, shows a plot with the MSE curve and the values of 
lambda.min = 4.197 and the lambda.1se = 52.436. With the value 
lambda.min, one obtains the minimum mean cross-validated error, 
whereas lambda.1se is the largest value of the tuning parameter λ such 
that the error is within one standard error of the cross-validated errors 
for lambda.min. Because the larger value of an optimal λ, the larger the 
number of regularised coefficients, the value lambda.1se = 52.436 was 
considered for the L1 Lasso model (James et al., 2021). 

The linear penalised model for λ = lambda.1se = 52.436 expressed in 
terms of clr-scores (Eq. (5)) has the following coefficients: intercept β0 =

5.938 and gradient  

In this case, the method detects two strings: β1 = β2 = β3 = β4 and 
β5 = β9. Consequently, the associated balances and/or pairwise logra-
tios within the subcompositions (SiO2,TiO2,Al2O3,Fe2O3) and 
(MnO,K2O) do not have any influence on the response variable soil pH. 
The first 4-part subcomposition forms a 3-dimensional logratio sub- 
space where all the pairwise logratios and balances involving the 
major oxides SiO2, TiO2, Al2O3, and Fe2O3 are non-influential. For 

example, the pairwise logratio ln SiO2
Al2O3 

or the balance ln(SiO2Al2O3)
1/2

(TiO2Fe2O3)
1/2 are 

non-influential. The second subcomposition defines a 1-dimensional 
space, that is, changes in the values of the pairwise logratio lnMnO

K2O have 
no effect on the soil pH. On the other hand, pairwise logratios and 
balances mixing major oxides of the first group (SiO2,TiO2,Al2O3,Fe2O3)

with major oxides of the second group (MnO, K2O) could be influential. 
In particular, the coefficient for the linking balance between both sub-
compositions could be significant. The linking balance is the second 

balance (olr2, blue) in Table 1. The other balances that can be influential 
are those involving the rest of parts forming the subcomposition 
(MgO, CaO, Na2O, P2O5, LOI) and the linking balance between the 
two types of subcompositions (Table 1, green). 

Table 1 summarises the subcompositional structure suggested by the 
L1-plr Lasso method when one creates an appropriate olr-basis using an 
SBP. Note that the code “+ 1“in the SBP means that the part is in the 
numerator of the balance, whereas for the parts in the denominator, the 
label is “ − 1“. The code “0“is reserved for the parts non-involved in the 
balance. In green, the first row is the full balance between the major 
oxides involved in the non-influential subcompositions and the 
remaining major oxides (MgO,CaO,Na2O, P2O5, LOI). In blue, olr2 bal-
ances the two non-influential subcompositions. In red, the three rows 
form the basis of the subcomposition (SiO2, TiO2, Al2O3, Fe2O3). In 
purple, the sixth row is the vector forming basis of the subcomposition 
(MnO, K2O). In black, the last rows show an SBP for creating an 
olr-basis of the subcomposition with the remaining major oxides. 

The L1-plr Lasso gradient β expressed in terms of olr-coordinates 
associated to the SBP defined in Table 1 is 

olrΨ(β) = (0.228, − 0.058, 0, 0, 0, 0, 0.194, 0.735, 0.236, 0.187),

where coefficients equal to zero correspond to non-influential balances. 
Accordingly, the linear regression model is 

y = 5.938+ 0.228 olr1(x) − 0.058 olr2(x)+ 0.194 olr7(x)+ 0.735 olr8(x)
+ 0.236 olr9(x)+ 0.187 olr10(x).

(15) 

Note that the largest coefficient is olrΨ(β)8 = 0.7345, suggesting that 
the ratio CaO

Na2O concentrates most of the predicting power for pH. That is, 
one can interpret that when increasing the ratio CaO

Na2O while keeping all 
other predictor balances constant the soil pH increases (Coenders and 
Pawlowsky-Glahn, 2020). This feature coincides with the evaluation of 
the model presented in Boogaart et al. (2021). Among the other co-
efficients, it is of particular interest to test if the coefficient of the bal-
ance olr2(x) is zero (olrΨ(β)2 = − 0.058). Because olr2 is the linking 
balance between the two non-influential subcompositions (Table 1), 
removing this balance would indicate a non-influential 6-part 

Fig. 2. Cross-validation MSE curve for different log-transformed values of the 
penalty parameter (ln(λ)). The circle (∘) is the arithmetical mean of the 10-fold 
CV. The red lines (above and below the mean) are respectively the value 
mean ± stdev, where stdev is the standard deviation of the 10-fold CV. Vertical 
lines are the log-transformed values of lambda.min = 4.197 and lambda.1se =

52.436. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

clr(β) = (0.046, 0.046, 0.046, 0.046, 0.096, 0.083, 0.550, − 0.489, 0.096, − 0.182, − 0.339).
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subcomposition (SiO2, TiO2, Al2O3, Fe2O3, MnO, K2O), generating a 
5-dimensional space. In addition, eliminating the balance olr1(x) would 
simplify the model because the subcompositional external independence 
of the subcomposition would permit removing major oxides SiO2, TiO2, 
Al2O3, Fe2O3, MnO, and K2O from the model. In this case, the coefficient 
involved is olrΨ(β)1 = 0.228. 

Following Hesterberg et al. (2012), one can add the uncertainty 
associated with the coefficient using a bootstrap technique. Fixed λ =

52.436 and the SBP (Table 1), 1.000 random samplings with replace-
ment were performed in the data set and the L1-plr Lasso model was 
fitted. As a result, the 95 % percentile interval for each coefficient in 
olrΨ(β) was calculated. Fig. 3 shows that the coefficient olrΨ(β)1 = 0.228 
cannot be considered equal to zero, indicating that the subcomposition 
(SiO2, TiO2, Al2O3, Fe2O3, MnO, K2O) cannot be removed from the 
model because it is not external independent. In addition, because the 

95 % percentile interval for the coefficient olrΨ(β)2 ∈ ( − 0.158, − 0.005)
does not contain the zero then one can assume that the balance olr2(x) is 
influential, i.e., it cannot be removed from the model. Finally, as ex-
pected, percentile intervals of coefficients olrΨ(β)3, olrΨ(β)4, olrΨ(β)5,

and olrΨ(β)6 contain the zero because the internal independence of 
subcomposition (SiO2, TiO2, Al2O3, Fe2O3) and (MnO, K2O). Conse-
quently, the model in Eq. (15) does not admit further simplification. 

Despite L1-plr Lasso removing four balances from the model (Eq. 
(15)), all the major oxides participate in the remaining balances. That is, 
no parts have been removed from the model. On the other hand, when 
one applies the L1-clr Lasso method (Lin et al., 2014; Bates and Tib-
shirani, 2019) the goal is selecting influential parts. In the case of the 
GEMAS data set, the optimal λ tuning parameter was selected 
(lambda.1se = 38.728) using a 10-fold cross-validation evaluating the 
MSE. The linear regression model created has intercept β0 = 6.440 and 

Table 1 
SBP and balances for the olr-basis suggested by the L1-plr Lasso method. Colours are associated with subcompositions (see text for details). 

Fig. 3. Bootstrapping 95 % percentile intervals for the coefficients olrΨ(β) of the linear regression model.  
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the clr-gradient: 

clr(β) = (0, 0, 0, 0, 0.162, 0.081, 0.555, − 0.489, 0.170, − 0.142, − 0.336).

That is, the 4-part subcomposition of major oxides 
(SiO2,TiO2,Al2O3, Fe2O3) has been removed from the linear regression 
model: 

y = 6.44+ 0.162lnMnO+ 0.081lnMgO+ 0.555lnCaO − 0.489lnNa2O
+ 0.170lnK2O − 0.142lnP2O5 − 0.336lnLOI.

Note that the coefficients of this model have a lack of interpretation 
(Coenders and Pawlowsky-Glahn, 2020). For example, despite the co-
efficient of CaO being 0.555, it is not possible to interpret that one 
should expect an increase in soil pH when CaO is increased while the 
other concentrations are kept constant. Because concentrations are 
relative data (CoDa), the proportion of one part cannot increase if the 
other proportions are kept. Consequently, an adequate interpretation of 
the model requires being expressed in terms of balances or pairwise 
logratios (Coenders and Pawlowsky-Glahn, 2020). 

6. Final remarks 

Because concentrations of geochemical elements are compositional, 
any statistical analysis has to consider their relative nature. This article 
fills the gap for methods for automatic recognition of internal inde-
pendent subcompositions in linear regression models. We introduced a 
new norm for CoDa, the norm L1 pairwise logratio. This norm verifies 
the desirable properties, such as scale invariance and subcompositional 
dominance, in order to be coherent with the Aitchison geometry. By 
using the norm L1 pairwise logratio in a Lasso regression model, we can 
determine the importance of the relative information between the 
compositional parts in explaining a response variable. We use this in-
formation to create an olr-basis taking into account the structure defined 
by the internal independent subcompositions. The basis created includes 
linking balances between the internal independent subcompositions and 

the rest of the parts of the composition. We test the linking balances for 
analysing the subcompositional external independence because in such 
a case, the parts involved can be removed from the regression model. In 
other words, because the method identifies the pairwise logratios and 
balances that are less relevant, we can simplify the model and improve 
its interpretation while maintaining a high level of predictive power. 
This methodology provides a more nuanced understanding of the rela-
tionship between the compositional parts, which can lead to better in-
sights and decision-making in various fields. Still pending is analyzing 
how one can improve the model when introducing a penalty term based 
on a convex linear combination of the norm L1-plr and the Aitchison 
norm (Elastic net). The development of these types of models is one of 
the more interesting challenges in current CoDa analysis. Moreover, in 
order to implement the algorithm on high-dimensional data sets is 
necessary to increase the speed when fitting the model. One option to 
explore could be to change the ADMM algorithm by a faster one. 
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Appendix A. Proofs 

Proposition. 2. ‖ x‖1− plr =
1

D− 1
∑

i<j∣ln
(

xi
xj

)
∣ verifies the properties of a norm. 

Proof. • Positive definiteness: ∀x ∈ S
D
, ‖ x‖1− plr ≥ 0. Moreover, ‖ x‖1− plr = 0 if and only if x = (1,…,1). Immediate from definition 1.  

• Absolute homogeneity: ∀x ∈ S
D and ∀λ ∈ ℝ, ‖ λ ⊙ x‖1− plr = ∣λ∣ ‖ x‖1− plr. Immediate from definition 1.  

• Subadditivity: ∀x, y ∈ S
D
, ‖ x ⊕ y‖1− plr ≤‖ x‖1− plr + ‖ y‖1− plr. 

Because the absolute value is a convex function, for all i, j, it verifies 
⃒
⃒
⃒ln
(

xiyi
xjyj

) ⃒
⃒
⃒ =

⃒
⃒
⃒ln
(

xi
xj

)
+ ln

(
yi
yj

) ⃒
⃒
⃒ ≤

⃒
⃒
⃒ln
(

xi
xj

) ⃒
⃒
⃒+

⃒
⃒
⃒ln
(

yi
yj

) ⃒
⃒
⃒. Thus, 1

D− 1
∑

i<j

⃒
⃒
⃒ln
(

xiyi
xjyj

) ⃒
⃒
⃒ ≤

1
D− 1
∑

i<j

⃒
⃒
⃒ln
(

xi
xj

) ⃒
⃒
⃒+ 1

D− 1
∑

i<j

⃒
⃒
⃒ln
(

yi
yj

) ⃒
⃒
⃒. □ 

Proposition. 3. The L1-plr norm on S D, ‖ x‖1− plr =
1

D− 1
∑

i<j∣ln
(

xi
xj

)
∣ verifies the properties scale invariance, permutation invariance, and subcompositional 

dominance. 

Proof. .  

• Scale invariance: ‖ x‖1− plr = ‖ λx‖1− plr. Immediate from definition 1.  
• Permutation invariance: ‖

(
x1,…, xi,…, xj,…, xD

)
‖1− plr = ‖

(
x1,…, xj,…, xi,…, xD

)
‖1− plr. Immediate from definition 1.  

• Subcompositional dominance: ‖ x‖1− plr ≥‖ sub(x)‖1− plr. 

Without loss of generality we will prove that ‖ (x1,…, xD)‖1− plr ≥‖ (x2,…, xD)‖1− plr. 

‖ x‖1− plr =
1

D − 1
∑

i<j

⃒
⃒
⃒
⃒ln
(

xi

xj

) ⃒
⃒
⃒
⃒ =

1
D − 1

(
∑D

j=2

⃒
⃒
⃒
⃒ln
(

x1

xj

) ⃒
⃒
⃒
⃒+
∑

2≤i<j

⃒
⃒
⃒
⃒ln
(

xi

xj

) ⃒
⃒
⃒
⃒

)

.

We write the first summation, 
∑D

j=2

⃒
⃒
⃒ln
(

x1
xj

) ⃒
⃒
⃒, in a double summation form: 
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∑D

j=2

⃒
⃒
⃒
⃒ln
(

x1

xj

) ⃒
⃒
⃒
⃒ =

1
D − 2

∑D

j=2
(D − 2)

⃒
⃒
⃒
⃒ln
(

x1

xj

) ⃒
⃒
⃒
⃒ =

1
D − 2

∑D

j=2

∑D

k=3

⃒
⃒
⃒
⃒ln
(

x1

xk

) ⃒
⃒
⃒
⃒ =

1
D − 2

∑

2≤j<k

(⃒
⃒
⃒
⃒ln
(

x1

xj

) ⃒
⃒
⃒
⃒+

⃒
⃒
⃒
⃒ln
(

x1

xk

) ⃒
⃒
⃒
⃒

)

Renaming index j by i, and index k by j in the above summation, we can write the L1 − plr norm as follows: 

‖ x‖1− plr =
1

D − 1
∑

2≤i<j

(
1

D − 2

⃒
⃒
⃒
⃒ln
(

x1

xi

) ⃒
⃒
⃒
⃒+

1
D − 2

⃒
⃒
⃒
⃒ln
(

x1

xj

) ⃒
⃒
⃒
⃒+

⃒
⃒
⃒
⃒ln
(

xi

xj

) ⃒
⃒
⃒
⃒

)

≥

1
D − 1

∑

2≤i<j

(
1

D − 2

⃒
⃒
⃒
⃒ln
(

xi

xj

) ⃒
⃒
⃒
⃒+

⃒
⃒
⃒
⃒ln
(

xi

xj

) ⃒
⃒
⃒
⃒

)

=
1

D − 1
∑

2≤i<j

D − 1
D − 2

⃒
⃒
⃒
⃒ln
(

xi

xj

) ⃒
⃒
⃒
⃒.

Therefore, 

‖ x‖1− plr =
1

D − 1
∑

i<j

⃒
⃒
⃒
⃒ln
(

xi

xj

) ⃒
⃒
⃒
⃒ ≥

1
D − 1

D − 1
D − 2

∑

2≤i<j

⃒
⃒
⃒
⃒ln
(

xi

xj

) ⃒
⃒
⃒
⃒ =‖ (x2,…, xD)‖1− plr.

Note the importance of using the factor 1
D− 1 in the norm L1-plr instead of the factor 1

D used in the Aitchison norm. □ 

Proposition. . For all x ∈ S
D, it holds that ‖ x‖1− plr ≤‖ x‖1− clr. 

Proof. . 

‖ x‖1− plr =
1

D − 1
∑

i<j

⃒
⃒
⃒
⃒ln
(

xi

xj

) ⃒
⃒
⃒
⃒ =

1
D − 1

∑

i<j

⃒
⃒
⃒
⃒ln
(

xi/g(x)
xj
/

g(x)

) ⃒
⃒
⃒
⃒ =

1
D − 1

∑

i<j

⃒
⃒
⃒
⃒ln
(

xi

g(x)

)

− ln
(

xj

g(x)

) ⃒
⃒
⃒
⃒ ≤

1
D − 1

∑

i<j

⃒
⃒
⃒
⃒ln
(

xi

g(x)

) ⃒
⃒
⃒
⃒+

⃒
⃒
⃒
⃒ln
(

xj

g(x)

) ⃒
⃒
⃒
⃒

For each k = 1,…,D, the term ln
(

xk
g(x)

)
appears D − 1 times in the last summation, then it holds that 

1
D − 1

∑

i<j

⃒
⃒
⃒
⃒ln
(

xi

g(x)

) ⃒
⃒
⃒
⃒+

⃒
⃒
⃒
⃒ln
(

xj

g(x)

) ⃒
⃒
⃒
⃒ =‖ x‖1− clr.

Therefore, it holds that x ∈ S
D, ‖ x‖1− plr ≤‖ x‖1− clr. 

Note that for any x ∈ S
D that clr(x) =

⎛

⎜
⎝0,…,0, ±

a
2⏟⏞⏞⏟
i

,0,…,0, ∓
a
2⏟⏞⏞⏟
j

, 0,…,0

⎞

⎟
⎠ then it holds that ‖ x‖1− plr = ‖ x‖1− clr = a. □ 
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Nesrstová, V., Wilms, I., Palarea-Albaladejo, J., Filzmoser, P., Martín-Fernández, J., 
Friedecký, D., Hron, K., 2023. Principal balances of compositional data for 
regression and classification using partial least squares. J. Chemom., e3518 https:// 
doi.org/10.1002/cem.3518. 

Pawlowsky-Glahn, V., Egozcue, J.J., 2001. Geometric approach to statistical analysis on 
the simplex. Stoch. Env. Res. Risk A. 15, 384–398. https://doi.org/10.1007/ 
s004770100077. 

R-Core-Team, 2022. R: A Language and Environment for Statistical Computing. R 
Foundation for Statistical Computing, Vienna, Austria.  

Reimann, C., Birke, M., Demetriades, A., Filzmoser, P., O’Connor, P. (Eds.), 2014a. 
Chemistry of Europe’s Agricultural Soils—Part A: Methodology and Interpretation of 
the GEMAS Data Set, Geologisches Jahrbuch (Reihe B 102). Schweizerbarth, 
Hannover.  

Reimann, C., Birke, M., Demetriades, A., Filzmoser, P., O’Connor, P. (Eds.), 2014b. 
Chemistry of Europe’s Agricultural Soils—Part B: General Background Information 
and Further Analysis of the GEMAS Data Set, Geologisches Jahrbuch (Reihe B 103). 
Schweizerbarth, Hannover.  

Rivera-Pinto, J., Egozcue, J.J., Pawlowsky-Glahn, V., Paredes, R., Noguera-Julian, M., 
Calle, M.L., 2018. Balances: a new perspective for microbiome analysis. MSystems 3, 
e00053–18. 

Saperas-Riera, J., Martín-Fernández, J., Mateu-Figueras, G., 2023. Fundamentals of 
convex optimization for compositional data. SORT-Stat. Oper. Res. Trans. 47. 

Shi, P., Zhang, A., Li, H., 2016. Regression analysis for microbiome compositional data. 
Ann. Appl. Stat. 10, 1019–1040. 
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